JP2015520045A - Composite shape memory material - Google Patents

Composite shape memory material Download PDF

Info

Publication number
JP2015520045A
JP2015520045A JP2015507249A JP2015507249A JP2015520045A JP 2015520045 A JP2015520045 A JP 2015520045A JP 2015507249 A JP2015507249 A JP 2015507249A JP 2015507249 A JP2015507249 A JP 2015507249A JP 2015520045 A JP2015520045 A JP 2015520045A
Authority
JP
Japan
Prior art keywords
shape memory
polymer
shape
memory material
polymer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015507249A
Other languages
Japanese (ja)
Inventor
ベーア,エリック
アームストロング,シャノン
ランゲ,ディーパック
Original Assignee
ケース ウエスタン リザーブ ユニバーシティ
ケース ウエスタン リザーブ ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケース ウエスタン リザーブ ユニバーシティ, ケース ウエスタン リザーブ ユニバーシティ filed Critical ケース ウエスタン リザーブ ユニバーシティ
Publication of JP2015520045A publication Critical patent/JP2015520045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/0608Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms
    • B29C61/0616Making preforms having internal stresses, e.g. plastic memory characterised by the configuration or structure of the preforms layered or partially layered preforms, e.g. preforms with layers of adhesive or sealing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • B29C48/023Extruding materials comprising incompatible ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/185Articles comprising two or more components, e.g. co-extruded layers the components being layers comprising six or more components, i.e. each component being counted once for each time it is present, e.g. in a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/255Flow control means, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
    • B29C48/495Feed-blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • B29C48/70Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
    • B29C48/71Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows for layer multiplication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2375/00Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24983Hardness

Abstract

多層化複合形状記憶材料は共押出された第1のポリマー材料の第1のポリマー層及び第2のポリマー材料の第2のポリマー層を備える。熱機械的プログラミング後の複合形状記憶材料は少なくとも1つの温度誘起による一時的形状から恒久的形状への形状転移を起こすことができる。第1のポリマー層は形状記憶材料に恒久的形状を与える形状記憶材料のハードセグメントを構成し、第2のポリマー層は形状記憶材料に一時的形状を与える形状記憶材料のスイッチングセグメントを構成する。【選択図】図1The multilayered composite shape memory material comprises a first polymer layer of co-extruded first polymer material and a second polymer layer of second polymer material. The composite shape memory material after thermomechanical programming can undergo a shape transition from a temporary shape to a permanent shape due to at least one temperature induction. The first polymer layer constitutes a hard segment of shape memory material that imparts a permanent shape to the shape memory material, and the second polymer layer constitutes a switching segment of shape memory material that imparts a temporary shape to the shape memory material. [Selection] Figure 1

Description

関連案件の相互参照
本願は、2012年4月20日出願の米国特許仮出願第61/636,039号の優先権を主張し、該出願の主題は、その全体が参照により本明細書に援用される。
This application claims priority to US Provisional Application No. 61 / 636,039, filed Apr. 20, 2012, the subject matter of which is incorporated herein by reference in its entirety. Is done.

政府資金援助
本発明は、国立科学財団により授与された許諾番号RES501499の下、政府の支援を受けて行われた。米国政府は本発明に対して一定の権利を有し得る。
Government Funding This invention was made with government support under grant number RES501499 awarded by the National Science Foundation. The US government may have certain rights to the invention.

形状記憶ポリマー(SMP)は、少なくとも二つの形状配置を示すことができる能動的な材料であり、該形状配置の一つは独特の恒久的形状であり、他の形状配置は別個の一時的または固定化された形状である。該一時的または固定化された形状は、最も一般的には、ガラス転移又は融解などの熱的転移において生じる又は縮小する。一時的形状は、SMPを、SMP成分をその転移温度を超える、ゴム状又は融解状態のいずれかに置く外的刺激、最も多くの場合は熱、に曝露することにより得られる。ゴム状態又は溶融状態の間に変形させること、及びその後に、賦課された応力下で転移温度未満へ冷却することにより、ゴム状又は溶融したSMP成分のガラス化又は結晶化により、一時的形状が固定化される。その後、外的刺激への曝露により、SMPは当初の恒久的形状に戻る。   Shape memory polymers (SMPs) are active materials that can exhibit at least two shape configurations, one of which is a unique permanent shape and the other shape configuration is a separate temporary or It is a fixed shape. The temporary or fixed shape most commonly occurs or shrinks in a thermal transition such as a glass transition or melting. The temporary shape is obtained by exposing the SMP to an external stimulus, most often heat, that places the SMP component in either a rubbery or molten state that exceeds its transition temperature. Temporary shapes are formed by vitrification or crystallization of the rubbery or molten SMP component by deformation during the rubbery or molten state and then cooling below the transition temperature under the imposed stress. Fixed. The SMP then returns to its original permanent shape upon exposure to external stimuli.

殆どのSMPは、恒久的と一時的との二つの形状配置を有する二重の形状記憶挙動を示すが、一部のものは、三重形状記憶として知られる2以上の一時的形状をもつ。これは、限られた空間において作動する能力に対して高い要求がある、医療及び航空宇宙の用途において特に有用である。また、SMPは、遠隔的に作動させて動作及び配置の間の周囲環境への害を避けるという特有の能力を有する。熱、IR及びUV線、電流、磁場、化学物質、及び水分への曝露が、形状回復を開始させるための刺激として作用できる。   Most SMPs exhibit a dual shape memory behavior with two shape configurations, permanent and temporary, but some have two or more temporary shapes known as triple shape memories. This is particularly useful in medical and aerospace applications where there is a high demand for the ability to operate in a limited space. SMP also has the unique ability to be remotely activated to avoid harm to the surrounding environment during operation and deployment. Exposure to heat, IR and UV radiation, currents, magnetic fields, chemicals, and moisture can act as stimuli to initiate shape recovery.

ポリマー構造及びモルフォロジーにより、恒久的な及び一時的な網目構造が得られる。殆どのSMPは、恒久的記憶形状を創生するハードセグメント、及び一時的形状を生成するスイッチングドメインからなる共重合体である。形状記憶挙動を示すためには、共重合体は多くの場合相分離構造を示す。形状記憶挙動が可能な構造を生成する共重合体組成の決定に課題が存在する。   The polymer structure and morphology provide a permanent and temporary network structure. Most SMPs are copolymers consisting of hard segments that create permanent memory shapes and switching domains that create temporary shapes. In order to exhibit shape memory behavior, copolymers often exhibit a phase separated structure. There are challenges in determining the copolymer composition that produces a structure capable of shape memory behavior.

記憶網目構造を維持するためには、それぞれの共重合体ブロックの転移が十分に分離されていなくてはならない。また、良好な形状固定化並びに良好な形状回復を有するSMPを生成するためには、記憶網目構造及びスイッチング網目構造の重量比のバランスが必要である。高ハードセグメント組成は良好な形状回復を生成するが、形状固定化特性には悪影響を与える。従って、形状固定化と形状回復の間には常に妥協が存在する。   In order to maintain the storage network structure, the transitions of each copolymer block must be sufficiently separated. Further, in order to generate an SMP having good shape fixation and good shape recovery, it is necessary to balance the weight ratio of the storage network structure and the switching network structure. A high hard segment composition produces good shape recovery, but adversely affects shape fixing properties. Therefore, there is always a compromise between shape fixing and shape recovery.

現在の形状記憶ポリマーは、一般的に、形状記憶材料としての用途のため特別に合成される共重合体である。このことが、SMPを製造するために、綿密で、時間がかかり、多量の溶媒を用いるプロセスを必要とし、多くの場合、該プロセスの後にSMPフィルムを流延又は被覆するために更に溶媒が使用される。これらのプロセスは、多量の、多くの場合高価な、可燃性の、そして有害な有機溶媒の利用を伴う。また、これらの溶媒は、購入の際だけでなく、SMP加工の最後に廃棄する際にも高価である。多くの場合、初期の溶媒購入、溶媒取扱い装置、並びに溶媒廃棄装置及びプロセスを含む溶媒コストは、形状記憶用途向けポリマーの製造においてかなりのコストである。   Current shape memory polymers are generally copolymers that are specifically synthesized for use as shape memory materials. This requires a thorough, time consuming and large amount of solvent process to produce SMP, often using additional solvent to cast or coat the SMP film after the process. Is done. These processes involve the use of large amounts, often expensive, flammable and harmful organic solvents. Also, these solvents are expensive not only when purchased, but also when discarded at the end of SMP processing. In many cases, solvent costs, including initial solvent purchases, solvent handling equipment, and solvent disposal equipment and processes are significant costs in the manufacture of polymers for shape memory applications.

用いられる共重合体は、多くの場合、ポリウレタン、ポリエーテル、及びポリエステル系であるが、形状記憶ポリマーのためのブロックの組み合わせは無限である。現在、SMPの大多数は大規模では生産されていない、及び/又は市販されておらず、その結果高価な製造プロセスとなっている。   The copolymers used are often polyurethane, polyether, and polyester systems, but the block combinations for shape memory polymers are endless. Currently, the majority of SMPs are not produced on a large scale and / or are not commercially available, resulting in an expensive manufacturing process.

本明細書記載の実施形態は、共押出された、第1のポリマー材料の第1のポリマー層及び第2のポリマー材料の第2のポリマー層を備える、多層化複合形状記憶材料に関する。第1のポリマー材料及び第2のポリマー材料は、異なる融解温度及び/又はガラス転移温度を有することができる。熱機械的プログラミング後の上記複合形状記憶材料は、少なくとも1つの温度誘起による一時的形状から恒久的形状への形状転移を起こすことができる。第1のポリマー層は、上記形状記憶材料に恒久的形状を与える形状記憶材料のハードセグメントを構成でき、第2のポリマー層は、上記形状記憶材料に一時的形状を与える形状記憶材料のスイッチングセグメントを構成できる。   Embodiments described herein relate to a multilayered composite shape memory material comprising a co-extruded first polymer layer of a first polymer material and a second polymer layer of a second polymer material. The first polymeric material and the second polymeric material can have different melting temperatures and / or glass transition temperatures. The composite shape memory material after thermomechanical programming can undergo a shape transition from a temporary shape to a permanent shape due to at least one temperature induction. The first polymer layer can constitute a hard segment of a shape memory material that gives the shape memory material a permanent shape, and the second polymer layer can be a switching segment of the shape memory material that gives the shape memory material a temporary shape. Can be configured.

