JP2015516507A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2015516507A5 JP2015516507A5 JP2015500721A JP2015500721A JP2015516507A5 JP 2015516507 A5 JP2015516507 A5 JP 2015516507A5 JP 2015500721 A JP2015500721 A JP 2015500721A JP 2015500721 A JP2015500721 A JP 2015500721A JP 2015516507 A5 JP2015516507 A5 JP 2015516507A5
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- earth element
- process according
- organic phase
- rare
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims description 307
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 280
- 239000012074 organic phase Substances 0.000 claims description 94
- 229910052751 metal Inorganic materials 0.000 claims description 67
- 239000002184 metal Substances 0.000 claims description 67
- 239000007788 liquid Substances 0.000 claims description 50
- 239000000203 mixture Substances 0.000 claims description 50
- 239000002244 precipitate Substances 0.000 claims description 45
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 42
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 42
- 238000000605 extraction Methods 0.000 claims description 39
- 230000001376 precipitating Effects 0.000 claims description 35
- 230000002378 acidificating Effects 0.000 claims description 34
- STCOOQWBFONSKY-UHFFFAOYSA-N Tributyl phosphate Chemical group CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 claims description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 27
- 238000002386 leaching Methods 0.000 claims description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- SEGLCEQVOFDUPX-UHFFFAOYSA-N Di-(2-ethylhexyl)phosphoric acid Chemical compound CCCCC(CC)COP(O)(=O)OCC(CC)CCCC SEGLCEQVOFDUPX-UHFFFAOYSA-N 0.000 claims description 16
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 14
- -1 one iron ion Chemical class 0.000 claims description 14
- 238000005406 washing Methods 0.000 claims description 12
- MUBZPKHOEPUJKR-UHFFFAOYSA-N oxalic acid group Chemical group C(C(=O)O)(=O)O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 9
- 239000003638 reducing agent Substances 0.000 claims description 9
- 239000003456 ion exchange resin Substances 0.000 claims description 7
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 239000000395 magnesium oxide Substances 0.000 claims description 7
- 150000002910 rare earth metals Chemical class 0.000 claims description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium Chemical group [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 4
- ZDFBXXSHBTVQMB-UHFFFAOYSA-N 2-ethylhexoxy(2-ethylhexyl)phosphinic acid Chemical compound CCCCC(CC)COP(O)(=O)CC(CC)CCCC ZDFBXXSHBTVQMB-UHFFFAOYSA-N 0.000 claims description 3
- QUXFOKCUIZCKGS-UHFFFAOYSA-N bis(2,4,4-trimethylpentyl)phosphinic acid Chemical compound CC(C)(C)CC(C)CP(O)(=O)CC(C)CC(C)(C)C QUXFOKCUIZCKGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 235000006408 oxalic acid Nutrition 0.000 claims description 3
- 239000000243 solution Substances 0.000 description 126
- 238000004140 cleaning Methods 0.000 description 30
- HDIQHPNMHALUCO-UHFFFAOYSA-N CCCCCC(CC)OP(=O)OC(CC)CCCCC Chemical group CCCCCC(CC)OP(=O)OC(CC)CCCCC HDIQHPNMHALUCO-UHFFFAOYSA-N 0.000 description 18
- 239000003350 kerosene Substances 0.000 description 17
- 239000012535 impurity Substances 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 11
- 239000000706 filtrate Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000007800 oxidant agent Substances 0.000 description 8
- 229910052692 Dysprosium Inorganic materials 0.000 description 6
- 229910052691 Erbium Inorganic materials 0.000 description 6
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium Chemical group [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 6
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical group [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 6
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 6
- 229910052727 yttrium Inorganic materials 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- PLLBRTOLHQQAQQ-UHFFFAOYSA-N 8-methylnonan-1-ol Chemical compound CC(C)CCCCCCCO PLLBRTOLHQQAQQ-UHFFFAOYSA-N 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N Neodymium Chemical group [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N Sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical group [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium Chemical group [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L na2so4 Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000001590 oxidative Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium Chemical group [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 210000002381 Plasma Anatomy 0.000 description 2
- 235000010599 Verbascum thapsus Nutrition 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Iron(II) fumarate Chemical compound [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing Effects 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- LCKIEQZJEYYRIY-UHFFFAOYSA-N titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
Description
本発明は以下を提供する。
[1]少なくとも1種の希土類元素を回収するプロセスであって、
(i)少なくとも1種の希土類元素及び場合によって少なくとも1種のレアメタル並びに(ii)少なくとも1種の鉄イオンを含む酸性組成物を得る工程と;
抽出剤、イオン交換(echange)樹脂によって及び/又は上記組成物を還元剤と反応させることによって上記酸性組成物から上記少なくとも1種の鉄イオンを少なくとも部分的に取り出し、それによって上記少なくとも1種の鉄イオンの含有率が低下した組成物を得る工程と;
上記少なくとも1種の鉄イオンの含有率が低下した上記組成物を沈殿剤と反応させ、その結果、第1の希土類元素及び場合によって第1のレアメタルを実質的に選択的に沈殿させる工程と
を含むプロセス。
[2]上記酸性組成物が(i)上記少なくとも1種の希土類元素及び場合によって上記少なくとも1種のレアメタル並びに(ii)FeCl 3 を含む、上記[1]に記載のプロセス。
[3]上記抽出剤が、トリブチルホスフェート、ジ−2−エチルヘキシルリン酸(HDEHP)、ビス(2,4,4−トリメチルペンチル)ホスフィン酸及び2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステルから選ばれる、上記[1]又は[2]に記載のプロセス。
[4]上記抽出剤がトリブチルホスフェートである、上記[1]又は[2]に記載のプロセス。
[5]上記抽出剤が灯油中のトリブチルホスフェートである、上記[1]又は[2]に記載のプロセス。
[6]上記酸性組成物をFe(0)と反応させ、それによってFe 3+ の含有率が低下した組成物を得る、上記[1]から[5]のいずれか一項に記載のプロセス。
[7]上記第1の希土類元素がスカンジウムである、上記[1]から[6]のいずれか一項に記載のプロセス。
[8]上記酸性組成物が少なくとも1種のレアメタルを含む、上記[1]から[7]のいずれか一項に記載のプロセス。
[9]上記少なくとも1種の鉄イオンの含有率が低下した上記組成物を上記沈殿剤と反応させ、その結果、上記第1の希土類元素及び上記第1のレアメタルを実質的に選択的に沈殿させる工程を含む、上記[8]に記載のプロセス。
[10]上記第1のレアメタルがガリウムである、上記[1]から[9]のいずれか一項に記載のプロセス。
[11]上記沈殿剤が、シュウ酸、NaOH、MgO、CaCO 3 及びその混合物から選ばれる、上記[1]から[10]のいずれか一項に記載のプロセス。
[12]上記沈殿剤がCaCO 3 である、上記[1]から[10]のいずれか一項に記載のプロセス。
[13]上記第1の希土類元素及び場合によって上記第1のレアメタルが、2未満のpH値の維持により実質的に選択的に沈殿される、上記[1]から[12]のいずれか一項に記載のプロセス。
[14]上記第1の希土類元素及び場合によって上記第1のレアメタルが、約1から約2の値にpHを維持することにより実質的に選択的に沈殿される、上記[1]から[12]のいずれか一項に記載のプロセス。
[15]上記第1の希土類元素及び場合によって上記第1のレアメタルが、約+380mVの酸化還元電位の維持により実質的に選択的に沈殿される、上記[1]から[12]のいずれか一項に記載のプロセス。
[16]上記少なくとも1種の鉄イオンの含有率が低下した組成物を上記沈殿剤と反応させ、その結果、そのように形成された沈殿物中に含まれる第1の希土類元素及び第1のレアメタルを実質的に選択的に沈殿させ、上記沈殿物を回収する工程を含む、上記[1]から[15]のいずれか一項に記載のプロセス。
[17]上記沈殿物を浸出し浸出溶液を得る工程をさらに含む、上記[16]に記載のプロセス。
[18]上記沈殿物がHClで浸出される、上記[17]に記載のプロセス。
[19]上記HClが約5から約15mol/Lの濃度を有する、上記[18]に記載のプロセス。
[20]上記浸出溶液が抽出剤でさらに抽出され、その結果、上記第1の希土類元素及び上記第1のレアメタルを実質的に選択的に抽出し、装填した有機相を得る、上記[17]から[19]のいずれか一項に記載のプロセス。
[21]上記抽出剤がトリブチルホスフェートである、上記[20]に記載のプロセス。
[22]上記抽出剤が灯油中のトリブチルホスフェートである、上記[20]に記載のプロセス。
[23]上記抽出剤が灯油中のトリブチルホスフェートでありイソデカノールの存在下にある、上記[20]に記載のプロセス。
[24]上記装填した有機相を洗浄溶液で洗浄し、その結果、上記第1の希土類元素を回収し洗浄された有機相を得る工程をさらに含む、上記[20]から[23]のいずれか一項に記載のプロセス。
[25]上記洗浄溶液が、約2から約12mol/Lの濃度のHClを含む酸性水溶液である、上記[24]に記載のプロセス。
[26]上記洗浄溶液が、約1:1の洗浄溶液:装填した有機相の比で使用される、上記[24]又は[25]に記載のプロセス。
[27]上記洗浄された有機相をストリッピング溶液でストリッピングし、その結果、上記第1のレアメタルを回収する工程を含む、上記[24]から[26]のいずれか一項に記載のプロセス。
[28]上記ストリッピング溶液が水である、上記[27]に記載のプロセス。
[29]上記ストリッピング溶液が、約1:2のストリッピング溶液:装填した有機相の比で使用される、上記[27]又は[28]に記載のプロセス。
[30]上記少なくとも1種の鉄イオンの含有率が低下した上記組成物を上記沈殿剤と反応させ、その結果、少なくとも1種のさらなる希土類元素並びに上記第1の希土類元素及び上記第1のレアメタルを含む上記沈殿物を含む液体を得、上記液体を上記沈殿物から分離する工程をさらに含む、上記[13]から[28]のいずれか一項に記載のプロセス。
