JP2015516831A - 正則化による反復画像再構成 - Google Patents

正則化による反復画像再構成 Download PDF

Info

Publication number
JP2015516831A
JP2015516831A JP2015502507A JP2015502507A JP2015516831A JP 2015516831 A JP2015516831 A JP 2015516831A JP 2015502507 A JP2015502507 A JP 2015502507A JP 2015502507 A JP2015502507 A JP 2015502507A JP 2015516831 A JP2015516831 A JP 2015516831A
Authority
JP
Japan
Prior art keywords
regularization
scaling
algorithm
image
scaling factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015502507A
Other languages
English (en)
Other versions
JP6158910B2 (ja
Inventor
マーティン ブラウン,ケビン
マーティン ブラウン,ケビン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2015516831A publication Critical patent/JP2015516831A/ja
Application granted granted Critical
Publication of JP6158910B2 publication Critical patent/JP6158910B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/424Iterative

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)

Abstract

方法は、正則化による反復再構成アルゴリズムの更新アルゴリズムの正則化項をスケーリング値でスケーリングするステップを有する。スケーリング値は、少なくとも1つの次元で可変であり、それにより、前記反復再構成の前記正規化を前記少なくとも1つの次元で変化させる。方法は、少なくとも前記更新アルゴリズム、前記変化するスケーリングされた正則化項、及び投影データに基づき、画像を反復的に再構成するステップ、を更に有する。

