JP2015520612A - How to operate the syngas fermentation process - Google Patents

How to operate the syngas fermentation process Download PDF

Info

Publication number
JP2015520612A
JP2015520612A JP2015514061A JP2015514061A JP2015520612A JP 2015520612 A JP2015520612 A JP 2015520612A JP 2015514061 A JP2015514061 A JP 2015514061A JP 2015514061 A JP2015514061 A JP 2015514061A JP 2015520612 A JP2015520612 A JP 2015520612A
Authority
JP
Japan
Prior art keywords
clostridium
fermentation
atcc
per gram
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015514061A
Other languages
Japanese (ja)
Other versions
JP2015520612A5 (en
JP6228596B2 (en
Inventor
サイロナ スコット
サイロナ スコット
ソン リウ
ソン リウ
チン−ワン コ
チン−ワン コ
Original Assignee
イネオス バイオ ソシエテ アノニム
イネオス バイオ ソシエテ アノニム
サイロナ スコット
サイロナ スコット
ソン リウ
ソン リウ
チン−ワン コ
チン−ワン コ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イネオス バイオ ソシエテ アノニム, イネオス バイオ ソシエテ アノニム, サイロナ スコット, サイロナ スコット, ソン リウ, ソン リウ, チン−ワン コ, チン−ワン コ filed Critical イネオス バイオ ソシエテ アノニム
Publication of JP2015520612A publication Critical patent/JP2015520612A/en
Publication of JP2015520612A5 publication Critical patent/JP2015520612A5/ja
Application granted granted Critical
Publication of JP6228596B2 publication Critical patent/JP6228596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/70Undefined extracts
    • C12N2500/74Undefined extracts from fungi, e.g. yeasts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

伝導率を低減し、約10gのエタノール/(L・日)のSTYを与えるのに有効なシンガスの発酵プロセスを提供する。本プロセスは、シンガスを反応容器に導入する工程及び生成細胞1グラム当たり約100mg以上の窒素という反応容器への窒素供給速度を与える工程を含む。シンガスの発酵は、約16mS/cm以下の平均伝導率及び10g以上のエタノール/(L・日)のSTYを有する発酵培地を与えるのに有効である。【選択図】なしProvide a syngas fermentation process effective to reduce conductivity and give about 10 g of ethanol / (L · day) STY. The process includes introducing syngas into the reaction vessel and providing a nitrogen supply rate to the reaction vessel of about 100 mg or more of nitrogen per gram of produced cells. Syngas fermentation is effective to provide a fermentation medium having an average conductivity of about 16 mS / cm or less and an STY of 10 g or more ethanol / (L · day). [Selection figure] None

Description

この出願は、両方とも2012年5月22日に出願された米国仮特許出願第61/650,098号及び第61/650,093号並びに2012年11月14日に出願された米国仮特許出願第61/726,225号の利益を主張する。なお、これら全ての内容全体を参照によって本明細書に援用する。
伝導率を低減し、かつ約10g以上のエタノール/(L・日)を与えるのに有効なシンガスの発酵プロセスを提供する。さらに詳しくは、本プロセスは、生成細胞1グラム当たり約100mg以上の量での反応容器への窒素供給速度を与える工程を含む。
No. 61 / 650,098 and 61 / 650,093, both filed May 22, 2012, and US Provisional Patent Application 61 / 726,225 filed November 14, 2012. Insist on the benefits of the issue. The entire contents of all of these are incorporated herein by reference.
It provides a syngas fermentation process that is effective in reducing conductivity and providing about 10 g or more of ethanol / (L · day). More particularly, the process includes providing a nitrogen supply rate to the reaction vessel in an amount of about 100 mg or more per gram of produced cells.

背景
嫌気性微生物はCOからガス状基質の発酵によってエタノールを生産することができる。クロストリジウム属由来の嫌気性微生物を用いた発酵はエタノール及び他の有用な生成物をもたらす。例えば、米国特許第5,173,429号は、合成ガスからエタノール及びアセタートを生成する嫌気性微生物クロストリジウム・リュングダリイ(Clostridium ljungdahlii)ATCC No.49587について記載している。米国特許第5,807,722号は、クロストリジウム・リュングダリイATCC No.55380を用いて廃ガスを有機酸とアルコールに変換するための方法及び装置について記載している。米国特許第6,136,577号は、クロストリジウム・リュングダリイATCC No.55988及び55989を用いて廃ガスをエタノールに変換するための方法及び装置について記載している。
Background Anaerobic microorganisms can produce ethanol from CO by fermentation of gaseous substrates. Fermentation with anaerobic microorganisms from the genus Clostridium yields ethanol and other useful products. For example, US Pat. No. 5,173,429 describes the anaerobic microorganism Clostridium ljungdahlii ATCC No.49587 that produces ethanol and acetate from synthesis gas. U.S. Pat. No. 5,807,722 describes a method and apparatus for converting waste gas to organic acids and alcohols using Clostridium lungdalii ATCC No. 55380. U.S. Pat. No. 6,136,577 describes a method and apparatus for converting waste gas to ethanol using Clostridium lünddalii ATCC No. 55988 and 55989.

酢酸生成菌は、安定した性能及びエタノール生産性のためにはアンモニアの形での窒素の一定供給を必要とする。最も典型的には、アンモニア源は低pH培地ストリームで供給される塩化アンモニウムである。コスト及び利用能のため水酸化アンモニウムの使用が好ましい。しかしながら、水酸化アンモニウムは塩基であるため、別の培地ストリームとして添加しなければならない。この高pHストリームの添加は、発酵の操作上の問題を引き起こす可能性がある。さらに、高濃縮培地の使用中の高生産性レベル(>50STY)では、発酵ブロスのイオン強度が培養性能に有害作用をもたらすレベルまで上昇する。   Acetic acid producing bacteria require a constant supply of nitrogen in the form of ammonia for stable performance and ethanol productivity. Most typically, the ammonia source is ammonium chloride supplied in a low pH media stream. The use of ammonium hydroxide is preferred due to cost and availability. However, since ammonium hydroxide is a base, it must be added as a separate media stream. The addition of this high pH stream can cause fermentation operational problems. Furthermore, at high productivity levels (> 50 STY) during use of highly concentrated media, the ionic strength of the fermentation broth rises to a level that has a deleterious effect on culture performance.

概要
シンガス発酵プロセスは伝導率を低減し、かつアルコールSTYを高める。本プロセスは、シンガスを反応容器に導入する工程及び生成細胞1g当たり100mg以上の窒素という反応容器への窒素供給速度を与える工程を含む。シンガスの発酵は、約16mS/cm以下の平均伝導率及び10g以上のエタノール/(L・日)を有する発酵培地を与えるのに有効である。この態様では、窒素は無水アンモニア、アンモニア水、水酸化アンモニウム、酢酸アンモニウム、有機又は無機ニトラート及びニトリル、アミン、イミン、アミド、アミノ酸、アミノアルコール、並びにその混合物を含めた窒素源から供給される。一態様では、窒素は水酸化アンモニウムによって供給される。このプロセスは、約0.75以上のCO/CO2比を有するシンガスを導入する工程及びこのシンガスを1種以上の酢酸生成菌で発酵させる工程を含む。発酵プロセスは、約1.0g/L以上の細胞密度及び約5〜約99%のCO転化率を与えるのに有効である。一態様では、発酵培地は約0.01g/L以下の酵母エキス及び約0.01g/L以下の炭水化物を含む。
一態様では、発酵における伝導率を低減するためのプロセスは、発酵培地を含む反応容器にシンガスを導入する工程を含む。このプロセスは、生成細胞1グラム当たり約100mg以上の窒素という速度で反応容器に窒素フィードを供給する工程を含む。ここで、窒素フィードには塩化アンモニウムの代わりに水酸化アンモニウムを用いる。この窒素フィードは、約16mS/cm以下の伝導率及び約4.2〜約4.8のpHを与えるのに有効である。
別の態様では、発酵における伝導率を低減するためのプロセスは、反応容器にシンガスを導入する工程及び生成細胞1グラム当たり約100mg以上の窒素という速度で反応容器に窒素フィードを供給する工程を含む。この態様では、窒素フィードには塩化アンモニウムの代わりに水酸化アンモニウムを用いる。このプロセスは、窒素フィードが塩化アンモニウムである発酵に比べて少なくとも約20%の伝導率の低減をもたらす。
一態様では、発酵培地は、生成細胞1グラム当たり約100〜約340mgの窒素、生成細胞1グラム当たり約10.5〜約15mgのリン、又は生成細胞1グラム当たり約26〜約36mgのカリウムを含む。この態様では、窒素源は水酸化アンモニウムである。
Overview The syngas fermentation process reduces conductivity and increases alcohol STY. The process includes introducing syngas into the reaction vessel and providing a nitrogen supply rate to the reaction vessel of 100 mg or more of nitrogen per gram of produced cells. Syngas fermentation is effective to provide a fermentation medium having an average conductivity of about 16 mS / cm or less and 10 g or more of ethanol / (L · day). In this embodiment, nitrogen is supplied from a nitrogen source including anhydrous ammonia, aqueous ammonia, ammonium hydroxide, ammonium acetate, organic or inorganic nitrates and nitriles, amines, imines, amides, amino acids, amino alcohols, and mixtures thereof. In one aspect, nitrogen is supplied by ammonium hydroxide. The process includes introducing a syngas having a CO / CO 2 ratio of about 0.75 or more and fermenting the syngas with one or more acetic acid producing bacteria. The fermentation process is effective to provide a cell density of about 1.0 g / L or greater and a CO conversion of about 5 to about 99%. In one aspect, the fermentation medium comprises about 0.01 g / L or less yeast extract and about 0.01 g / L or less carbohydrate.
In one aspect, a process for reducing conductivity in fermentation includes introducing syngas into a reaction vessel that includes a fermentation medium. This process involves supplying a nitrogen feed to the reaction vessel at a rate of about 100 mg or more of nitrogen per gram of produced cells. Here, ammonium hydroxide is used instead of ammonium chloride for the nitrogen feed. This nitrogen feed is effective to provide a conductivity of about 16 mS / cm or less and a pH of about 4.2 to about 4.8.
In another aspect, a process for reducing conductivity in fermentation includes introducing syngas into the reaction vessel and supplying a nitrogen feed to the reaction vessel at a rate of about 100 mg or more nitrogen per gram of produced cells. . In this embodiment, ammonium hydroxide is used instead of ammonium chloride for the nitrogen feed. This process results in a conductivity reduction of at least about 20% compared to fermentation where the nitrogen feed is ammonium chloride.
In one aspect, the fermentation medium comprises about 100 to about 340 mg nitrogen per gram of produced cells, about 10.5 to about 15 mg phosphorus per gram of produced cells, or about 26 to about 36 mg potassium per gram of produced cells. In this embodiment, the nitrogen source is ammonium hydroxide.

詳細な説明
下記説明を限定的意味に解釈すべきでなく、典型的態様の一般原理を説明するという目的のためだけに説明する。請求項を参照して本発明の範囲を決定すべきである。
DETAILED DESCRIPTION The following description should not be construed in a limiting sense, but is set forth only for the purpose of illustrating the general principles of exemplary embodiments. The scope of the invention should be determined with reference to the claims.