[31]上記液体を別の沈殿剤と反応させ、その結果、別の沈殿物を得、上記別の沈殿物を回収する工程をさらに含む、上記[30]に記載のプロセス。
[32]上記液体を上記別の沈殿剤と約7.8から約8.2のpHで反応させる、上記[31]に記載のプロセス。
[33]上記液体を上記別の沈殿剤と約7.9から約8.1のpHで反応させる、上記[31]に記載のプロセス。
[34]約+340mVに酸化還元電位を維持することによって上記液体を上記別の沈殿剤と反応させる、上記[31]から[33]のいずれか一項に記載のプロセス。
[35]約+380mVに酸化還元電位を維持することによって上記液体を上記別の沈殿剤と反応させる、上記[31]から[33]のいずれか一項に記載のプロセス。
[36]約50から約70℃の温度を維持することによって上記液体を上記別の沈殿剤と反応させる、上記[31]から[35]のいずれか一項に記載のプロセス。
[37]上記別の沈殿剤が、NaOH、MgO、CaCO 3 及びその混合物から選ばれる、上記[31]から[36]のいずれか一項に記載のプロセス。
[38]上記別の沈殿剤がCaCO 3 である、上記[31]から[36]のいずれか一項に記載のプロセス。
[39]上記別の沈殿物を浸出し、第2の希土類元素を含む浸出溶液を得る工程をさらに含む、上記[31]から[38]のいずれか一項に記載のプロセス。
[40]上記別の沈殿物がHClで浸出される、上記[39]に記載のプロセス。
[41]上記第2の希土類元素を含む上記浸出溶液を抽出剤で抽出し、その結果、上記第2の希土類元素を実質的に選択的に抽出し、上記第2の希土類元素を含む装填した有機相、並びに少なくとも1種の軽希土類元素を含む水相を得る、上記[39]又は[40]に記載のプロセス。
[42]上記抽出剤がジ(エチルヘキシル)ホスホン酸である、上記[41]に記載のプロセス。
[43]上記抽出剤が灯油中のジ(エチルヘキシル)ホスホン酸である、上記[41]に記載のプロセス。
[44]上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[41]から[43]のいずれか一項に記載のプロセス。
[45]上記装填した有機相を酸性洗浄溶液で処理することによって上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[41]から[43]のいずれか一項に記載のプロセス。
[46]上記洗浄溶液が1N HClを含む、上記[45]に記載のプロセス。
[47]上記第3の希土類元素がセリウムである、上記[45]又は[46]に記載のプロセス。
[48]上記第2の希土類元素を含む上記装填した有機相を酸性ストリッピング溶液で処理し、その結果、上記第2の希土類元素を含むストリップ液を得、上記ストリップ液を回収する工程をさらに含む、上記[45]から[47]のいずれか一項に記載のプロセス。
[49]上記ストリップ液が3.5N HClを含む、上記[48]に記載のプロセス。
[50]上記第2の希土類元素を含む上記ストリップ液を抽出剤で処理し、その結果、第4の希土類元素及び場合によって第5の希土類元素を上記ストリップ液から実質的に選択的に抽出し、上記少なくとも第2の希土類元素を含む抽残物を得る工程を含む、上記[48]又は[49]に記載のプロセス。
[51]上記抽出剤がトリブチルホスフェートである、上記[50]に記載のプロセス。
[52]上記抽出剤が灯油中のトリブチルホスフェートである、上記[50]に記載のプロセス。
[53]上記第4の希土類元素がジスプロシウムである、上記[50]から[52]のいずれか一項に記載のプロセス。
[54]上記第5の希土類元素がエルビウムである、上記[50]から[53]のいずれか一項に記載のプロセス。
[55]上記第4の希土類元素及び場合によって上記第5の希土類元素を含む有機相をストリップ溶液と反応させ、その結果、上記第4(fifth)の希土類元素及び場合によって上記第5の希土類元素を含むストリップ液を得る工程をさらに含む、上記[50]から[54]のいずれか一項に記載のプロセス。
[56]上記ストリップ溶液が水である、上記[55]に記載のプロセス。
[57]上記第2の希土類元素がイットリウムである、上記[41]から[56]のいずれか一項に記載のプロセス。
[58]上記第2の希土類元素を含む上記浸出溶液を抽出剤で抽出し、その結果、上記第2の希土類元素を実質的に選択的に抽出し、上記第2の希土類元素を含む装填した有機相、及び少なくとも1種の軽希土類元素を含む抽残物を得る、上記[39]から[40]に記載のプロセス。
[59]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[58]に記載のプロセス。
[60]上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[58]又は[59]に記載のプロセス。
[61]上記装填した有機相を酸性洗浄溶液で処理することによって上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[58]から[60]のいずれか一項に記載のプロセス。
[62]上記洗浄溶液が約1Nから約2NのHClを含む、上記[61]に記載のプロセス。
[63]上記第2の希土類元素を含む上記装填した有機相をストリッピング溶液で処理し、その結果、上記第2の希土類元素を含むストリップ液を得る工程をさらに含む、上記[61]又は[62]に記載のプロセス。
[64]上記ストリッピング溶液が約3Mから約4MのHClを含む、上記[64]に記載のプロセス。
[65]上記第2の希土類元素を含む上記ストリップ液が抽出剤で抽出され、その結果、第4の希土類元素及び場合によって第5の希土類元素を取り出し、それによって上記第2の希土類元素を含む抽残物、並びに上記第4の希土類元素及び場合によって上記第5の希土類元素を含む装填した有機相を得る、上記[63]又は[64]に記載のプロセス。
[66]上記抽出剤がトリブチルホスフェートである、上記[65]に記載のプロセス。
[67]上記抽出剤が灯油中のトリブチルホスフェートである、上記[65]に記載のプロセス。
[68]上記第2の希土類元素を含む上記抽残物を回収する工程を含む、上記[65]から[67]のいずれか一項に記載のプロセス。
[69]上記第2の希土類元素がイットリウムである、上記[65]から[68]のいずれか一項に記載のプロセス。
[70]上記第4の希土類元素がジスプロシウムである、上記[65]から[69]のいずれか一項に記載のプロセス。
[71]上記第5の希土類元素がエルビウムである、上記[65]から[70]のいずれか一項に記載のプロセス。
[72]上記第4の希土類元素及び上記第5の希土類元素を含む上記装填した有機相をストリッピング溶液と反応させ、その結果、上記第4の希土類元素及び上記第5の希土類元素を含むストリップ液を得る工程をさらに含む、上記[65]から[71]のいずれか一項に記載のプロセス。
[73]上記ストリッピング溶液が水である、上記[72]に記載のプロセス。
[74]上記ストリップ液を抽出剤と反応させ、その結果、上記ストリップ(strop)液から上記第5の希土類元素を実質的に選択的に抽出し、それによって上記第4の希土類元素を含む抽残物及び上記第5の希土類元素を含む装填した有機相を得る工程をさらに含む、上記[72]又は[73]に記載のプロセス。
[75]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[74]に記載のプロセス。
[76]上記第5の希土類元素を含む上記装填した有機相から上記抽残物を分離し、上記装填した有機相を洗浄溶液で処理し、その結果、そこから不純物を取り出し、次いで上記装填した有機相をストリッピング溶液で処理し、その結果、上記第5の希土類元素を含むストリップ液を得る工程をさらに含む、上記[74]又は[75]に記載のプロセス。
[77]上記洗浄溶液が約2Mから約4MのHClを含む、上記[76]に記載のプロセス。
[78]上記ストリッピング溶液が約3Mから約4MのHClを含む、上記[76]又は[77]に記載のプロセス。
[79]上記抽残物を酸化剤と反応させ、その結果、上記第3の希土類元素を酸化する、上記[58]から[60]のいずれか一項に記載のプロセス。
[80]上記酸化剤が次亜塩素酸ナトリウムを含む、上記[79]に記載のプロセス。
[81]上記抽残物を酸化剤と約0.5から約1.5のpHで反応させる、上記[79]又は[80]に記載のプロセス。
[82]沈殿物の形態である上記酸化した第3の希土類元素を上記抽残物から取り出し、それによって第6の希土類元素を含む濾液を得る工程をさらに含む、上記[79]から[81]のいずれか一項に記載のプロセス。
[83]上記濾液を抽出剤と反応させ、その結果、上記濾液から上記第6の希土類元素を実質的に選択的に抽出し、それによって上記第6の希土類元素を含む装填した有機相並びに第7の希土類元素及び第8の(eight)希土類元素を含む別の抽残物を得、上記第6の希土類元素を含む上記装填した有機相を上記抽残物から分離する工程をさらに含む、上記[82]に記載のプロセス。
[84]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[83]に記載のプロセス。
[85]上記装填した有機相を洗浄溶液で処理し、その結果、不純物をそこから取り出し、次いで、上記装填した有機相をストリッピング溶液で処理し、その結果、上記第6の希土類元素を含むストリップ液を得る工程をさらに含む、上記[83]又は[84]に記載のプロセス。
[86]上記洗浄溶液が約0.5Mから約1.5MのHClを含む、上記[85]に記載のプロセス。
[87]上記ストリッピング溶液が約2Mから約3MのHClを含む、上記[85]又は[86]に記載のプロセス。
[88]上記第6の希土類元素がユーロピウムである、上記[83]から[87]のいずれか一項に記載のプロセス。
[89]上記第7の希土類元素がプラセオジムである、上記[83]から[88]のいずれか一項に記載のプロセス。
[90]上記第8(eigth)の希土類元素がネオジムである、上記[83]から[88]のいずれか一項に記載のプロセス。
[91]還元剤によって上記第6の希土類元素を還元する工程をさらに含む、上記[83]から[90]のいずれか一項に記載のプロセス。
[92]上記還元剤が亜鉛(0)である、上記[91]に記載のプロセス。
[93]上記第6の希土類元素を硫酸ナトリウムと反応させ、その結果、その硫酸塩誘導体を沈殿物の形態で得、上記沈殿物を回収する工程をさらに含む、上記[83]から[92]のいずれか一項に記載のプロセス。
[94]上記第7の希土類元素及び上記第8の(eight)希土類元素を含む上記抽残物を抽出剤と反応させ、その結果、上記第8の(eight)希土類元素を上記抽残物から実質的に選択的に抽出し、それによって上記第8の(eight)希土類元素を含む装填した有機相及び上記第7の希土類元素を含む抽残物を得、上記第8の(eight)希土類元素を含む上記装填した有機相を上記抽残物から分離する工程をさらに含む、上記[83]から[92]のいずれか一項に記載のプロセス。
[95]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[94]に記載のプロセス。
[96]上記装填した有機相を洗浄溶液で処理し、その結果、不純物をそこから取り出し、次いで、上記装填した有機相をストリッピング溶液で処理し、その結果、上記第8の(eight)希土類元素を含むストリップ液を得る工程をさらに含む、上記[94]又は[95]に記載のプロセス。
[97]上記洗浄溶液が約2Mから約3MのHClを含む、上記[96]に記載のプロセス。
[98]上記ストリッピング溶液が約3Mから約4MのHClを含む、上記[96]又は[97]に記載のプロセス。
[99]少なくとも1種の希土類元素を回収するプロセスであって、
(i)少なくとも1種の希土類元素及び場合によって少なくとも1種のレアメタルを含む酸性組成物を得る工程と;
上記組成物を沈殿剤と反応させ、その結果、第1の希土類元素及び場合によって第1のレアメタルを実質的に選択的に沈殿させる工程と
を含むプロセス。
[100]上記第1の希土類元素がスカンジウムである、上記[99]に記載のプロセス。
[101]上記酸性組成物が少なくとも1種のレアメタルを含む、上記[99]又は[100]に記載のプロセス。
[102]上記組成物を上記沈殿剤と反応させ、その結果、上記第1の希土類元素及び上記第1のレアメタルを実質的に選択的に沈殿させる工程を含む、上記[101]に記載のプロセス。
[103]上記第1のレアメタルがガリウムである、上記[99]から[102]のいずれか一項に記載のプロセス。
[104]上記沈殿剤が、NaOH、MgO、CaCO 3 及びその混合物から選ばれる、上記[99]から[103]のいずれか一項に記載のプロセス。
[105]上記沈殿剤がCaCO 3 である、上記[99]から[103]のいずれか一項に記載のプロセス。
[106]上記第1の希土類元素及び場合によって上記第1のレアメタルを2未満のpH値の維持により実質的に選択的に沈殿させる、上記[99]から[105]のいずれか一項に記載のプロセス。
[107]上記第1の希土類元素及び場合によって上記第1のレアメタルを約1から約2の値にpHを維持することにより実質的に選択的に沈殿させる、上記[99]から[105]のいずれか一項に記載のプロセス。
[108]上記第1の希土類元素及び場合によって上記第1のレアメタルを約+380mVの酸化還元電位の維持により実質的に選択的に沈殿させる、上記[99]から[107]のいずれか一項に記載のプロセス。
[109]上記組成物を上記沈殿剤と反応させ、その結果、そのように形成された沈殿物中に含まれる、第1の希土類元素及び第1のレアメタルを実質的に選択的に沈殿させ、上記沈殿物を回収する工程を含む、上記[99]から[108]のいずれか一項に記載のプロセス。
[110]上記沈殿物を浸出し浸出溶液を得る工程をさらに含む、上記[109]に記載のプロセス。
[111]上記沈殿物がHClで浸出される、上記[110]に記載のプロセス。
[112]上記HClが約5から約15mol/Lの濃度を有する、上記[111]に記載のプロセス。
[113]上記浸出溶液が抽出剤でさらに抽出され、その結果、上記第1の希土類元素及び上記第1のレアメタルを実質的に選択的に抽出し、装填した有機相を得る、上記[110]から[112]のいずれか一項に記載のプロセス。
[114]上記抽出剤がトリブチルホスフェートである、上記[113]に記載のプロセス。
[115]上記抽出剤が灯油中のトリブチルホスフェートである、上記[113]に記載のプロセス。
[116]上記抽出剤が灯油中のトリブチルホスフェートでありイソデカノールの存在下にある、上記[113]に記載のプロセス。
[117]上記装填した有機相を洗浄溶液で洗浄し、その結果、上記第1の希土類元素を回収し洗浄された有機相を得る工程をさらに含む、上記[113]から[116]のいずれか一項に記載のプロセス。
[118]上記洗浄溶液が、約2から約12mol/Lの濃度でHClを含む酸性水溶液である、上記[117]に記載のプロセス。
[119]上記洗浄溶液が、約1:1の洗浄溶液:装填した有機相の比で使用される、上記[117]又は[118]に記載のプロセス。
[120]上記洗浄された有機相をストリッピング溶液でストリッピングし、その結果、上記第1のレアメタルを回収する工程をさらに含む、上記[117]から[119]のいずれか一項に記載のプロセス。
[121]上記ストリッピング溶液が水である、上記[120]に記載のプロセス。
[122]上記ストリッピング溶液が、約1:2のストリッピング溶液:装填した有機相の比で使用される、上記[120]又は[121]に記載のプロセス。
[123]上記組成物を上記沈殿剤と反応させ、その結果、少なくとも1種のさらなる希土類元素を含む液体、並びに上記第1の希土類元素及び上記第1のレアメタルを含む上記沈殿物を得、上記沈殿物から上記液体を分離する工程をさらに含む、上記[110]から[122]のいずれか一項に記載のプロセス。
[124]上記液体を別の沈殿剤と反応させ、その結果、別の沈殿物を得、上記別の沈殿物を回収する工程をさらに含む、上記[123]に記載のプロセス。
[125]上記液体を上記別の沈殿剤と約7.8から約8.2のpHで反応させる、上記[124]に記載のプロセス。
[126]上記液体を上記別の沈殿剤と約7.9から約8.1のpHで反応させる、上記[124]に記載のプロセス。
[127]酸化還元電位を約+340mVに維持することによって上記液体を上記別の沈殿剤と反応させる、上記[124]から[126]のいずれか一項に記載のプロセス。
[128]酸化還元電位を約+380mVに維持することによって上記液体を上記別の沈殿剤と反応させる、上記[124]から[126]のいずれか一項に記載のプロセス。
[129]約50から約70℃の温度を維持することによって、上記液体を上記別の沈殿剤と反応させる、上記[124]から[128]のいずれか一項に記載のプロセス。
[130]上記別の沈殿剤が、NaOH、MgO、CaCO 3 及びその混合物から選ばれる、上記[124]から[129]のいずれか一項に記載のプロセス。