Description

以下は、概して、正則化による反復画像再構成に関し、CT(computed tomography)への特定の用途を見出す。以下は、ハイブリッドCT/PET(positron emission tomography)、ハイブリッドCT/MR(magnetic resonance)、デジタルX線、及び/又は他の画像化モダリティのような他の画像化モダリティにも従う。
CTスキャナは、z軸周囲の検査領域の周りを回転する回転ガントリに取り付けられるX線管を含む。検出器アレイは、X線管から検査領域の反対の角度弧に内在する。X線管は、検査領域を横切る放射を発する。検出器アレイは、検査領域を横切る放射を検出し、それを示す投影データを生成する。再構成器は、検査領域を示す画像を生成する反復又は非反復再構成アルゴリズムを用いて投影データを処理する。
正則化による反復画像再構成アルゴリズムは、データ比較項及び画像ノイズペナルティ項を含むコスト関数に基づいている。このようなコスト関数の一般的な式は、次の通りである。
Ψ(x)=−L(Ax|y)+β・R(x)
ここで、Ψ(x)はコスト関数を表す。L(Ax|y)は、順投影画像(Ax、ここで、Aは順投影演算子であり、xは画像である)を測定データ(y)と比較する尤度項を表す。R(x)は、再構成画像内のノイズ(又は「粗さ」)にペナルティを科す粗さペナルティ項を表す。βは、正則化の強度を制御する正則化項を表す。ペナルティ項を有しないと、アルゴリズムは、データ内に存在するノイズに適合するために非常にノイズの多い画像に収束し得る。
通常、正則化項βは、自由パラメータであり、その値は手動で決定される。βの値は、最終再構成画像内のより多くの又はより少ないノイズを許容するために選択できる。残念ながら、βの値は、データセットに依存する傾向があり、したがって、異なる大きさの患者及び線量レベルで一貫したノイズレベルを達成するために患者毎に決定されるべきである。つまり、同じ値のβが異なる大きさの患者、異なる大きさの生体構造、及び/又は異なる管電流で取得されたデータセットに亘り使用される場合、結果として生じる反復的に再構成された画像に亘り一貫した画像品質が達成される可能性は低い。
本願明細書に記載の態様は、上述の問題及び他の問題を解決する。
一態様では、方法は、正則化による反復再構成アルゴリズムの更新アルゴリズムの正則化項をスケーリング値でスケーリングするステップを有する。スケーリング値は、少なくとも1つの次元で可変であり、それにより、前記反復再構成の前記正規化を前記少なくとも1つの次元で変化させる。方法は、少なくとも前記更新アルゴリズム、前記変化するスケーリングされた正則化項、及び投影データに基づき、画像を反復的に再構成するステップ、を更に有する。
別の態様では、再構成器は、少なくとも1つのスケーリング係数アルゴリズムを有するスケーリング係数アルゴリズムバンクと、少なくとも1つのスケーリング係数アルゴリズムに基づき正則化項スケーリング係数を生成するスケーリング係数生成器と、を有する。更新アルゴリズムバンクは、正則化項を用いる少なくとも1つの反復再構成更新アルゴリズムを有する。再構成器は、スキャンの投影データを処理し、前記少なくとも1つの反復再構成アルゴリズム及び前記正則化項スケーリング係数に基づき画像を再構成し、前記スケーリング係数は、前記反復再構成アルゴリズムの前記正規化項を少なくとも1つの次元で変化させる。
別の態様では、コンピュータ可読命令を符号化されたコンピュータ可読記憶媒体は、前記コンピュータ可読命令を符号化され、プロセッサにより実行されると、前記プロセッサに、投影データを再構成することにより、正則化による反復再構成アルゴリズムを用いて画像を生成させ、前記正則化による反復再構成アルゴリズムでは、前記反復再構成アルゴリズムの更新アルゴリズムの正則化項は、前記投影データ内で検出された光子の数に基づき、少なくとも1つの次元を変化させる。
別の態様では、方法は、検出された光子の合計又は平均数が高い画像領域内での前記正則化のスケーリングが前記更新アルゴリズムの強い更新値の影響を弱めるように、正則化による反復再構成アルゴリズムの更新アルゴリズムの正則化項をスケーリングするステップ、を有する。
本発明は、種々のコンポーネント及びコンポーネントの配置の形式、並びに種々のステップ及びステップの配置の形式を取ることができる。図面は、好適な実施形態を説明することのみを目的とし、本発明を限定するものと見なされるべきではない。
画像を再構成するために変化する正則化による反復再構成アルゴリズムを用いる再構成器を有する例示的な画像システムを図示する。 変化する正則化による反復再構成アルゴリズムを用いて画像を再構成する例示的な再構成器を図示する。 変化する正則化による反復再構成アルゴリズムを用いて画像を再構成する例示的な方法を示す。
以下は、概して、正則化による反復画像再構成に関する。以下に詳細に記載するように、本願明細書に記載のアプローチにより、正則化項βは、再構成中の投影データの光子数の逆投影に応じて変化する値でスケーリングされる。したがって、スケーリングされた正則化は、患者の大きさ、生体構造の大きさ、及び/又は管電流を考慮に入れる。これは、患者の大きさ、生体構造の大きさ、及び/又は管電流から独立した一貫した画像品質で画像を再構成できるようにする。
図1は、CT(computed tomography)スキャナのような例示的な画像システム100を示す。