本明細書に記載の培地及び酢酸生成菌を用いてバイオリアクタ内で行なわれるシンガス発酵は、シンガス中のCOをアルコールその他の生成物に変換するのに有効である。窒素源として水酸化アンモニウムを利用すること及び伝導率を下げることは高生産性レベルを与えるのに有効である。この態様では、アルコール生産性をSTY(エタノールのg数/(L・日)として表される時空収量)として表すことができる。この態様では、プロセスは、少なくとも約10gのエタノール/(L・日)のSTY(時空収量)を与えるのに有効である。可能なSTY値としては、約10gのエタノール/(L・日)〜約200gのエタノール/(L・日)、別の態様では、約10gのエタノール/(L・日)〜約160gのエタノール/(L・日)、別の態様では、約10gのエタノール/(L・日)〜約120gのエタノール/(L・日)、別の態様では、約10gのエタノール/(L・日)〜約80gのエタノール/(L・日)、別の態様では、約10gのエタノール/(L・日)〜約15gのエタノール/(L・日)、別の態様では、約15gのエタノール/(L・日)〜約20gのエタノール/(L・日)、別の態様では、約20gのエタノール/(L・日)〜約140gのエタノール/(L・日)、別の態様では、約20gのエタノール/(L・日)〜約100gのエタノール/(L・日)、別の態様では、約40gのエタノール/(L・日)〜約140gのエタノール/(L・日)、別の態様では、約40gのエタノール/(L・日)〜約100gのエタノール/(L・日)、別の態様では、約10gのエタノール/(L・日)、別の態様では、約15gのエタノール/(L・日)、及び別の態様では、約16gのエタノール/(L・日)がある。   Syngas fermentation performed in a bioreactor using the media and acetic acid producing bacteria described herein is effective in converting CO in the syngas to alcohol and other products. Utilizing ammonium hydroxide as a nitrogen source and reducing the conductivity is effective in providing high productivity levels. In this embodiment, the alcohol productivity can be expressed as STY (a space-time yield expressed as g number of ethanol / (L · day)). In this embodiment, the process is effective to provide an STY (space-time yield) of at least about 10 g ethanol / (L · day). Possible STY values include from about 10 g ethanol / (L * day) to about 200 g ethanol / (L * day), in another embodiment from about 10 g ethanol / (L * day) to about 160 g ethanol / (L.day), in another embodiment from about 10 g ethanol / (L.day) to about 120 g ethanol / (L.day), in another embodiment from about 10 g ethanol / (L.day) to about 80 g ethanol / (L ・ day), in another embodiment about 10 g ethanol / (L ・ day) to about 15 g ethanol / (L ・ day), in another embodiment about 15 g ethanol / (L ・ day) Day) to about 20 g ethanol / (L.day), in another embodiment about 20 g ethanol / (L.day) to about 140 g ethanol / (L.day), in another embodiment about 20 g ethanol. / (L * day) to about 100 g of ethanol / (L * day), in another aspect, about 40 g of ethanol / (L * day) to about 140 g of ethanol / (L * day), in another aspect, About 40 g of ethanol / (L.day) to about 100 g of ethanol / (L.day), in another embodiment about 10 g of ethanol / (L.day). Nord / (L · day), in another embodiment, about 15g ethanol / (L · day), and in another embodiment, there is about 16g ethanol / (L · day).

定義
特に定義のない限り、本開示のためにこの明細書全体を通じて使用する下記用語は以下の定義通りであり、下記定義の単数形又は複数形のいずれをも包含し得る。
Definitions Unless otherwise defined, the following terms used throughout this specification for purposes of this disclosure are as defined below and may include either the singular or plural number of the following definitions.

「伝導率」及び「平均伝導率」は、電気を通す能力を意味する。水は電荷を運ぶ溶解固体を含有するので電気を通す。例えば、塩素イオン、硝酸イオン、及び硫酸イオンは負電荷を運び、一方ナトリウムイオン、マグネシウムイオン、及びカルシウムイオンは正電荷を運ぶ。これらの溶解固体は水の電気を通す能力に影響を与える。伝導率は、2つの電極間に電圧を印加するプローブによって測定される。電圧降下を用いて水の抵抗を測定してからこれを伝導率に換算する。既知の技術及び方法により平均伝導率を計測することができる。平均伝導率の測定のいくつかの例は、ASTM D1125、“Standard Test Methods for Electrical Conductivity and Resistivity of Water”、及び“Standard Methods for the Examination of Water and Wastewater”, 1999, American Public Health Association, American Water Works Association, Water Environment Federation(両内容を参照によってここに援用する)に提供されている。   “Conductivity” and “average conductivity” refer to the ability to conduct electricity. Water conducts electricity because it contains dissolved solids that carry charge. For example, chloride, nitrate, and sulfate carry a negative charge, while sodium, magnesium, and calcium carry a positive charge. These dissolved solids affect the ability of water to conduct electricity. The conductivity is measured by a probe that applies a voltage between the two electrodes. After measuring the resistance of the water using the voltage drop, it is converted to conductivity. The average conductivity can be measured by known techniques and methods. Some examples of average conductivity measurements are ASTM D1125, “Standard Test Methods for Electrical Conductivity and Resistivity of Water”, and “Standard Methods for the Examination of Water and Wastewater”, 1999, American Public Health Association, American Water Provided by Works Association, Water Environment Federation, both of which are incorporated herein by reference.

いずれの量をも修飾する用語「約」は、実社会条件、例えば、研究室、パイロットプラント、又は生産施設で遭遇する当該量の変動を表す。例えば、「約」によって修飾されているときの混合物又は量に使われる成分又は測定の量には、生産プラント又は研究室における実験条件で測定するのに典型的に利用される変動及び注意の度合が含まれる。例えば、「約」によって修飾されているときの生成物の成分の量には、プラント又は研究室における複数実験のバッチ間の変動及び分析法に固有の変動が含まれる。「約」によって修飾されていてもいなくても、量は当該量に等価な量を包含する。本明細書で言及され、「約」によって修飾されているいずれの量をも、「約」によって修飾されていない量として本開示で使用することもできる。   The term “about” that modifies any quantity represents a variation in that quantity encountered in real-world conditions, eg, a laboratory, pilot plant, or production facility. For example, the amount of components or measurement used in a mixture or amount when modified by “about” may include the degree of variation and attention typically used to measure at experimental conditions in a production plant or laboratory. Is included. For example, the amount of product components when modified by “about” includes variations between batches of multiple experiments in the plant or laboratory and variations inherent in the analytical method. Whether or not modified by “about”, an amount includes an amount equivalent to the amount. Any amount referred to herein and modified by “about” may also be used in the present disclosure as an amount not modified by “about”.

用語「シンガス」又は「合成ガス」は、各種量の一酸化炭素及び水素を含有するガス混合物に与えられる名称である合成ガスを意味する。生産方法の例には、水素を生産するための天然ガス又は炭化水素の水蒸気改質、石炭のガス化があり、いくつかのタイプの廃棄物発電(waste-to-energy)ガス化施設がある。この名称は、合成天然ガス(SNG)を生成する際の中間体として、またアンモニア又はメタノールを生産するための中間体として使用することに由来する。シンガスは可燃性であり、燃料源として又は他の化学薬品製造用の中間体として使用されることが多い。   The term “syngas” or “syngas” means syngas, the name given to gas mixtures containing various amounts of carbon monoxide and hydrogen. Examples of production methods include natural gas or hydrocarbon steam reforming to produce hydrogen, coal gasification, and several types of waste-to-energy gasification facilities. . The name comes from its use as an intermediate in producing synthetic natural gas (SNG) and as an intermediate for producing ammonia or methanol. Syngas is flammable and is often used as a fuel source or as an intermediate for the production of other chemicals.

用語「発酵」、「発酵プロセス」又は「醗酵反応」等は、プロセスの成長期と産物生合成期の両方を包含することを意図する。一態様では、発酵は、COのアルコールへの変換を意味する。   The terms “fermentation”, “fermentation process” or “fermentation reaction” and the like are intended to encompass both the growth phase and the product biosynthesis phase of the process. In one aspect, fermentation refers to the conversion of CO to alcohol.

用語「細胞密度」は、発酵ブロスの単位体積当たりの微生物細胞の質量、例えば、グラム/リットルを意味する。この態様では、プロセス及び培地は少なくとも約1.0g/Lの細胞密度を与えるのに有効である。細胞密度は約1〜約25g/L、別の態様では、約1〜約20g/L、別の態様では、約1〜約10g/L、別の態様では、約10〜約20g/L、別の態様では、約12〜約18g/L、別の態様では、約14〜約16g/L、別の態様では、約2〜約8g/L、別の態様では、約3〜約6g/L、別の態様では、約4〜約5g/Lであり得る。   The term “cell density” means the mass of microbial cells per unit volume of fermentation broth, eg grams / liter. In this embodiment, the process and medium are effective to provide a cell density of at least about 1.0 g / L. The cell density is about 1 to about 25 g / L, in another embodiment about 1 to about 20 g / L, in another embodiment about 1 to about 10 g / L, in another embodiment about 10 to about 20 g / L, In another aspect, from about 12 to about 18 g / L, in another aspect, from about 14 to about 16 g / L, in another aspect, from about 2 to about 8 g / L, in another aspect, from about 3 to about 6 g / L. L, in another embodiment, from about 4 to about 5 g / L.

用語「細胞リサイクル」は、微生物細胞を発酵ブロスから分離し、その分離した微生物細胞の全て又は一部を発酵槽に戻すことを意味する。一般に、ろ過装置を用いて分離を達成する。   The term “cell recycling” means separating microbial cells from the fermentation broth and returning all or part of the separated microbial cells to the fermentor. In general, separation is achieved using a filtration device.

用語「発酵槽」、「反応容器」又は「バイオリアクタ」には、1つ以上の容器及び/又は塔又は配管から成る発酵装置があり、連続撹拌タンク反応器(Continuous Stirred Tank Reactor)(CSTR)、固定化細胞反応器(Immobilized Cell Reactor)(ICR)、トリクルベッド反応器(Trickle Bed Reactor)(TBR)、移動床生物膜反応器(Moving Bed Biofilm Reactor)(MBBR)、気泡塔(Bubble Column)、ガスリフト発酵槽(Gas Lift Fermenter)、中空繊維膜バイオリアクタ(Hollow Fibre Membrane Bioreactor)(HFMBR)等の膜反応器(Membrane Reactor)、静的ミキサー、又は気液接触に適した他の容器若しくは他の装置が挙げられる。   The term “fermentor”, “reaction vessel” or “bioreactor” includes a fermenter consisting of one or more vessels and / or towers or piping, and a Continuous Stirred Tank Reactor (CSTR). , Immobilized Cell Reactor (ICR), Trickle Bed Reactor (TBR), Moving Bed Biofilm Reactor (MBBR), Bubble Column , Gas Lift Fermenter, Hollow Fiber Membrane Bioreactor (HFMBR) and other membrane reactors (MMBrane Reactor), static mixers, or other containers or other suitable for gas-liquid contact Apparatus.

CO含有ガス状基質
一態様では、プロセスは、高容量CO含有産業燃料ガス等のガス状基質からのアルコールの生産を支持する適応性を有する。一部の態様では、COを含むガスは、炭素含有廃棄物、例えば、産業廃棄ガスから又は他の廃棄物のガス化から導かれる。そのようなものとして、本プロセスは、そうでなければ環境にまき散らされるであろう炭素を捕獲するのに有効なプロセスとなる。産業燃料ガスの例としては、鉄系材料製品製造、非鉄製品製造、石油精製プロセス、石炭のガス化、バイオマスのガス化、電力生産、カーボンブラック生産、アンモニア生産、メタノール生産及びコークス製造中に生成されるガスが挙げられる。
In one embodiment of the CO-containing gaseous substrate , the process is adaptable to support the production of alcohol from a gaseous substrate, such as a high volume CO-containing industrial fuel gas. In some embodiments, the gas comprising CO is derived from carbon-containing waste, such as industrial waste gas or from other waste gasification. As such, the process is an effective process for capturing carbon that would otherwise be scattered into the environment. Examples of industrial fuel gases include ferrous material product manufacturing, non-ferrous product manufacturing, petroleum refining process, coal gasification, biomass gasification, power production, carbon black production, ammonia production, methanol production and coke production. Gas to be used.

別の態様では、CO含有ガス状基質はシンガスであり得る。シンガスはいずれの既知源から供給されてもよい。一態様では、シンガスは炭素質材料のガス化から供給され得る。ガス化は、酸素供給を制限した状態でのバイオマスの部分燃焼を伴う。結果として生じるガスは主にCOとH2を含む。この態様では、シンガスは少なくとも約10モル%のCO、一態様では、少なくとも約20モル%、一態様では、約10〜約100モル%、別の態様では、約20〜約100モル%のCO、別の態様では、約30〜約90モル%のCO、別の態様では、約40〜約80モル%のCO、別の態様では、約50〜約70モル%のCOを含有するであろう。シンガスは少なくとも約0.75、別の態様では、少なくとも約1.0、別の態様では、少なくとも約1.5、別の態様では、少なくとも約2.0、別の態様では、少なくとも約2.5、別の態様では、少なくとも約3.0、別の態様では、少なくとも約3.5のCO/CO2モル比を有するであろう。適切なガス化方法及び装置のいくつかの例は、全て2012年3月22日に出願された米国特許出願第13/427,144号、第13/427,193号及び第13/427,247号(全てその内容を参照によってここに援用する)に提供されている。 In another embodiment, the CO-containing gaseous substrate can be syngas. The syngas may be supplied from any known source. In one aspect, the syngas can be supplied from the gasification of the carbonaceous material. Gasification involves the partial combustion of biomass with limited oxygen supply. The resulting gas mainly comprising CO and H 2. In this embodiment, the syngas is at least about 10 mol% CO, in one embodiment at least about 20 mol%, in one embodiment from about 10 to about 100 mol%, and in another embodiment from about 20 to about 100 mol% CO. In another embodiment, from about 30 to about 90 mol% CO, in another embodiment from about 40 to about 80 mol% CO, in another embodiment from about 50 to about 70 mol% CO. Let's go. The syngas is at least about 0.75, in another embodiment, at least about 1.0, in another embodiment, at least about 1.5, in another embodiment, at least about 2.0, in another embodiment, at least about 2.5, in another embodiment, at least about 3.0. In another embodiment, it will have a CO / CO 2 molar ratio of at least about 3.5. Some examples of suitable gasification methods and devices are all described in US patent application Ser. Nos. 13 / 427,144, 13 / 427,193, and 13 / 427,247, all filed Mar. 22, 2012, all of which are incorporated herein by reference. Which is incorporated herein by reference).