[131]上記別の沈殿剤がCaCO 3 である、上記[124]から[129]のいずれか一項に記載のプロセス。
[132]上記別の沈殿物を浸出し、第2の希土類元素を含む浸出溶液を得る工程をさらに含む、上記[124]から[131]のいずれか一項に記載のプロセス。
[133]上記別の沈殿物がHClで浸出される、上記[132]に記載のプロセス。
[134]上記第2の希土類元素を含む上記浸出溶液が抽出剤で抽出され、その結果、上記第2の希土類元素を実質的に選択的に抽出し、上記第2の希土類元素を含む装填した有機相、及び少なくとも1種の軽希土類元素を含む水相を得る、上記[132]又は[133]に記載のプロセス。
[135]上記抽出剤がジ(エチルヘキシル)ホスホン酸である、上記[134]に記載のプロセス。
[136]上記抽出剤が、灯油中のジ(エチルヘキシル)ホスホン酸である、上記[134]に記載のプロセス。
[137]上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[134]から[136]のいずれか一項に記載のプロセス。
[138]上記装填した有機相を酸性洗浄溶液で処理することによって上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[134]から[137]のいずれか一項に記載のプロセス。
[139]上記洗浄溶液が1N HClを含む、上記[138]に記載のプロセス。
[140]上記第3の希土類元素がセリウムである、上記[138]又は[139]に記載のプロセス。
[141]上記第2の希土類元素を含む上記装填した有機相を酸性ストリッピング溶液で処理し、その結果、上記第2の希土類元素を含むストリップ液を得、上記ストリップ液を回収する工程をさらに含む、上記[138]から[140]のいずれか一項に記載のプロセス。
[142]上記ストリップ液が3.5N HClを含む、上記[141]に記載のプロセス。
[143]上記第2の希土類元素を含む上記ストリップ液を抽出剤で処理し、その結果、第4の希土類元素及び場合によって第5の希土類元素を上記ストリップ液から実質的に選択的に抽出し、上記第2の希土類元素を含む抽残物を得る工程を含む、上記[141]又は[142]に記載のプロセス。
[144]上記抽出剤がトリブチルホスフェートである、上記[143]に記載のプロセス。
[145]上記抽出剤が灯油中のトリブチルホスフェートである、上記[143]に記載のプロセス。
[146]上記第4の希土類元素がジスプロシウムである、上記[143]から[145]のいずれか一項に記載のプロセス。
[147]上記第5の希土類元素がエルビウムである、上記[143]から[146]のいずれか一項に記載のプロセス。
[148]上記第4の希土類元素及び場合によって上記第5の希土類元素を含む有機相をストリップ溶液と反応させ、その結果、上記第4(fifth)の希土類元素及び場合によって上記第5の希土類元素を含むストリップ液を得る工程をさらに含む、上記[143]から[147]のいずれか一項に記載のプロセス。
[149]上記ストリップ溶液が水である、上記[148]に記載のプロセス。
[150]上記第2の希土類元素がイットリウムである、上記[134]から[149]のいずれか一項に記載のプロセス。
[151]上記第2の希土類元素を含む上記浸出溶液が抽出剤で抽出され、その結果、上記第2の希土類元素を実質的に選択的に抽出し、上記第2の希土類元素を含む装填した有機相、及び少なくとも1種の軽希土類元素を含む抽残物を得る、上記[132]又は[133]に記載のプロセス。
[152]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[151]に記載のプロセス。
[153]上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[151]又は[152]に記載のプロセス。
[154]上記装填した有機相を酸性洗浄溶液で処理することによって上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[151]から[153]のいずれか一項に記載のプロセス。
[155]上記洗浄溶液が約1Nから約2NのHClを含む、上記[154]に記載のプロセス。
[156]上記第2の希土類元素を含む上記装填した有機相をストリッピング溶液で処理し、その結果、上記第2の希土類元素を含むストリップ液を得る工程をさらに含む、上記[154]又は[155]に記載のプロセス。
[157]上記ストリッピング溶液が約3Mから約4MのHClを含む、上記[156]に記載のプロセス。
[158]上記第2の希土類元素を含む上記ストリップ液が抽出剤で抽出され、その結果、第4の希土類元素及び場合によって第5の希土類元素を取り出し、それによって上記第2の希土類元素を含む抽残物、並びに上記第4の希土類元素及び場合によって上記第5の希土類元素を含む装填した有機相を得る、上記[156]又は[157]に記載のプロセス。
[159]上記抽出剤がトリブチルホスフェートである、上記[158]に記載のプロセス。
[160]上記抽出剤が灯油中のトリブチルホスフェートである、上記[158]に記載のプロセス。
[161]上記第2の希土類元素を含む上記抽残物を回収する工程を含む、上記[158]から[160]のいずれか一項に記載のプロセス。
[162]上記第2の希土類元素がイットリウムである、上記[158]から[160]のいずれか一項に記載のプロセス。
[163]上記第4の希土類元素がジスプロシウムである、上記[158]から[162]のいずれか一項に記載のプロセス。
[164]上記第5の希土類元素がエルビウムである、上記[158]から[162]のいずれか一項に記載のプロセス。
[165]上記第4の希土類元素及び上記第5の希土類元素を含む上記装填した有機相をストリッピング溶液と反応させ、その結果、上記第4の希土類元素及び上記第5の希土類元素を含むストリップ液を得る工程をさらに含む、上記[158]から[164]のいずれか一項に記載のプロセス。
[166]上記ストリッピング溶液が水である、上記[165]に記載のプロセス。
[167]上記ストリップ液を抽出剤と反応させ、その結果、上記第5の希土類元素を上記ストリップ(strop)液から実質的に選択的に抽出し、それによって上記第4の希土類元素を含む抽残物、及び上記第5の希土類元素を含む装填した有機相を得る工程をさらに含む、上記[165]又は[166]に記載のプロセス。
[168]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[167]に記載のプロセス。
[169]上記第5の希土類元素を含む上記装填した有機相から上記抽残物を分離し、上記装填した有機相を洗浄溶液で処理し、その結果、不純物をそこから取り出し、次いで、上記装填した有機相をストリッピング溶液で処理し、その結果、上記第5の希土類元素を含むストリップ液を得る工程をさらに含む、上記[167]又は[168]に記載のプロセス。
[170]上記洗浄溶液が約2Mから約4MのHClを含む、上記[169]に記載のプロセス。
[171]上記ストリッピング溶液が約3Mから約4MのHClを含む、上記[169]又は[170]に記載のプロセス。
[172]酸化剤と上記抽残物を反応させ、その結果、上記第3の希土類元素を酸化する、上記[151]から[153]のいずれか一項に記載のプロセス。
[173]上記酸化剤が次亜塩素酸ナトリウムを含む、上記[172]に記載のプロセス。
[174]上記抽残物を酸化剤と約0.5から約1.5のpHで反応させる、上記[172]又は[173]に記載のプロセス。
[175]沈殿物の形態である上記酸化した第3の希土類元素を上記抽残物から取り出し、それによって第6の希土類元素を含む濾液を得る工程をさらに含む、上記[172]から[174]のいずれか一項に記載のプロセス。
[176]上記濾液を抽出剤と反応させ、その結果、上記第6の希土類元素を上記濾液から実質的に選択的に抽出し、それによって上記第6の希土類元素を含む装填した有機相並びに第7の希土類元素及び第8の(eight)希土類元素を含む別の抽残物を得、上記第6の希土類元素を含む上記装填した有機相を上記抽残物から分離する工程をさらに含む、上記[175]に記載のプロセス。
[177]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[176]に記載のプロセス。
[178]上記装填した有機相を洗浄溶液で処理し、その結果、不純物をそこから取り出し、次いで、上記装填した有機相をストリッピング溶液で処理し、その結果、上記第6の希土類元素を含むストリップ液を得る、上記[176]又は[177]に記載のプロセス。
[179]上記洗浄溶液が約0.5Mから約1.5MのHClを含む、上記[178]に記載のプロセス。
[180]上記ストリッピング溶液が約2Mから約3MのHClを含む、上記[178]又は[179]に記載のプロセス。
[181]上記第6の希土類元素がユーロピウムである、上記[176]から[180]のいずれか一項に記載のプロセス。
[182]上記第7の希土類元素がプラセオジムである、上記[176]から[181]のいずれか一項に記載のプロセス。
[183]上記第8(eigth)の希土類元素がネオジムである、上記[176]から[182]のいずれか一項に記載のプロセス。
[184]還元剤によって上記第6の希土類元素を還元する工程をさらに含む、上記[176]から[183]のいずれか一項に記載のプロセス。
[185]上記還元剤が亜鉛(0)である、上記[184]に記載のプロセス。
[186]上記第6の希土類元素を硫酸ナトリウムと反応させ、その結果、沈殿物の形態でその硫酸塩誘導体を得、上記沈殿物を回収する工程をさらに含む、上記[176]から[185]のいずれか一項に記載のプロセス。
[187]上記第7の希土類元素及び上記第8の(eight)希土類元素を含む上記抽残物を抽出剤と反応させ、その結果、上記第8の(eight)希土類元素を上記抽残物から実質的に選択的に抽出し、それによって上記第8の(eight)希土類元素を含む装填した有機相及び上記第7の希土類元素を含む抽残物を得、上記第8の(eight)希土類元素を含む上記装填した有機相を上記抽残物から分離する工程をさらに含む、上記[176]から[186]のいずれか一項に記載のプロセス。
[188]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[187]に記載のプロセス。
[189]上記装填した有機相を洗浄溶液で処理し、その結果、不純物をそこから取り出し、次いで、上記装填した有機相をストリッピング溶液で処理し、その結果、上記第8の(eight)希土類元素を含むストリップ液を得る工程をさらに含む、上記[187]又は[188]に記載のプロセス。
[190]上記洗浄溶液が約2Mから約3MのHClを含む、上記[189]に記載のプロセス。
[191]上記ストリッピング溶液が約3Mから約4MのHClを含む、上記[189]又は[190]に記載のプロセス。
[192]上記酸性組成物をイオン交換樹脂で前処理又は処理し、その結果、不純物を取り出す工程をさらに含む、上記[1]から[191]のいずれか一項に記載のプロセス。
[193]少なくとも1種の希土類元素及び場合によって少なくとも1種のレアメタルを上記酸性組成物から抽出する前に、上記酸性組成物をイオン交換樹脂で処理し、その結果、不純物をそこから少なくとも部分的に取り出す工程をさらに含む、上記[1]から[192]のいずれか一項に記載のプロセス。
[194]上記プロセスによって抽出された上記少なくとも1種の希土類元素及び場合によって上記少なくとも1種のレアメタルをプラズマトーチにより処理し、その結果、上記少なくとも1種の希土類元素及び場合によって上記少なくとも1種のレアメタルをさらに高純度化する工程をさらに含む、上記[1]から[92]のいずれか一項に記載のプロセス。
[195]少なくとも1種の希土類元素を回収するプロセスであって、
(i)少なくとも1種の希土類元素及び場合によって少なくとも1種のレアメタルを含む酸性組成物;並びに(ii)少なくとも1種の金属イオンを得る工程と;
抽出剤、イオン交換(echange)樹脂によって及び/又は上記組成物を還元剤と反応させることによって上記少なくとも1種の金属イオンを上記酸性組成物から少なくとも部分的に取り出し、それによって上記少なくとも1種の金属イオンの含有率が低下した組成物を得る工程と;
上記少なくとも1種の金属イオンの上記含有率が低下した上記組成物を沈殿剤と反応させ、その結果、第1の希土類元素及び場合によって第1のレアメタルを実質的に選択的に沈殿させる工程と
を含むプロセス。
[196]上記酸性組成物が(i)上記少なくとも1種の希土類元素及び上記少なくとも1種のレアメタルを含む、上記[195]に記載のプロセス。
[197]上記抽出剤が、トリブチルホスフェート、ジ−2−エチルヘキシルリン酸(HDEHP)、ビス(2,4,4−トリメチルペンチル)ホスフィン酸及び2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステルから選ばれる、上記[195]又は[196]に記載のプロセス。
[198]上記抽出剤がトリブチルホスフェートである、上記[195]又は[196]に記載のプロセス。
[199]上記抽出剤が灯油中のトリブチルホスフェートである、上記[195]又は[196]に記載のプロセス。
[200]上記少なくとも1種の金属イオンが、少なくとも1種のアルミニウムイオン、少なくとも1種の亜鉛イオン、少なくとも1種の銅イオン、少なくとも1種のニッケルイオン、少なくとも1種のマグネシウムイオン、少なくとも1種のチタンイオン及び/又は少なくとも1種の鉄イオンを含む、上記[195]から[199]のいずれか一項に記載のプロセス。
[201]上記第1の希土類元素がスカンジウムである、上記[195]から[200]のいずれか一項に記載のプロセス。
[202]上記酸性組成物が少なくとも1種のレアメタルを含む、上記[195]から[201]のいずれか一項に記載のプロセス。
[203]上記少なくとも1種の金属イオンの上記含有率が低下した上記組成物を上記沈殿剤と反応させ、その結果、上記第1の希土類元素及び上記第1のレアメタルを実質的に選択的に沈殿させる工程を含む、上記[202]に記載のプロセス。
[204]上記第1のレアメタルがガリウムである、上記[195]から[203]のいずれか一項に記載のプロセス。
[205]上記沈殿剤が、NaOH、MgO、CaCO 3 及びその混合物から選ばれる、上記[195]から[204]のいずれか一項に記載のプロセス。
[206]上記沈殿剤がCaCO 3 である、上記[195]から[204]のいずれか一項に記載のプロセス。
[207]上記第1の希土類元素及び場合によって上記第1のレアメタルを2未満のpH値の維持により実質的に選択的に沈殿させる、上記[195]から[206]のいずれか一項に記載のプロセス。
[208]約1から約2の値にpHを維持することによって上記第1の希土類元素及び場合によって上記第1のレアメタルを実質的に選択的に沈殿させる、上記[195]から[206]のいずれか一項に記載のプロセス。
[209]約+380mVの酸化還元電位を維持することによって上記第1の希土類元素及び場合によって上記第1のレアメタルを実質的に選択的に沈殿させる、上記[195]から[206]のいずれか一項に記載のプロセス。
[210]上記少なくとも1種の金属イオンの含有率が低下した上記組成物を上記沈殿剤と反応させ、その結果、そのように形成された沈殿物に含まれる第1の希土類元素及び第1のレアメタルを実質的に選択的に沈殿させ、上記沈殿物を回収する工程を含む、上記[195]から[209]のいずれか一項に記載のプロセス。
[211]上記沈殿物を浸出し浸出溶液を得る工程をさらに含む、上記[210]に記載のプロセス。
[212]上記沈殿物がHClで浸出される、上記[211]に記載のプロセス。
[213]上記浸出溶液が抽出剤でさらに抽出され、その結果、上記第1の希土類元素及び上記第1のレアメタルを実質的に選択的に抽出し、装填した有機相を得る、上記[211]又は[212]に記載のプロセス。
[214]上記抽出剤がトリブチルホスフェートである、上記[213]に記載のプロセス。
[215]上記抽出剤が灯油中のトリブチルホスフェートである、上記[213]に記載のプロセス。
[216]上記抽出剤が灯油中のトリブチルホスフェートでありイソデカノールの存在下にある、上記[213]に記載のプロセス。
[217]上記装填した有機相を洗浄溶液で洗浄し、その結果、上記第1の希土類元素を回収し洗浄された有機相を得る工程をさらに含む、上記[214]から[216]のいずれか一項に記載のプロセス。
[218]上記洗浄溶液が、約2から約12mol/Lの濃度のHClを含む酸性水溶液である、上記[217]に記載のプロセス。
[219]上記洗浄溶液が、約1:1の洗浄溶液:装填した有機相の比で使用される、上記[217]又は[218]に記載のプロセス。
[220]上記洗浄された有機相をストリッピング溶液でストリッピングし、その結果、上記第1のレアメタルを回収する工程をさらに含む、上記[217]から[219]のいずれか一項に記載のプロセス。