画像システム100は、静止ガントリ102及び回転ガントリ104を有する。回転ガントリ104は、静止ガントリ102により回転可能に支持され、z軸周りの検査領域106の周りを回転する。
X線管のような放射源108は、回転ガントリ104により回転可能に支持され一緒に回転し、検査領域106を横切る放射を発する。
1又は2次元放射線感受性検出器アレイ110は、検査領域106に渡り放射源108と反対の角度弧に内在する。検出器アレイ110は、検査領域106を横切る放射を検出し、それを示す投影データを生成する。
再構成器112は、投影データを処理し、それを示す体積画像データを再構成する。本例では、再構成器112は、正則化アルゴリズムを有する反復再構成116のような、再構成アルゴリズムバンク114からの1又は複数の再構成アルゴリズムを用いて投影データを処理する。以下の更に詳述するように、ある例では、再構成器112は、反復再構成116の正則化項(β)のスケーリング係数(s)を決定し、反復再構成中に正則化項をスケーリング係数でスケーリングする。このスケーリングは、投影データに基づく少なくとも1つの次元(例えば、1、2、3次元、等)における正則化を変化させる。
結果として、正則化は、患者及び/又はスキャンパラメータに固有であり、患者の大きさ、生体構造の大きさ、及び/又は管電流を考慮し、患者の大きさ、生体構造の大きさ、及び/又は管電流に無関係に複数の患者に亘り(例えば、画像ノイズに関して)一貫した画像品質を提供する。理解されるべきことに、所与のスキャンに用いられるスケーリング計数は、複数の所定のスケーリング計数から選択できる。例えば、ある例では、オペレータは、オペレータの選好、患者の大きさ、利用されるスキャンプロトコル、初期スカウトスキャン、及び/又は他の情報のような情報の関数であっても良い対象となる正則化レベルに依存して、低い、中程度の又は高いスケーリングの間で選択できる。
ベッドのような患者支持118は、人間又は動物の被検者のような物体又は被写体を検査領域106内に支持する。
汎用コンピューティングシステム又はコンピュータは、オペレータ制御装置120として機能する。制御装置120は、モニタのような人間が読み取り可能な出力装置と、キーボード、マウス、等のような入力装置と、を有する。制御装置120に存在するソフトウェアは、オペレータにGUI(graphical user interface)又は他のものを介してスキャナ100と相互作用させ及び/又はそれを操作させる。例えば、制御装置120は、オペレータが、正則化アルゴリズムを有する反復再構成116及び/又は他のアルゴリズムのような対象となる再構成アルゴリズムを識別し、複数の利用可能スケーリング係数から正則化スケーリング係数を選択し、等、をできるようにする。
理解されるべきことに、再構成器112は、物理メモリ又は他の非一時的媒体のようなコンピュータ可読記憶媒体に埋め込まれ又は符号化された1又は複数のコンピュータ実行可能命令を実行する1又は複数のプロセッサ(CPU(central processing unit)、マイクロプロセッサ(μ−CPU)、等)により実装できる。追加又は代替で、少なくとも1つのコンピュータ実行可能命令は、搬送波、信号、又は他の一時的媒体により伝達できる。
さらに、再構成器112は、制御装置120、ローカルコンピューティング装置、及び/又はリモート(システム100から離れた、例えば異なる部屋、設備、状態、等に置かれる)コンピューティング装置の一部であり得る。
図2は、再構成器112の一例を示す。
スケーリング係数生成器202は、検出器アレイ110(図1)から投影データを受信し、スケーリング係数アルゴリズムバンク206のスケーリング係数アルゴリズム204を用いて受信した投影データに基づきスケーリング係数sを生成する。適切なスケーリング係数アルゴリズムは、正則化項βと結合されるとき、正則化が少なくとも1つの次元で変化するように正則化項βを変化させるスケーリング係数アルゴリズムを含む。
このようなスケーリング係数アルゴリズムの非限定的な例を式1に示す。
式1:
s=(BP[y])
ここで、yは投影データを表し、BPは逆投影演算子を表し、nは正の実数を表す。通常、yは、現在のスキャンの中の各積分期間内の各データ点について検出された光子数(又は信号強度)に比例する数である。また、iは、サイノグラム内の各データ点に亘るインデックスである。別の非限定的な例は、次の多項式関数である。
s=a*(BP[y])+b*(BP[y])k−1+...g
ここで、kは正整数である。他のスケーリング係数アルゴリズムも本願明細書で考えられる。
画像更新器208は、スケーリング係数s、投影データ、初期画像(例えば、全てゼロ、初期逆投影画像、ノイズ除去画像、等)、停止基準(例えば、時間制限、連続する再構成間の差分値、等)、正則化項βの所定値(例えば、デフォルト、ユーザ定義、経験的に決定された、等)、及び画像更新アルゴリズムバンク212の画像更新アルゴリズム210に基づき、画像を反復的に再構成する。
適切な画像更新アルゴリズム210の非限定的な例を式2に示す。
式2:
Figure 2015516831
ここで、x n+1は現在の画像を表す。x は前の画像を表す。Mは投影のサブセットの数を表す。BPは逆投影演算子を表す。
Figure 2015516831
は順投影画像を表す。yは投影データを表す。aは線積分iに沿った順投影演算子Aの重みの和を表す。Ψはペナルティ関数(例えば、Huber又は他のペナルティ)を表す。(x −x )は画像ボクセル勾配(又はボクセル間の差)を表す。wはボクセル間(例えば、中心から中心、又は他の距離、等)の重み付けを表す。kは近隣ピクセル(近隣ピクセルの全部又は部分集合)を表す。βは正則化項を表す。