本明細書記載の他の実施形態は、多層形状記憶材料の製造方法に関する。該方法は、第1のガラス転移又は融解温度を有する第1のポリマー材料及び第1のガラス転移及び/又は融解温度と異なる第2のガラス転移温度を有する第2のポリマー材料を共押出して、多層化形状記憶材料を形成することを含む。熱機械的プログラミング後の上記多層形状記憶材料は、少なくとも1つの温度誘起による一時的形状から恒久的形状への形状転移を起こすことができる。   Other embodiments described herein relate to a method of manufacturing a multilayer shape memory material. The method includes coextruding a first polymeric material having a first glass transition or melting temperature and a second polymeric material having a second glass transition temperature different from the first glass transition and / or melting temperature, Forming a multilayered shape memory material. The multi-layer shape memory material after thermomechanical programming can undergo a shape transition from at least one temperature-induced temporary shape to a permanent shape.

本明細書記載の更に他の実施形態は、共押出され、多層化された、機械的に変形可能な複合形状記憶シート又はフィルムを備える多層形状記憶材料に関する。上記多層化された機械的に変形可能な複合形状記憶シートは、式(AB)(式中、x=2であり、nは1〜18の範囲である)で表される複数の、少なくとも2つの交互の層(A)及び(B)を備える。層(A)はポリマー成分(a)からなり、層(B)はポリマー成分(b)からなる。ポリマー成分(a)及び(b)は、異なるガラス転移及び/又は融解温度を有し、熱機械的プログラミング後の上記多層形状記憶材料は、少なくとも1つの温度誘起による一時的形状から恒久的形状への形状転移を起こすことができる。 Still other embodiments described herein relate to a multilayer shape memory material comprising a co-extruded, multilayered, mechanically deformable composite shape memory sheet or film. The multilayered and mechanically deformable composite shape memory sheet has a plurality of formulas (AB) x (where x = 2 n and n is in the range of 1 to 18). At least two alternating layers (A) and (B) are provided. Layer (A) consists of polymer component (a), and layer (B) consists of polymer component (b). Polymer components (a) and (b) have different glass transitions and / or melting temperatures, and the multilayer shape memory material after thermomechanical programming is from at least one temperature-induced temporary shape to a permanent shape. Can cause a shape transition.

本願の一態様に係る高分子複合形状記憶材料の概観図を示す図である。It is a figure which shows the general-view figure of the polymer composite shape memory material which concerns on 1 aspect of this application. 本願の別の態様に係る多層複合形状記憶材料の概観図を示す図である。It is a figure which shows the general-view figure of the multilayer composite shape memory material which concerns on another aspect of this application. 本願の一態様に係るポリマー層の強制アセンブリーのための層増倍共押出プロセスの概略図を示す図である。FIG. 3 shows a schematic diagram of a layer multiplication coextrusion process for forced assembly of polymer layers according to one embodiment of the present application. 別の態様に係るポリマー層の強制アセンブリーのための層増倍共押出の概略図を示す図である。FIG. 5 shows a schematic diagram of layer multiplication coextrusion for forced assembly of polymer layers according to another embodiment. 本願の一態様に係る共押出多層ストランドの写真を示す図である。It is a figure which shows the photograph of the co-extrusion multilayer strand which concerns on 1 aspect of this application. 本願の一態様に係る共押出多層フィルムの写真を示す図である。It is a figure which shows the photograph of the co-extrusion multilayer film which concerns on 1 aspect of this application. 図6のフィルムの、(A)応力対ひずみ及び(B)回復率を表わすプロットを示す図である。FIG. 7 shows plots representing (A) stress versus strain and (B) recovery rate for the film of FIG. (A)PCL/PU比を変化させた種々のPCL/PU溶融配合物から調製されたフィルム、及び(B)フィルム中のPCL/PU比を30/70、50/50、及び70/30で変化させた、512の交互のPU/PCL層を備える多層フィルムのスイッチング温度を表わすプロットを示す図である。(A) Films prepared from various PCL / PU melt blends with varying PCL / PU ratios, and (B) PCL / PU ratios in the films at 30/70, 50/50, and 70/30 FIG. 6 shows a plot representing the switching temperature of a multilayer film with 512 alternating PU / PCL layers as varied. 本願の別の態様に係る共押出多層フィルムの、(A)概略図及び(B)写真を示す図である。It is a figure which shows the (A) schematic and (B) photograph of the coextruded multilayer film which concerns on another aspect of this application. 種々の厚さを有する図9のフィルムの応力対ひずみを表わすプロットを示す図である。FIG. 10 shows a plot representing stress versus strain for the film of FIG. 9 having various thicknesses. 本願の一態様に係る三重形状記憶材料の概略図を示す図である。It is a figure which shows the schematic of the triple shape memory material which concerns on 1 aspect of this application.

本明細書記載の実施形態は、高分子複合形状記憶材料及び無溶媒プロセスによって高分子複合形状記憶材料を製造するために用いられる方法に関する。本明細書記載の方法によって製造される高分子複合形状記憶材料は、従来は形状記憶ポリマー(SMP)とは考えられなかった市販のポリマーを用いることができる。該高分子複合形状記憶材料(フィルム、ストランド、又は繊維)は、特化された合成又は溶媒を全く用いることなく、溶融加工によって、生体医療、航空宇宙、高機能包装、及びセンサー用途に用いることができる。   Embodiments described herein relate to polymeric composite shape memory materials and methods used to produce polymeric composite shape memory materials by a solvent-free process. As the polymer composite shape memory material produced by the method described herein, a commercially available polymer that has not been considered as a shape memory polymer (SMP) can be used. The polymer composite shape memory material (film, strand, or fiber) should be used for biomedical, aerospace, high performance packaging, and sensor applications by melt processing without any specialized synthesis or solvent. Can do.

図1は、本願の一態様に係る高分子複合形状記憶材料10の概観の図解である。高分子複合形状記憶材料10は、少なくとも1つの温度誘起による一時的形状16から恒久的形状18への形状転移を起こすことができる。高分子複合形状記憶材料10は、少なくとも、第1のポリマー層12及び第2のポリマー層14を備える。第1のポリマー層12は、第1のガラス転移温度及び第1の融解温度を有する第1のポリマーから形成される。いくつかの実施形態において、第1のポリマー層12は、形状記憶材料10に恒久的形状18を与える形状記憶材料10のハードセグメントを構成できる。第2のポリマー層14は、第1のポリマー材料の融解温度及び/又はガラス転移温度と異なる第2のガラス転移温度及び第2の融解温度を有する第2のポリマーから形成される。いくつかの実施形態において、第2のポリマー層14は、形状記憶材料の一時的形状18を生成する形状記憶材料10のスイッチングセグメントを構成できる。第1のポリマー層12及び第2のポリマー層12は、公知の形状記憶ポリマー中の相分離したドメイン(例えば、ハードドメイン、結晶性ドメイン、スイッチングドメイン、及び/又は非晶ドメイン)と同様の寸法規模である、分離したナノスケール又はミクロスケールのポリマードメイン(例えば、ハードドメイン、結晶性ドメイン、スイッチングドメイン、及び/又は非晶ドメイン)を構成できる。   FIG. 1 is a schematic illustration of a polymer composite shape memory material 10 according to one embodiment of the present application. The polymer composite shape memory material 10 can undergo a shape transition from the temporary shape 16 to the permanent shape 18 due to at least one temperature induction. The polymer composite shape memory material 10 includes at least a first polymer layer 12 and a second polymer layer 14. The first polymer layer 12 is formed from a first polymer having a first glass transition temperature and a first melting temperature. In some embodiments, the first polymer layer 12 can constitute a hard segment of the shape memory material 10 that gives the shape memory material 10 a permanent shape 18. The second polymer layer 14 is formed from a second polymer having a second glass transition temperature and a second melting temperature different from the melting temperature and / or glass transition temperature of the first polymer material. In some embodiments, the second polymer layer 14 can constitute a switching segment of the shape memory material 10 that produces a temporary shape 18 of the shape memory material. The first polymer layer 12 and the second polymer layer 12 have dimensions similar to phase separated domains (eg, hard domains, crystalline domains, switching domains, and / or amorphous domains) in known shape memory polymers. Separate nanoscale or microscale polymer domains (eg, hard domains, crystalline domains, switching domains, and / or amorphous domains) that are on a scale can be constructed.

いくつかの実施形態において、第1のポリマー層12及び第2の層14を備える高分子複合材が形成されて該高分子複合材が形状記憶挙動を示すように、第1のポリマー材料の第1のガラス転移温度及び/又は第1の融解温度は、第2のポリマー材料の第2のガラス転移温度及び/又は第2の融解温度とそれぞれ異なっていてよい。例えば、高分子複合形状記憶材料10は、フィルム、ストランド、又は他の構造の形態で提供される場合、少なくとも二つの形状配置(その一つは恒久的形状16であり、他の形状配置は別個の一時的または固定化された形状18である)を示すことができる。一時的または固定化された形状18は、第1のポリマー材料及び第2のポリマー材料のガラス転移温度及び/又は融解温度によって規定されるまたは決定されるガラス転移及び/又は融解転移などの、熱的転移において生じる又は縮小する。一時的形状18は、形状記憶材料10を熱などの外的刺激に曝露し、第1のポリマー又は第2のポリマーのいずれかを、その転移温度を超えて非晶状態、ゴム状状態、又は融解状態のいずれかに置くことによって得られる。非晶状態、ゴム状状態、又は融解状態及びその後の賦課された応力下での転移温度未満への冷却中の変形は、第1のポリマー材料又は第2のポリマー材料の非晶状態、ゴム状状態、又は融解状態のガラス化又は結晶化により、一時的形状を固定化する。その後の外的刺激への曝露によって、上記複合形状記憶材料が当初の恒久的形状へと復元する。上記高分子複合形状記憶材料を用いて作られたフィルム及びストランドは、良好な形状固定化のみならず、熱的刺激に際しての100%形状復元率を示し得る。   In some embodiments, the first polymer material of the first polymer material is formed such that a polymer composite comprising the first polymer layer 12 and the second layer 14 is formed and the polymer composite exhibits shape memory behavior. The one glass transition temperature and / or the first melting temperature may be different from the second glass transition temperature and / or the second melting temperature of the second polymeric material, respectively. For example, when the polymeric composite shape memory material 10 is provided in the form of a film, strand, or other structure, at least two shape arrangements, one of which is a permanent shape 16 and the other shape arrangement is distinct. A temporary or fixed shape 18). The temporary or immobilized shape 18 is a thermal transition, such as a glass transition and / or a melting transition that is defined or determined by the glass transition temperature and / or melting temperature of the first polymeric material and the second polymeric material. Arises or shrinks in a general metastasis. The temporary shape 18 exposes the shape memory material 10 to an external stimulus such as heat and causes either the first polymer or the second polymer to exceed its transition temperature in an amorphous state, a rubbery state, or Obtained by placing in either melted state. Deformation during cooling to below the transition temperature under the amorphous state, rubbery state, or molten state and the imposed stress may result in an amorphous state, rubbery state of the first polymer material or the second polymer material. The temporary shape is fixed by vitrification or crystallization in a molten state. Subsequent exposure to external stimuli restores the composite shape memory material to its original permanent shape. Films and strands made using the polymer composite shape memory material can exhibit not only good shape fixation but also a 100% shape restoration rate upon thermal stimulation.