[221]上記ストリッピング溶液が水である、上記[220]に記載のプロセス。
[222]上記ストリッピング溶液が約1:2のストリッピング溶液:装填した有機相の比で使用される、上記[220]又は[221]に記載のプロセス。
[223]上記少なくとも1種の金属イオンの含有率が低下した上記組成物を上記沈殿剤と反応させ、その結果、少なくとも1種のさらなる希土類元素を含む液体並びに上記第1の希土類元素及び上記第1のレアメタルを含む上記沈殿物を得、上記液体を上記沈殿物から分離する工程をさらに含む、上記[207]から[222]のいずれか一項に記載のプロセス。
[224]上記液体を別の沈殿剤と反応させ、その結果、別の沈殿物を得、上記別の沈殿物を回収する工程をさらに含む、上記[223]に記載のプロセス。
[225]上記液体を上記別の沈殿剤と約7.8から約8.2のpHで反応させる、上記[224]に記載のプロセス。
[226]上記液体を上記別の沈殿剤と約7.9から約8.1のpHで反応させる、上記[224]に記載のプロセス。
[227]約+340mVに酸化還元電位を維持することによって上記液体を上記別の沈殿剤と反応させる、上記[224]から[226]のいずれか一項に記載のプロセス。
[228]約+380mVに酸化還元電位を維持することによって上記液体を上記別の沈殿剤と反応させる、上記[224]から[226]のいずれか一項に記載のプロセス。
[229]約50から約70℃の温度を維持することによって上記液体を上記別の沈殿剤と反応させる、上記[224]から[228]のいずれか一項に記載のプロセス。
[230]上記別の沈殿剤が、NaOH、MgO、CaCO 3 及びその混合物から選ばれる、上記[224]から[229]のいずれか一項に記載のプロセス。
[231]上記沈殿剤がCaCO 3 である、上記[224]から[229]のいずれか一項に記載のプロセス。
[232]上記別の沈殿物を浸出し、第2の希土類元素を含む浸出溶液を得る工程をさらに含む、上記[224]から[231]のいずれか一項に記載のプロセス。
[233]上記別の沈殿物がHClで浸出される、上記[232]に記載のプロセス。
[234]上記第2の希土類元素を含む上記浸出溶液が抽出剤で抽出され、その結果、上記第2の希土類元素を実質的に選択的に抽出し、上記第2の希土類元素を含む装填した有機相、及び少なくとも1種の軽希土類元素を含む水相を得る工程をさらに含む、上記[232]又は[233]に記載のプロセス。
[235]上記抽出剤がジ(エチルヘキシル)ホスホン酸である、上記[234]に記載のプロセス。
[236]上記抽出剤が灯油中のジ(エチルヘキシル)ホスホン酸である、上記[234]に記載のプロセス。
[237]上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[234]から[236]のいずれか一項に記載のプロセス。
[238]上記装填した有機相を酸性洗浄溶液で処理することによって上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[234]から[236]のいずれか一項に記載のプロセス。
[239]上記洗浄溶液が1N HClを含む、上記[238]に記載のプロセス。
[240]上記第3の希土類元素がセリウムである、上記[238]又は[239]に記載のプロセス。
[241]上記第2の希土類元素を含む上記装填した有機相を酸性ストリッピング溶液で処理し、その結果、上記第2の希土類元素を含むストリップ液を得、上記ストリップ液を回収する工程をさらに含む、上記[238]から[240]のいずれか一項に記載のプロセス。
[242]上記ストリップ液が3.5N HClを含む、上記[241]に記載のプロセス。
[243]上記第2の希土類元素を含む上記ストリップ液を抽出剤で処理し、その結果、第4の希土類元素及び場合によって第5の希土類元素を上記ストリップ液から実質的に選択的に抽出し、上記第2の希土類元素を含む抽残物を得る工程を含む、上記[241]又は[242]に記載のプロセス。
[244]上記抽出剤がトリブチルホスフェートである、上記[243]に記載のプロセス。
[245]上記抽出剤が灯油中のトリブチルホスフェートである、上記[243]に記載のプロセス。
[246]上記第4の希土類元素がジスプロシウムである、上記[243]から[245]のいずれか一項に記載のプロセス。
[247]上記第5の希土類元素がエルビウムである、上記[243]から[245]のいずれか一項に記載のプロセス。
[248]上記第4の希土類元素及び場合によって上記第5の希土類元素を含む有機相をストリップ溶液と反応させ、その結果、上記第4(fifth)の希土類元素及び場合によって上記第5の希土類元素を含むストリップ液を得る工程をさらに含む、上記[243]から[247]のいずれか一項に記載のプロセス。
[249]上記ストリップ溶液が水である、上記[248]に記載のプロセス。
[250]上記第2の希土類元素がイットリウムである、上記[234]から[249]のいずれか一項に記載のプロセス。
[251]上記第2の希土類元素を含む上記浸出溶液を抽出剤で抽出し、その結果、上記第2の希土類元素を実質的に選択的に抽出し、上記第2の希土類元素を含む装填した有機相、及び少なくとも1種の軽希土類元素を含む抽残物を得る、上記[232]又は[233]に記載のプロセス。
[252]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[251]に記載のプロセス。
[253]上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[251]又は[252]に記載のプロセス。
[254]上記装填した有機相を酸性洗浄溶液で処理することによって上記第2の希土類元素を含む上記装填した有機相から第3の希土類元素を少なくとも部分的に取り出す工程をさらに含む、上記[251]から[253]のいずれか一項に記載のプロセス。
[255]上記洗浄溶液が約1Nから約2NのHClを含む、上記[254]に記載のプロセス。
[256]上記第2の希土類元素を含む上記装填した有機相をストリッピング溶液で処理し、その結果、上記第2の希土類元素を含むストリップ液を得る工程をさらに含む、上記[254]又は[255]に記載のプロセス。
[257]上記ストリッピング溶液が約3Mから約4MのHClを含む、上記[256]に記載のプロセス。
[258]上記第2の希土類元素を含む上記ストリップ液を抽出剤で抽出し、その結果、第4の希土類元素及び場合によって第5の希土類元素を取り出し、それによって上記第2の希土類元素を含む抽残物、並びに上記第4の希土類元素及び場合によって上記第5の希土類元素を含む装填した有機相を得る、上記[256]又は[257]に記載のプロセス。
[259]上記抽出剤がトリブチルホスフェートである、上記[258]に記載のプロセス。
[260]上記抽出剤が灯油中のトリブチルホスフェートである、上記[258]に記載のプロセス。
[261]上記第2の希土類元素を含む上記抽残物を回収する工程を含む、上記[258]から[260]のいずれか一項に記載のプロセス。
[262]上記第2の希土類元素がイットリウムである、上記[258]から[261]のいずれか一項に記載のプロセス。
[263]上記第4の希土類元素がジスプロシウムである、上記[258]から[262]のいずれか一項に記載のプロセス。
[264]上記第5の希土類元素がエルビウムである、上記[258]から[263]のいずれか一項に記載のプロセス。
[265]上記第4の希土類元素及び上記第5の希土類元素を含む上記装填した有機相をストリッピング溶液と反応させ、その結果、上記第4の希土類元素及び上記第5の希土類元素を含むストリップ液を得る工程をさらに含む、上記[258]から[264]のいずれか一項に記載のプロセス。
[266]上記ストリッピング溶液が水である、上記[265]に記載のプロセス。
[267]上記ストリップ液を抽出剤と反応させ、その結果、上記第5の希土類元素を上記ストリップ(strop)液から実質的に選択的に抽出し、それによって上記第4の希土類元素を含む抽残物、及び上記第5の希土類元素を含む装填した有機相を得る工程をさらに含む、上記[265]又は[266]に記載のプロセス。
[268]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[267]に記載のプロセス。
[269]上記第5の希土類元素を含む上記装填した有機相から上記抽残物を分離し、上記装填した有機相を洗浄溶液で処理し、その結果、不純物をそこから取り出し、次いで、上記装填した有機相をストリッピング溶液で処理し、その結果、上記第5の希土類元素を含むストリップ液を得る工程をさらに含む、上記[267]又は[268]に記載のプロセス。
[270]上記洗浄溶液が約2Mから約4MのHClを含む、上記[269]に記載のプロセス。
[271]上記ストリッピング溶液が約3Mから約4MのHClを含む、上記[269]又は[270]に記載のプロセス。
[272]上記抽残物を酸化剤と反応させ、その結果、上記第3の希土類元素を酸化する、上記[251]から[253]のいずれか一項に記載のプロセス。
[273]上記酸化剤が次亜塩素酸ナトリウムを含む、上記[272]に記載のプロセス。
[274]上記抽残物を約0.5から約1.5のpHで酸化剤と反応させる、上記[272]又は[273]に記載のプロセス。
[275]沈殿物の形態である酸化した第3の希土類元素を上記抽残物から取り出し、それによって第6の希土類元素を含む濾液を得る工程をさらに含む、上記[272]から[274]のいずれか一項に記載のプロセス。
[276]上記濾液を抽出剤と反応させ、その結果、上記第6の希土類元素を上記濾液から実質的に選択的に抽出し、それによって上記第6の希土類元素を含む装填した有機相並びに第7の希土類元素及び第8の(eight)希土類元素を含む別の抽残物を得、上記第6の希土類元素を含む上記装填した有機相を上記抽残物から分離する工程をさらに含む、上記[275]に記載のプロセス。
[277]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[276]に記載のプロセス。
[278]上記装填した有機相を洗浄溶液で処理し、その結果、不純物をそこから取り出し、次いで、上記装填した有機相をストリッピング溶液で処理し、その結果、上記第6の希土類元素を含むストリップ液を得る工程をさらに含む、上記[276]又は[277]に記載のプロセス。
[279]上記洗浄溶液が約0.5Mから約1.5MのHClを含む、上記[278]に記載のプロセス。
[280]上記ストリッピング溶液が約2Mから約3MのHClを含む、上記[278]又は[279]に記載のプロセス。
[281]上記第6の希土類元素がユーロピウムである、上記[276]から[280]のいずれか一項に記載のプロセス。
[282]上記第7の希土類元素がプラセオジムである、上記[276]から[281]のいずれか一項に記載のプロセス。
[283]上記第8(eigth)の希土類元素がネオジムである、上記[276]から[282]のいずれか一項に記載のプロセス。
[284]還元剤によって上記第6の希土類元素を還元する工程をさらに含む、上記[276]から[283]のいずれか一項に記載のプロセス。
[285]上記還元剤が亜鉛(0)である、上記[284]に記載のプロセス。
[286]上記第6の希土類元素を硫酸ナトリウムと反応させ、その結果、沈殿物の形態のその硫酸塩誘導体を得、上記沈殿物を回収する工程をさらに含む、上記[276]から[285]のいずれか一項に記載のプロセス。
[287]上記第7の希土類元素及び上記第8の(eight)希土類元素を含む上記抽残物を抽出剤と反応させ、その結果、上記第8の(eight)希土類元素を上記抽残物から実質的に選択的に抽出し、それによって上記第8の(eight)希土類元素を含む装填した有機相及び上記第7の希土類元素を含む抽残物を得、上記第8の(eight)希土類元素を含む上記装填した有機相を上記抽残物から分離する工程をさらに含む、上記[276]から[285]のいずれか一項に記載のプロセス。
[288]上記抽出剤がジ(エチルヘキシル)ホスホン酸又はジ−(2−エチルヘキシル)リン酸である、上記[287]に記載のプロセス。
[289]上記装填した有機相を洗浄溶液で処理し、その結果、不純物をそこから取り出し、次いで、上記装填した有機相をストリッピング溶液で処理し、その結果、上記第8の(eight)希土類元素を含むストリップ液を得る工程をさらに含む、上記[287]又は[288]に記載のプロセス。
[290]上記洗浄溶液が約2Mから約3MのHClを含む、上記[289]に記載のプロセス。
[291]上記ストリッピング溶液が約3Mから約4MのHClを含む、上記[289]又は[290]に記載のプロセス。
[292]上記少なくとも1種の金属イオンが、アルミニウム、鉄、亜鉛、銅、ニッケル、マグネシウム及びチタンから選ばれる金属のイオンである、上記[195]から[291]のいずれか一項に記載のプロセス。
[293]上記酸性組成物をイオン交換樹脂で前処理又は処理し、その結果、不純物を取り出す工程をさらに含む、上記[195]から[292]のいずれか一項に記載のプロセス。
[294]少なくとも1種の希土類元素及び場合によって少なくとも1種のレアメタルを上記酸性組成物から抽出する前に、上記酸性組成物をイオン交換樹脂で処理し、その結果、不純物をそこから少なくとも部分的に取り出す工程をさらに含む、上記[195]から[293]のいずれか一項に記載のプロセス。
[295]プラズマトーチによって、上記プロセスによって抽出された上記少なくとも1種の希土類元素及び場合によって上記少なくとも1種のレアメタルを処理し、その結果、上記少なくとも1種の希土類元素及び場合によって上記少なくとも1種のレアメタルをさらに高純度化する工程をさらに含む、上記[195]から[294]のいずれか一項に記載のプロセス。
一態様によると、少なくとも1種の希土類元素を回収するプロセスであって、
(i)少なくとも1種の希土類元素及び場合によって少なくとも1種のレアメタルを含む酸性組成物を得る工程と;
組成物を沈殿剤と反応させ、その結果、第1の希土類元素及び場合によって第1のレアメタルを実質的に選択的に沈殿させる工程と
を含むプロセスが提供される。
The present invention provides the following.
[1] A process for recovering at least one rare earth element,
(I) obtaining an acidic composition comprising at least one rare earth element and optionally at least one rare metal and (ii) at least one iron ion;
The at least one iron ion is at least partially removed from the acidic composition by an extractant, an ion exchange resin and / or by reacting the composition with a reducing agent, thereby at least one of the at least one iron composition. Obtaining a composition having a reduced content of iron ions;
Reacting the composition having a reduced content of the at least one iron ion with a precipitating agent, thereby substantially selectively precipitating the first rare earth element and optionally the first rare metal;
Including processes.
[2] The acidic composition comprises (i) the at least one rare earth element and optionally the at least one rare metal and (ii) FeCl. 3 The process according to [1] above, comprising:
[3] The extractant is selected from tributyl phosphate, di-2-ethylhexyl phosphate (HDEHP), bis (2,4,4-trimethylpentyl) phosphinic acid and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester. The process according to [1] or [2] above.