画像更新器208は、式3に示すように、式2の正則化項βを式1でスケーリングする。
式3:
Figure 2015516831
式3は、検出された光子の合計(又は平均)数が高い画像領域内で、正則化強度が強くなることを意味する。これは、式3の分子の左側で与えられる強い更新値の影響を弱める。また、式3は、検出された光子の数が低い画像領域内で、正則化強度が低減することを意味し、これらの領域内の低減した更新からの変化を再び平衡させる。
式2の更新アルゴリズムは、ポアソン(Poison)ノイズペナルティに基づく。ガウスノイズペナルティについて、適切な画像更新アルゴリズム210の非限定的な例を式4に示す。
式4:
Figure 2015516831
ここで、fはデータ測定yに関連する線積分を表す。画像更新器208は、式5に示すように、式4の正則化項βを式1でスケーリングする。
式5:
Figure 2015516831
式3及び5により、画像更新器208は、各反復で画像全体を一斉に更新する。代替で、画像更新器208は、ボクセル毎にボクセルの、ボクセルのグループ毎にボクセルのグループの、及び/又は画像全体の部分集合の更新を反復毎に実行できる。通常、更新アルゴリズム210は、一般的コスト関数Ψ(x)=−L(Ax|y)+β・R(x)を解くいかなる反復再構成更新アルゴリズムにも基づき得る。ここで、正則化項βは、スケーリング係数でスケーリングされる。
ボクセルレベルで代わりに動作するアルゴリズムの非限定的な例は、J−B.Thibault, K.D.Sauer, C.A.Bouman, J.Hsieh, “Athree−dimensional statistical approach to improved image quality for multislice helical CT”, Med. Phys. 34(11), November 2007で議論されている。この文献に開示されたアルゴリズムは、反復座標下降又はICD(iterative coordinate descent)として参照される。別の非限定的な例は、J.A.Fessler, “Statistical image reconstruction methods for transmission tomography,” Handbook of Medical Imaging, Volume 2: Medical Image Processing and Analysis, pages 1.70, SPIE, Bellingham, 2000で議論されている。
同様に、画像更新器208は、これらのアルゴリズムの中の正則化項を、スケーリング係数生成器202により生成されたスケーリング係数でスケーリングし得る。
図3は、本願明細書に記載の実施形態による例示的な方法を示す。
本願明細書に記載の方法の中の動作の順序は限定的でないことが理解されるべきである。したがって、他の順序が本願明細書で考えられる。さらに、1又は複数の動作は省略されても良く、及び/又は1又は複数の追加動作が含まれても良い。
302で、正則化を用いる反復再構成更新アルゴリズムが得られる。このようなアルゴリズムの非限定的な例は、上述の式と関連して議論される。
304で、スキャンからの投影データが得られる。
306で、初期画像が得られる。本願明細書で議論されるように、初期画像は、全てゼロ、フィルタリングされた逆投影画像、ノイズ除去画像、及び/又は他の画像であり得る。
308で、正則化項が得られる。本願明細書で議論されるように、正則化項はデフォルト項、ユーザ固有項、等であり得る。
310で、正則化項スケーリング係数は、得られた投影データに基づき生成される。本願明細書に記載するように、正則化項スケーリング係数は、投影データの光子数の逆投影(又はノイズ)に基づく。また、非限定的な一例は、投影データの逆投影の平方根を計算するステップを含む。
312で、正則化項スケーリング係数は、更新アルゴリズムに組み込まれる。
314で、画像は、少なくとも得られた反復再構成更新アルゴリズム、得られた投影データ、得られた初期画像、得られた正則化項、及び生成された正則化項スケーリング係数に基づき再構成される。
以上は、コンピュータプロセッサにより実行されると該プロセッサに上述の動作を実行させる、コンピュータ可読記憶媒体に符号化され又はそれに埋め込まれるコンピュータ可読命令により実装されてもよい。追加又は代替で、少なくとも1つのコンピュータ可読命令は、信号、搬送波、又は他の一時的媒体により伝達される。
本願明細書に記載されるように、スケーリングは、検出された光子の合計又は平均数が高い画像領域内で、正則化強度が強くなり、検出された光子の数が低い画像内の領域内で正則化強度が弱くなるよう、正則化を変化させる。
したがって、検出された光子の合計又は平均数が高い画像内の領域内のスケーリングは、更新アルゴリズムの強い更新値の影響を弱め、検出された光子の合計又は平均数が低い画像内の領域内のスケーリングは、更新アルゴリズムの弱い更新値の影響を弱める。
これは、患者の大きさ、生体構造の大きさ、及び/又は管電流と独立に一貫した画像品質で画像を再構成することを可能にする。
本発明は、好適な実施形態を参照して説明された。前述の詳細な説明を読み理解することで、変更及び代替が可能である。本発明は、このような全ての変更及び代替は添付の請求の範囲の範囲又はその等価物に包含されるものと見なされる。