いくつかの実施形態において、機械的復元を与えるために第1のポリマー層12はゴム状であり、様々な用途における使用のため一時的形状の凍結を可能にするために第2のポリマー層14は、物理的又は化学的に、可逆的に架橋される。或いは、機械的復元を与えるために第2のポリマー層14はゴム状であってよく、様々な用途における使用のため一時的形状の凍結を可能にするために第1のポリマー層は、物理的又は化学的に、可逆的に架橋できる。   In some embodiments, the first polymer layer 12 is rubbery to provide mechanical restoration and the second polymer layer 14 to allow freezing of the temporary shape for use in various applications. Are reversibly cross-linked physically or chemically. Alternatively, the second polymer layer 14 may be rubbery to provide mechanical restoration, and the first polymer layer may be physically loaded to allow freezing of the temporary shape for use in various applications. Alternatively, it can be chemically and reversibly cross-linked.

他の実施形態において、第1のポリマー層12は、規定された融点をもつ一般的には結晶性のハード層であってよく、第2のポリマー層14は、規定されたガラス転移温度をもつ一般的には非晶質のソフトなスイッチング層であってよい。或いは、第2のポリマー層14は、規定された融点をもつ一般的には結晶性のハード層であってよく、第1のポリマー層12は、規定されたガラス転移温度をもつ一般的には非晶質のソフトなスイッチング層であってよい。但し、いくつかの実施形態において、上記ハード層(複数可)は、第1のポリマー層12であっても第2のポリマー層14であっても、非晶性であって融点ではなくガラス転移温度を有していてよい。他の実施形態において、上記ソフト層(複数可)は、第1のポリマー層であっても第2のポリマー層であっても、結晶性であってガラス転移温度ではなく融点を有していてよい。ソフト層(複数可)の融点又はガラス転移温度は、実質的に、ハード層の融点又はガラス転移温度未満であってよい。   In other embodiments, the first polymer layer 12 may be a generally crystalline hard layer with a defined melting point and the second polymer layer 14 has a defined glass transition temperature. In general, it may be an amorphous soft switching layer. Alternatively, the second polymer layer 14 may be a generally crystalline hard layer having a defined melting point, and the first polymer layer 12 typically has a defined glass transition temperature. It may be an amorphous soft switching layer. However, in some embodiments, the hard layer (s), whether the first polymer layer 12 or the second polymer layer 14, is amorphous and has a glass transition rather than a melting point. It may have a temperature. In other embodiments, the soft layer (s), whether the first polymer layer or the second polymer layer, is crystalline and has a melting point rather than a glass transition temperature. Good. The melting point or glass transition temperature of the soft layer (s) may be substantially less than the melting point or glass transition temperature of the hard layer.

第1のポリマー層12を形成するために用いられる第1のポリマー材料及び第2のポリマー層14を形成するために用いられる第2のポリマー材料としては、溶融押出して複合形状記憶材料を形成できる任意のポリマーを挙げられる。第1のポリマー材料及び第2のポリマー材料は、それらのガラス転移温度及び/又は融解温度が異なっており、且つ、溶融押出の際に第1のポリマー層及び第2のポリマー層の複合体を形成し、該複合体が形状記憶特性を示すように選択されるべきである。第1のポリマー材料は、複合形状記憶材料10中において分離した層を形成するように、共押出される際に第2のポリマー材料と非相溶又は部分的に相溶であってよい。1つ又は複数の、第1のポリマー材料又は第2のポリマー材料又は異なるポリマー材料から形成される追加の層を与えて高分子形状記憶材料を製造してもよいことが認識されるべきである。   The first polymer material used to form the first polymer layer 12 and the second polymer material used to form the second polymer layer 14 can be melt extruded to form a composite shape memory material. Any polymer may be mentioned. The first polymer material and the second polymer material have different glass transition temperatures and / or melting temperatures, and a composite of the first polymer layer and the second polymer layer is formed during melt extrusion. Formed and the composite should be selected to exhibit shape memory properties. The first polymeric material may be incompatible or partially compatible with the second polymeric material when coextruded so as to form separate layers in the composite shape memory material 10. It should be appreciated that the polymeric shape memory material may be manufactured by providing one or more additional layers formed from a first polymeric material, a second polymeric material, or a different polymeric material. .

いくつかの実施形態において、第1のポリマー材料及び第2のポリマー材料は形状記憶ポリマーではない。すなわち、第1のポリマー材料及び第2のポリマー材料は、個別にすなわち別途に成形されて構造をとる場合には、形状記憶特性を示さない。本明細書記載の複合形状記憶材料にその形状記憶挙動又は特性を与えるのは、少なくとも第1のポリマー層及び第2のポリマー層の形成に用いられる、ポリマーの異なっている特性(例えば、ガラス転移温度、融解温度、及び結晶性)である。このことにより、複合形状記憶材料を形成するために、形状記憶ポリマーで形状記憶材料を形成するために用いられてきたポリマーの範囲よりも、より広い範囲のポリマーの選択が可能になる。但し、少なくとも第1のポリマー材料又は第2のポリマー材料は、潜在的には形状記憶ポリマーであってもよいことが認識されるべきである。   In some embodiments, the first polymeric material and the second polymeric material are not shape memory polymers. In other words, the first polymer material and the second polymer material do not exhibit shape memory characteristics when individually structured, that is, separately molded to have a structure. It is the different properties of the polymers (eg, glass transition) used to form at least the first polymer layer and the second polymer layer that impart the shape memory behavior or properties to the composite shape memory materials described herein. Temperature, melting temperature, and crystallinity). This allows a wider range of polymers to be selected than the range of polymers that have been used to form shape memory materials with shape memory polymers to form composite shape memory materials. However, it should be appreciated that at least the first polymeric material or the second polymeric material may potentially be a shape memory polymer.

潜在的に第1及び第2のポリマー材料に用いることができる高分子材料の例としては、それらに限定されないが、ポリ(エチレンテレフタレート)(PET)、ポリ(ブチレンテレフタレート)、ポリ(エチレンテレフタレートグリコール)、ポリカプロラクトン(PCL)、並びにポリ(エチレンナフタレート)などの溶融押出可能なポリエステル;2,6−、1,4−、1,5−、2,7−、及び2,3−ポリエチレンナフタレート等のポリナフタレートおよびその異性体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、及びポリ−1,4−シクロヘキサンジメチレンテレフタレートなどのポリアルキレンテレフタレート;ポリアクリルイミドなどのポリイミド;ポリエーテルイミド;ポリウレタン、アタクチック、アイソタクチック及びシンジオタクチックポリスチレン、α−メチル−ポリスチレン、パラ−メチル−ポリスチレンなどのスチレン系ポリマー;ビスフェノール−A−ポリカーボネートなどのポリカーボネート(PC);ポリ(イソブチルメタクリレート)、ポリ(プロピルメタクリレート)、ポリ(エチルメタクリレート)、ポリ(メチルメタクリレート)、ポリ(ブチルアクリレート)及びポリ(メチルアクリレート)などのポリ(メト)アクリレート(用語「(メト)アクリレート」は、本明細書においてアクリレート又はメタクリレートを示すために用いられる。);エチルセルロース、酢酸セルロース、プロピオン酸セルロース、酢酸酪酸セルロース、及び硝酸セルロースなどのセルロース誘導体;ポリエチレンなどのポリアルキレンポリマー、ポリエチレン及びポリエチレンオキシド(PEO)などのポリエチレン類;ポリプロピレン、ポリブチレン、ポリイソブチレン、及びポリ(4−メチル)ペンテン;パーフルオロアルコキシ樹脂、ポリテトラフルオロエチレン、フッ素化エチレン−プロピレン共重合体、ポリフッ化ビニリデン、並びにポリクロロトリフルオロエチレン及びその共重合体などのフッ素化ポリマー;ポリジクロロスチレン、ポリ塩化ビニリデン及びポリ塩化ビニルなどの塩素化ポリマー;ポリスルホン;ポリエーテルスルホン;ポリアクリロニトリル;ナイロン、ナイロン6,6、ポリカプロラクタム、及びポリアミド6(PA6)などのポリアミド;ポリ酢酸ビニル;及びポリエーテル−アミドが挙げられる。その他のポリマー材料としては、アクリルゴム;イソプレン(IR);イソブチレン−イソプレン(IIR);ブタジエンゴム(BR);ブタジエン−スチレン−ビニルピリジン(PSBR);ブチルゴム;ポリエチレン;クロロプレン(CR);エピクロロヒドリンゴム;エチレン−プロピレン(EPM);エチレン−プロピレン−ジエン(EPDM);ニトリル−ブタジエン(NBR);ポリイソプレン;シリコンゴム;スチレン−ブタジエン(SBR);及びウレタンゴムが挙げられる。更にその他のポリマー材料としては、ブロック又はグラフト共重合体が挙げられる。一例において、上記複数の層を形成するために用いられる複数の高分子材料は、非相溶性の熱可塑性樹脂とし得る。   Examples of polymeric materials that can potentially be used for the first and second polymeric materials include, but are not limited to, poly (ethylene terephthalate) (PET), poly (butylene terephthalate), poly (ethylene terephthalate glycol). ), Polycaprolactone (PCL), and melt extrudable polyesters such as poly (ethylene naphthalate); 2,6-, 1,4-, 1,5-, 2,7-, and 2,3-polyethylene naphthalate Polynaphthalates such as phthalates and isomers thereof; Polyalkylene terephthalates such as polyethylene terephthalate, polybutylene terephthalate, and poly-1,4-cyclohexanedimethylene terephthalate; Polyimides such as polyacrylimide; Polyetherimide; Polyurethane, atactic, Iso Styrenic polymers such as tactic and syndiotactic polystyrene, α-methyl-polystyrene, para-methyl-polystyrene; polycarbonate (PC) such as bisphenol-A-polycarbonate; poly (isobutyl methacrylate), poly (propyl methacrylate), poly ( Poly (meth) acrylates such as ethyl methacrylate), poly (methyl methacrylate), poly (butyl acrylate) and poly (methyl acrylate) (the term “(meth) acrylate” is used herein to indicate acrylate or methacrylate). Cellulose derivatives such as ethyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, and cellulose nitrate; polyalkylene polymers such as polyethylene; Polyethylene, such as mer, polyethylene and polyethylene oxide (PEO); polypropylene, polybutylene, polyisobutylene, and poly (4-methyl) pentene; perfluoroalkoxy resin, polytetrafluoroethylene, fluorinated ethylene-propylene copolymer, polyfluoride Fluorinated polymers such as polyvinylidene chloride and polychlorotrifluoroethylene and copolymers thereof; chlorinated polymers such as polydichlorostyrene, polyvinylidene chloride and polyvinyl chloride; polysulfone; polyethersulfone; polyacrylonitrile; nylon, nylon 6 , 6, polycaprolactam, and polyamides such as polyamide 6 (PA6); polyvinyl acetate; and polyether-amides. Other polymer materials include: acrylic rubber; isoprene (IR); isobutylene-isoprene (IIR); butadiene rubber (BR); butadiene-styrene-vinylpyridine (PSBR); butyl rubber; polyethylene; chloroprene (CR); Ethylene-propylene (EPM); ethylene-propylene-diene (EPDM); nitrile-butadiene (NBR); polyisoprene; silicone rubber; styrene-butadiene (SBR); and urethane rubber. Still other polymer materials include block or graft copolymers. In one example, the plurality of polymeric materials used to form the plurality of layers can be incompatible thermoplastic resins.