別の態様では、酢酸生成菌を増殖させるために利用するシンガスは実質的にCOであってよい。本明細書では、「実質的にCO」は、少なくとも約50モル%のCO、別の態様では、少なくとも約60モル%のCO、別の態様では、少なくとも約70モル%のCO、別の態様では、少なくとも約80モル%のCO、別の態様では、少なくとも約90モル%のCOを意味する。   In another embodiment, the syngas utilized to grow the acetic acid producing bacterium may be substantially CO. As used herein, “substantially CO” means at least about 50 mol% CO, in another embodiment at least about 60 mol% CO, in another embodiment at least about 70 mol% CO, another embodiment. Means at least about 80 mol% CO, and in another embodiment at least about 90 mol% CO.

ガス状CO含有基質の組成によっては、発酵槽にそれを導入する前に処理して、粉塵粒子等のいずれの望ましくない不純物をも除去ることも望ましい。例えば、既知方法を用いてガス状基質をろ過又は洗浄することができる。   Depending on the composition of the gaseous CO-containing substrate, it may be desirable to treat it before introducing it to the fermentor to remove any undesirable impurities such as dust particles. For example, the gaseous substrate can be filtered or washed using known methods.

培地
一態様によれば、適切な培地の反応容器への添加によって発酵プロセスを開始する。反応容器に含まれる固体は、いずれのタイプの適切な栄養素又は発酵培地であってもよい。栄養培地は、使用する微生物の成長を可能にするのに有効なビタミン及びミネラルを含むであろう。炭素源としてCOを用いるエタノールの発酵に適した嫌気性培地は既知である。適切な発酵培地の一例は、参照によってその内容をここに援用する米国特許第7,285,402号に記載されている。適切な培地の他の例は、両方とも2012年5月22日に出願され、両方とも参照によってその内容をここに援用する米国特許出願第61/650,098号及び第61/650,093号に記載されている。一態様では、利用培地は約0.01g/L未満の酵母エキス及び約0.01g/L未満の炭水化物を含む。
According to the medium one embodiment, to initiate the fermentation process by addition to the reaction vessel of a suitable medium. The solid contained in the reaction vessel may be any type of suitable nutrient or fermentation medium. The nutrient medium will contain vitamins and minerals effective to allow the growth of the microorganisms used. Anaerobic media suitable for ethanol fermentation using CO as a carbon source are known. An example of a suitable fermentation medium is described in US Pat. No. 7,285,402, the contents of which are hereby incorporated by reference. Other examples of suitable media are described in US patent applications 61 / 650,098 and 61 / 650,093, both filed May 22, 2012, both of which are incorporated herein by reference. Yes. In one aspect, the utilization medium comprises less than about 0.01 g / L yeast extract and less than about 0.01 g / L carbohydrate.

一態様では、本プロセスは、生成細胞1グラム当たり約100mg以上の窒素という反応容器への窒素供給速度を与える工程を含む。別の態様では、窒素供給速度は、生成細胞1グラム当たり約100〜約340mgの窒素、別の態様では、生成細胞1グラム当たり約160〜約340mgの窒素、別の態様では、生成細胞1グラム当たり約160〜約200mgの窒素、別の態様では、生成細胞1グラム当たり約160〜約180mgの窒素、別の態様では、生成細胞1グラム当たり約160〜約170mgの窒素、別の態様では、生成細胞1グラム当たり約170〜約190mgの窒素、別の態様では、生成細胞1グラム当たり約170〜約180mgの窒素、別の態様では、生成細胞1グラム当たり約200〜約330mgの窒素、別の態様では、生成細胞1グラム当たり約170〜約175mgの窒素、別の態様では、生成細胞1グラム当たり約175〜約190mgの窒素、別の態様では、生成細胞1グラム当たり約175〜約185mgの窒素、別の態様では、生成細胞1グラム当たり約175〜約180mgの窒素、別の態様では、生成細胞1グラム当たり約180〜約200mgの窒素、別の態様では、生成細胞1グラム当たり約180〜約190mgの窒素、別の態様では、生成細胞1グラム当たり約180〜約185mgの窒素、別の態様では、生成細胞1グラム当たり約185〜約210mgの窒素、別の態様では、生成細胞1グラム当たり約185〜約200mgの窒素、別の態様では、生成細胞1グラム当たり約185〜約190mgの窒素、別の態様では、生成細胞1グラム当たり約190〜約210mgの窒素、別の態様では、生成細胞1グラム当たり約190〜約200mgの窒素、別の態様では、生成細胞1グラム当たり約190〜約195mgの窒素、別の態様では、生成細胞1グラム当たり約210〜約320mgの窒素、別の態様では、生成細胞1グラム当たり約220〜約310mgの窒素、別の態様では、生成細胞1グラム当たり約230〜約300mgの窒素、別の態様では、生成細胞1グラム当たり約240〜約290mgの窒素、別の態様では、生成細胞1グラム当たり約250〜約280mgの窒素、別の態様では、生成細胞1グラム当たり約260〜約270mgの窒素、別の態様では、生成細胞1グラム当たり約195〜約300mgの窒素、別の態様では、生成細胞1グラム当たり約195〜約275mgの窒素、別の態様では、生成細胞1グラム当たり約195〜約250mgの窒素、別の態様では、生成細胞1グラム当たり約195〜約225mgの窒素、別の態様では、生成細胞1グラム当たり約195〜約200mgの窒素である。この態様では、窒素は、無水アンモニア、アンモニア水、水酸化アンモニウム、酢酸アンモニウム、有機又は無機ニトラート及びニトリル、アミン、イミン、アミド、アミノ酸、アミノアルコール、並びにその混合物を含めた窒素源によって供給される。一態様では、窒素は水酸化アンモニウムから供給される。   In one aspect, the process includes providing a nitrogen supply rate to the reaction vessel of about 100 mg or more of nitrogen per gram of produced cells. In another embodiment, the nitrogen supply rate is from about 100 to about 340 mg nitrogen per gram of produced cells, in another embodiment from about 160 to about 340 mg nitrogen per gram of produced cells, in another embodiment, 1 gram of produced cells. About 160 to about 200 mg nitrogen per gram, in another embodiment about 160 to about 180 mg nitrogen per gram of produced cells, in another embodiment about 160 to about 170 mg nitrogen per gram of produced cells, in another embodiment From about 170 to about 190 mg nitrogen per gram of produced cells, in another embodiment from about 170 to about 180 mg nitrogen per gram of produced cells, in another embodiment from about 200 to about 330 mg nitrogen per gram of produced cells; In embodiments, from about 170 to about 175 mg nitrogen per gram of produced cells, in another embodiment, from about 175 to about 190 mg nitrogen per gram of produced cells, in another embodiment, from about 175 to about 185 mg per gram of produced cells From about 175 to about 180 mg of nitrogen per gram of produced cells, in another embodiment In embodiments, from about 180 to about 200 mg nitrogen per gram of produced cells, in another embodiment, from about 180 to about 190 mg nitrogen per gram of produced cells, in another embodiment, from about 180 to about 185 mg per gram of produced cells. Nitrogen, in another embodiment, from about 185 to about 210 mg nitrogen per gram of produced cells, in another embodiment, from about 185 to about 200 mg nitrogen per gram of produced cells, in another embodiment, about 185 per gram of produced cells To about 190 mg of nitrogen, in another embodiment, from about 190 to about 210 mg of nitrogen per gram of produced cells, in another embodiment, from about 190 to about 200 mg of nitrogen per gram of produced cells, in another embodiment, produced cells 1 About 190 to about 195 mg nitrogen per gram, in another embodiment about 210 to about 320 mg nitrogen per gram of produced cells, in another embodiment about 220 to about 310 mg nitrogen per gram of produced cells, in another embodiment About 230 to about 300 mg of nitrogen per gram of produced cells, in another embodiment, About 240 to about 290 mg nitrogen per gram, in another embodiment about 250 to about 280 mg nitrogen per gram of produced cells, in another embodiment about 260 to about 270 mg nitrogen per gram of produced cells, another embodiment About 195 to about 300 mg nitrogen per gram of produced cells, in another embodiment about 195 to about 275 mg nitrogen per gram of produced cells, in another embodiment about 195 to about 250 mg nitrogen per gram of produced cells In another embodiment, from about 195 to about 225 mg nitrogen per gram of produced cells, in another embodiment, from about 195 to about 200 mg nitrogen per gram of produced cells. In this embodiment, nitrogen is supplied by a nitrogen source including anhydrous ammonia, aqueous ammonia, ammonium hydroxide, ammonium acetate, organic or inorganic nitrates and nitriles, amines, imines, amides, amino acids, amino alcohols, and mixtures thereof. . In one aspect, nitrogen is supplied from ammonium hydroxide.

別の態様では、本プロセスは、約16mS/cm以下、別の態様では、約12mS/cm以下、別の態様では、約8mS/cm以下、別の態様では、約6.5mS/cm以下、別の態様では、約6.0mS/cm以下、別の態様では、約5.5mS/cm以下、別の態様では、約5.0mS/cm以下、別の態様では、約4.7mS/cm以下、別の態様では、約4.5mS/cm以下、別の態様では、約4.0mS/cm〜約6.5mS/cm、別の態様では、約5.0mS/cm〜約6.0mS/cm、別の態様では、約4.0mS/cm〜約5.0mS/cmの平均伝導率を与えるのに有効である。   In another embodiment, the process is about 16 mS / cm or less, in another embodiment about 12 mS / cm or less, in another embodiment about 8 mS / cm or less, in another embodiment about 6.5 mS / cm or less, In another embodiment, about 6.0 mS / cm or less, in another embodiment, about 5.5 mS / cm or less, in another embodiment, about 5.0 mS / cm or less, in another embodiment, about 4.7 mS / cm or less, another embodiment About 4.5 mS / cm or less, in another aspect about 4.0 mS / cm to about 6.5 mS / cm, in another aspect about 5.0 mS / cm to about 6.0 mS / cm, in another aspect about 4.0 It is effective to give an average conductivity of mS / cm to about 5.0 mS / cm.

一態様では、本プロセスは、所望のSTYレベルを維持しながらの伝導率の制御を含む。培地中の塩化アンモニウムを水酸化アンモニウムに代えることは伝導率を低減し、かつ所望のSTYレベルを維持するのに有効である。この態様では、水酸化アンモニウムを培地の成分として添加し、及び/又は水酸化アンモニウムを用いて培地のpHを調整する。この態様では、塩化アンモニウムと水酸化アンモニウムの交換は、約20%以上、別の態様では、約25%以上、別の態様では、約20〜約30%、別の態様では、約25〜約30%だけ培地伝導率を低減するのに有効である。   In one aspect, the process includes control of conductivity while maintaining a desired STY level. Replacing ammonium chloride in the medium with ammonium hydroxide is effective in reducing conductivity and maintaining the desired STY level. In this embodiment, ammonium hydroxide is added as a medium component and / or the pH of the medium is adjusted using ammonium hydroxide. In this embodiment, the exchange of ammonium chloride and ammonium hydroxide is about 20% or more, in another embodiment about 25% or more, in another embodiment about 20 to about 30%, in another embodiment about 25 to about It is effective to reduce the medium conductivity by 30%.