Claims (22)

  1. 正則化による反復再構成アルゴリズムの更新アルゴリズムの正則化項をスケーリング値でスケーリングするステップと、
    前記スケーリング値は少なくとも1つの次元で変化することにより、反復再構成の前記正則化を前記少なくとも1つの次元で変化し、
    少なくとも前記更新アルゴリズム、前記変化するスケーリングされた正則化項、及び投影データに基づき、画像を反復的に再構成するステップと、
    を有する方法。
  2. 前記スケーリング値を前記投影データの関数として計算するステップと、
    を更に有する請求項1に記載の方法。
  3. 前記投影データの逆投影の平方根を計算することにより、前記スケーリング値を計算するステップと、
    を更に有する請求項2に記載の方法。
  4. 前記投影データ内のノイズは、前記投影データの強度に比例する、請求項1乃至3のいずれか一項に記載の方法。
  5. 前記更新アルゴリズムは一定の正則化項を含み、各更新で前記一定の正則化項をスケーリング値で乗算するステップ、を更に有する請求項1乃至4のいずれか一項に記載の方法。
  6. 前記スケーリング値は、検出された光子の合計又は平均数が高い画像領域内で、前記正則化強度が強くなり、検出された光子の数が低い画像内の領域内で前記正則化強度が弱くなるよう、前記正則化を変化させる、請求項1乃至5のいずれか一項に記載の方法。
  7. 前記検出された光子の合計又は平均数が高い画像領域内の前記正則化のスケーリングは、前記更新アルゴリズムの強い更新値の影響を弱める、請求項6に記載の方法。
  8. 前記検出された光子の合計又は平均数が低い画像領域内の前記正則化のスケーリングは、前記更新アルゴリズムの弱い更新値の影響を弱める、請求項6乃至7のいずれか一項に記載の方法。
  9. 前記スケーリングは、前記正則化を少なくとも2つの次元で変化させる、請求項1乃至8のいずれか一項に記載の方法。
  10. 前記スケーリングは、前記正則化を少なくとも3つの次元で変化させる、請求項1乃至9のいずれか一項に記載の方法。
  11. 少なくとも1つのスケーリング係数アルゴリズムを有するスケーリング係数アルゴリズムバンクと、
    前記少なくとも1つのスケーリング係数アルゴリズムに基づき正則化項スケーリング係数を生成するスケーリング係数生成器と、
    正則化項を用いる少なくとも1つの反復再構成更新アルゴリズムを有する更新アルゴリズムバンクと、
    スキャンの投影データを処理し、前記少なくとも1つの反復再構成アルゴリズム及び前記正則化項スケーリング係数に基づき画像を再構成する画像更新器と、
    を有し、
    前記スケーリング係数は、前記反復再構成アルゴリズムの前記正則化項を少なくとも1つの次元で変化させる、再構成器。
  12. 前記画像更新器は、前記投影データを処理するとき、前記正則化項を前記スケーリング係数で乗算する、請求項11に記載の再構成器。
  13. 前記スケーリング係数生成器は、前記投影データの関数として前記正則化項スケーリング係数を生成する、請求項11乃至12のいずれか一項に記載の再構成器。
  14. 前記スケーリング係数生成器は、前記投影データの逆投影の平方根として前記正則化項スケーリング係数を生成する、請求項13に記載の再構成器。
  15. 前記投影データのノイズは、前記投影データの強度に比例する、請求項11乃至14のいずれか一項に記載の再構成器。
  16. 前記スケーリング係数は、検出された光子の合計又は平均数が高い画像領域内で、前記正則化強度が強くなり、検出された光子の数が低い画像内の領域内で前記正則化強度が弱くなるよう、前記正則化を変化させる、請求項11乃至15のいずれか一項に記載の再構成器。
  17. 前記検出された光子の合計又は平均数が高い画像内の領域内の正規化のスケーリングは、前記更新アルゴリズムの強い更新値の影響を弱め、前記検出された光子の合計又は平均数が低い画像内の領域内のスケーリングは、前記更新アルゴリズムの弱い更新値の影響を弱める、請求項16に記載の再構成器。
  18. 複数のスケーリング係数アルゴリズムを視覚的に提示し、前記複数のスケーリング係数アルゴリズムのうちユーザの選択した1つを示す信号を受信する制御装置、
    を更に有し、前記スケーリング係数生成器は、前記複数のスケーリング係数アルゴリズムのうち前記ユーザの選択した1つに基づき、前記正則化項スケーリング係数を生成する、請求項11乃至17のいずれか一項に記載の再構成器。
  19. コンピュータ可読命令を符号化されたコンピュータ可読記憶媒体であって、前記コンピュータ可読命令は、プロセッサにより実行されると、前記プロセッサに、
    投影データを再構成することにより、正則化による反復再構成アルゴリズムを用いて画像を生成させ、前記正則化による反復再構成アルゴリズムでは、前記反復再構成アルゴリズムの更新アルゴリズムの正則化項は、前記投影データ内で検出された光子の数に基づき、少なくとも1つの次元を変化させる、コンピュータ可読記憶媒体。
  20. 前記プロセッサは、前記コンピュータ可読命令を実行するとき、前記プロセッサに、
    前記投影データの逆投影の平方根を計算し、
    前記計算された値を用いて、前記少なくとも1つの次元で、前記正則化項をスケーリングし及び変化させる、
    請求項19に記載のコンピュータ可読記憶媒体。
  21. 前記プロセッサは、前記コンピュータ可読命令を実行するとき、前記プロセッサに、
    前記投影データの関数としてスケーリング値を計算し、
    前記計算された値を用いて、前記少なくとも1つの次元で、前記正則化項をスケーリングし及び変化させる、
    請求項19に記載のコンピュータ可読記憶媒体。
  22. 検出された光子の合計又は平均数が高い画像領域内での前記正則化のスケーリングが前記更新アルゴリズムの強い更新値の影響を弱めるように、正則化による反復再構成アルゴリズムの更新アルゴリズムの正則化項をスケーリングするステップ、
    を有する方法。
JP2015502507A 2012-03-29 2013-03-22 正則化による反復画像再構成 Active JP6158910B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261617094P 2012-03-29 2012-03-29
US61/617,094 2012-03-29
PCT/IB2013/052298 WO2013144804A1 (en) 2012-03-29 2013-03-22 Iterative image reconstruction with regularization