また、各個別の層12、14は、上記ポリマー又は共重合体の2種以上の配合物を含んでもよい。該配合物の構成成分は、層12、14間の実質的な非相溶性をなお維持したまま、互いに実質的に相溶性であることが好ましい。層12、14を構成するポリマー材料は、また、ナノ粒子材料を始めとする、例えば、ポリマー層の機械的特性を改質するために設計された有機又は無機材料を含むこともできる。そのようなポリマー材料(a)、(b)が共押出時に実質的に非相溶性であり、分離した層又はポリマー領域を形成する限りにおいて、任意の押出可能なポリマーが第1のポリマー材料(a)及び第2のポリマー材料(b)として潜在的に用いることが可能であることが認識されるべきである。   Each individual layer 12, 14 may also contain two or more blends of the above polymers or copolymers. The components of the formulation are preferably substantially compatible with each other while still maintaining substantial incompatibility between layers 12,14. The polymeric material comprising the layers 12, 14 can also include organic or inorganic materials designed to modify the mechanical properties of the polymeric layer, including, for example, nanoparticle materials. As long as such polymeric materials (a), (b) are substantially incompatible upon coextrusion and form a separate layer or polymer region, any extrudable polymer is the first polymeric material ( It should be appreciated that it can potentially be used as a) and the second polymeric material (b).

一例において、上記複合形状記憶材料は、ポリカプロラクトンポリエステルを含む第1のポリマー層及びポリウレタンを含む第2のポリマー層を備えていてよい。ポリカプロラクトンポリエステル及びポリウレタンは、共押出して、少なくとも複合形状記憶材料の第1及び第2のポリマー層を形成できる。別な例において、複合形状記憶材料は、ポリエチレンを含む第1のポリマー層及びポリ(エチレンテレフタレートグリコール)を含む第2のポリマー層を備えていてよい。複合形状記憶材料が三重形状記憶を有する更に別な例において、複合体は、ポリカプロラクトンを含む第1のポリマー層、ポリウレタンを含む第2のポリマー層、及びポリエチレンを含む第3のポリマー層を備えていてよい。ポリカプロラクトンポリエステル、ポリウレタン、及びポリエチレンは、共押出して、複合形状記憶材料の第1、第2、及び第3のポリマー層を形成できる。   In one example, the composite shape memory material may comprise a first polymer layer comprising polycaprolactone polyester and a second polymer layer comprising polyurethane. The polycaprolactone polyester and polyurethane can be coextruded to form at least first and second polymer layers of a composite shape memory material. In another example, the composite shape memory material may comprise a first polymer layer comprising polyethylene and a second polymer layer comprising poly (ethylene terephthalate glycol). In yet another example where the composite shape memory material has a triple shape memory, the composite comprises a first polymer layer comprising polycaprolactone, a second polymer layer comprising polyurethane, and a third polymer layer comprising polyethylene. It may be. Polycaprolactone polyester, polyurethane, and polyethylene can be coextruded to form the first, second, and third polymer layers of the composite shape memory material.

上記形状記憶材料は、充填剤(例えば、無機充填剤)又は他の活性な材料(例えば、形状記憶合金線、磁石感応性充填剤、電気活性な充填剤、光感応性有機色素、及び/又はその他など)を含んでもよい。上記充填剤は、(形状記憶材料の機械的強度を向上させる)強化充填剤、例えば磁性又は導電性粒子などの(形状記憶効果の開始機構に寄与し得る)活性充填剤、又は形状記憶材料の、例えばその熱伝導性などの他の物性の向上に寄与し得る活性充填剤であってよいことが理解されるべきである。また、上記形状記憶材料は、UV遮蔽剤、着色色素、又は特定の用途に好適な他の添加剤を含んでもよい。   The shape memory material may be a filler (eg, inorganic filler) or other active material (eg, shape memory alloy wire, magnet sensitive filler, electroactive filler, light sensitive organic dye, and / or Others) may also be included. The filler may be a reinforcing filler (which improves the mechanical strength of the shape memory material), for example an active filler (which may contribute to the initiation mechanism of the shape memory effect), such as magnetic or conductive particles, or of a shape memory material It should be understood that it may be an active filler that may contribute to the improvement of other physical properties such as its thermal conductivity. The shape memory material may also contain UV screening agents, colored pigments, or other additives suitable for specific applications.

本明細書記載の高分子複合形状記憶材料は、揮発性溶媒、有毒溶媒、非環境調和型溶媒、及び一般的に可燃性の液体溶媒を使用せずに、多層共押出溶融加工により工業的用途向けに大規模で製造できる。該多層共押出は、完全に溶媒の助けなしで行われる連続プロセスであり得る。また、特別に合成される共重合体に代えて、市販の単独重合体、共重合体、及び多元ブロック系を用いる場合には、必要な化学合成がより少ない。この層化構造は、形状記憶共重合体の相分離構造を模倣する。形状回復度は、選択されるポリマー及び恒久的材料構造の構成によって制御できる。   The polymer composite shape memory materials described herein can be used in industrial applications by multi-layer coextrusion melt processing without the use of volatile solvents, toxic solvents, non-environmentally conscious solvents, and generally flammable liquid solvents. Can be manufactured on a large scale. The multilayer coextrusion can be a continuous process performed completely without the aid of a solvent. Also, when using commercially available homopolymers, copolymers, and multi-block systems instead of specially synthesized copolymers, less chemical synthesis is required. This layered structure mimics the phase separation structure of shape memory copolymers. The degree of shape recovery can be controlled by the polymer selected and the composition of the permanent material structure.

共押出は一般的に、厚い層(数マイクロメートル)を有する材料を製造するために用いられる。層の増倍化、オフセット組成、勾配構造、及び表面層を用いて、多層共押出プロセスを使用することにより、薄層を有するフィルム、ストランド、又は繊維の製造が可能となる。また、異なる厚さ(20nm〜数10μm)の層を含む形状記憶材料を製造することにより、潜在的に記憶、変形、及び回復挙動の変化が可能になる。   Coextrusion is generally used to produce materials with thick layers (a few micrometers). Using a multilayer coextrusion process with layer multiplication, offset composition, gradient structure, and surface layer allows the production of films, strands or fibers with thin layers. Also, manufacturing shape memory materials that include layers of different thicknesses (20 nm to several tens of micrometers) potentially allows for changes in memory, deformation, and recovery behavior.

いくつかの実施形態において、図2に図解するように、上記高分子複合形状記憶材料は、恒久的形状26と固定化または一時的形状28との間で形状記憶挙動を示す、多層材料20であってよい。該多層材料は、第1のポリマー成分(a)及び第2のポリマー成分(b)からそれぞれ形成される、2種の交互の第1のポリマー層(A)22及び第2のポリマー層(B)24(例えば、ABAB・・・・)から作られる。いくつかの例において、上記多層形状記憶材料は、少なくとも10の交互の層(A)及び(B)、好ましくは約20〜約500,000(これらの範囲で増加する任意の数を含む)の交互の層を備えることができる。   In some embodiments, as illustrated in FIG. 2, the polymeric composite shape memory material is a multi-layer material 20 that exhibits shape memory behavior between a permanent shape 26 and an immobilized or temporary shape 28. It may be. The multilayer material comprises two alternating first polymer layers (A) 22 and second polymer layers (B) formed from a first polymer component (a) and a second polymer component (b), respectively. ) 24 (for example, ABAB...). In some examples, the multilayer shape memory material comprises at least 10 alternating layers (A) and (B), preferably from about 20 to about 500,000 (including any number increasing in these ranges). Alternate layers can be provided.