別の態様では、生成細胞1グラム当たり約100〜約340mgの窒素といういずれの窒素供給速度も約16mS/cm以下の平均伝導率を与え、約10gのエタノール/(L・日)〜約200gのエタノール/(L・日)のSTYを維持するのに有効である。さらに特定の態様では、生成細胞1グラム当たり約190〜約210mgの窒素という窒素供給速度は、約4〜約6.5mS/cm、別の態様では、約5〜約6mS/cm、別の態様では、約4〜約5mS/cmの平均伝導率を与えるのに有効である。別のさらに特定の態様では、生成細胞1グラム当たり約190〜約200mgの窒素という窒素供給速度は、約4〜約6.5mS/cm、別の態様では、約5〜約6mS/cm、別の態様では、約4〜約5mS/cmの平均伝導率を与えるのに有効である。別のさらに特定の態様では、生成細胞1グラム当たり約190〜約195mgの窒素という窒素供給速度は、約4〜約6.5mS/cm、別の態様では、約5〜6mS/cm、別の態様では、約4〜約5mS/cmの平均伝導率を与えるのに有効である。別のさらに特定の態様では、生成細胞1グラム当たり約195〜約200mgの窒素という窒素供給速度は、生成細胞1グラム当たり約4〜約6.5mS/cm、別の態様では、約5〜約6mS/cm、別の態様では、約4〜約5mS/cmの平均伝導率を与えるのに有効である。   In another embodiment, any nitrogen supply rate of about 100 to about 340 mg nitrogen per gram of produced cells provides an average conductivity of about 16 mS / cm or less, and about 10 g ethanol / (L · day) to about 200 g. Effective to maintain STY of ethanol / (L · day). In a more specific embodiment, the nitrogen supply rate of about 190 to about 210 mg nitrogen per gram of produced cells is about 4 to about 6.5 mS / cm, in another embodiment about 5 to about 6 mS / cm, in another embodiment Effective in providing an average conductivity of about 4 to about 5 mS / cm. In another more specific embodiment, the nitrogen feed rate of about 190 to about 200 mg nitrogen per gram of produced cells is about 4 to about 6.5 mS / cm, in another embodiment about 5 to about 6 mS / cm, another In embodiments, it is effective to provide an average conductivity of about 4 to about 5 mS / cm. In another more specific embodiment, the nitrogen supply rate of about 190 to about 195 mg nitrogen per gram of produced cells is about 4 to about 6.5 mS / cm, in another embodiment about 5 to 6 mS / cm, Is effective in providing an average conductivity of about 4 to about 5 mS / cm. In another more specific embodiment, the nitrogen feed rate of about 195 to about 200 mg nitrogen per gram of produced cells is about 4 to about 6.5 mS / cm, and in another embodiment about 5 to about 6 mS per gram of produced cells. / cm, in another embodiment, effective to provide an average conductivity of about 4 to about 5 mS / cm.

一態様では、培地は少なくとも1つ以上の窒素源、少なくとも1つ以上のリン源及び少なくとも1つ以上のカリウム源を含む。培地は、これら3つのいずれか1つ、これら3つのいずれかの組み合わせを含んでよく、重要な態様では、3つ全てを含む。リン源としては、リン酸、リン酸アンモニウム、リン酸カリウム、及びその混合物から成る群より選択されるリン源が挙げられる。カリウム源としては、塩化カリウム、リン酸カリウム、硝酸カリウム、硫酸カリウム、及びその混合物から成る群より選択されるカリウム源が挙げられる。   In one embodiment, the medium includes at least one or more nitrogen sources, at least one or more phosphorus sources, and at least one or more potassium sources. The medium may contain any one of these three, any combination of these three, and in an important embodiment all three. The phosphorus source includes a phosphorus source selected from the group consisting of phosphoric acid, ammonium phosphate, potassium phosphate, and mixtures thereof. The potassium source includes a potassium source selected from the group consisting of potassium chloride, potassium phosphate, potassium nitrate, potassium sulfate, and mixtures thereof.

一態様では、培地は、鉄、タングステン、ニッケル、コバルト、マグネシウム、硫黄及びチアミンの1つ以上を含む。培地は、これら成分の任意の1つ、任意の組み合わせを含んでよく、重要な態様では、これらの成分全てを含む。鉄としては、塩化第一鉄、硫酸第一鉄、及びその混合物から成る群より選択される鉄源が挙げられる。タングステン源としては、タングステン酸ナトリウム、タングステン酸カルシウム、タングステン酸カリウム、及びその混合物から成る群より選択されるタングステン源が挙げられる。ニッケル源としては、塩化ニッケル、硫酸ニッケル、硝酸ニッケル、及びその混合物から成る群より選択されるニッケル源が挙げられる。コバルト源としては、塩化コバルト、フッ化コバルト、臭化コバルト、ヨウ化コバルト及びその混合物から成る群より選択されるコバルト源が挙げられる。マグネシウム源としては、塩化マグネシウム、硫酸マグネシウム、リン酸マグネシウム、及びその混合物から成る群より選択されるマグネシウム源が挙げられる。硫黄源としては、システイン、硫化ナトリウム、及びその混合物が挙げられる。   In one aspect, the medium comprises one or more of iron, tungsten, nickel, cobalt, magnesium, sulfur and thiamine. The medium may contain any one of these components, any combination, and in an important aspect, all of these components. Iron includes an iron source selected from the group consisting of ferrous chloride, ferrous sulfate, and mixtures thereof. The tungsten source includes a tungsten source selected from the group consisting of sodium tungstate, calcium tungstate, potassium tungstate, and mixtures thereof. The nickel source includes a nickel source selected from the group consisting of nickel chloride, nickel sulfate, nickel nitrate, and mixtures thereof. The cobalt source includes a cobalt source selected from the group consisting of cobalt chloride, cobalt fluoride, cobalt bromide, cobalt iodide, and mixtures thereof. The magnesium source includes a magnesium source selected from the group consisting of magnesium chloride, magnesium sulfate, magnesium phosphate, and mixtures thereof. Sulfur sources include cysteine, sodium sulfide, and mixtures thereof.

種々の成分の濃度は以下の通り:

Figure 2015520612
The concentrations of the various components are as follows:
Figure 2015520612

プロセス操作は、pHを約4.2〜約4.8の範囲で維持する。培地は約0.01g/L未満の酵母エキス及び約0.01g/L未満の炭水化物を含む。   Process operations maintain the pH in the range of about 4.2 to about 4.8. The medium contains less than about 0.01 g / L yeast extract and less than about 0.01 g / L carbohydrate.

バイオリアアクタ操作
一態様によれば、反応容器への培地の添加によって発酵プロセスを開始する。培地を滅菌して望ましくない微生物を除去し、所望の微生物をリアクタに播種する。一態様では、利用する微生物は酢酸生成菌を含む。有用な酢酸生成菌の例としては、WO 2000/68407、EP 117309、米国特許第5,173,429号、第5,593,886号及び第6,368,819号、WO 1998/00558及びWO 2002/08438号に記載されているものを含め、クロストリジウム・リュングダリイ株等のクロストリジウム属のもの、WO 2007/117157及びWO 2009/151342に記載されているものを含め、クロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)株(DSMZ, GermanyのDSM 10061及びDSM 19630)並びにそれぞれ米国特許第7,704,723号及び“Biofuels and Bioproducts from Biomass-Generated Synthesis Gas”, Hasan Atiyeh(2010年4月29日にOklahoma EPSCoR Annual State Conferenceで提示された)に記載されているものを含め、クロストリジウム・ラグスダレイ(Clostridium ragsdalei)(P11、ATCC BAA-622)及びアルカリバクルム・バッキ(Alkalibaculum bacchi)(CP11、ATCC BAA-1772)並びに米国特許出願第2007/0276447号に記載されているクロストリジウム・カルボキシジボランス(Clostridium carboxidivorans)(ATCC PTA-7827)が挙げられる。他の適切な微生物には、ムーレラ種(Moorella sp.)HUC22-1を含め、ムーレラ属のもの、及びカルボキシドサーマス(Carboxydothermus)属のものが挙げられる。これらの各参考文献は、参照によって本明細書に援用される。2種以上の微生物の混合培養物を使用してもよい。
According to one aspect of the bioreactor operation , the fermentation process is initiated by the addition of the culture medium to the reaction vessel. The medium is sterilized to remove unwanted microorganisms and the desired microorganisms are seeded into the reactor. In one aspect, the microorganism used comprises an acetic acid producing bacterium. Examples of useful acetic acid producing bacteria include those described in WO 2000/68407, EP 117309, US Pat.Nos. 5,173,429, 5,593,886 and 6,368,819, WO 1998/00558 and WO 2002/08438. Clostridium autoethanogenum strains (DSM 10061 and DSM 19630 from DSMZ, Germany), including those of the genus Clostridium such as Clostridium lungdaari And those described in US Pat. No. 7,704,723 and “Biofuels and Bioproducts from Biomass-Generated Synthesis Gas”, Hasan Atiyeh (presented at the Oklahoma EPSCoR Annual State Conference on April 29, 2010), Clostridium ragsdalei (P11, ATCC BAA-622) and Alkalibaculum bacchi (CP11, ATCC BAA-1772) and U.S. Patent Application No. 2007/0276447 And the described Clostridium carboxidivorans (ATCC PTA-7827). Other suitable microorganisms include those of the genus Moorella, including the Moorella sp. HUC22-1, and those of the genus Carboxydothermus. Each of these references is incorporated herein by reference. A mixed culture of two or more microorganisms may be used.

有用な細菌のいくつかの例としては、アセトゲニウム・キブイ(Acetogenium kivui)、アセトアナエロビウム・ノテラエ(Acetoanaerobium noterae)、アセトバクテリウム・ウッディイ(Acetobacterium woodii)、アルカリバクルム・バッキCP11(ATCC BAA-1772)、ブラウティア・プロダクタ(Blautia producta)、ブチリバクテリウム・メチロトロフィカム(Butyribacterium methylotrophicum)、カルダナエロバクター・サブテラネウス(Caldanaerobacter subterraneous)、カルダナエロバクター・サブテラネウス・パシフィカム(Caldanaerobacter subterraneous pacificus)、カルボキシドテルムス・ヒドロゲノホルマンス(Carboxydothermus hydrogenoformans)、クロストリジウム・アセチカム(Clostridium aceticum)、クロストリジウム・アセトブチリカム(Clostridium acetobutylicum)、クロストリジウム・アセトブチリカムP262(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 10061)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 23693)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 24138)、クロストリジウム・カルボキシジボランスP7(ATCC PTA-7827)、クロストリジウム・コスカティイ(Clostridium coskatii)(ATCC PTA-10522)、クロストリジウム・ドラケイ(Clostridium drakei)、クロストリジウム・リュングダリイPETC(ATCC 49587)、クロストリジウム・リュングダリイERI2(ATCC 55380)、クロストリジウム・リュングダリイC-01(ATCC 55988)、クロストリジウム・リュングダリイO-52(ATCC 55889)、クロストリジウム・マグナム(Clostridium magnum)、クロストリジウム・パストゥリアナム(Clostridium pasteurianum)(DSMZ GermanyのDSM 525)、クロストリジウム・ラグスダリ(Clostridium ragsdali)P11(ATCC BAA-622)、クロストリジウム・スカトロゲネス(Clostridium scatologenes)、クロストリジウム・サーモアセチカム(Clostridium thermoaceticum)、クロストリジウム・ウルツネンセ(Clostridium ultunense)、デスルホトマクルム・クズネツォビイ(Desulfotomaculum kuznetsovii)、ユーバクテリウム・リモーサム(Eubacterium limosum)、ゲオバクター・スルフレデュセンス(Geobacter sulfurreducens)、メタノサルシナ・アセチボランス(Methanosarcina acetivorans)、メタノサルシナ・バーケリ(Methanosarcina barkeri)、モーレラ・サーモアセチカ(Morrella thermoacetica)、モーレラ・サーモオートトロフィカ(Morrella thermoautotrophica)、オキソバクター・フェニギイ(Oxobacter pfennigii)、ペプトストレプトコッカス・プロダクツス(Peptostreptococcus productus)、ルミノコッカス・プロダクツス(Ruminococcus productus)、サーモアナエロバクター・キブイ(Thermoanaerobacter kivui)、及びその混合物が挙げられる。   Some examples of useful bacteria include Acetogenium kivui, Acetoanaerobium noterae, Acetobacterium woodii, Alkaline baculum bacchi CP11 (ATCC BAA- 1772), Blautia producta, Butyribacterium methylotrophicum, Caldanaerobacter subterraneous, Caldanaerobacter subterraneous Pacifica, Caldanaerobacter subterraneous Carboxydothermus hydrogenoformans, Clostridium aceticum, Clostridium acetobutylicum, Clostridium acetobutylicum P262 (DSMZ Germany DSM 19630) Clostridium autoethanogenum (DSM 19630 from DSMZ Germany), Clostridium autoethanogenum (DSM 10061 from DSMZ Germany), Clostridium autoethanogenum (DSM 23693 from DSMZ Germany), Clostridium autoethanogenum (DSM 24138 from DSMZ Germany) ), Clostridium carboxydiboranes P7 (ATCC PTA-7827), Clostridium coskatii (ATCC PTA-10522), Clostridium drakei, Clostridium lundarii petc (ATCC 49587), Clostridium lundarii ERI2 (ATCC 55380), Clostridium Lungdalii C-01 (ATCC 55988), Clostridium Lungdalii O-52 (ATCC 55889), Clostridium magnum, Clostridium pasteurianum (DSMZ Germany DSM 525) ),Black Clostridium ragsdali P11 (ATCC BAA-622), Clostridium scatologenes, Clostridium thermoaceticum, Clostridium ultunense, Desulfotoma cucumber kuznetsovii), Eubacterium limosum, Geobacter sulfurreducens, Methanosarcina acetivorans, Methanosarcina barkeri, Methanosarcina barkeri, Morrella thermolla thermo, rr Thermorrhica (Morrella thermoautotrophica), Oxobacter pfennigii, Peptostreptococcus productus, Luminococcus pros Kutsusu (Ruminococcus productus), Thermoanaerobacter Arthrobacter Kibui (Thermoanaerobacter kivui), and mixtures thereof.