[4] The process according to [1] or [2] above, wherein the extractant is tributyl phosphate.
[5] The process according to [1] or [2] above, wherein the extractant is tributyl phosphate in kerosene.
[6] The acidic composition is reacted with Fe (0), whereby Fe 3+ The process according to any one of [1] to [5] above, wherein a composition having a reduced content of is obtained.
[7] The process according to any one of [1] to [6], wherein the first rare earth element is scandium.
[8] The process according to any one of [1] to [7], wherein the acidic composition includes at least one rare metal.
[9] The composition having a reduced content of the at least one iron ion is reacted with the precipitant, and as a result, the first rare earth element and the first rare metal are substantially selectively precipitated. The process according to [8] above, comprising a step of causing
[10] The process according to any one of [1] to [9], wherein the first rare metal is gallium.
[11] The precipitant is oxalic acid, NaOH, MgO, CaCO 3 And the process according to any one of the above [1] to [10], which is selected from the group consisting of a mixture thereof.
[12] The precipitant is CaCO 3 The process according to any one of [1] to [10] above.
[13] Any one of [1] to [12] above, wherein the first rare earth element and optionally the first rare metal are substantially selectively precipitated by maintaining a pH value of less than 2. The process described in
[14] The above [1] to [12], wherein the first rare earth element and optionally the first rare metal are substantially selectively precipitated by maintaining the pH at a value of about 1 to about 2. ] The process as described in any one of.
[15] Any one of [1] to [12] above, wherein the first rare earth element and optionally the first rare metal are substantially selectively precipitated by maintaining a redox potential of about +380 mV. The process described in the section.
[16] The composition in which the content of the at least one iron ion is reduced is reacted with the precipitant, and as a result, the first rare earth element and the first element contained in the precipitate thus formed The process according to any one of [1] to [15], which comprises a step of substantially selectively precipitating a rare metal and recovering the precipitate.
[17] The process according to [16], further comprising a step of leaching the precipitate to obtain a leaching solution.
[18] The process according to [17], wherein the precipitate is leached with HCl.
[19] The process of [18] above, wherein the HCl has a concentration of about 5 to about 15 mol / L.
[20] The leaching solution is further extracted with an extractant, so that the first rare earth element and the first rare metal are substantially selectively extracted to obtain a loaded organic phase. [17] To [19].
[21] The process according to [20], wherein the extractant is tributyl phosphate.
[22] The process according to [20] above, wherein the extractant is tributyl phosphate in kerosene.
[23] The process according to [20] above, wherein the extractant is tributyl phosphate in kerosene and is in the presence of isodecanol.
[24] The method according to any one of [20] to [23], further including a step of washing the loaded organic phase with a washing solution, thereby collecting the first rare earth element to obtain a washed organic phase. The process according to one paragraph.
[25] The process according to [24] above, wherein the cleaning solution is an acidic aqueous solution containing HCl at a concentration of about 2 to about 12 mol / L.
[26] The process of [24] or [25] above, wherein the cleaning solution is used in a ratio of about 1: 1 cleaning solution: loaded organic phase.
[27] The process according to any one of [24] to [26], including a step of stripping the washed organic phase with a stripping solution and, as a result, recovering the first rare metal. .
[28] The process according to [27], wherein the stripping solution is water.
[29] The process of [27] or [28] above, wherein the stripping solution is used in a ratio of stripping solution: loaded organic phase of about 1: 2.
[30] The composition having a reduced content of the at least one iron ion is reacted with the precipitant, and as a result, at least one further rare earth element, the first rare earth element, and the first rare metal are reacted. The process according to any one of [13] to [28], further comprising a step of obtaining a liquid containing the precipitate containing, and separating the liquid from the precipitate.
[31] The process of the above-mentioned [30], further comprising the step of reacting the liquid with another precipitating agent, thereby obtaining another precipitate, and collecting the other precipitate.
[32] The process of [31] above, wherein the liquid is reacted with the another precipitating agent at a pH of about 7.8 to about 8.2.
[33] The process of [31] above, wherein the liquid is reacted with the other precipitating agent at a pH of about 7.9 to about 8.1.
[34] The process of any one of [31] to [33], wherein the liquid is reacted with the another precipitating agent by maintaining a redox potential at about +340 mV.
[35] The process of any one of [31] to [33], wherein the liquid is reacted with the another precipitating agent by maintaining a redox potential at about +380 mV.
[36] The process of any one of [31] to [35] above, wherein the liquid is reacted with the another precipitating agent by maintaining a temperature of about 50 to about 70 ° C.
[37] The other precipitant is NaOH, MgO, or CaCO. 3 And the process according to any one of [31] to [36] above, which is selected from the group consisting of a mixture thereof.
[38] The other precipitant is CaCO 3 The process according to any one of [31] to [36] above.
[39] The process according to any one of [31] to [38], further comprising leaching the another precipitate to obtain a leaching solution containing a second rare earth element.
[40] The process of [39] above, wherein the other precipitate is leached with HCl.
[41] The leaching solution containing the second rare earth element is extracted with an extractant, and as a result, the second rare earth element is substantially selectively extracted and loaded with the second rare earth element. The process according to [39] or [40] above, wherein an organic phase and an aqueous phase containing at least one light rare earth element are obtained.
[42] The process described in [41] above, wherein the extractant is di (ethylhexyl) phosphonic acid.
[43] The process according to [41] above, wherein the extractant is di (ethylhexyl) phosphonic acid in kerosene.
[44] The process according to any one of [41] to [43], further including the step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element. .
[45] The method of [41], further comprising the step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element by treating the loaded organic phase with an acidic cleaning solution. ] To the process according to any one of [43].
[46] The process of the above-mentioned [45], wherein the cleaning solution contains 1N HCl.
[47] The process according to [45] or [46] above, wherein the third rare earth element is cerium.
[48] The step of treating the loaded organic phase containing the second rare earth element with an acidic stripping solution, thereby obtaining a strip liquid containing the second rare earth element, and recovering the strip liquid is further included. The process according to any one of [45] to [47] above.
[49] The process according to [48], wherein the strip solution contains 3.5N HCl.
[50] The strip liquid containing the second rare earth element is treated with an extractant, so that the fourth rare earth element and optionally the fifth rare earth element are substantially selectively extracted from the strip liquid. The process according to the above [48] or [49], comprising a step of obtaining an extraction residue containing the at least second rare earth element.
[51] The process of the above-mentioned [50], wherein the extractant is tributyl phosphate.
[52] The process according to [50], wherein the extractant is tributyl phosphate in kerosene.
[53] The process according to any one of [50] to [52], wherein the fourth rare earth element is dysprosium.
[54] The process according to any one of [50] to [53], wherein the fifth rare earth element is erbium.
[55] The organic phase containing the fourth rare earth element and optionally the fifth rare earth element is reacted with a strip solution, and as a result, the fourth rare earth element and optionally the fifth rare earth element are reacted. The process according to any one of [50] to [54], further comprising a step of obtaining a strip solution containing:
[56] The process according to [55], wherein the strip solution is water.
[57] The process according to any one of [41] to [56], wherein the second rare earth element is yttrium.
[58] The leaching solution containing the second rare earth element is extracted with an extractant, so that the second rare earth element is substantially selectively extracted and loaded with the second rare earth element. The process according to [39] to [40], wherein an extraction phase containing an organic phase and at least one light rare earth element is obtained.
[59] The process according to [58], wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[60] The process of [58] or [59], further comprising at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element.
[61] The method according to [58], further comprising the step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element by treating the loaded organic phase with an acidic cleaning solution. ] To [60].
[62] The process of [61] above, wherein the cleaning solution comprises about 1 N to about 2 N HCl.
[63] The above [61] or [63], further comprising a step of treating the loaded organic phase containing the second rare earth element with a stripping solution, thereby obtaining a strip liquid containing the second rare earth element. 62].
[64] The process of [64] above, wherein the stripping solution comprises about 3M to about 4M HCl.
[65] The strip liquid containing the second rare earth element is extracted with an extractant, and as a result, the fourth rare earth element and optionally the fifth rare earth element are taken out, thereby containing the second rare earth element. The process according to [63] or [64] above, wherein the extraction residue and the loaded organic phase containing the fourth rare earth element and optionally the fifth rare earth element are obtained.
[66] The process of the above-mentioned [65], wherein the extractant is tributyl phosphate.
[67] The process of [65] above, wherein the extractant is tributyl phosphate in kerosene.
[68] The process according to any one of [65] to [67], including a step of recovering the extraction residue containing the second rare earth element.
[69] The process according to any one of [65] to [68], wherein the second rare earth element is yttrium.
[70] The process according to any one of [65] to [69], wherein the fourth rare earth element is dysprosium.
[71] The process according to any one of [65] to [70], wherein the fifth rare earth element is erbium.
[72] The loaded organic phase containing the fourth rare earth element and the fifth rare earth element is reacted with a stripping solution, so that the strip containing the fourth rare earth element and the fifth rare earth element is obtained. The process according to any one of [65] to [71], further comprising a step of obtaining a liquid.
[73] The process according to [72], wherein the stripping solution is water.
[74] The strip solution is reacted with an extractant, so that the fifth rare earth element is substantially selectively extracted from the strop solution, thereby extracting the fourth rare earth element. The process according to [72] or [73], further comprising obtaining a loaded organic phase containing a residue and the fifth rare earth element.
[75] The process according to [74], wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[76] Separating the extracted residue from the loaded organic phase containing the fifth rare earth element, treating the loaded organic phase with a washing solution, so that impurities are removed therefrom and then loaded. The process according to [74] or [75], further comprising treating the organic phase with a stripping solution, thereby obtaining a strip solution containing the fifth rare earth element.
[77] The process of [76] above, wherein the cleaning solution comprises about 2M to about 4M HCl.
[78] The process of [76] or [77] above, wherein the stripping solution comprises about 3M to about 4M HCl.
[79] The process according to any one of [58] to [60], wherein the extraction residue is reacted with an oxidant, thereby oxidizing the third rare earth element.
[80] The process of [79] above, wherein the oxidizing agent comprises sodium hypochlorite.
[81] The process according to [79] or [80], wherein the extraction residue is reacted with an oxidizing agent at a pH of about 0.5 to about 1.5.
[82] The above [79] to [81], further comprising the step of removing the oxidized third rare earth element in the form of a precipitate from the extraction residue, thereby obtaining a filtrate containing the sixth rare earth element. The process according to any one of the above.
[83] reacting the filtrate with an extractant, so as to substantially selectively extract the sixth rare earth element from the filtrate, thereby loading the loaded organic phase containing the sixth rare earth element and the first Further comprising the step of obtaining another extraction residue comprising 7 rare earth elements and an eighth rare earth element and separating the loaded organic phase comprising the sixth rare earth element from the extraction residue. The process according to [82].
[84] The process of the above-mentioned [83], wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[85] Treating the loaded organic phase with a cleaning solution, so that impurities are removed therefrom, and then treating the loaded organic phase with a stripping solution, resulting in the sixth rare earth element. The process according to [83] or [84] above, further comprising a step of obtaining a strip solution.
[86] The process of [85] above, wherein the cleaning solution comprises about 0.5 M to about 1.5 M HCl.
[87] The process of [85] or [86] above, wherein the stripping solution comprises about 2M to about 3M HCl.
[88] The process according to any one of [83] to [87], wherein the sixth rare earth element is europium.
[89] The process according to any one of [83] to [88], wherein the seventh rare earth element is praseodymium.
[90] The process according to any one of [83] to [88], wherein the eighth (eigth) rare earth element is neodymium.
[91] The process according to any one of [83] to [90], further including a step of reducing the sixth rare earth element with a reducing agent.
[92] The process according to [91], wherein the reducing agent is zinc (0).
[93] The above [83] to [92], further comprising a step of reacting the sixth rare earth element with sodium sulfate, thereby obtaining the sulfate derivative in the form of a precipitate and recovering the precipitate. The process according to any one of the above.
[94] The extraction residue containing the seventh rare earth element and the eighth (eight) rare earth element is reacted with an extractant, so that the eighth (eight) rare earth element is removed from the extraction residue. Extracting substantially selectively, thereby obtaining a loaded organic phase containing the eighth (eight) rare earth element and an extraction residue containing the seventh rare earth element, and the eighth (eight) rare earth element. The process according to any one of [83] to [92], further comprising the step of separating the loaded organic phase comprising:
[95] The process according to [94], wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[96] Treating the loaded organic phase with a washing solution, so that impurities are removed therefrom, and then treating the loaded organic phase with a stripping solution, so that the eighth rare earth The process according to [94] or [95], further including a step of obtaining a strip solution containing an element.
[97] The process of [96] above, wherein the wash solution comprises about 2M to about 3M HCl.
[98] The process of [96] or [97] above, wherein the stripping solution comprises about 3M to about 4M HCl.
[99] A process for recovering at least one rare earth element,
(I) obtaining an acidic composition comprising at least one rare earth element and optionally at least one rare metal;
Reacting the composition with a precipitating agent, thereby substantially selectively precipitating the first rare earth element and optionally the first rare metal;
Including processes.
[100] The process according to [99], wherein the first rare earth element is scandium.
[101] The process according to [99] or [100] above, wherein the acidic composition contains at least one rare metal.
[102] The process of the above-mentioned [101], comprising the step of reacting the composition with the precipitant and, as a result, substantially selectively precipitating the first rare earth element and the first rare metal. .
[103] The process according to any one of [99] to [102], wherein the first rare metal is gallium.
[104] The precipitant is NaOH, MgO, CaCO 3 And the process according to any one of [99] to [103] above, which is selected from the group consisting of a mixture thereof.
[105] The precipitant is CaCO 3 The process according to any one of [99] to [103] above.
[106] The method of any one of [99] to [105], wherein the first rare earth element and optionally the first rare metal are substantially selectively precipitated by maintaining a pH value of less than 2. Process.
[107] The above [99] to [105], wherein the first rare earth element and optionally the first rare metal are substantially selectively precipitated by maintaining the pH at a value of about 1 to about 2. The process according to any one of the above.
[108] Any one of [99] to [107], wherein the first rare earth element and optionally the first rare metal are substantially selectively precipitated by maintaining a redox potential of about +380 mV. The process described.