層(A)22及び(B)24のそれぞれは、ミクロ層又はナノ層であり得る。第1のポリマー成分(a)及び第2のポリマー成分(b)は、異なるガラス転移及び/又は融解温度を示し、式(AB)(式中、x=(2)であり、nは増倍器エレメントの数であり1〜18の範囲である)で表される多層ポリマー複合シート又はフィルムを形成できる。他の実施形態において、交互の第1のポリマー層(A)22及び第2のポリマー層(B)24を、式(ABA)又は(BAB)(式中、x=(2)+1であり、nは増倍器エレメントの数であり0〜18の範囲である)で表される高分子多層形状記憶材料中に備えることができる。更に、ポリマー成分(a)及び(b)は、それらが高分子構造間の配座の相違、異なる加工条件に起因する相違、配向又は分子量の相違などの二次的な物理的相違により異なる熱的ガラス転移及び/又は融解温度を示す別個の層を形成できる限りにおいて、化学的に同一の材料であってもよい。 Each of layers (A) 22 and (B) 24 may be a microlayer or a nanolayer. The first polymer component (a) and the second polymer component (b) exhibit different glass transition and / or melting temperatures and are of the formula (AB) x , where x = (2) n , where n is Multi-layer polymer composite sheet or film represented by the number of multiplier elements and in the range of 1-18. In other embodiments, alternating first polymer layer (A) 22 and second polymer layer (B) 24 may be represented by the formula (ABA) x or (BAB) x , where x = (2) n +1. Where n is the number of multiplier elements and is in the range of 0-18). Furthermore, the polymer components (a) and (b) have different heat due to secondary physical differences such as conformational differences between macromolecular structures, differences due to different processing conditions, differences in orientation or molecular weight. Chemically identical materials can be used as long as separate layers can be formed that exhibit the desired glass transition and / or melting temperature.

いくつかの実施形態において、第1のポリマー(a)及び第2のポリマー(b)は、そのように形成された高分子複合多層形状記憶材料が形状記憶挙動又は特性を示す限りにおいて、独立に、ガラス状高分子材料、結晶性高分子材料、ゴム状高分子材料又はそれらの混合物であってよい。例として、第1のポリマー(a)がガラス状材料である場合、第2のポリマー(b)は、ゴム状材料、ガラス状材料、結晶性材料又はそれらの配合物であってよい。或いは、第1のポリマー(a)がゴム状材料である場合、第2のポリマー(b)は、ゴム状材料、ガラス状材料、結晶性材料又はそれらの配合物であってよい。   In some embodiments, the first polymer (a) and the second polymer (b) are independently selected so long as the polymer composite multilayer shape memory material so formed exhibits shape memory behavior or properties. , Glassy polymeric materials, crystalline polymeric materials, rubbery polymeric materials or mixtures thereof. As an example, when the first polymer (a) is a glassy material, the second polymer (b) may be a rubbery material, a glassy material, a crystalline material, or a blend thereof. Alternatively, when the first polymer (a) is a rubbery material, the second polymer (b) may be a rubbery material, a glassy material, a crystalline material, or a blend thereof.

いくつかの実施形態において、第1のポリマー層(複数可)は、第2のポリマー層間に挟持される、閉じ込められた結晶化層である。該閉じ込められた結晶化層(複数可)は、第1の結晶性ポリマー材料と第2のポリマー材料との強制共押出により形成できる。共押出された第1の結晶性ポリマー材料は、第2のポリマー層間に閉じ込められた、すなわち挟持された、複数の第1の結晶化ポリマー層を形成できる。   In some embodiments, the first polymer layer (s) is a confined crystallization layer sandwiched between second polymer layers. The confined crystallized layer (s) can be formed by forced coextrusion of the first crystalline polymer material and the second polymer material. The co-extruded first crystalline polymer material can form a plurality of first crystallized polymer layers that are confined or sandwiched between second polymer layers.

個々の第1の閉じ込められた結晶化層の厚さは、各第1の層が実質的に結晶性のラメラを形成するような厚さであってよい。実質的に結晶性のラメラとは、各第1のポリマー層が、少なくとも約60%結晶性、少なくとも約70%結晶性、少なくとも約80%結晶性、少なくとも約90%結晶性、少なくとも約95%結晶性、又は少なくとも約99%結晶性であることを意味する。この厚さは、ナノスケールのレベル、例えば、約5ナノメートル〜約1000ナノメートル、約10ナノメートル〜約500ナノメートル、又は約10ナノメートル〜約20ナノメートルであってよい。各第1の層の厚さは、第1の層を形成するために用いられる個々のポリマー材料に依存し、結晶化特性を最適化する(すなわち、高アスペクト比のラメラの形成)よう容易に選択できる。本発明の一態様において、第1の層の厚さは、各第1の層で高アスペクト比の結晶性ラメラが形成されるような厚さであるべきであるが、第1の層が、共押出に際して又は閉じ込め後に、容易に崩壊する、すなわち破断する程に薄くするべきではない。   The thickness of each first confined crystallized layer may be such that each first layer forms a substantially crystalline lamella. Substantially crystalline lamellae wherein each first polymer layer is at least about 60% crystalline, at least about 70% crystalline, at least about 80% crystalline, at least about 90% crystalline, at least about 95% It means crystalline, or at least about 99% crystalline. This thickness may be on a nanoscale level, for example, from about 5 nanometers to about 1000 nanometers, from about 10 nanometers to about 500 nanometers, or from about 10 nanometers to about 20 nanometers. The thickness of each first layer depends on the particular polymer material used to form the first layer and is easily adapted to optimize crystallization properties (ie, forming high aspect ratio lamellae). You can choose. In one aspect of the invention, the thickness of the first layer should be such that a high aspect ratio crystalline lamella is formed in each first layer, It should not be so thin that it collapses easily, i.e. breaks, during coextrusion or after confinement.

第1の層を閉じ込めるために用いられる個々の第2の層の厚さは、ナノスケールのレベルであってよい。これらの層の厚さは、例えば、約5ナノメートル〜約1000ナノメートル、約10ナノメートル〜約500ナノメートル、又は約10ナノメートル〜約100ナノメートルであってよい。   The thickness of the individual second layer used to confine the first layer may be at the nanoscale level. The thickness of these layers can be, for example, from about 5 nanometers to about 1000 nanometers, from about 10 nanometers to about 500 nanometers, or from about 10 nanometers to about 100 nanometers.

或いは、上記高分子多層形状記憶材料は、例えば、三重形状記憶を有する形状記憶材料の形成が所望される場合には、2種を超える異なるポリマー成分を含んでもよい。例えば、それぞれ成分(a)、(b)、及び(c)の交互の層(A)、(B)、及び(C)の3成分構造(例えば、ABCABCABC・・・)は、(ABC)x(式中、xは上記に定義される通りである)で表される。(CACBCACBC・・・)などの、任意の所望の配置及び組み合わせで任意の数の異なる構成成分の層を備える構造が、本発明の範囲中に含まれる。   Alternatively, the polymeric multilayer shape memory material may comprise more than two different polymer components, for example, when it is desired to form a shape memory material having a triple shape memory. For example, the three-component structure (eg, ABCABCABC...) Of alternating layers (A), (B), and (C) of components (a), (b), and (c), respectively, is (ABC) x (Wherein x is as defined above). Structures comprising any number of different component layers in any desired arrangement and combination, such as (CACBCACBC...) Are included within the scope of the present invention.

上記多層構造は、付加的な種類の層を備えてもよいことが理解されるべきである。例えば、これらの層としては、接合層、接着層、及び/又は他のポリマー層を挙げることができる。種々の交互の層の構成成分は、同一であっても異なってもよい。例えば、成分(a)、(b)及び(c)の交互の層の3成分構造(ABCABCA・・・)は、(ABC)(式中、xは上記に定義される通りである)によって表される。 It should be understood that the multilayer structure may comprise additional types of layers. For example, these layers can include bonding layers, adhesive layers, and / or other polymer layers. The components of the various alternating layers may be the same or different. For example, the three-component structure (ABCABCA ...) of alternating layers of components (a), (b) and (c) is represented by (ABC) x , where x is as defined above. expressed.

上記多層形状記憶材料は、2種のポリマー材料の共押出によって製造できる。従来、形状記憶材料は、多くの場合、溶媒に基づいたプロセスによって作製される。これらの技法は高コストであり、非常に有毒であり、環境調和型ではない。提案される新しいプロセスは、潜在的に全ての溶媒をなくすことができ、安全で毒性のないプロセスである。上記形状記憶材料の共押出は、短時間で、多量の様々な構造を有する材料を製造できる、高速の連続的なプロセスである。溶融押出は、また、市販のポリマーから高分子形状記憶材料を製造する方法を提供でき、特異な合成プロセスの必要性を排除する。   The multilayer shape memory material can be produced by coextrusion of two polymer materials. Traditionally, shape memory materials are often made by solvent-based processes. These techniques are expensive, very toxic, and not environmentally friendly. The proposed new process is a safe and non-toxic process that can potentially eliminate all solvents. The coextrusion of the shape memory material is a high-speed continuous process capable of producing a large amount of materials having various structures in a short time. Melt extrusion can also provide a method for producing polymeric shape memory materials from commercially available polymers, eliminating the need for unique synthetic processes.

一般的な多層共押出装置が図3及び4に図解される。2成分(AB)共押出システムは、それぞれがメルトポンプによって共押出フィードブロックに接続された2台の3/4インチ単軸押出機から構成される。この2成分システム用のフィードブロックは、高分子材料(a)及び高分子材料(b)を(AB)層構成に結合する。メルトポンプは、フィードブロック内で二つの平行な層として結合される二つの溶融流を制御する。メルトポンプの速度を調節することにより、相対的な層の厚さ、すなわちBに対するAの比率を変えることができる。フィードブロックから、溶融物は一連の増倍化エレメントを通過する。増倍化エレメントは、最初にAB構造を垂直方向に薄片化し、次に溶融物を水平方向に拡幅する。流動流が再結合し、層の数を倍増させる。n個の増倍器エレメントの集合体が、層配列(AB)(式中、xは(2)に等しく、nは増倍化エレメントの数である)を有する押出物を作り出す。本発明の構造を製作するために用いられる押出機の数は、構成成分の数に等しいことが当業者に理解される。従って、3成分多層(ABC・・・)は3台の押出機を必要とする。 A typical multi-layer coextrusion apparatus is illustrated in FIGS. The two component (AB) coextrusion system consists of two 3/4 inch single screw extruders each connected to a coextrusion feedblock by a melt pump. This feed block for a two-component system combines the polymeric material (a) and the polymeric material (b) into the (AB) layer configuration. The melt pump controls two melt streams that are combined as two parallel layers within the feedblock. By adjusting the speed of the melt pump, the relative layer thickness, ie the ratio of A to B, can be changed. From the feed block, the melt passes through a series of multiplication elements. The multiplication element first slices the AB structure vertically and then widens the melt horizontally. The fluid stream recombines and doubles the number of layers. A collection of n multiplier elements creates an extrudate having a layer arrangement (AB) x where x is (2) n equal to n and n is the number of multiplier elements. Those skilled in the art will appreciate that the number of extruders used to fabricate the structure of the present invention is equal to the number of components. Therefore, a three-component multilayer (ABC ...) requires three extruders.