播種時に、微生物の初期集団を供給するのに有効な初期フィードガス供給速度を確立する。流出ガスを分析して流出ガスの内容を判定する。ガス分析の結果を用いてフィードガス速度を調節する。所望レベルに達したら、液相と細胞材料をリアクタから引き出し、培地を補充する。この態様では、バイオリアクタを操作して少なくとも約2グラム/リットル、別の態様では、約2〜約50グラム/リットル、種々の他の態様では、約5〜約40グラム/リットル、約5〜約30グラム/リットル、約5〜約20グラム/リットル、約5〜約15グラム/リットル、約10〜約40グラム/リットル、約10〜約30グラム/リットル、約10〜約20グラム/リットル、約15〜約20グラム/リットル、及び約10〜約15グラム/リットルの細胞密度を維持する。リサイクルフィルターを介して細胞密度を調節することができる。バイオリアクタのいくつかの例は、2011年6月30日に出願された米国許出願第61/571,564号及び第61/571,565号、2011年9月13日に出願された米国特許出願第61/573,845号、2012年5月15日に出願された米国特許出願第13/471,827号及び第13/471,858号、並びに2012年5月16日に出願された米国特許出願第13/473,167号(全ての内容を参照によってここに援用する)に記載されている。   At the time of sowing, an initial feed gas feed rate effective to supply an initial population of microorganisms is established. The effluent gas is analyzed to determine the content of the effluent gas. The feed gas velocity is adjusted using the results of the gas analysis. When the desired level is reached, the liquid phase and cellular material are withdrawn from the reactor and the medium is replenished. In this embodiment, the bioreactor is operated to operate at least about 2 grams / liter, in other embodiments from about 2 to about 50 grams / liter, in various other embodiments from about 5 to about 40 grams / liter, from about 5 to About 30 grams / liter, about 5 to about 20 grams / liter, about 5 to about 15 grams / liter, about 10 to about 40 grams / liter, about 10 to about 30 grams / liter, about 10 to about 20 grams / liter Maintaining a cell density of about 15 to about 20 grams / liter, and about 10 to about 15 grams / liter. Cell density can be adjusted through a recycle filter. Some examples of bioreactors include U.S. Patent Application Nos. 61 / 571,564 and 61 / 571,565, filed Jun. 30, 2011, U.S. Patent Application No. 61 /, filed Sep. 13, 2011. No. 573,845, U.S. Patent Application Nos. 13 / 471,827 and 13 / 471,858 filed on May 15, 2012, and U.S. Patent Application No. 13 / 473,167 filed on May 16, 2012 (all The contents of which are incorporated herein by reference).

一態様では、本プロセスは、約5〜約99%のCO転化率、別の態様では、約10〜約90%のCO転化率、別の態様では、約20〜約80%、別の態様では、約30〜約70%、別の態様では、約40〜約60%、別の態様では、約50〜約95%、別の態様では、約60〜約95%、別の態様では、約70〜約95%、別の態様では、約80〜約95%、別の態様では、約80〜約90%のCO転化率を与えるのに有効である。   In one aspect, the process comprises about 5 to about 99% CO conversion, in another aspect about 10 to about 90% CO conversion, in another aspect about 20 to about 80%, another aspect. About 30 to about 70%, in another embodiment about 40 to about 60%, in another embodiment about 50 to about 95%, in another embodiment about 60 to about 95%, in another embodiment, It is effective to provide a CO conversion of about 70 to about 95%, in another embodiment about 80 to about 95%, and in another embodiment about 80 to about 90%.

実施例1:窒素源としてNH4OH
実験は、リサイクルループなしで直線状のCSTRとして作動するバイオリアクタ(New Brunswick BioFlo I又はIIc)で行なった。バイオリアクタ操作条件は以下の通り:
培養菌タイプはクロストリジウム・リュングダリイC01であった。
培養温度は約38℃で維持した。
撹拌はデジタル読み取りで約800rpmであった。
培養体積は約2450〜2500mlであった。
培養pH設定点は約4.5〜4.6であった。pH調節のため5%のNaHCO3溶液を用いた。
フィードガスは15%のH2、45%のN2、30%のCO及び10%のCO2の合成ブレンドであり、約411ml/分の速度で培養に供給した。
培地は、約1.3ml/分、又は約1870ml/日でリアクタに供給した。
液体及び細胞の保持時間は約29〜31時間であった。
微生物培養をバイオリアクタ内での安定した作動状態に導いた。開始アンモニウム源はNH4Clだった。安定作動状態に達したら、開始培地から塩化アンモニウムを除去することによってアンモニウム源をNH4OHに変更した。培地成分及び濃度を以下に示す。
Example 1 : NH 4 OH as nitrogen source
Experiments were performed in a bioreactor (New Brunswick BioFlo I or IIc) operating as a linear CSTR without a recycle loop. The bioreactor operating conditions are as follows:
The culture type was Clostridium ryngdalii C01.
The culture temperature was maintained at about 38 ° C.
Agitation was about 800 rpm with a digital reading.
The culture volume was about 2450-2500 ml.
The culture pH set point was about 4.5-4.6. A 5% NaHCO 3 solution was used for pH adjustment.
The feed gas was a synthetic blend of 15% H 2 , 45% N 2 , 30% CO and 10% CO 2 and was fed to the culture at a rate of about 411 ml / min.
The medium was fed to the reactor at about 1.3 ml / min, or about 1870 ml / day.
Liquid and cell retention times were approximately 29-31 hours.
The microbial culture was led to a stable operating condition in the bioreactor. The starting ammonium source was NH 4 Cl. When steady operating conditions were reached, the ammonium source was changed to NH 4 OH by removing ammonium chloride from the starting medium. The medium components and concentrations are shown below.

Figure 2015520612
* Na+濃度はNaCl由来のみである。それはNa2WO4・2H2O等の他成分由来のNa+を含まない。
Figure 2015520612
* Na + concentration is only from NaCl. It does not contain Na + from other components such as Na 2 WO 4 · 2H 2 O.

アンモニウム源変更中に下記工程を行なった。
・開始培地の流速を減じてNH4OH培地の流速を補償し、システムへの同一の総液体流量を維持した。
・開始培地の減少にもかかわらず、同じ全体的な成分供給速度を保つために培地流速を低減しながら、開始培地成分濃度を同割合増やした。
下記パラメータをモニターした:
・ガスの転化率と取り込み
・生成物濃度
・細胞密度
・培養pH
・塩基蓄積(reservoir)レベル
・XRT/LRT
アンモニウム源の水酸化アンモニウムへの変更は下記結果をもたらした:
・約20%の低下を示す平均伝導率。
・約18%上昇したエタノール濃度。
・16.2から18.3g/L・日へ13%上昇したエタノール生産性。
・約4.6に上昇した測定培養pH。
・約86%降下した平均塩基添加速度。
・酢酸濃度の初期増加後、濃度が定常的に減少した。
・アンモニウム源の変更によるガス取り込み、ガス転化率、細胞密度又はブタンール濃度は有意な観察できる変化はなかた。
結果は以下の通りだった:
The following steps were performed during the ammonium source change.
• The starting medium flow rate was reduced to compensate for the NH 4 OH medium flow rate to maintain the same total liquid flow rate to the system.
-Despite the decrease in starting medium, the starting medium component concentration was increased by the same percentage while reducing the medium flow rate to maintain the same overall component feed rate.
The following parameters were monitored:
・ Gas conversion and uptake ・ Product concentration ・ Cell density ・ Culture pH
・ Base accumulation level ・ XRT / LRT
Changing the ammonium source to ammonium hydroxide resulted in the following results:
-Average conductivity showing a decrease of about 20%.
-Ethanol concentration increased by about 18%.
・ Ethanol productivity increased by 13.3% from 16.2 to 18.3g / L-day.
• Measurement culture pH increased to about 4.6.
• Average base addition rate decreased by about 86%.
• After the initial increase in acetic acid concentration, the concentration decreased constantly.
-There was no significant observable change in gas uptake, gas conversion, cell density or butaneur concentration due to changes in the ammonium source.
The result was as follows:

Figure 2015520612
Figure 2015520612

Figure 2015520612
* t=236時間で測定 ** t=298時間で測定
Figure 2015520612
* Measured at t = 236 hours ** Measured at t = 298 hours

本明細書で開示する発明についてその特定の実施形態、実施例及び応用を利用して述べたが、当業者は、請求項に記載の本発明の範囲から逸脱することなく、それらに多くの修正及び変更を加えることができるであろう。   While the invention disclosed herein has been described using specific embodiments, examples and applications thereof, those skilled in the art will recognize many modifications thereto without departing from the scope of the invention as claimed. And changes could be made.

Claims (46)