[109] reacting the composition with the precipitant, thereby substantially selectively precipitating the first rare earth element and the first rare metal contained in the precipitate so formed; The process according to any one of [99] to [108], comprising a step of recovering the precipitate.
[110] The process according to [109], further comprising leaching the precipitate to obtain a leaching solution.
[111] The process of [110] above, wherein the precipitate is leached with HCl.
[112] The process of [111] above, wherein the HCl has a concentration of about 5 to about 15 mol / L.
[113] The leaching solution is further extracted with an extractant, so that the first rare earth element and the first rare metal are substantially selectively extracted to obtain a loaded organic phase, [110] To [112].
[114] The process of the above-mentioned [113], wherein the extractant is tributyl phosphate.
[115] The process according to [113], wherein the extractant is tributyl phosphate in kerosene.
[116] The process of [113] above, wherein the extractant is tributyl phosphate in kerosene and is in the presence of isodecanol.
[117] The method according to any one of [113] to [116], further including a step of washing the loaded organic phase with a washing solution, thereby collecting the first rare earth element to obtain a washed organic phase. The process according to one paragraph.
[118] The process of [117], wherein the cleaning solution is an acidic aqueous solution containing HCl at a concentration of about 2 to about 12 mol / L.
[119] The process of [117] or [118] above, wherein the cleaning solution is used in a ratio of about 1: 1 cleaning solution: loaded organic phase.
[120] The method according to any one of [117] to [119], further comprising a step of stripping the washed organic phase with a stripping solution and, as a result, recovering the first rare metal. process.
[121] The process of [120] above, wherein the stripping solution is water.
[122] The process of [120] or [121] above, wherein the stripping solution is used in a ratio of stripping solution: loaded organic phase of about 1: 2.
[123] reacting the composition with the precipitant, resulting in a liquid comprising at least one additional rare earth element, and the precipitate comprising the first rare earth element and the first rare metal, The process according to any one of [110] to [122], further comprising the step of separating the liquid from a precipitate.
[124] The process of the above-mentioned [123], further comprising the step of reacting the liquid with another precipitating agent, thereby obtaining another precipitate, and collecting the another precipitate.
[125] The process of [124] above, wherein the liquid is reacted with the another precipitating agent at a pH of about 7.8 to about 8.2.
[126] The process of [124] above, wherein the liquid is reacted with the another precipitating agent at a pH of about 7.9 to about 8.1.
[127] The process of any one of [124] to [126], wherein the liquid is reacted with the another precipitating agent by maintaining a redox potential at about +340 mV.
[128] The process of any one of [124] to [126], wherein the liquid is reacted with the another precipitating agent by maintaining a redox potential at about +380 mV.
[129] The process of any one of [124] to [128] above, wherein the liquid is reacted with the another precipitating agent by maintaining a temperature of about 50 to about 70 ° C.
[130] The other precipitant is NaOH, MgO, CaCO. 3 And the process according to any one of [124] to [129] above.
[131] The other precipitant is CaCO 3 The process according to any one of [124] to [129] above.
[132] The process according to any one of [124] to [131], further comprising leaching the another precipitate to obtain a leaching solution containing a second rare earth element.
[133] The process of [132] above, wherein the additional precipitate is leached with HCl.
[134] The leaching solution containing the second rare earth element is extracted with an extractant, so that the second rare earth element is substantially selectively extracted and loaded with the second rare earth element. The process according to [132] or [133] above, wherein an organic phase and an aqueous phase containing at least one light rare earth element are obtained.
[135] The process of the above [134], wherein the extractant is di (ethylhexyl) phosphonic acid.
[136] The process of the above-mentioned [134], wherein the extractant is di (ethylhexyl) phosphonic acid in kerosene.
[137] The process according to any one of [134] to [136], further including a step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element. .
[138] The method according to [134], further comprising the step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element by treating the loaded organic phase with an acidic cleaning solution. ] To [137].
[139] The process of [138] above, wherein the cleaning solution comprises 1N HCl.
[140] The process of [138] or [139] above, wherein the third rare earth element is cerium.
[141] A step of treating the loaded organic phase containing the second rare earth element with an acidic stripping solution, thereby obtaining a strip liquid containing the second rare earth element and recovering the strip liquid. The process according to any one of [138] to [140] above.
[142] The process of the above [141], wherein the strip solution contains 3.5N HCl.
[143] The strip liquid containing the second rare earth element is treated with an extractant, so that the fourth rare earth element and, optionally, the fifth rare earth element are substantially selectively extracted from the strip liquid. The process according to [141] or [142], further comprising a step of obtaining an extraction residue containing the second rare earth element.
[144] The process of the above-mentioned [143], wherein the extractant is tributyl phosphate.
[145] The process of [143] above, wherein the extractant is tributyl phosphate in kerosene.
[146] The process according to any one of [143] to [145], wherein the fourth rare earth element is dysprosium.
[147] The process according to any one of [143] to [146], wherein the fifth rare earth element is erbium.
[148] The organic phase containing the fourth rare earth element and optionally the fifth rare earth element is reacted with a strip solution, so that the fourth (fifth) rare earth element and optionally the fifth rare earth element are reacted. The process according to any one of [143] to [147], further including a step of obtaining a strip solution containing:
[149] The process of the above [148], wherein the strip solution is water.
[150] The process according to any one of [134] to [149], wherein the second rare earth element is yttrium.
[151] The leaching solution containing the second rare earth element is extracted with an extractant, so that the second rare earth element is substantially selectively extracted and loaded with the second rare earth element. The process according to [132] or [133] above, wherein an extraction phase containing an organic phase and at least one light rare earth element is obtained.
[152] The process according to [151], wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[153] The process according to [151] or [152], further including a step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element.
[154] The method according to [151], further comprising: at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element by treating the loaded organic phase with an acidic cleaning solution. ] To [153].
[155] The process of [154] above, wherein the cleaning solution comprises about 1 N to about 2 N HCl.
[156] The above [154] or [156], further comprising a step of treating the loaded organic phase containing the second rare earth element with a stripping solution, thereby obtaining a strip liquid containing the second rare earth element. 155].
[157] The process of [156] above, wherein the stripping solution comprises about 3M to about 4M HCl.
[158] The strip liquid containing the second rare earth element is extracted with an extractant, and as a result, the fourth rare earth element and optionally the fifth rare earth element are taken out, thereby containing the second rare earth element. The process according to [156] or [157] above, wherein the extraction residue and a loaded organic phase comprising the fourth rare earth element and optionally the fifth rare earth element are obtained.
[159] The process of the above [158], wherein the extractant is tributyl phosphate.
[160] The process of [158] above, wherein the extractant is tributyl phosphate in kerosene.
[161] The process according to any one of [158] to [160], including a step of recovering the extraction residue containing the second rare earth element.
[162] The process according to any one of [158] to [160], wherein the second rare earth element is yttrium.
[163] The process according to any one of [158] to [162], wherein the fourth rare earth element is dysprosium.
[164] The process according to any one of [158] to [162], wherein the fifth rare earth element is erbium.
[165] A strip containing the fourth rare earth element and the fifth rare earth element is reacted with a stripping solution to result in the strip containing the fourth rare earth element and the fifth rare earth element. The process according to any one of [158] to [164], further comprising a step of obtaining a liquid.
[166] The process of the above [165], wherein the stripping solution is water.
[167] reacting the strip liquid with an extractant, so that the fifth rare earth element is substantially selectively extracted from the strop liquid, thereby containing the fourth rare earth element; The process of [165] or [166] above, further comprising obtaining a residue and a loaded organic phase comprising the fifth rare earth element.
[168] The process according to [167] above, wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[169] Separating the extracted residue from the loaded organic phase containing the fifth rare earth element, treating the loaded organic phase with a washing solution, so that impurities are removed therefrom, and then the loading The process according to the above [167] or [168], further comprising a step of treating the organic phase with a stripping solution, thereby obtaining a strip liquid containing the fifth rare earth element.
[170] The process of [169] above, wherein the cleaning solution comprises about 2M to about 4M HCl.
[171] The process of [169] or [170] above, wherein the stripping solution comprises about 3M to about 4M HCl.
[172] The process according to any one of [151] to [153], wherein the extraction residue and the extraction residue are reacted to oxidize the third rare earth element.
[173] The process of [172] above, wherein the oxidizing agent comprises sodium hypochlorite.
[174] The process according to [172] or [173] above, wherein the extraction residue is reacted with an oxidizing agent at a pH of about 0.5 to about 1.5.
[175] The above [172] to [174], further comprising the step of removing the oxidized third rare earth element in the form of a precipitate from the extraction residue, thereby obtaining a filtrate containing the sixth rare earth element. The process according to any one of the above.
[176] reacting the filtrate with an extractant, so that the sixth rare earth element is substantially selectively extracted from the filtrate, thereby loading the loaded organic phase containing the sixth rare earth element and the first Further comprising the step of obtaining another extraction residue comprising 7 rare earth elements and an eighth rare earth element and separating the loaded organic phase comprising the sixth rare earth element from the extraction residue. The process according to [175].
[177] The process according to [176] above, wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[178] Treating the loaded organic phase with a cleaning solution, thereby removing impurities therefrom, and then treating the loaded organic phase with a stripping solution, resulting in the sixth rare earth element. The process according to [176] or [177] above, wherein a strip solution is obtained.
[179] The process of [178] above, wherein the cleaning solution comprises about 0.5 M to about 1.5 M HCl.
[180] The process of [178] or [179] above, wherein the stripping solution comprises about 2M to about 3M HCl.
[181] The process according to any one of [176] to [180], wherein the sixth rare earth element is europium.
[182] The process according to any one of [176] to [181], wherein the seventh rare earth element is praseodymium.
[183] The process according to any one of [176] to [182], wherein the eighth (eigth) rare earth element is neodymium.
[184] The process according to any one of [176] to [183], further including a step of reducing the sixth rare earth element with a reducing agent.
[185] The process according to [184], wherein the reducing agent is zinc (0).
[186] The above [176] to [185], further comprising the step of reacting the sixth rare earth element with sodium sulfate, thereby obtaining the sulfate derivative in the form of a precipitate and recovering the precipitate. The process according to any one of the above.
[187] The extraction residue containing the seventh rare earth element and the eighth (eight) rare earth element is reacted with an extractant, so that the eighth (eight) rare earth element is extracted from the extraction residue. Extracting substantially selectively, thereby obtaining a loaded organic phase comprising the eighth (eight) rare earth element and an extractable residue comprising the seventh rare earth element, wherein the eighth (eight) rare earth element is obtained. The process according to any one of [176] to [186], further comprising the step of separating the charged organic phase comprising: from the extraction residue.
[188] The process according to [187], wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[189] Treating the loaded organic phase with a wash solution, so that impurities are removed therefrom, and then treating the loaded organic phase with a stripping solution, resulting in the eighth (eight) rare earth The process according to [187] or [188] above, further comprising a step of obtaining a strip solution containing an element.
[190] The process of [189] above, wherein the cleaning solution comprises about 2M to about 3M HCl.
[191] The process of [189] or [190] above, wherein the stripping solution comprises about 3M to about 4M HCl.
[192] The process according to any one of [1] to [191], further including a step of pretreating or treating the acidic composition with an ion exchange resin and, as a result, removing impurities.
[193] Before extracting at least one rare earth element and optionally at least one rare metal from the acidic composition, the acidic composition is treated with an ion exchange resin so that impurities are at least partially removed therefrom. The process according to any one of [1] to [192], further including a step of taking out the step.
[194] Treating the at least one rare earth element and optionally the at least one rare metal extracted by the process with a plasma torch, so that the at least one rare earth element and optionally the at least one rare metal The process according to any one of [1] to [92], further including a step of further purifying the rare metal.
[195] A process for recovering at least one rare earth element,
(I) an acidic composition comprising at least one rare earth element and optionally at least one rare metal; and (ii) obtaining at least one metal ion;
The at least one metal ion is at least partially removed from the acidic composition by an extractant, an ion exchange resin and / or by reacting the composition with a reducing agent, thereby providing the at least one type of at least one metal ion. Obtaining a composition having a reduced content of metal ions;
Reacting the composition having the reduced content of the at least one metal ion with a precipitating agent, thereby substantially selectively precipitating the first rare earth element and possibly the first rare metal;
Including processes.
[196] The process of [195] above, wherein the acidic composition comprises (i) the at least one rare earth element and the at least one rare metal.
[197] The extractant is selected from tributyl phosphate, di-2-ethylhexyl phosphoric acid (HDEHP), bis (2,4,4-trimethylpentyl) phosphinic acid and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester The process according to [195] or [196] above.
[198] The process of [195] or [196] above, wherein the extractant is tributyl phosphate.
[199] The process of [195] or [196] above, wherein the extractant is tributyl phosphate in kerosene.
[200] The at least one metal ion is at least one aluminum ion, at least one zinc ion, at least one copper ion, at least one nickel ion, at least one magnesium ion, at least one kind. The process according to any one of [195] to [199], comprising a titanium ion and / or at least one iron ion.
[201] The process according to any one of [195] to [200], wherein the first rare earth element is scandium.
[202] The process of any one of [195] to [201] above, wherein the acidic composition comprises at least one rare metal.
[203] The composition in which the content of the at least one metal ion is decreased is reacted with the precipitant, and as a result, the first rare earth element and the first rare metal are substantially selectively reacted. The process of [202] above, comprising a precipitation step.
[204] The process according to any one of [195] to [203], wherein the first rare metal is gallium.
[205] The precipitant is NaOH, MgO, CaCO 3 And the process according to any one of the above [195] to [204], selected from
[206] The precipitant is CaCO 3 The process according to any one of [195] to [204] above.
[207] The method of any one of [195] to [206], wherein the first rare earth element and optionally the first rare metal are substantially selectively precipitated by maintaining a pH value of less than 2. Process.
[208] The above [195] to [206], wherein the first rare earth element and optionally the first rare metal are substantially selectively precipitated by maintaining the pH at a value of about 1 to about 2. The process according to any one of the above.
[209] Any one of [195] to [206] above, wherein the first rare earth element and optionally the first rare metal are substantially selectively precipitated by maintaining a redox potential of about +380 mV. The process described in the section.