上記押出プロセスにより製造される多層形状記憶材料は、少なくとも2層、例えば、少なくとも10層、50層、100層、又は1000層(その範囲内の任意の数を含む)を有していてよい。一例において、上記多層形状記憶材料は50〜10000層を有する。別な例において、多層形状記憶材料はフィルム又はシートの形態である。フィルム又はシートの厚さを一定に保ちつつ、相対的な流速又は層の数を変えることにより、個々の層の厚さを制御できる。上記多層フィルム又はシートは、10nm〜1000μm、好ましくは100nm〜200μmの範囲、及びその範囲で増加する任意の数値の、全体の厚さを有していてよい。更に、上記多層フィルムは、例えば、熱成形、真空成形、又は加圧成形により、多数の物品へと成形され得る。   The multilayer shape memory material produced by the extrusion process may have at least two layers, including at least 10, 50, 100, or 1000 layers, including any number within that range. In one example, the multilayer shape memory material has 50 to 10,000 layers. In another example, the multilayer shape memory material is in the form of a film or sheet. By keeping the film or sheet thickness constant, the thickness of individual layers can be controlled by changing the relative flow rate or number of layers. The multilayer film or sheet may have an overall thickness in the range of 10 nm to 1000 μm, preferably in the range of 100 nm to 200 μm, and any numerical value that increases within that range. Furthermore, the multilayer film can be formed into a large number of articles by, for example, thermoforming, vacuum forming, or pressure forming.

上記高分子多層形状記憶材料は、生体医療適用での使用向けの製品を製造するために用いることができる。例えば、縫合糸、歯科矯正材料、骨ネジ、釘、板、メッシュ、補綴具、ポンプ、カテーテル、チューブ、フィルム、ステント、整形外科用固定具、当て木、ギプス作製用テープ、及び組織工学用スカフォード、埋植材、及び熱表示器が製造される。   The polymeric multilayer shape memory material can be used to produce products for use in biomedical applications. For example, sutures, orthodontic materials, bone screws, nails, plates, meshes, prosthetic devices, pumps, catheters, tubes, films, stents, orthopedic fixtures, battenes, cast tapes, and tissue engineering scaffolds Ford, implants, and thermal indicators are manufactured.

上記高分子多層形状記憶材料は、体内に埋植して機械的機能を果たし得る形状の埋植材へと成形できる。かかる埋植材の例としては、棒、ピン、ネジ、板及び解剖学的形状が挙げられる。特に好ましい上記組成物の使用は縫合糸の製造であり、縫合糸は十分に剛性のある組成を有し容易に挿入でき、しかし体温に達すると軟化して患者にとってより快適でありその一方でなお治癒を可能にする第2の形状を形成する。   The polymer multilayer shape memory material can be molded into an implant material having a shape that can be implanted in the body and perform a mechanical function. Examples of such implants include rods, pins, screws, plates and anatomical shapes. A particularly preferred use of the above composition is the manufacture of sutures, which have a sufficiently rigid composition and can be easily inserted, but soften and reach the patient's comfort while reaching body temperature while still being A second shape is formed that allows healing.

上記高分子多層形状記憶材料には生体医療用途以外にも多くの用途がある。これらの用途としては、バンパー及び他の自動車車体部品、食品包装、内燃機関のオートチョーク、ポリマー複合材、織物、パイプ継手、熱収縮チューブ、クランプ用ピン、温度センサー、減衰材、スポーツ保護具、玩具、単管結合材、パイプの内部積層材、内張材、及びクランプ用ピンなどの、衝撃吸収後の変形回復を必要とする部材が挙げられる。   The polymer multilayer shape memory material has many uses other than biomedical applications. These applications include bumpers and other automotive body parts, food packaging, internal combustion engine auto chokes, polymer composites, fabrics, pipe fittings, heat shrink tubing, clamping pins, temperature sensors, damping materials, sports equipment, Examples include members that require deformation recovery after impact absorption, such as toys, single pipe binders, pipe inner laminates, lining materials, and clamping pins.

いくつかの実施形態において、成形された物品は、ハトメ及びリベットを始めとする止め具である。リベットは、貫通した開孔を有する対象物すなわち加工物に挿入され得る、長手方向に変形した形状の円筒を備え得る。加熱すると、変形した円筒は長手方向に緊縮し横方向に拡張する。止め具の恒久的形状及び変形した形状の半径は、加工物に挿入できるが、拡張して加工物を充填し及び締め付けるように選択される。更に、止め具の長手方向の変形(伸長)は、恒久的形状への回復時に、止め具が加工物に圧縮を付与するように選択できる。   In some embodiments, the molded article is a stop, including eyelets and rivets. The rivet may comprise a longitudinally deformed cylinder that can be inserted into an object or workpiece having an aperture therethrough. When heated, the deformed cylinder contracts in the longitudinal direction and expands in the lateral direction. The permanent shape of the stop and the radius of the deformed shape can be inserted into the workpiece, but are selected to expand and fill and clamp the workpiece. In addition, the longitudinal deformation (elongation) of the stop can be selected such that the stop imparts compression to the workpiece upon recovery to a permanent shape.

実施例
本実施例においては、ポリウレタン(PU)をポリカプロラクトン(PCL)と共押出して、融解温度に基づくスイッチングを伴う形状記憶材料を製造した。共押出されたPU/PCLのストランド及びフィルムは64層又は512層を備えていた。64層のストランド又はフィルムについては、層の厚さは2.2μm〜5.2μmであった。512層のストランド又はフィルムについては、層の厚さは0.05μm〜0.4μmであった。組成(容積/容積)は、PU/PCLを30/70、50/50、及び70/30で変化させた。
Example In this example, polyurethane (PU) was coextruded with polycaprolactone (PCL) to produce a shape memory material with switching based on melting temperature. The coextruded PU / PCL strands and films had 64 or 512 layers. For 64-layer strands or films, the layer thickness was 2.2 μm to 5.2 μm. For 512-layer strands or films, the layer thickness was 0.05 μm to 0.4 μm. The composition (volume / volume) varied PU / PCL at 30/70, 50/50, and 70/30.

ポリ(エチレン オクタン)(EO)を、ポリ(エチレンテレフタレートグリコール)(PETG)と共押出して、ガラス転移温度に基づくスイッチングを伴う形状記憶材料を製造した。共押出されたPETG/EOのストランド及びフィルムは64層又は512層を備えていた。64層のストランド又はフィルムについては、層の厚さは2.2μm〜5.2μmであった。512層のストランド又はフィルムについては、層の厚さは0.05μm〜0.4μmであった。組成(容積/容積)は、PETG/EOを30/70、50/50、及び70/30で変化させた。   Poly (ethylene octane) (EO) was coextruded with poly (ethylene terephthalate glycol) (PETG) to produce a shape memory material with switching based on glass transition temperature. The coextruded PETG / EO strands and films had 64 or 512 layers. For 64-layer strands or films, the layer thickness was 2.2 μm to 5.2 μm. For 512-layer strands or films, the layer thickness was 0.05 μm to 0.4 μm. The composition (volume / volume) was changed by PETG / EO at 30/70, 50/50, and 70/30.

PU/PCL形状記憶材料及びPETG/EO形状記憶材料の特性を表1に示す。

Figure 2015520045
The properties of the PU / PCL shape memory material and the PETG / EO shape memory material are shown in Table 1.
Figure 2015520045

30/70及び70/30のPCL/PU組成をもつ512の交互の層を備えるポリカプロラクトン(PCL)/ポリウレタン(PU)多層化形状記憶材料のストランドを図5に図解する。図5は、PCL/PU多層ストランドが、一時的形状に固定化され、かつ当初のストランド形状に回復でき、試料の永久変形を殆ど又は全く示さないことを示している。   A strand of polycaprolactone (PCL) / polyurethane (PU) multilayered shape memory material comprising 512 alternating layers with 30/70 and 70/30 PCL / PU compositions is illustrated in FIG. FIG. 5 shows that the PCL / PU multi-layer strand is immobilized in a temporary shape and can be restored to its original strand shape with little or no permanent deformation of the sample.

50/50のPCL/PU組成をもつ512の交互の層を備えるポリカプロラクトン(PCL)/ポリウレタン(PU)多層形状記憶材料のフィルムを図6に図解する。図6は、PCL/PU多層フィルムが、一時的形状に固定化され、かつ当初のフィルム形状に回復できることを示している。   A film of polycaprolactone (PCL) / polyurethane (PU) multilayer shape memory material with 512 alternating layers having a 50/50 PCL / PU composition is illustrated in FIG. FIG. 6 shows that the PCL / PU multilayer film is fixed in a temporary shape and can be restored to its original film shape.

図6の多層フィルムを熱機械的周期及び応力、ひずみに晒し、復元率を測定した。結果を表2及び図7(A〜B)に示す。図7(A〜B)は、熱機械的周期が、形状固定率に殆ど影響を与えずに、ミクロ層化フィルムの形状回復を向上させることを示している。

Figure 2015520045
The multilayer film of FIG. 6 was exposed to a thermomechanical period, stress, and strain, and the restoration rate was measured. The results are shown in Table 2 and FIGS. FIG. 7 (AB) shows that the thermomechanical period improves the shape recovery of the micro-layered film with little effect on the shape fixation rate.
Figure 2015520045

PCL/PU比を変化させた種々のPCL/PU溶融配合物から調製したフィルムを、フィルム中のPCL/PU比を30/70、50/50、及び70/30で変化させた、512の交互のPCL/PU層を備える多層フィルムと比較した。スイッチング温度に与える組成の影響をプロットして比較した。図8(A〜B)は、共重合体及び溶融配合物と異なり、多層PCL/PUフィルムの組成は、スイッチング温度(PCLのT)に殆ど影響を与えないことを示している。 512 alternating alternating films prepared from various PCL / PU melt blends with varying PCL / PU ratios with varying PCL / PU ratios in the films at 30/70, 50/50, and 70/30 Compared to a multilayer film with a PCL / PU layer. The effect of the composition on the switching temperature was plotted and compared. Figure 8 (A-B) is different from the copolymer and the melt blend, the composition of the multi-layer PCL / PU film indicates that little effect on (T m of PCL) switching temperature.