シンガスの発酵プロセスであって、下記工程:
発酵培地を含む反応容器に前記シンガスを導入する工程;
生成細胞1グラム当たり約100mg以上の窒素という前記反応容器への窒素供給速度を与える工程;及び
前記シンガスを発酵させる工程
を含んでなり、
前記プロセスが、約16mS/cm以下の平均伝導率及び10g以上のエタノール/(L・日)のSTYを与えるのに有効である、プロセス。
A syngas fermentation process comprising the following steps:
Introducing the syngas into a reaction vessel containing a fermentation medium;
Providing a nitrogen supply rate to the reaction vessel of about 100 mg or more of nitrogen per gram of produced cells; and fermenting the syngas;
A process wherein the process is effective to provide an average conductivity of about 16 mS / cm or less and an STY of ethanol / (L · day) of 10 g or more.
前記窒素が、無水アンモニア、アンモニア水、水酸化アンモニウム、酢酸アンモニウム、有機又は無機ニトラート及びニトリル、アミン、イミン、アミド、アミノ酸、アミノアルコール、並びにその混合物から成る群より供給される、請求項1記載のプロセス。   2. The nitrogen is supplied from the group consisting of anhydrous ammonia, aqueous ammonia, ammonium hydroxide, ammonium acetate, organic or inorganic nitrates and nitriles, amines, imines, amides, amino acids, amino alcohols, and mixtures thereof. Process. 前記窒素が水酸化アンモニウムによって供給される、請求項2記載の発酵プロセス。   The fermentation process of claim 2, wherein the nitrogen is supplied by ammonium hydroxide. 前記シンガスが約0.75以上のCO/CO2比を有する、請求項1記載の発酵プロセス。 The fermentation process of claim 1, wherein the syngas has a CO / CO 2 ratio of about 0.75 or greater. 前記発酵が、前記シンガスを1種以上の酢酸生成菌と接触させる工程を含む、請求項1記載の発酵プロセス。   2. The fermentation process of claim 1, wherein the fermentation comprises contacting the syngas with one or more acetic acid producing bacteria. 前記酢酸生成菌が、アセトゲニウム・キブイ、アセトアナエロビウム・ノテラエ、アセトバクテリウム・ウッディイ、アルカリバクルム・バッキCP11(ATCC BAA-1772)、ブラウティア・プロダクタ、ブチリバクテリウム・メチロトロフィカム、カルダナエロバクター・サブテラネウス、カルダナエロバクター・サブテラネウス・パシフィカム、カルボキシドテルムス・ヒドロゲノホルマンス、クロストリジウム・アセチカム、クロストリジウム・アセトブチリカム、クロストリジウム・アセトブチリカムP262(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 10061)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 23693)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 24138)、クロストリジウム・カルボキシジボランスP7(ATCC PTA-7827)、クロストリジウム・コスカティイ(ATCC PTA-10522)、クロストリジウム・ドラケイ、クロストリジウム・リュングダリイPETC(ATCC 49587)、クロストリジウム・リュングダリイERI2(ATCC 55380)、クロストリジウム・リュングダリイC-01(ATCC 55988)、クロストリジウム・リュングダリイO-52(ATCC 55889)、クロストリジウム・マグナム、クロストリジウム・パストゥリアナム(DSMZ GermanyのDSM 525)、クロストリジウム・ラグスダリP11(ATCC BAA-622)、クロストリジウム・スカトロゲネス、クロストリジウム・サーモアセチカム、クロストリジウム・ウルツネンセ、デスルホトマクルム・クズネツォビイ、ユーバクテリウム・リモーサム、ゲオバクター・スルフレデュセンス、メタノサルシナ・アセチボランス、メタノサルシナ・バーケリ、モーレラ・サーモアセチカ、モーレラ・サーモオートトロフィカ、オキソバクター・フェニギイ、ペプトストレプトコッカス・プロダクツス、ルミノコッカス・プロダクツス、サーモアナエロバクター・キブイ、及びその混合物から成る群より選択される、請求項5記載の発酵プロセス。   The acetic acid-producing bacteria are acetogenium kibui, acetanaerobium noterae, acetobacterium woody, alkaline baculum bacci CP11 (ATCC BAA-1772), Blautia producta, butyribacterium methylotrophic cam, Danaerobacter subterraneus, Cardanaerobacter subterraneus pacificum, Carboxidotermus hydrogenoformans, Clostridium aceticum, Clostridium acetobutylicum, Clostridium acetobutylicum P262 (DSMZ Germany DSM 19630), Clostridium autoethanogenum (DSMZ Germany DSM 19630), Clostridium autoethanogenum (DSMZ Germany DSM 10061), Clostridium autoethanogenum (DSMZ Germany DSM 23693), Clostridium autoethanogena (DSMZ Germany DSM 24138), Clostridium carboxydiboranes P7 (ATCC PTA-7827), Clostridium Coscatii (ATCC PTA-10522), Clostridium dorakei, Clostridium Lungdaryi PETC (ATCC 49587), Clostridium Ljundari ERI2 ( ATCC 55380), Clostridium Lungdalii C-01 (ATCC 55988), Clostridium Lungdalii O-52 (ATCC 55889), Clostridium Magnum, Clostridium Pasturiam (DSM 525 from DSMZ Germany), Clostridium Ragsdalli P11 (ATCC BAA -622), Clostridium scatogenes, Clostridium thermoseticum, Clostridium wurzense, Desulfotomacrum kuznetsovii, Eubacterium limosum, Geobacter sulfreduscens, Methanosarcina ace Selected from the group consisting of Borans, Methanosarcina Barkeri, Morella Thermosetica, Morella Thermoautotropica, Oxobacter Penigui, Peptostreptococcus Products, Luminococcus Products, Thermoanaerobacter Kibui, and mixtures thereof 6. The fermentation process according to claim 5, wherein 前記プロセスが約1.0g/L以上の細胞密度を与えるのに有効である、請求項1記載の発酵プロセス。   The fermentation process of claim 1, wherein the process is effective to provide a cell density of about 1.0 g / L or greater. 前記プロセスが約5〜約99%のCO転化率を与えるのに有効である、請求項1記載の発酵プロセス。   The fermentation process of claim 1, wherein the process is effective to provide a CO conversion of about 5 to about 99%. 前記発酵培地が約0.01g/L以下の酵母エキスを有する、請求項1記載の発酵プロセス。   2. The fermentation process of claim 1, wherein the fermentation medium has about 0.01 g / L or less of yeast extract. 前記発酵培地が約0.01g/L以下の炭水化物を有する、請求項1記載の発酵プロセス。   2. The fermentation process of claim 1, wherein the fermentation medium has about 0.01 g / L or less carbohydrate. シンガスの発酵プロセスであって、下記工程:
発酵培地を含む反応容器に前記シンガスを導入する工程;
前記シンガスを酢酸生成菌と接触させる工程;及び
生成細胞1グラム当たり約100mg以上の窒素という前記反応容器への窒素供給速度を与える工程
を含んでなるプロセス。
A syngas fermentation process comprising the following steps:
Introducing the syngas into a reaction vessel containing a fermentation medium;
Contacting the syngas with an acetic acid producing bacterium; and providing a nitrogen supply rate to the reaction vessel of about 100 mg or more of nitrogen per gram of produced cells.
前記窒素が、無水アンモニア、アンモニア水、水酸化アンモニウム、酢酸アンモニウム、有機又は無機ニトラート及びニトリル、アミン、イミン、アミド、アミノ酸、アミノアルコール、並びにその混合物から成る群より供給される、請求項11記載のプロセス。   12. The nitrogen is supplied from the group consisting of anhydrous ammonia, aqueous ammonia, ammonium hydroxide, ammonium acetate, organic or inorganic nitrates and nitriles, amines, imines, amides, amino acids, amino alcohols, and mixtures thereof. Process. 前記窒素が水酸化アンモニウムによって供給される、請求項12記載の発酵プロセス。   13. A fermentation process according to claim 12, wherein the nitrogen is supplied by ammonium hydroxide. 前記プロセスが、約16mS/cm以下の平均伝導率を与えるのに有効である、請求項11記載のプロセス。   The process of claim 11, wherein the process is effective to provide an average conductivity of about 16 mS / cm or less. 前記プロセスが、約10g以上のエタノール/(L・日)のSTYを与えるのに有効である、請求項11記載のプロセス。   12. The process of claim 11, wherein the process is effective to provide an STY of about 10 g or more ethanol / (L · day). 前記シンガスが約0.75以上のCO/CO2比を有する、請求項11記載の発酵プロセス。 The fermentation process of claim 11, wherein the syngas has a CO / CO 2 ratio of about 0.75 or greater. 前記酢酸生成菌が、アセトゲニウム・キブイ、アセトアナエロビウム・ノテラエ、アセトバクテリウム・ウッディイ、アルカリバクルム・バッキCP11(ATCC BAA-1772)、ブラウティア・プロダクタ、ブチリバクテリウム・メチロトロフィカム、カルダナエロバクター・サブテラネウス、カルダナエロバクター・サブテラネウス・パシフィカム、カルボキシドテルムス・ヒドロゲノホルマンス、クロストリジウム・アセチカム、クロストリジウム・アセトブチリカム、クロストリジウム・アセトブチリカムP262(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 10061)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 23693)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 24138)、クロストリジウム・カルボキシジボランスP7(ATCC PTA-7827)、クロストリジウム・コスカティイ(ATCC PTA-10522)、クロストリジウム・ドラケイ、クロストリジウム・リュングダリイPETC(ATCC 49587)、クロストリジウム・リュングダリイERI2(ATCC 55380)、クロストリジウム・リュングダリイC-01(ATCC 55988)、クロストリジウム・リュングダリイO-52(ATCC 55889)、クロストリジウム・マグナム、クロストリジウム・パストゥリアナム(DSMZ GermanyのDSM 525)、クロストリジウム・ラグスダリP11(ATCC BAA-622)、クロストリジウム・スカトロゲネス、クロストリジウム・サーモアセチカム、クロストリジウム・ウルツネンセ、デスルホトマクルム・クズネツォビイ、ユーバクテリウム・リモーサム、ゲオバクター・スルフレデュセンス、メタノサルシナ・アセチボランス、メタノサルシナ・バーケリ、モーレラ・サーモアセチカ、モーレラ・サーモオートトロフィカ、オキソバクター・フェニギイ、ペプトストレプトコッカス・プロダクツス、ルミノコッカス・プロダクツス、サーモアナエロバクター・キブイ、及びその混合物から成る群より選択される、請求項11記載の発酵プロセス。   The acetic acid-producing bacteria are acetogenium kibui, acetanaerobium noterae, acetobacterium woody, alkaline baculum bacci CP11 (ATCC BAA-1772), Blautia producta, butyribacterium methylotrophic cam, Danaerobacter subterraneus, Cardanaerobacter subterraneus pacificum, Carboxidotermus hydrogenoformans, Clostridium aceticum, Clostridium acetobutylicum, Clostridium acetobutylicum P262 (DSMZ Germany DSM 19630), Clostridium autoethanogenum (DSMZ Germany DSM 19630), Clostridium autoethanogenum (DSMZ Germany DSM 10061), Clostridium autoethanogenum (DSMZ Germany DSM 23693), Clostridium autoethanogena (DSMZ Germany DSM 24138), Clostridium carboxydiboranes P7 (ATCC PTA-7827), Clostridium Coscatii (ATCC PTA-10522), Clostridium dorakei, Clostridium Lungdaryi PETC (ATCC 49587), Clostridium Ljundari ERI2 ( ATCC 55380), Clostridium Lungdalii C-01 (ATCC 55988), Clostridium Lungdalii O-52 (ATCC 55889), Clostridium Magnum, Clostridium Pasturiam (DSM 525 from DSMZ Germany), Clostridium Ragsdalli P11 (ATCC BAA -622), Clostridium scatogenes, Clostridium thermoseticum, Clostridium wurzense, Desulfotomacrum kuznetsovii, Eubacterium limosum, Geobacter sulfreduscens, Methanosarcina ace Selected from the group consisting of Borans, Methanosarcina Barkeri, Morella Thermosetica, Morella Thermoautotropica, Oxobacter Penigui, Peptostreptococcus Products, Luminococcus Products, Thermoanaerobacter Kibui, and mixtures thereof 12. The fermentation process according to claim 11. 前記プロセスが約1.0g/L以上の細胞密度を与えるのに有効である、請求項11記載の発酵プロセス。   12. The fermentation process of claim 11, wherein the process is effective to provide a cell density of about 1.0 g / L or greater. 前記プロセスが約5〜約99%のCO転化率を与えるのに有効である、請求項11記載の発酵プロセス。   12. The fermentation process of claim 11, wherein the process is effective to provide a CO conversion of about 5 to about 99%. 前記発酵培地が約0.01g/L以下の酵母エキスを有する、請求項11記載の発酵プロセス。   12. The fermentation process of claim 11, wherein the fermentation medium has about 0.01 g / L or less yeast extract. 前記発酵培地が約0.01g/L以下の炭水化物を有する、請求項11記載の発酵プロセス。   12. The fermentation process of claim 11, wherein the fermentation medium has about 0.01 g / L or less carbohydrate. 発酵における伝導率を低減するためのプロセスであって、下記工程:
発酵培地を含む反応容器にシンガスを導入する工程;及び
生成細胞1グラム当たり約100mg以上の窒素という速度で前記反応容器に窒素フィードを供給する工程(ここで、前記窒素フィードには塩化アンモニウムの代わりに水酸化アンモニウムを用いる)
を含んでなり、
前記窒素フィードが、約16mS/cm以下の伝導率及び約4.2〜約4.8のpHを与えるのに有効である、プロセス。
A process for reducing the conductivity in fermentation, the following steps:
Introducing syngas into a reaction vessel containing a fermentation medium; and supplying a nitrogen feed to the reaction vessel at a rate of about 100 mg or more of nitrogen per gram of produced cells (wherein the nitrogen feed replaces ammonium chloride). Use ammonium hydroxide)
Comprising
A process wherein the nitrogen feed is effective to provide a conductivity of about 16 mS / cm or less and a pH of about 4.2 to about 4.8.