Publications (2)

Publication Number Publication Date
JP2015516831A true JP2015516831A (ja) 2015-06-18
JP6158910B2 JP6158910B2 (ja) 2017-07-05

Family

ID=48521371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015502507A Active JP6158910B2 (ja) 2012-03-29 2013-03-22 正則化による反復画像再構成

Country Status (6)

Country Link
US (1) US9449404B2 (ja)
EP (1) EP2831844B1 (ja)
JP (1) JP6158910B2 (ja)
CN (1) CN104471615B (ja)
RU (1) RU2014143489A (ja)
WO (1) WO2013144804A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11762026B2 (en) 2018-10-29 2023-09-19 Denso Corporation Battery monitoring apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3262612B1 (en) * 2015-02-25 2019-01-30 Koninklijke Philips N.V. A method for the reconstruction of quantitative iodine maps using energy resolved tomography
WO2017174627A1 (en) * 2016-04-05 2017-10-12 Koninklijke Philips N.V. Medical image processing
JP7159167B2 (ja) * 2017-01-06 2022-10-24 コーニンクレッカ フィリップス エヌ ヴェ 陽電子放出断層撮影(pet)撮像における結果のロバスト性を向上させるための標準取込値(suv)誘導再構成制御
CN107638189B (zh) * 2017-10-25 2021-06-01 东软医疗系统股份有限公司 Ct成像方法和装置
US20210049794A1 (en) 2018-01-31 2021-02-18 Mitos Gmbh Method for image reconstruction of an object, in particular based on computed-tomography image reconstruction, and apparatus, system and computer program product for the same
US10685461B1 (en) 2018-12-20 2020-06-16 Canon Medical Systems Corporation Apparatus and method for context-oriented iterative reconstruction for computed tomography (CT)
WO2023114923A1 (en) * 2021-12-17 2023-06-22 The Regents Of The University Of California Fusion of deep-learning based image reconstruction with noisy image measurements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532683A (ja) * 2005-03-16 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 断層画像の反復再構成のための方法及び装置
WO2011146153A1 (en) * 2010-05-19 2011-11-24 Wisconsin Alumni Research Foundation Method for radiation dose reduction using prior image constrained image reconstruction