30/70及び70/30のPETG/EO組成をもつ512の交互の層を備えるPETG/EO多層化形状記憶材料のストランドを、図9(A〜B)に図解する。図9(A〜B)は、PETG/EO多層ストランドが一時的形状に固定化され、かつ当初のストランド形状に回復でき、試料の永久変形を殆ど又は全く示さないことを示している。   Strands of PETG / EO multilayered shape memory material comprising 512 alternating layers with 30/70 and 70/30 PETG / EO compositions are illustrated in FIGS. 9A-B. FIG. 9 (AB) shows that the PETG / EO multilayer strand is immobilized in a temporary shape and can be restored to its original strand shape with little or no permanent deformation of the sample.

50/50のPETG/EO組成、並びにフィルムの層厚がそれぞれ310nm及び90nmである512の交互の層を備えるPETG/EO多層化形状記憶材料のフィルムを、熱機械的周期及び応力、ひずみに晒し、復元率を測定した。結果を表3及び4並びに図10(A〜B)に示す。図10(A〜B)は、形状固定及び回復は特により薄い層で良好であり、熱機械的周期により僅かに向上することを示している。

Figure 2015520045
Figure 2015520045
A film of PETG / EO multilayered shape memory material comprising a 50/50 PETG / EO composition and 512 alternating layers with film thicknesses of 310 nm and 90 nm, respectively, was subjected to thermomechanical cycles and stress, strain. The restoration rate was measured. The results are shown in Tables 3 and 4 and FIGS. FIG. 10 (AB) shows that shape fixing and recovery are particularly good with thinner layers and improve slightly with the thermomechanical period.
Figure 2015520045
Figure 2015520045

図11は、ポリカプロラクトン(PCL)/ポリウレタン(PU)/ポリエチレン(PE)多層化形状記憶材料の三重形状記憶フィルムの例を図解する。該三重形状記憶材料は、それぞれの形状が形成される二つの別個の転移により、二つの一時的形状を示す。   FIG. 11 illustrates an example of a triple shape memory film of polycaprolactone (PCL) / polyurethane (PU) / polyethylene (PE) multilayered shape memory material. The triple shape memory material exhibits two temporary shapes due to two separate transitions in which each shape is formed.

本発明の好ましい実施形態が例証され説明されてきたが、本発明はこの実施形態に限定されないことが理解されるべきである。当業者にとっては、添付の特許請求の範囲により記載される本発明の範囲から逸脱することのない、多くの修正、変更及び変異が自明となる。全ての特許、公表物、及び本明細書の引用文献は、それらの全てが参照により援用される。   While the preferred embodiment of the invention has been illustrated and described, it should be understood that the invention is not limited to this embodiment. Numerous modifications, changes and variations will become apparent to those skilled in the art without departing from the scope of the invention as set forth in the claims below. All patents, publications, and references cited herein are incorporated by reference in their entirety.

Claims (27)

共押出された第1のポリマー材料の第1のポリマー層及び第2のポリマー材料の第2のポリマー層を備える多層化複合形状記憶材料であって、
第1のポリマー材料及び第2のポリマー材料が異なる融解温度及び/又はガラス転移温度を有し、熱機械的プログラミング後の複合形状記憶材料が少なくとも1つの温度誘起による一時的形状から恒久的形状への形状転移を起こすことができ、第1のポリマー層が形状記憶材料に恒久的形状を与える形状記憶材料のハードセグメントを構成し、第2のポリマー層が形状記憶材料に一時的形状を与える形状記憶材料のスイッチングセグメントを構成する、多層化複合形状記憶材料。
A multilayered composite shape memory material comprising a first polymer layer of a co-extruded first polymer material and a second polymer layer of a second polymer material,
The first polymeric material and the second polymeric material have different melting and / or glass transition temperatures, and the composite shape memory material after thermomechanical programming changes from at least one temperature-induced temporary shape to a permanent shape. A shape in which the first polymer layer constitutes a hard segment of the shape memory material that gives the shape memory material a permanent shape and the second polymer layer gives a temporary shape to the shape memory material A multilayered composite shape memory material comprising a switching segment of the memory material.
複数の交互の第1のポリマー層と第2のポリマー層とを備える、請求項1に記載の材料。   The material of claim 1, comprising a plurality of alternating first polymer layers and second polymer layers. 少なくとも10の交互の第1のポリマー層と第2のポリマー層とを備える、請求項2に記載の材料。   The material of claim 2 comprising at least 10 alternating first and second polymer layers. 第1のポリマー材料が第2のポリマー材料と非相溶又は部分的に相溶である、請求項1に記載の材料。   The material of claim 1, wherein the first polymeric material is incompatible or partially compatible with the second polymeric material. 第1のポリマー層が第2のポリマー層のスイッチング温度を超える形状記憶材料の加熱に際して形状記憶材料の一時的形状から恒久的形状への弾性的回復を引き起こす、請求項1に記載の材料。   The material of claim 1, wherein the first polymer layer causes an elastic recovery of the shape memory material from a temporary shape to a permanent shape upon heating of the shape memory material above the switching temperature of the second polymer layer. 第1のポリマー層及び第2のポリマー層が約10nm〜約50μmの平均厚さを有する、請求項1に記載の材料。   The material of claim 1, wherein the first polymer layer and the second polymer layer have an average thickness of about 10 nm to about 50 μm. 第1のポリマー材料及び第2のポリマー材料が形状記憶ポリマーではない、請求項1に記載の材料。   The material of claim 1, wherein the first polymeric material and the second polymeric material are not shape memory polymers. 第1のポリマー材料がポリウレタンを備え第2のポリマー材料がポリカプロラクトンを備える、請求項1に記載の材料。   The material of claim 1, wherein the first polymeric material comprises polyurethane and the second polymeric material comprises polycaprolactone. 第3のポリマー材料の第3のポリマー層を更に備え、第3のポリマー層が形状記憶材料に第2の一時的形状を与える形状記憶材料の第2のスイッチングセグメントを構成する、請求項1に記載の材料。   The third polymer layer of claim 3, further comprising a third polymer layer of the third polymer material, wherein the third polymer layer constitutes a second switching segment of the shape memory material that provides the second temporary shape to the shape memory material. The materials described. 第1のガラス転移又は融解温度を有する第1のポリマー材料及び第1のガラス転移又は融解温度と異なる第2のガラス転移温度を有する第2のポリマー材料を共押出して多層化成形記憶材料を形成することを含む多層形状記憶材料の製造方法であって、
熱機械的プログラミング後の多層形状記憶材料が少なくとも1つの温度誘起による一時的形状から恒久的形状への形状転移を起こすことができる、多層形状記憶材料の製造方法。
Co-extrusion of a first polymeric material having a first glass transition or melting temperature and a second polymeric material having a second glass transition temperature different from the first glass transition or melting temperature to form a multilayer molded memory material A method for producing a multilayer shape memory material comprising:
A method of manufacturing a multilayer shape memory material, wherein the multilayer shape memory material after thermomechanical programming can undergo a shape transition from a temporary shape to a permanent shape due to at least one temperature induction.
多層化形状記憶材料が交互の第1のポリマー層と第2のポリマー層とを備える、請求項10に記載の方法。   The method of claim 10, wherein the multilayered shape memory material comprises alternating first polymer layers and second polymer layers. 多層化形状記憶材料が少なくとも10の交互の共押出された第1のポリマー層と第2のポリマー層とを備える、請求項1に記載の方法。   The method of claim 1, wherein the multilayered shape memory material comprises at least 10 alternating coextruded first polymer layers and second polymer layers. 第1のポリマー材料が第2のポリマー材料と非相溶又は部分的に相溶である、請求項10に記載の方法。   11. The method of claim 10, wherein the first polymeric material is incompatible or partially compatible with the second polymeric material. 第1のポリマー層が第2のポリマー層のスイッチング温度を超える形状記憶材料の加熱に際して形状記憶材料の一時的形状から恒久的形状への弾性的回復を引き起こす、請求項11に記載の方法。   The method of claim 11, wherein the first polymer layer causes an elastic recovery of the shape memory material from a temporary shape to a permanent shape upon heating of the shape memory material above the switching temperature of the second polymer layer. 第1のポリマー層及び第2のポリマー層が約10nm〜約50μmの平均厚さを有する、請求項10に記載の方法。   The method of claim 10, wherein the first polymer layer and the second polymer layer have an average thickness of about 10 nm to about 50 μm. 第1のポリマー材料及び第2のポリマー材料が形状記憶ポリマーではない、請求項10に記載の方法。   The method of claim 10, wherein the first polymeric material and the second polymeric material are not shape memory polymers. 第1のポリマー材料がポリウレタンを備え第2のポリマー材料がポリカプロラクトンを備える、請求項10に記載の方法。   11. The method of claim 10, wherein the first polymeric material comprises polyurethane and the second polymeric material comprises polycaprolactone. 第3のポリマー材料を第1のポリマー材料及び第2のポリマー材料と共に更に共押出して第3のポリマー層を有する形状記憶材料を提供し、第3のポリマー層が形状記憶材料に第2の一時的形状を与える形状記憶材料の第2のスイッチングセグメントを構成する、請求項11に記載の方法。   A third polymer material is further coextruded with the first polymer material and the second polymer material to provide a shape memory material having a third polymer layer, the third polymer layer being in the shape memory material a second temporary material. The method of claim 11, comprising a second switching segment of shape memory material that provides a geometric shape. 共押出され多層化された機械的に変形可能な複合形状記憶シートを備える多層形状記憶材料であって、
多層化された機械的に変形可能な複合形状記憶シートが式(AB)、式中x=2でありnは1〜18の範囲である、で表される複数の少なくとも2の交互の層(A)及び(B)を備え;
層(A)がポリマー成分(a)からなり層(B)がポリマー成分(b)からなり;及び
ポリマー成分(a)及び(b)が異なるガラス転移及び/又は融解温度を有し、熱機械的プログラミング後の多層形状記憶材料が少なくとも1つの温度誘起による一時的形状から恒久的形状への形状転移を起こすことができる、多層形状記憶材料。
A multilayer shape memory material comprising a co-extruded and multilayered mechanically deformable composite shape memory sheet,
The multilayered mechanically deformable composite shape memory sheet is of the formula (AB) x , where x = 2 n and n is in the range of 1-18, a plurality of at least two alternating Comprising layers (A) and (B);
Layer (A) consists of polymer component (a), layer (B) consists of polymer component (b); and polymer components (a) and (b) have different glass transition and / or melting temperatures, A multilayer shape memory material in which the multilayer shape memory material after mechanical programming is capable of undergoing a shape transition from a temporary shape to a permanent shape due to at least one temperature induction.
少なくとも10の交互のポリマー層を備える、請求項19に記載の材料。   20. A material according to claim 19, comprising at least 10 alternating polymer layers. ポリマー成分(a)がポリマー成分(b)と非相溶又は部分的に相溶である、請求項19に記載の材料。   20. A material according to claim 19, wherein the polymer component (a) is incompatible or partially compatible with the polymer component (b). ポリマー層(A)がポリマー層(B)のスイッチング温度を超える形状記憶材料の加熱に際して形状記憶材料の一時的形状から恒久的形状への弾性的回復を引き起こす、請求項19に記載の材料。   20. The material of claim 19, wherein the polymer layer (A) causes an elastic recovery of the shape memory material from a temporary shape to a permanent shape upon heating of the shape memory material above the switching temperature of the polymer layer (B). ポリマー層(A)及びポリマー層(B)が約10nm〜約50μmの平均厚さを有する、請求項19に記載の材料。   20. The material of claim 19, wherein the polymer layer (A) and the polymer layer (B) have an average thickness of about 10 nm to about 50 [mu] m. ポリマー成分(a)及びポリマー成分(b)が形状記憶ポリマーではない、請求項19に記載の材料。   20. A material according to claim 19, wherein the polymer component (a) and the polymer component (b) are not shape memory polymers. ポリマー成分(a)がポリウレタンでありポリマー成分(b)がポリカプロラクトンである、請求項19に記載の材料。   20. A material according to claim 19, wherein the polymer component (a) is polyurethane and the polymer component (b) is polycaprolactone. ポリマー成分(c)を備えるポリマー層(C)を更に備え、ポリマー層(C)が形状記憶材料に第2の一時的形状を与える形状記憶材料の第2のスイッチングセグメントを構成する、請求項19に記載の材料。   20. A polymer layer (C) comprising a polymer component (c), further comprising a polymer layer (C) constituting a second switching segment of a shape memory material that imparts a second temporary shape to the shape memory material. Materials described in. ポリマー成分(a)及びポリマー成分(b)が異なる融解温度及び/又はガラス転移温度を有する、請求項19に記載の材料。   20. The material according to claim 19, wherein the polymer component (a) and the polymer component (b) have different melting temperatures and / or glass transition temperatures.
JP2015507249A 2012-04-20 2013-04-22 Composite shape memory material Pending JP2015520045A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261636039P 2012-04-20 2012-04-20
US61/636,039 2012-04-20
PCT/US2013/037617 WO2013159102A1 (en) 2012-04-20 2013-04-22 Composite shape memory materials