前記プロセスが、約10g以上のエタノール/(L・日)のSTYを与えるのに有効である、請求項22記載のプロセス。   23. The process of claim 22, wherein the process is effective to provide an STY of about 10 g or more of ethanol / (L · day). 前記シンガスが約0.75以上のCO/CO2比を有する、請求項22記載の発酵プロセス。 The syngas has about 0.75 or more CO / CO 2 ratio, the fermentation process of claim 22 wherein. 前記発酵が、前記シンガスを1種以上の酢酸生成菌と接触させる工程を含む、請求項22記載の発酵プロセス。   23. The fermentation process of claim 22, wherein the fermentation comprises contacting the syngas with one or more acetic acid producing bacteria. 前記酢酸生成菌が、アセトゲニウム・キブイ、アセトアナエロビウム・ノテラエ、アセトバクテリウム・ウッディイ、アルカリバクルム・バッキCP11(ATCC BAA-1772)、ブラウティア・プロダクタ、ブチリバクテリウム・メチロトロフィカム、カルダナエロバクター・サブテラネウス、カルダナエロバクター・サブテラネウス・パシフィカム、カルボキシドテルムス・ヒドロゲノホルマンス、クロストリジウム・アセチカム、クロストリジウム・アセトブチリカム、クロストリジウム・アセトブチリカムP262(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 10061)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 23693)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 24138)、クロストリジウム・カルボキシジボランスP7(ATCC PTA-7827)、クロストリジウム・コスカティイ(ATCC PTA-10522)、クロストリジウム・ドラケイ、クロストリジウム・リュングダリイPETC(ATCC 49587)、クロストリジウム・リュングダリイERI2(ATCC 55380)、クロストリジウム・リュングダリイC-01(ATCC 55988)、クロストリジウム・リュングダリイO-52(ATCC 55889)、クロストリジウム・マグナム、クロストリジウム・パストゥリアナム(DSMZ GermanyのDSM 525)、クロストリジウム・ラグスダリP11(ATCC BAA-622)、クロストリジウム・スカトロゲネス、クロストリジウム・サーモアセチカム、クロストリジウム・ウルツネンセ、デスルホトマクルム・クズネツォビイ、ユーバクテリウム・リモーサム、ゲオバクター・スルフレデュセンス、メタノサルシナ・アセチボランス、メタノサルシナ・バーケリ、モーレラ・サーモアセチカ、モーレラ・サーモオートトロフィカ、オキソバクター・フェニギイ、ペプトストレプトコッカス・プロダクツス、ルミノコッカス・プロダクツス、サーモアナエロバクター・キブイ、及びその混合物から成る群より選択される、請求項25記載の発酵プロセス。   The acetic acid-producing bacteria are acetogenium kibui, acetanaerobium noterae, acetobacterium woody, alkaline baculum bacci CP11 (ATCC BAA-1772), Blautia producta, butyribacterium methylotrophic cam, Danaerobacter subterraneus, Cardanaerobacter subterraneus pacificum, Carboxidotermus hydrogenoformans, Clostridium aceticum, Clostridium acetobutylicum, Clostridium acetobutylicum P262 (DSMZ Germany DSM 19630), Clostridium autoethanogenum (DSMZ Germany DSM 19630), Clostridium autoethanogenum (DSMZ Germany DSM 10061), Clostridium autoethanogenum (DSMZ Germany DSM 23693), Clostridium autoethanogena (DSMZ Germany DSM 24138), Clostridium carboxydiboranes P7 (ATCC PTA-7827), Clostridium Coscatii (ATCC PTA-10522), Clostridium dorakei, Clostridium Lungdaryi PETC (ATCC 49587), Clostridium Ljundari ERI2 ( ATCC 55380), Clostridium Lungdalii C-01 (ATCC 55988), Clostridium Lungdalii O-52 (ATCC 55889), Clostridium Magnum, Clostridium Pasturiam (DSM 525 from DSMZ Germany), Clostridium Ragsdalli P11 (ATCC BAA -622), Clostridium scatogenes, Clostridium thermoseticum, Clostridium wurzense, Desulfotomacrum kuznetsovii, Eubacterium limosum, Geobacter sulfreduscens, Methanosarcina ace Selected from the group consisting of Borans, Methanosarcina Barkeri, Morella Thermosetica, Morella Thermoautotropica, Oxobacter Penigui, Peptostreptococcus Products, Luminococcus Products, Thermoanaerobacter Kibui, and mixtures thereof 26. The fermentation process of claim 25. 前記プロセスが約1.0g/L以上の細胞密度を与えるのに有効である、請求項22記載の発酵プロセス。   23. The fermentation process of claim 22, wherein the process is effective to provide a cell density of about 1.0 g / L or greater. 前記プロセスが少なくとも約5〜約99%のCO転化率を与えるのに有効である、請求項22記載の発酵プロセス。   23. The fermentation process of claim 22, wherein the process is effective to provide a CO conversion of at least about 5 to about 99%. 前記発酵培地が約0.01g/L以下の酵母エキスを有する、請求項22記載の発酵プロセス。   23. The fermentation process of claim 22, wherein the fermentation medium has about 0.01 g / L or less yeast extract. 前記発酵培地が約0.01g/L以下の炭水化物を有する、請求項22記載の発酵プロセス。   23. The fermentation process of claim 22, wherein the fermentation medium has about 0.01 g / L or less carbohydrate. 発酵における伝導率を低減するためのプロセスであって、下記工程:
発酵培地を含む反応容器にシンガスを導入する工程;及び
生成細胞1グラム当たり約100mg以上の窒素という速度で前記反応容器に窒素フィードを供給する工程(ここで、前記窒素フィードには塩化アンモニウムの代わりに水酸化アンモニウムを用いる)
を含んでなり、
前記プロセスが、前記窒素フィードが塩化アンモニウムである発酵に比べて少なくとも約20%の伝導率の低減をもたらすのに有効である、プロセス。
A process for reducing the conductivity in fermentation, the following steps:
Introducing syngas into a reaction vessel containing a fermentation medium; and supplying a nitrogen feed to the reaction vessel at a rate of about 100 mg or more of nitrogen per gram of produced cells (wherein the nitrogen feed replaces ammonium chloride). Use ammonium hydroxide)
Comprising
A process wherein the process is effective to provide a conductivity reduction of at least about 20% compared to a fermentation wherein the nitrogen feed is ammonium chloride.
前記プロセスが、約10g以上のエタノール/(L・日)のSTYを与えるのに有効である、請求項31記載のプロセス。   32. The process of claim 31, wherein the process is effective to provide an STY of about 10 g or more of ethanol / (L · day). 前記シンガスが約0.75以上のCO/CO2比を有する、請求項31記載の発酵プロセス。 The syngas has about 0.75 or more CO / CO 2 ratio, the fermentation process of claim 31 wherein. 前記発酵が、前記シンガスを1種以上の酢酸生成菌と接触させる工程を含む、請求項31記載の発酵プロセス。   32. The fermentation process of claim 31, wherein the fermentation comprises contacting the syngas with one or more acetic acid producing bacteria. 前記酢酸生成菌が、アセトゲニウム・キブイ、アセトアナエロビウム・ノテラエ、アセトバクテリウム・ウッディイ、アルカリバクルム・バッキCP11(ATCC BAA-1772)、ブラウティア・プロダクタ、ブチリバクテリウム・メチロトロフィカム、カルダナエロバクター・サブテラネウス、カルダナエロバクター・サブテラネウス・パシフィカム、カルボキシドテルムス・ヒドロゲノホルマンス、クロストリジウム・アセチカム、クロストリジウム・アセトブチリカム、クロストリジウム・アセトブチリカムP262(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 19630)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 10061)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 23693)、クロストリジウム・オートエタノゲナム(DSMZ GermanyのDSM 24138)、クロストリジウム・カルボキシジボランスP7(ATCC PTA-7827)、クロストリジウム・コスカティイ(ATCC PTA-10522)、クロストリジウム・ドラケイ、クロストリジウム・リュングダリイPETC(ATCC 49587)、クロストリジウム・リュングダリイERI2(ATCC 55380)、クロストリジウム・リュングダリイC-01(ATCC 55988)、クロストリジウム・リュングダリイO-52(ATCC 55889)、クロストリジウム・マグナム、クロストリジウム・パストゥリアナム(DSMZ GermanyのDSM 525)、クロストリジウム・ラグスダリP11(ATCC BAA-622)、クロストリジウム・スカトロゲネス、クロストリジウム・サーモアセチカム、クロストリジウム・ウルツネンセ、デスルホトマクルム・クズネツォビイ、ユーバクテリウム・リモーサム、ゲオバクター・スルフレデュセンス、メタノサルシナ・アセチボランス、メタノサルシナ・バーケリ、モーレラ・サーモアセチカ、モーレラ・サーモオートトロフィカ、オキソバクター・フェニギイ、ペプトストレプトコッカス・プロダクツス、ルミノコッカス・プロダクツス、サーモアナエロバクター・キブイ、及びその混合物から成る群より選択される、請求項34記載の発酵プロセス。   The acetic acid-producing bacteria are acetogenium kibui, acetanaerobium noterae, acetobacterium woody, alkaline baculum bacci CP11 (ATCC BAA-1772), Blautia producta, butyribacterium methylotrophic cam, Danaerobacter subterraneus, Cardanaerobacter subterraneus pacificum, Carboxidotermus hydrogenoformans, Clostridium aceticum, Clostridium acetobutylicum, Clostridium acetobutylicum P262 (DSMZ Germany DSM 19630), Clostridium autoethanogenum (DSMZ Germany DSM 19630), Clostridium autoethanogenum (DSMZ Germany DSM 10061), Clostridium autoethanogenum (DSMZ Germany DSM 23693), Clostridium autoethanogena (DSMZ Germany DSM 24138), Clostridium carboxydiboranes P7 (ATCC PTA-7827), Clostridium Coscatii (ATCC PTA-10522), Clostridium dorakei, Clostridium Lungdaryi PETC (ATCC 49587), Clostridium Ljundari ERI2 ( ATCC 55380), Clostridium Lungdalii C-01 (ATCC 55988), Clostridium Lungdalii O-52 (ATCC 55889), Clostridium Magnum, Clostridium Pasturiam (DSM 525 from DSMZ Germany), Clostridium Ragsdalli P11 (ATCC BAA -622), Clostridium scatogenes, Clostridium thermoseticum, Clostridium wurzense, Desulfotomacrum kuznetsovii, Eubacterium limosum, Geobacter sulfreduscens, Methanosarcina ace Selected from the group consisting of Borans, Methanosarcina Barkeri, Morella Thermosetica, Morella Thermoautotropica, Oxobacter Penigui, Peptostreptococcus Products, Luminococcus Products, Thermoanaerobacter Kibui, and mixtures thereof 35. The fermentation process of claim 34. 前記プロセスが約1.0g/L以上の細胞密度を与えるのに有効である、請求項31記載の発酵プロセス。   32. The fermentation process of claim 31, wherein said process is effective to provide a cell density of about 1.0 g / L or greater. 前記プロセスが少なくとも約5〜約99%のCO転化率を与えるのに有効である、請求項31記載の発酵プロセス。   32. The fermentation process of claim 31, wherein the process is effective to provide a CO conversion of at least about 5 to about 99%. 前記発酵培地が約0.01g/L以下の酵母エキスを有する、請求項31記載の発酵プロセス。   32. The fermentation process of claim 31, wherein the fermentation medium has about 0.01 g / L or less yeast extract. 前記発酵培地が約0.01g/L以下の炭水化物を有する、請求項31記載の発酵プロセス。   32. The fermentation process of claim 31, wherein the fermentation medium has about 0.01 g / L or less carbohydrate. 下記:
生成細胞1グラム当たり約100〜約340mgの窒素;
生成細胞1グラム当たり約10.5〜約15mgのリン;及び
生成細胞1グラム当たり約26〜約36mgのカリウム
を含んでなる発酵培地。
following:
From about 100 to about 340 mg nitrogen per gram of produced cells;
A fermentation medium comprising about 10.5 to about 15 mg phosphorus per gram of produced cells; and about 26 to about 36 mg potassium per gram of produced cells.
前記窒素源が水酸化アンモニウムである、請求項40記載の発酵培地。   41. The fermentation medium of claim 40, wherein the nitrogen source is ammonium hydroxide. 前記リンが、リン酸、リン酸アンモニウム、リン酸カリウム、及びその混合物から成る群より選択されるリン源から供給され、前記カリウムが、塩化カリウム、リン酸カリウム、硝酸カリウム、硫酸カリウム、及びその混合物から成る群より選択されるカリウム源から供給される、請求項40記載の発酵培地。   The phosphorus is provided from a phosphorus source selected from the group consisting of phosphoric acid, ammonium phosphate, potassium phosphate, and mixtures thereof, wherein the potassium is potassium chloride, potassium phosphate, potassium nitrate, potassium sulfate, and mixtures thereof 41. The fermentation medium of claim 40, wherein the fermentation medium is supplied from a potassium source selected from the group consisting of: 前記発酵培地が下記
生成細胞1グラム当たり少なくとも約2.7mgの鉄、
生成細胞1グラム当たり少なくとも約10μgのタングステン、
生成細胞1グラム当たり少なくとも約34μgのニッケル、
生成細胞1グラム当たり少なくとも約9μgのコバルト、
生成細胞1グラム当たり少なくとも約4.5mgのマグネシウム、
生成細胞1グラム当たり少なくとも約11mgの硫黄、及び
生成細胞1グラム当たり少なくとも約6.5μgのチアミン
の1つ以上を含む、請求項40記載の発酵培地。
At least about 2.7 mg iron per gram of production cells
At least about 10 μg tungsten per gram of produced cells,
At least about 34 μg nickel per gram of produced cells,
At least about 9 μg of cobalt per gram of produced cells,
At least about 4.5 mg magnesium per gram of produced cells,
41. The fermentation medium of claim 40, comprising at least about 11 mg sulfur per gram of producer cells and at least about 6.5 μg of thiamine per gram of producer cells.
前記発酵培地が下記
生成細胞1グラム当たり約2.7〜約5mgの鉄、
生成細胞1グラム当たり約10〜約30μgのタングステン、
生成細胞1グラム当たり約34〜約40μgのニッケル、
生成細胞1グラム当たり約9〜約30μgのコバルト、
生成細胞1グラム当たり約4.5〜約10mgのマグネシウム、
生成細胞1グラム当たり約11〜約20mgの硫黄、及び
生成細胞1グラム当たり約6.5〜約20μgのチアミン
の1つ以上を含む、請求項40記載の発酵培地。
About 2.7 to about 5 mg of iron per gram of production cells described below,
About 10 to about 30 μg tungsten per gram of produced cells,
About 34 to about 40 μg of nickel per gram of produced cells,
About 9 to about 30 μg of cobalt per gram of produced cells,
About 4.5 to about 10 mg of magnesium per gram of produced cells,
41. The fermentation medium of claim 40, comprising about 11 to about 20 mg sulfur per gram of produced cells and one or more of about 6.5 to about 20 [mu] g thiamine per gram of produced cells.
前記鉄が、塩化第一鉄、硫酸第一鉄、及びその混合物から成る群より選択される鉄源から供給され、前記タングステンが、タングステン酸ナトリウム、タングステン酸カルシウム、タングステン酸カリウム、及びその混合物から成る群より選択されるタングステン源から供給され、前記ニッケルが、塩化ニッケル、硫酸ニッケル、硝酸ニッケル、及びその混合物から成る群より選択されるニッケル源から供給され、前記コバルトが、塩化コバルト、フッ化コバルト、臭化コバルト、ヨウ化コバルト、及びその混合物から成る群より選択されるコバルト源から供給され、前記マグネシウムが、塩化マグネシウム、硫酸マグネシウム、リン酸マグネシウムから成る群より選択されるマグネシウム源から供給され、前記硫黄が、システイン、硫化ナトリウム、及びその混合物から成る群より選択される硫黄源から供給される、請求項44記載の発酵培地。   The iron is supplied from an iron source selected from the group consisting of ferrous chloride, ferrous sulfate, and mixtures thereof, and the tungsten is from sodium tungstate, calcium tungstate, potassium tungstate, and mixtures thereof. Wherein the nickel is supplied from a nickel source selected from the group consisting of nickel chloride, nickel sulfate, nickel nitrate, and mixtures thereof; and the cobalt is cobalt chloride, fluoride Sourced from a cobalt source selected from the group consisting of cobalt, cobalt bromide, cobalt iodide, and mixtures thereof, wherein the magnesium is sourced from a magnesium source selected from the group consisting of magnesium chloride, magnesium sulfate, magnesium phosphate The sulfur is cysteine, sodium sulfide Potassium, and mixtures thereof supplied from a sulfur source selected from the group consisting of, the fermentation medium of claim 44, wherein. 前記発酵培地が約4.2〜約4.8のpHを有する、請求項40記載の発酵培地。   41. The fermentation medium of claim 40, wherein the fermentation medium has a pH of about 4.2 to about 4.8.
JP2015514061A 2012-05-22 2013-05-15 How to operate the syngas fermentation process Active JP6228596B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201261650093P 2012-05-22 2012-05-22
US201261650098P 2012-05-22 2012-05-22
US61/650,098 2012-05-22
US61/650,093 2012-05-22
US201261726225P 2012-11-14 2012-11-14
US61/726,225 2012-11-14
US13/890,777 US10100338B2 (en) 2012-05-22 2013-05-09 Method of operation of a syngas fermentation process
US13/890,777 2013-05-09
PCT/US2013/041250 WO2013176948A2 (en) 2012-05-22 2013-05-15 Method of operation of a syngas fermentation process