[210] The composition having a reduced content of the at least one metal ion is reacted with the precipitant, and as a result, the first rare earth element and the first contained in the precipitate thus formed. The process according to any one of [195] to [209], including a step of substantially selectively precipitating a rare metal and recovering the precipitate.
[211] The process according to [210], further comprising leaching the precipitate to obtain a leaching solution.
[212] The process of [211] above, wherein the precipitate is leached with HCl.
[213] The said leaching solution is further extracted with an extractant, so that the first rare earth element and the first rare metal are substantially selectively extracted to obtain a loaded organic phase, [211] Or the process according to [212].
[214] The process of [213], wherein the extractant is tributyl phosphate.
[215] The process according to [213] above, wherein the extractant is tributyl phosphate in kerosene.
[216] The process of [213] above, wherein the extractant is tributyl phosphate in kerosene and is in the presence of isodecanol.
[217] Any of the above [214] to [216], further comprising a step of washing the loaded organic phase with a washing solution, and as a result, collecting the first rare earth element to obtain a washed organic phase. The process according to one paragraph.
[218] The process of [217] above, wherein the cleaning solution is an acidic aqueous solution comprising HCl at a concentration of about 2 to about 12 mol / L.
[219] The process of [217] or [218] above, wherein the cleaning solution is used in a ratio of about 1: 1 cleaning solution: loaded organic phase.
[220] The method of any one of [217] to [219], further comprising stripping the washed organic phase with a stripping solution, thereby recovering the first rare metal. process.
[221] The process of [220] above, wherein the stripping solution is water.
[222] The process of [220] or [221] above, wherein the stripping solution is used in a ratio of about 1: 2 stripping solution: loaded organic phase.
[223] The composition having a reduced content of the at least one metal ion is reacted with the precipitating agent, and as a result, the liquid containing at least one further rare earth element, the first rare earth element, and the first The process according to any one of [207] to [222], further comprising the step of obtaining the precipitate containing one rare metal and separating the liquid from the precipitate.
[224] The process of the above [223], further comprising the step of reacting the liquid with another precipitating agent, thereby obtaining another precipitate, and collecting the other precipitate.
[225] The process of [224] above, wherein the liquid is reacted with the another precipitating agent at a pH of about 7.8 to about 8.2.
[226] The process of [224] above, wherein the liquid is reacted with the another precipitating agent at a pH of about 7.9 to about 8.1.
[227] The process of any one of [224] to [226] above, wherein the liquid is reacted with the other precipitating agent by maintaining a redox potential at about +340 mV.
[228] The process of any one of [224] to [226] above, wherein the liquid is reacted with the other precipitating agent by maintaining a redox potential at about +380 mV.
[229] The process of any one of [224] to [228] above, wherein the liquid is reacted with the another precipitating agent by maintaining a temperature of about 50 to about 70 ° C.
[230] The other precipitant is NaOH, MgO, CaCO. 3 And the process according to any one of the above [224] to [229], which is selected from the following:
[231] The precipitant is CaCO 3 The process according to any one of [224] to [229] above.
[232] The process according to any one of [224] to [231], further comprising leaching the another precipitate to obtain a leaching solution containing a second rare earth element.
[233] The process of [232] above, wherein the additional precipitate is leached with HCl.
[234] The leaching solution containing the second rare earth element is extracted with an extractant, so that the second rare earth element is substantially selectively extracted and loaded with the second rare earth element. The process according to [232] or [233], further comprising obtaining an organic phase and an aqueous phase containing at least one light rare earth element.
[235] The process of [234] above, wherein the extractant is di (ethylhexyl) phosphonic acid.
[236] The process according to [234] above, wherein the extractant is di (ethylhexyl) phosphonic acid in kerosene.
[237] The process according to any one of [234] to [236], further including the step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element. .
[238] The method according to [234], further comprising the step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element by treating the loaded organic phase with an acidic cleaning solution. ] To [236].
[239] The process of [238] above, wherein the cleaning solution comprises 1N HCl.
[240] The process according to [238] or [239] above, wherein the third rare earth element is cerium.
[241] A step of treating the loaded organic phase containing the second rare earth element with an acidic stripping solution, resulting in a strip liquid containing the second rare earth element, and collecting the strip liquid. The process according to any one of [238] to [240] above.
[242] The process according to [241], wherein the strip solution contains 3.5N HCl.
[243] Treating the strip solution containing the second rare earth element with an extractant, so that the fourth rare earth element and optionally the fifth rare earth element are substantially selectively extracted from the strip solution. The process according to [241] or [242], further comprising a step of obtaining an extraction residue containing the second rare earth element.
[244] The process according to [243] above, wherein the extractant is tributyl phosphate.
[245] The process of [243] above, wherein the extractant is tributyl phosphate in kerosene.
[246] The process according to any one of [243] to [245], wherein the fourth rare earth element is dysprosium.
[247] The process according to any one of [243] to [245], wherein the fifth rare earth element is erbium.
[248] The organic phase containing the fourth rare earth element and optionally the fifth rare earth element is reacted with a strip solution, so that the fourth (fifth) rare earth element and optionally the fifth rare earth element are reacted. The process according to any one of the above [243] to [247], further comprising a step of obtaining a strip solution comprising:
[249] The process of the above [248], wherein the strip solution is water.
[250] The process according to any one of [234] to [249], wherein the second rare earth element is yttrium.
[251] The leaching solution containing the second rare earth element is extracted with an extractant, and as a result, the second rare earth element is substantially selectively extracted and loaded with the second rare earth element. The process according to [232] or [233] above, wherein an extraction phase containing an organic phase and at least one light rare earth element is obtained.
[252] The process according to [251], wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[253] The process according to [251] or [252], further including the step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element.
[254] The above [251] further comprising the step of at least partially removing the third rare earth element from the loaded organic phase containing the second rare earth element by treating the loaded organic phase with an acidic cleaning solution. ] To [253].
[255] The process of [254] above, wherein the cleaning solution comprises about 1 N to about 2 N HCl.
[256] The above [254] or [256], further comprising a step of treating the loaded organic phase containing the second rare earth element with a stripping solution, thereby obtaining a strip liquid containing the second rare earth element. 255].
[257] The process of [256] above, wherein the stripping solution comprises about 3M to about 4M HCl.
[258] The strip liquid containing the second rare earth element is extracted with an extractant, and as a result, the fourth rare earth element and optionally the fifth rare earth element are taken out, thereby containing the second rare earth element. The process according to [256] or [257] above, wherein the extraction residue and the loaded organic phase comprising the fourth rare earth element and optionally the fifth rare earth element are obtained.
[259] The process of the above [258], wherein the extractant is tributyl phosphate.
[260] The process of the above [258], wherein the extractant is tributyl phosphate in kerosene.
[261] The process according to any one of [258] to [260], including a step of recovering the extraction residue including the second rare earth element.
[262] The process according to any one of [258] to [261], wherein the second rare earth element is yttrium.
[263] The process according to any one of [258] to [262], wherein the fourth rare earth element is dysprosium.
[264] The process according to any one of [258] to [263], wherein the fifth rare earth element is erbium.
[265] A strip containing the fourth rare earth element and the fifth rare earth element is reacted with a stripping solution to result in the strip containing the fourth rare earth element and the fifth rare earth element. The process according to any one of [258] to [264], further comprising a step of obtaining a liquid.
[266] The process of [265] above, wherein the stripping solution is water.
[267] reacting the strip liquid with an extractant, so that the fifth rare earth element is substantially selectively extracted from the strop liquid, thereby containing the fourth rare earth element; The process of [265] or [266], further comprising obtaining a residue and a loaded organic phase comprising the fifth rare earth element.
[268] The process of [267] above, wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[269] Separating the extracted residue from the loaded organic phase containing the fifth rare earth element, treating the loaded organic phase with a wash solution, so that impurities are removed therefrom, and then the loading The process according to [267] or [268], further comprising treating the organic phase with a stripping solution, thereby obtaining a strip solution containing the fifth rare earth element.
[270] The process of [269] above, wherein the wash solution comprises about 2M to about 4M HCl.
[271] The process of [269] or [270] above, wherein the stripping solution comprises about 3M to about 4M HCl.
[272] The process according to any one of [251] to [253], wherein the extraction residue is reacted with an oxidant, and as a result, the third rare earth element is oxidized.
[273] The process of [272] above, wherein the oxidizing agent comprises sodium hypochlorite.
[274] The process of [272] or [273] above, wherein the extraction residue is reacted with an oxidizing agent at a pH of about 0.5 to about 1.5.
[275] The method according to any one of [272] to [274], further comprising a step of removing the oxidized third rare earth element in the form of a precipitate from the extraction residue, thereby obtaining a filtrate containing the sixth rare earth element. The process according to any one of the above.
[276] reacting the filtrate with an extractant, so that the sixth rare earth element is substantially selectively extracted from the filtrate, thereby loading the loaded organic phase containing the sixth rare earth element and Further comprising the step of obtaining another extraction residue comprising 7 rare earth elements and an eighth rare earth element and separating the loaded organic phase comprising the sixth rare earth element from the extraction residue. The process according to [275].
[277] The process according to [276] above, wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[278] Treating the loaded organic phase with a wash solution, so that impurities are removed therefrom, and then treating the loaded organic phase with a stripping solution, thereby including the sixth rare earth element The process according to [276] or [277] above, further comprising a step of obtaining a strip solution.
[279] The process of [278] above, wherein the cleaning solution comprises about 0.5 M to about 1.5 M HCl.
[280] The process of [278] or [279] above, wherein the stripping solution comprises about 2M to about 3M HCl.
[281] The process according to any one of [276] to [280], wherein the sixth rare earth element is europium.
[282] The process according to any one of [276] to [281], wherein the seventh rare earth element is praseodymium.
[283] The process according to any one of [276] to [282], wherein the eighth (eigth) rare earth element is neodymium.
[284] The process according to any one of [276] to [283], further including a step of reducing the sixth rare earth element with a reducing agent.
[285] The process according to [284], wherein the reducing agent is zinc (0).
[286] The above [276] to [285], further comprising the step of reacting the sixth rare earth element with sodium sulfate, thereby obtaining the sulfate derivative in the form of a precipitate and recovering the precipitate. The process according to any one of the above.
[287] The extraction residue containing the seventh rare earth element and the eighth (eight) rare earth element is reacted with an extractant, so that the eighth (eight) rare earth element is removed from the extraction residue. Extracting substantially selectively, thereby obtaining a loaded organic phase containing the eighth (eight) rare earth element and an extraction residue containing the seventh rare earth element, and the eighth (eight) rare earth element. The process according to any one of [276] to [285], further comprising separating the loaded organic phase comprising: from the extraction residue.
[288] The process of [287] above, wherein the extractant is di (ethylhexyl) phosphonic acid or di- (2-ethylhexyl) phosphoric acid.
[289] Treating the loaded organic phase with a washing solution, so that impurities are removed therefrom, and then treating the loaded organic phase with a stripping solution, so that the eighth rare earth The process according to [287] or [288], further including a step of obtaining a strip solution containing an element.
[290] The process of [289] above, wherein the cleaning solution comprises about 2M to about 3M HCl.
[291] The process of [289] or [290] above, wherein the stripping solution comprises about 3M to about 4M HCl.
[292] The above [195] to [291], wherein the at least one metal ion is an ion of a metal selected from aluminum, iron, zinc, copper, nickel, magnesium and titanium. process.
[293] The process according to any one of [195] to [292], further including a step of pretreating or treating the acidic composition with an ion exchange resin and, as a result, removing impurities.
[294] Prior to extracting at least one rare earth element and optionally at least one rare metal from the acidic composition, the acidic composition is treated with an ion exchange resin so that impurities are at least partially removed therefrom. [195] The process according to any one of [195] to [293], further including a step of taking out.
[295] Treating the at least one rare earth element and optionally the at least one rare metal extracted by the process with a plasma torch, so that the at least one rare earth element and optionally the at least one rare metal. The process according to any one of [195] to [294], further including a step of further purifying the rare metal.
According to one aspect, a process for recovering at least one rare earth element comprising:
(I) obtaining an acidic composition comprising at least one rare earth element and optionally at least one rare metal;
Reacting the composition with a precipitating agent, thereby substantially selectively precipitating the first rare earth element and optionally the first rare metal;
A process is provided.
Claims (15)
(i)少なくとも1種の希土類元素及び場合によって少なくとも1種のレアメタル並びに(ii)少なくとも1種の鉄イオンを含む酸性組成物を得る工程と;
抽出剤、イオン交換(echange)樹脂によって及び/又は前記組成物を還元剤と反応させることによって前記酸性組成物から前記少なくとも1種の鉄イオンを少なくとも部分的に取り出し、それによって前記少なくとも1種の鉄イオンの含有率が低下した組成物を得る工程と;
前記少なくとも1種の鉄イオンの含有率が低下した前記組成物を沈殿剤と反応させ、その結果、そのように形成された沈殿物中に含まれる第1の希土類元素及び場合によって第1のレアメタルを実質的に選択的に沈殿させる工程と;
前記沈殿物を回収する工程と
を含むプロセス。 A process for recovering at least one rare earth element,
(I) obtaining an acidic composition comprising at least one rare earth element and optionally at least one rare metal and (ii) at least one iron ion;
The at least one iron ion is at least partially removed from the acidic composition by an extractant, ion exchange resin and / or by reacting the composition with a reducing agent, thereby providing the at least one type of at least one Obtaining a composition having a reduced content of iron ions;
Reacting the composition having a reduced content of the at least one iron ion with a precipitant, so that the first rare earth element and optionally the first rare metal contained in the precipitate so formed Substantially selectively precipitating ; and
Recovering the precipitate .