Publications (1)

Publication Number Publication Date
JP2015520045A true JP2015520045A (en) 2015-07-16

Family

ID=49384147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015507249A Pending JP2015520045A (en) 2012-04-20 2013-04-22 Composite shape memory material

Country Status (6)

Country Link
US (1) US11014341B2 (en)
EP (1) EP2838729A4 (en)
JP (1) JP2015520045A (en)
KR (1) KR20150020280A (en)
CN (1) CN104349896B (en)
WO (1) WO2013159102A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088539A (en) * 2014-05-22 2015-11-25 中国科学院化学研究所 Electro-spinning thin film having multi-stage shape memorizing performance and preparation method thereof
JP7433646B2 (en) 2020-07-21 2024-02-20 学校法人 名城大学 Deployment structure

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160280637A1 (en) * 2013-11-05 2016-09-29 Yokohama City University Superelastic material and energy storage material, energy absorption material, elastic material, actuator, and shape memory material that use said superelastic material
US20160089855A1 (en) * 2014-09-26 2016-03-31 Intel Corporation Morphing form factor material
CN104553211A (en) * 2015-01-06 2015-04-29 同济大学 Novel shape memory macromolecule microlayer composite material and preparation method thereof
US9635764B2 (en) * 2015-09-25 2017-04-25 Intel Corporation Integrated circuit and method that utilize a shape memory material
US20180250099A1 (en) * 2015-11-02 2018-09-06 3M Innovative Properties Company Orthodontic appliance having continuous shape memory
CN106908969A (en) * 2015-12-21 2017-06-30 新纶科技(常州)有限公司 A kind of composite smart film and its application
US11498307B2 (en) 2016-03-19 2022-11-15 International Business Machines Corporation Shape memory materials with reversible transitions
US10167854B2 (en) 2016-07-28 2019-01-01 International Business Machines Corporation Shape memory article with heat-generating microcapsule
CN106379011B (en) * 2016-09-05 2019-07-26 四川大学 A kind of preparation method of polymer-based multilayer shape-memory material
US10366641B2 (en) * 2016-12-21 2019-07-30 R.J. Reynolds Tobacco Company Product display systems and related methods
CN109401233B (en) * 2017-08-18 2020-10-09 山东贝隆新材料科技有限公司 Composite material with shape memory function, preparation method and application
CN112391743A (en) * 2019-08-16 2021-02-23 南京理工大学 Preparation method of double-layer fiber composite membrane
FR3109907B1 (en) * 2020-05-06 2024-02-09 Millet Innovation THERMOFORMABLE AND SHAPE MEMORY DEVICE AND APPLICATIONS
CN113635551B (en) * 2021-08-16 2022-12-13 吉林大学威海仿生研究院 Self-folding 4D printing method based on shape memory polymer
CN114953429A (en) * 2022-05-25 2022-08-30 吉林大学 Preparation method of 3D printing multiple shape memory intelligent composite material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2821690B2 (en) 1989-06-16 1998-11-05 日本ゼオン株式会社 Medical tubing
AU6051099A (en) * 1999-09-20 2001-04-24 Goodyear Tire And Rubber Company, The Faster curing rubber articles
EP1337396B1 (en) * 2000-03-02 2008-05-21 Boston Scientific Limited Multilayer medical device
JP2004106492A (en) * 2002-09-20 2004-04-08 Seiji Kagawa Manufacturing method of polybutylene terephthalate film, functional polybutylene terephthalate film and use thereof
KR101011359B1 (en) * 2002-09-20 2011-01-28 세이지 까가와 Shape-memory laminated polybutylene terephthalate film, production process and use thereof, and process for production of polybutylene terephthalate film
US7303642B2 (en) * 2002-11-12 2007-12-04 Kimberly-Clark Worldwide, Inc. Methods of making responsive film with corrugated microlayers having improved properties
US7105117B2 (en) 2003-01-06 2006-09-12 General Motors Corporation Manufacturing method for increasing thermal and electrical conductivities of polymers
SE525827C2 (en) 2003-09-08 2005-05-10 Whirlpool Co Microwave oven with convection heating
US7981229B2 (en) 2004-06-04 2011-07-19 Cornerstone Research Group, Inc Method of making and using shape memory polymer patches
EP1837159A1 (en) * 2006-03-23 2007-09-26 Mnemoscience GmbH Shape memory composites
US20090072434A1 (en) 2007-09-14 2009-03-19 Kotaro Takita Coextrusion die and manifold system therefor
US20090092807A1 (en) * 2007-10-09 2009-04-09 The Hong Kong Polytechnic University Two-way shape memory composite polymer and methods of making
US8641850B2 (en) * 2008-07-29 2014-02-04 GM Global Technology Operations LLC Polymer systems with multiple shape memory effect
EP2588045A4 (en) * 2010-07-02 2014-02-12 Liberman Distributing And Mfg Co Method and structure for nasal dilator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088539A (en) * 2014-05-22 2015-11-25 中国科学院化学研究所 Electro-spinning thin film having multi-stage shape memorizing performance and preparation method thereof
JP7433646B2 (en) 2020-07-21 2024-02-20 学校法人 名城大学 Deployment structure

Also Published As

Publication number Publication date
KR20150020280A (en) 2015-02-25
EP2838729A4 (en) 2015-12-30
EP2838729A1 (en) 2015-02-25
US11014341B2 (en) 2021-05-25
US20150093559A1 (en) 2015-04-02
WO2013159102A1 (en) 2013-10-24
CN104349896B (en) 2016-09-21
CN104349896A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
JP2015520045A (en) Composite shape memory material
Huang et al. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review
US10328625B2 (en) Coextruded arc-induced materials
Zheng et al. Tunable shape memory performances via multilayer assembly of thermoplastic polyurethane and polycaprolactone
US8129031B2 (en) Films containing microlayer structures
KR100786005B1 (en) Multilayered aliphatic polyester film
JP5921873B2 (en) Elastomeric laminate and method for producing the same
KR101769313B1 (en) Thermoplastic elastomer tubing and method to make and use same
WO2008072567A1 (en) Method for production of stretched film, and stretched film
Miriyev et al. Additive manufacturing of silicone composites for soft actuation
KR20150048798A (en) Coextruded polymer film configured for successive irreversible delamination
JP2000505745A (en) Improved biaxial stretching of fluoropolymer films
MX2015006805A (en) Microlayer component for films with improved gas/moisture barrier by controlling crystal lamellae orientation.
JP2005131824A (en) Heat-shrinkable laminated film
CN114870097B (en) Polymer tube with controlled orientation
JP4959077B2 (en) Method for producing heat-shrinkable polylactic acid film and heat-shrinkable polylactic acid film obtained by the method
WO2020027799A2 (en) Multilayer packaging film
KR102520102B1 (en) Polymer tubes with controlled orientation
JP6690878B2 (en) Polyamide film
Li et al. Fabrication of Architectured Multilayers with Mismatched Rheological Behaviors: Layer Stability, Structure, and Confinement Dictate Polyethylene-Based Film Properties
Nam Additive Manufacturing of Thermoactivated Morphing Materials
JP2020033266A (en) Percutaneous absorption type formulation and production method thereof
JP6062282B2 (en) White polyamide film
KR20170057024A (en) Flexible polyester laminated film
JP2003001702A (en) Manufacturing method for polyolefin stretched sheet laminate