Publications (3)

Publication Number Publication Date
JP2015520612A true JP2015520612A (en) 2015-07-23
JP2015520612A5 JP2015520612A5 (en) 2016-07-07
JP6228596B2 JP6228596B2 (en) 2017-11-08

Family

ID=49621897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015514061A Active JP6228596B2 (en) 2012-05-22 2013-05-15 How to operate the syngas fermentation process

Country Status (13)

Country Link
US (2) US10100338B2 (en)
EP (1) EP2852675B1 (en)
JP (1) JP6228596B2 (en)
KR (2) KR102142234B1 (en)
CN (2) CN108841874B (en)
AR (1) AR091109A1 (en)
AU (2) AU2013266676B2 (en)
BR (2) BR122021020217B1 (en)
CA (1) CA2874086C (en)
RU (1) RU2623170C2 (en)
TW (1) TWI650422B (en)
WO (1) WO2013176948A2 (en)
ZA (1) ZA201409445B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850503B2 (en) * 2013-06-10 2017-12-26 Ineos Bio Sa Control of conductivity in anaerobic fermentation
US9885063B2 (en) * 2013-06-10 2018-02-06 Ineos Bio Sa Process for fermenting co-containing gaseous substrates in a low phosphate medium effective for reducing water usage
US9617566B2 (en) * 2014-07-11 2017-04-11 Lanzatech New Zealand Limited Control of bioreactor processes
US9765408B2 (en) * 2014-08-12 2017-09-19 Ineos Bio Sa Process for controlling fermentation of co-containing substrates
EP3050967A1 (en) * 2015-01-28 2016-08-03 Evonik Degussa GmbH A method of producing higher alcohols
CN107779477B (en) * 2016-08-25 2021-10-12 中国科学院天津工业生物技术研究所 Culture system and culture method for producing alcohol by fermenting synthesis gas by using gas-feeding anaerobic bacteria
CN106399387A (en) * 2016-09-20 2017-02-15 江南大学 Nitrogen defect control method for production of ethanol through fermentation of synthesis gas with mixed bacteria
JP7004282B2 (en) 2017-03-22 2022-01-21 株式会社水道技術開発機構 Gate valve installation method
JP7208671B2 (en) 2017-03-22 2023-01-19 株式会社水道技術開発機構 Gate valve installation method
US11333607B2 (en) 2018-10-02 2022-05-17 Electronics And Telecommunications Research Institute Fluorescent signal detection apparatus using diagnostic kit
KR20230041344A (en) 2021-09-17 2023-03-24 한국과학기술연구원 Medium composition for producing alcohol from synthetic gas comprising ethanol and method for producing alcohol using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511040A (en) * 1999-09-30 2003-03-25 コグニス コーポレーション Improved fermentation method
JP2010057508A (en) * 2000-01-28 2010-03-18 Martek Biosciences Corp Enhanced production of lipid containing polyenoic fatty acid by high density culture of eukaryotic microorganism in fermentor
JP2011024596A (en) * 2004-04-08 2011-02-10 Boehringer Ingelheim Rcv Gmbh & Co Kg Fed-batch fermentation process and culture medium for production of plasmid dna in e. coli in manufacturing scale
JP2011512870A (en) * 2008-03-10 2011-04-28 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Method for sustaining microbial cultures in a syngas fermentation process with low or no concentration of various substrates

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173429A (en) 1990-11-09 1992-12-22 The Board Of Trustees Of The University Of Arkansas Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism
US5807722A (en) 1992-10-30 1998-09-15 Bioengineering Resources, Inc. Biological production of acetic acid from waste gases with Clostridium ljungdahlii
US5593886A (en) 1992-10-30 1997-01-14 Gaddy; James L. Clostridium stain which produces acetic acid from waste gases
US6136577A (en) 1992-10-30 2000-10-24 Bioengineering Resources, Inc. Biological production of ethanol from waste gases with Clostridium ljungdahlii
JPH11341947A (en) * 1998-06-02 1999-12-14 Yakult Honsha Co Ltd Control of fermentation
US5972661A (en) 1998-09-28 1999-10-26 Penn State Research Foundation Mixing systems
MXPA01011301A (en) 1999-05-07 2003-07-14 Bioengineering Resources Inc Clostridium.
ATE332390T1 (en) 2000-07-25 2006-07-15 Emmaus Foundation Inc METHOD FOR INCREASE PRODUCTION OF THE FERMENTATIVE PRODUCTION OF ETHANOL
NZ546496A (en) 2006-04-07 2008-09-26 Lanzatech New Zealand Ltd Gas treatment process
US20070275447A1 (en) 2006-05-25 2007-11-29 Lewis Randy S Indirect or direct fermentation of biomass to fuel alcohol
WO2008086466A1 (en) * 2007-01-11 2008-07-17 Danisco Us Inc., Genencor Division Enzyme production in culture medium comprising raw glycerol
WO2009022925A1 (en) 2007-08-15 2009-02-19 Lanzatech New Zealand Limited Processes of producing alcohols
US8852918B2 (en) * 2007-11-13 2014-10-07 Lanzatech New Zealand Limited Bacteria and methods of use thereof
EP2217696B1 (en) 2007-11-13 2015-09-16 Lanzatech New Zealand Limited Novel bacteria and methods of use thereof
US9034618B2 (en) 2009-03-09 2015-05-19 Ineos Bio Sa Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates
CN101998997B (en) 2008-03-12 2014-11-12 新西兰郎泽科技公司 Microbial alcohol production process
RU2418070C2 (en) * 2009-07-06 2011-05-10 Общество с ограниченной ответственностью "Фирма Атлас" Method of converting gaseous hydrocarbon material into liquid fuel
EP2646562B1 (en) 2010-12-03 2020-09-23 Jupeng Bio (HK) Limited Method of operation of fermentation of gaseous substrate comprising hydrogen
CN103443282B (en) 2010-12-03 2016-05-25 伊内奥斯生物股份公司 The fermentation operation method of the gaseous state substrate that contains carbon monoxide and hydrogen
WO2013090769A2 (en) * 2011-12-14 2013-06-20 Kiverdi, Inc. Method and apparatus for growing microbial cultures that require gaseous electron donors, electron acceptors, carbon sources, or other nutrients

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003511040A (en) * 1999-09-30 2003-03-25 コグニス コーポレーション Improved fermentation method
JP2010057508A (en) * 2000-01-28 2010-03-18 Martek Biosciences Corp Enhanced production of lipid containing polyenoic fatty acid by high density culture of eukaryotic microorganism in fermentor
JP2011024596A (en) * 2004-04-08 2011-02-10 Boehringer Ingelheim Rcv Gmbh & Co Kg Fed-batch fermentation process and culture medium for production of plasmid dna in e. coli in manufacturing scale
JP2011512870A (en) * 2008-03-10 2011-04-28 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Method for sustaining microbial cultures in a syngas fermentation process with low or no concentration of various substrates

Also Published As

Publication number Publication date
TW201400615A (en) 2014-01-01
AU2013266676B2 (en) 2016-05-05
WO2013176948A3 (en) 2014-05-01
CN104822836A (en) 2015-08-05
AU2013266676A1 (en) 2015-01-22
BR122021020217B1 (en) 2022-04-26
US10858672B2 (en) 2020-12-08
BR112014028956B1 (en) 2022-01-25
KR102046677B1 (en) 2019-11-19
US10100338B2 (en) 2018-10-16
US20130316422A1 (en) 2013-11-28
CN104822836B (en) 2018-05-25
CA2874086A1 (en) 2013-11-28
EP2852675B1 (en) 2020-09-30
CN108841874A (en) 2018-11-20
AR091109A1 (en) 2015-01-14
WO2013176948A2 (en) 2013-11-28
AU2016203101B2 (en) 2018-04-19
US20190040418A1 (en) 2019-02-07
JP6228596B2 (en) 2017-11-08
KR20190129140A (en) 2019-11-19
RU2014151620A (en) 2016-07-10
BR112014028956A2 (en) 2017-07-18
EP2852675A2 (en) 2015-04-01
AU2016203101A1 (en) 2016-06-02
RU2623170C2 (en) 2017-06-22
TWI650422B (en) 2019-02-11
KR102142234B1 (en) 2020-08-07
KR20150089928A (en) 2015-08-05
ZA201409445B (en) 2017-08-30
CA2874086C (en) 2021-05-18
CN108841874B (en) 2022-03-29

Similar Documents

Publication Publication Date Title
JP6228596B2 (en) How to operate the syngas fermentation process
US11248242B2 (en) Control of conductivity in anaerobic fermentation
JP6400689B2 (en) Process for fermenting a CO-containing gaseous substrate in a low phosphate medium effective in reducing water use

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171013

R150 Certificate of patent or registration of utility model

Ref document number: 6228596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250