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CA2012/000253 WO2012126092A1 (en) | 2011-03-18 | 2012-03-19 | Processes for recovering rare earth elements from aluminum-bearing materials |
CAPCT/CA2012/000253 | 2012-03-19 | ||
PCT/CA2012/000419 WO2012149642A1 (en) | 2011-05-04 | 2012-05-03 | Processes for recovering rare earth elements from various ores |
CAPCT/CA2012/000419 | 2012-05-03 | ||
US201261703219P | 2012-09-19 | 2012-09-19 | |
US61/703,219 | 2012-09-19 | ||
US201261705807P | 2012-09-26 | 2012-09-26 | |
US61/705,807 | 2012-09-26 | ||
PCT/CA2013/000226 WO2013138900A1 (en) | 2012-03-19 | 2013-03-13 | Processes for recovering rare earth elements and rare metals |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015516507A JP2015516507A (en) | 2015-06-11 |
JP2015516507A5 true JP2015516507A5 (en) | 2016-04-28 |
Family
ID=49221738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015500721A Pending JP2015516507A (en) | 2012-03-19 | 2013-03-13 | Process for recovering rare earth elements and rare metals |
Country Status (7)
Country | Link |
---|---|
US (1) | US20150104361A1 (en) |
EP (1) | EP2828415A4 (en) |
JP (1) | JP2015516507A (en) |
CN (1) | CN104603303A (en) |
AU (1) | AU2013203668A1 (en) |
RU (1) | RU2595178C2 (en) |
WO (1) | WO2013138900A1 (en) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2686458A4 (en) | 2011-03-18 | 2015-04-15 | Orbite Aluminae Inc | Processes for recovering rare earth elements from aluminum-bearing materials |
EP3141621A1 (en) | 2011-05-04 | 2017-03-15 | Orbite Aluminae Inc. | Processes for recovering rare earth elements from various ores |
CA2848751C (en) | 2011-09-16 | 2020-04-21 | Orbite Aluminae Inc. | Processes for preparing alumina and various other products |
BR112014016732A8 (en) | 2012-01-10 | 2017-07-04 | Orbite Aluminae Inc | processes for treating red mud |
CN105189357A (en) | 2012-11-14 | 2015-12-23 | 奥佰特氧化铝有限公司 | Methods for purifying aluminium ions |
KR101336627B1 (en) * | 2013-05-28 | 2013-12-03 | 한국지질자원연구원 | Device for electrowinning europium with channelled cell, and method thereof |
CZ305491B6 (en) * | 2013-12-19 | 2015-10-29 | Vysoká škola chemicko-technologická v Praze | Concentrating separation of indium and gallium from solutions containing copper by precipitation with oxalic acid |
CN103924079A (en) * | 2014-03-18 | 2014-07-16 | 包头稀土研究院 | Method for increasing organic saponification degree and improving extraction separation factor for samarium and zinc in ammonium chloride system |
CN103924078B (en) * | 2014-03-18 | 2016-08-17 | 包头稀土研究院 | Feed liquid is added ammonium chloride and improves samarium and the method for zinc extract and separate factor |
CN103924080B (en) * | 2014-03-18 | 2016-09-28 | 包头稀土研究院 | Raising samarium and zinc method of extract and separate factor in ammonium chloride system are compared in a kind of increase |
CN104046803A (en) * | 2014-06-04 | 2014-09-17 | 吉林吉恩镍业股份有限公司 | Method for recovering scandium from scandium-containing material in ore pulp extraction mode |
US9725788B2 (en) * | 2014-07-21 | 2017-08-08 | Iowa State University Research Foundation, Inc. | Recovering heavy rare earth metals from magnet scrap |
US11345977B2 (en) * | 2014-10-10 | 2022-05-31 | Rare Element Resources Ltd. | Processing for the extraction of rare earth elements |
AR100672A1 (en) | 2015-01-27 | 2016-10-26 | Reed Advanced Mat Pty Ltd | PROCESSING MATERIAL CONTAINING LITHIUM INCLUDING HCl INJECTION |
RU2582404C1 (en) * | 2015-02-06 | 2016-04-27 | Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) | Method of cleaning scandium from zirconium, thorium and iron |
RU2603418C1 (en) * | 2015-07-24 | 2016-11-27 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Method of extracting scandium and rare-earth elements from red mud |
CN105177322A (en) * | 2015-09-07 | 2015-12-23 | 中国科学院上海有机化学研究所 | Extracting agent, extraction system and application |
US10047414B2 (en) | 2016-02-11 | 2018-08-14 | Bloom Energy Corporation | Method of refining of scandium oxide from concentrates using solvent extraction |
KR102045523B1 (en) * | 2016-11-09 | 2019-11-18 | 주식회사 엘지화학 | Process for purifiying waste hydrochloric acid |
RU2674717C2 (en) * | 2016-11-28 | 2018-12-12 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Method of producing scandium concentrate from scandium-bearing solution |
KR20200059192A (en) * | 2017-06-08 | 2020-05-28 | 어반 마이닝 피티와이 엘티디 | How to recover lithium |
CN107419098A (en) * | 2017-08-25 | 2017-12-01 | 广东省稀有金属研究所 | A kind of method of extracting rare-earth in sulphuric leachate from Ree-phospeate Minerals |
US10988828B2 (en) * | 2017-11-21 | 2021-04-27 | Scandium Intrenational Mining Corporation | Extraction of scandium values from copper leach solutions |
US10651479B2 (en) | 2018-02-05 | 2020-05-12 | Bloom Energy Corporation | Method of recovering metal compounds from solid oxide fuel cell scrap |
RU2689347C1 (en) * | 2018-05-31 | 2019-05-27 | Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) | Method of sorption extraction of rare elements from aqueous solutions |
CN109499625B (en) * | 2018-11-06 | 2021-09-28 | 长春黄金研究院有限公司 | High-efficiency elution method for gold-loaded resin |
RU2694866C1 (en) * | 2019-02-18 | 2019-07-17 | Акционерное Общество "Группа компаний "Русредмет" (АО "ГК "Русредмет") | Method of extracting scandium from scandium-containing material |
CN110004292B (en) * | 2019-04-19 | 2020-12-29 | 湖南雅城新材料有限公司 | Process for purifying waste manganese sulfate solution to reduce content of calcium and magnesium |
US20220340997A1 (en) | 2019-07-17 | 2022-10-27 | West Virginia University | Systems and processes for recovery of high-grade rare earth concentrate from acid mine drainage |
US10954582B2 (en) * | 2019-07-17 | 2021-03-23 | West Virginia University | Systems and processes for recovery of high-grade rare earth concentrate from acid mine drainage |
US11673812B2 (en) | 2019-08-15 | 2023-06-13 | Scandium International Mining Corporation | Countercurrent process for recovering high purity copper sulfate values from low grade ores |
JP7486842B2 (en) * | 2019-08-28 | 2024-05-20 | エヌナインヴィイー-ネイチャー,オーシャン アンド ヴァリュー,エルディーエー | Method and system for recovering rare earth elements and/or lithium from marine macroalgae |
RU2727129C1 (en) * | 2020-01-10 | 2020-07-20 | Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) | Method of extracting a rare-earth concentrate |
US11821057B2 (en) | 2020-03-06 | 2023-11-21 | Scandium Internatlonal Mlning Corporatlon | Recovery of critical metals from SX-EW copper raffinate and other solutions derived from leaching ores with sulfuric acid |
JP7469942B2 (en) * | 2020-03-31 | 2024-04-17 | Jx金属株式会社 | How to make scandium chloride |
US11814299B2 (en) * | 2020-05-11 | 2023-11-14 | University Of Wyoming | Method for separation of rare earth elements from coal ash using supercritical carbon dioxide |
CA3188559A1 (en) * | 2020-07-01 | 2022-01-06 | Yeda Research And Development Co. Ltd. | Recovery of rare earth metals from ferromagnetic alloys |
CN111778413B (en) * | 2020-07-03 | 2022-05-20 | 神华准能资源综合开发有限公司 | Method for extracting gallium from fly ash based on resin method |
WO2022010998A1 (en) * | 2020-07-09 | 2022-01-13 | Washington University | Supercritical fluid -enhanced selective extraction of rare earth elements |
CN114150167B (en) * | 2020-09-08 | 2024-08-13 | 中国科学院过程工程研究所 | Method for non-soap rare earth extraction separation by membrane process reinforcement |
US20240076761A1 (en) * | 2021-01-29 | 2024-03-07 | Georgia State University Research Foundation | Identifying and extracting rare earth elements from mining operations |
CN113860278B (en) * | 2021-10-21 | 2023-08-01 | 湖北云翔聚能新能源科技有限公司 | Method for preparing battery-grade ferric phosphate by taking high-iron Bayer process red mud as iron source |
EP4198152A1 (en) * | 2021-12-17 | 2023-06-21 | Universitat Politècnica De Catalunya | Recovery of rare earth elements from acidic mine water |
WO2023220072A1 (en) * | 2022-05-09 | 2023-11-16 | West Virginia University Board of Governors on behalf of West Virginia University | Systems and methods to extract critical minerals from pre-concentrates prepared from acid mine drainage |
CN115722201B (en) * | 2022-11-08 | 2024-03-29 | 中国科学院上海高等研究院 | Yttrium-europium-zirconium-based composite magnetic adsorption material for removing organic phosphine in water, preparation method and application thereof |
CN115584397B (en) * | 2022-11-24 | 2023-03-24 | 中自环保科技股份有限公司 | Method for recovering lithium, lanthanum, zirconium, titanium and oxygen in lithium ion semi-solid battery |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2722471A (en) * | 1952-10-30 | 1955-11-01 | Molybdenum Corp | Method for the separation of rare earths |
US2815264A (en) * | 1953-10-09 | 1957-12-03 | George D Calkins | Processing of monazite sand |
US3540860A (en) * | 1967-09-13 | 1970-11-17 | Multi Minerals Ltd | Acid regeneration |
US4193968A (en) * | 1978-10-03 | 1980-03-18 | The Anaconda Company | Process for recovering gallium |
JPS6283433A (en) * | 1985-10-08 | 1987-04-16 | Santoku Kinzoku Kogyo Kk | Method for separating rare earth element from alloy containing rare earth element |
JPS634028A (en) * | 1986-06-23 | 1988-01-09 | Sumitomo Metal Mining Co Ltd | Treatment for scrap containing rare earth element and iron |
KR920007040B1 (en) * | 1988-09-14 | 1992-08-24 | 미쓰이세끼유 가가꾸 고오교오 가부시끼가이샤 | Polymerizing catalyst of olefins and process for the preparation of olefin polimerization |
RU2057196C1 (en) * | 1993-08-03 | 1996-03-27 | Институт химии твердого тела Уральского Отделения РАН | Yttrium extraction method |
JP3085173B2 (en) * | 1995-11-22 | 2000-09-04 | 大平洋金属株式会社 | Concentration separation and recovery method of rare earth metal from oxidized ore |
US5787332A (en) * | 1996-09-26 | 1998-07-28 | Fansteel Inc. | Process for recovering tantalum and/or niobium compounds from composites containing a variety of metal compounds |
US6377049B1 (en) * | 1999-02-12 | 2002-04-23 | General Electric Company | Residuum rare earth magnet |
RU2183225C1 (en) * | 2001-02-05 | 2002-06-10 | Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра РАН | Method of processing eudialyte concentrate |
AU2008253545B2 (en) * | 2007-05-21 | 2012-04-12 | Orbite Aluminae Inc. | Processes for extracting aluminum and iron from aluminous ores |
CN101781719B (en) * | 2010-04-09 | 2011-05-04 | 中国科学院长春应用化学研究所 | Method for recovering rare earth from oil shale waste slag |
EP2686458A4 (en) * | 2011-03-18 | 2015-04-15 | Orbite Aluminae Inc | Processes for recovering rare earth elements from aluminum-bearing materials |
-
2013
- 2013-03-13 WO PCT/CA2013/000226 patent/WO2013138900A1/en active Application Filing
- 2013-03-13 CN CN201380026281.1A patent/CN104603303A/en active Pending
- 2013-03-13 JP JP2015500721A patent/JP2015516507A/en active Pending
- 2013-03-13 RU RU2014141795/02A patent/RU2595178C2/en not_active IP Right Cessation
- 2013-03-13 AU AU2013203668A patent/AU2013203668A1/en not_active Abandoned
- 2013-03-13 US US14/386,133 patent/US20150104361A1/en not_active Abandoned
- 2013-03-13 EP EP13764060.3A patent/EP2828415A4/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015516507A5 (en) | ||
RU2014141795A (en) | METHOD FOR RARE-EARTH ELEMENTS AND RARE METAL EXTRACTION | |
El-Nadi | Lanthanum and neodymium from Egyptian monazite: Synergistic extractive separation using organophosphorus reagents | |
Yoon et al. | Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: Waste recycling strategies for permanent magnet processing | |
Li et al. | Direct solvent extraction of indium from a zinc residue reductive leach solution by D2EHPA | |
RU2588960C2 (en) | Methods of extracting rare-earth elements from aluminium-containing materials | |
Parhi et al. | Liquid-liquid extraction and separation of total rare earth (RE) metals from polymetallic manganese nodule leaching solution | |
Ma et al. | Separation of V (IV) and Fe (III) from the acid leach solution of stone coal by D2EHPA/TBP | |
Rabie | A group separation and purification of Sm, Eu and Gd from Egyptian beach monazite mineral using solvent extraction | |
EP2964794B1 (en) | A method for re-extraction of rare-earth metals from organic solutions and preparing concentrate of rare-earth metals | |
JP2015212423A (en) | Extraction and separation method of light rare earth element | |
US10494697B2 (en) | Method of refining of scandium oxide from concentrates using solvent extraction | |
Lupi et al. | In (III) hydrometallurgical recovery from secondary materials by solvent extraction | |
CN104245973A (en) | Process for extraction of rare earth elements | |
RU2013153535A (en) | METHODS FOR RARE EARTH EXTRACTION FROM VARIOUS ORE | |
JP5499353B2 (en) | Extraction and separation method of rare earth elements | |
JPWO2013085052A1 (en) | Recovery method of rare earth elements | |
JP6650443B2 (en) | Method for the selective recovery of rare earth metals present in an acidic aqueous phase resulting from the treatment of used or discarded permanent magnets | |
JP4723629B2 (en) | Silver recovery method using anion exchange resin | |
WO2013128830A1 (en) | Metal recovery process | |
Sun et al. | Separation of neodymium and dysprosium from nitrate solutions by solvent extraction with Cyanex272 | |
JP5299914B2 (en) | Extraction and separation method of rare earth elements | |
Salman et al. | A selective hydrometallurgical method for scandium recovery from a real red mud leachate: a comparative study | |
RU2610500C1 (en) | Method for zinc sulphate solutions cleaning from chloride ion | |
RU2540257C1 (en) | Cobalt and nickel separation method |