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708690A (en) * 1996-10-11 1998-01-13 General Electric Company Methods and apparatus for helical image reconstruction in a computed tomography fluoro system
US7272205B2 (en) * 2004-11-17 2007-09-18 Purdue Research Foundation Methods, apparatus, and software to facilitate computing the elements of a forward projection matrix
DE602006003077D1 (de) 2005-03-17 2008-11-20 Philips Intellectual Property Verfahren und einrichtung zur iterativen rekonstruktion von herzbildern
US8538099B2 (en) 2005-03-23 2013-09-17 General Electric Company Method and system for controlling image reconstruction
DE102009014723B4 (de) * 2009-03-25 2012-10-25 Siemens Aktiengesellschaft Kontrastabhängige Regularisierungsstärke bei der iterativen Rekonstruktion von CT-Bildern
US8111893B2 (en) 2009-06-09 2012-02-07 Wisconsin Alumni Research Foundation Method for dynamic prior image constrained image reconstruction
WO2011036624A1 (en) 2009-09-24 2011-03-31 Koninklijke Philips Electronics N.V. System and method for generating an image of a region of interest
US8498465B2 (en) 2009-09-29 2013-07-30 The Board Of Trustees Of The Leland Stanford Junior University Accurate determination of the shape and localization of metallic object(s) in X-ray CT imaging
DE102010022306A1 (de) 2010-06-01 2011-12-01 Siemens Aktiengesellschaft Iterative CT-Bildrekonstruktion in Kombination mit einem vierdimensionalen Rauschfilter
US20130129178A1 (en) * 2010-08-04 2013-05-23 Koninklijke Philips Electronics N.V. Method and system for iterative image reconstruction
US8731269B2 (en) * 2011-10-19 2014-05-20 Kabushiki Kaisha Toshiba Method and system for substantially reducing artifacts in circular cone beam computer tomography (CT)
RU2629432C2 (ru) * 2011-11-23 2017-08-29 Конинклейке Филипс Н.В. Устранение шума в области изображения

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532683A (ja) * 2005-03-16 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 断層画像の反復再構成のための方法及び装置
WO2011146153A1 (en) * 2010-05-19 2011-11-24 Wisconsin Alumni Research Foundation Method for radiation dose reduction using prior image constrained image reconstruction
JP2013526365A (ja) * 2010-05-19 2013-06-24 ウイスコンシン アラムナイ リサーチ ファウンデーシヨン 先験的画像制約画像再構成を使用して放射線量を減らす方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11762026B2 (en) 2018-10-29 2023-09-19 Denso Corporation Battery monitoring apparatus

Also Published As

Publication number Publication date
EP2831844B1 (en) 2017-08-23
US20150049930A1 (en) 2015-02-19
JP6158910B2 (ja) 2017-07-05
WO2013144804A1 (en) 2013-10-03
CN104471615B (zh) 2018-05-01
CN104471615A (zh) 2015-03-25
US9449404B2 (en) 2016-09-20
EP2831844A1 (en) 2015-02-04
RU2014143489A (ru) 2016-05-27

Similar Documents

Publication Publication Date Title
JP6158910B2 (ja) 正則化による反復画像再構成
EP3195265B1 (en) Iterative image reconstruction with a sharpness driven regularization parameter
US9159122B2 (en) Image domain de-noising
JP6169558B2 (ja) コントラスト依存の解像度をもつ画像
CN104025156B (zh) 用于基于利用正则化的迭代重建算法和/或去噪算法来处理图像的处理部件和方法
JP6275826B2 (ja) ノイズ除去再構成画像データエッジ改善
US11216992B2 (en) System and method for computed tomography
CN103907132B (zh) 图像数据处理
US9025838B2 (en) Apparatus and method for hybrid reconstruction of an object from projection data
Chang et al. Modeling and pre-treatment of photon-starved CT data for iterative reconstruction
WO2012073167A1 (en) Iterative reconstruction algorithm with a constant variance based weighting factor
US10984564B2 (en) Image noise estimation using alternating negation
WO2014170780A1 (en) Iterative image reconstruction with tissue dependent regularization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6158910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250