JP2015506696A - ShRNA that suppresses TGF-β2 expression - Google Patents

ShRNA that suppresses TGF-β2 expression Download PDF

Info

Publication number
JP2015506696A
JP2015506696A JP2014555484A JP2014555484A JP2015506696A JP 2015506696 A JP2015506696 A JP 2015506696A JP 2014555484 A JP2014555484 A JP 2014555484A JP 2014555484 A JP2014555484 A JP 2014555484A JP 2015506696 A JP2015506696 A JP 2015506696A
Authority
JP
Japan
Prior art keywords
shrna
tgf
adenovirus
seq
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014555484A
Other languages
Japanese (ja)
Inventor
ジェ・ジン・ソン
ジョ・ハン・キム
セ・ウン・オー
Original Assignee
インダストリー−アカデミック・コーポレーション・ファウンデーション・ヨンセイ・ユニヴァーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インダストリー−アカデミック・コーポレーション・ファウンデーション・ヨンセイ・ユニヴァーシティ filed Critical インダストリー−アカデミック・コーポレーション・ファウンデーション・ヨンセイ・ユニヴァーシティ
Priority claimed from PCT/KR2013/000791 external-priority patent/WO2013115579A1/en
Publication of JP2015506696A publication Critical patent/JP2015506696A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、TGF−β2発現を抑制するshRNAに関する。本発明によれば、TGF−β2発現を抑制するshRNAを用いた抗腫瘍組成物を提供することができる。The present invention relates to a shRNA that suppresses TGF-β2 expression. According to the present invention, an antitumor composition using shRNA that suppresses TGF-β2 expression can be provided.

Description

本発明は、TGF−β2発現を抑制するshRNA及びこれを含む抗腫瘍組成物に関する。   The present invention relates to an shRNA that suppresses TGF-β2 expression and an antitumor composition comprising the same.

TGF−β2は、TGF−β1と同様に、細胞毒性T細胞、ナチュラルキラー細胞、そしてマクロファージなどの増殖と分化を抑制してますます大きくなる腫瘍に対する免疫応答を阻害するだけでなく、多機能の分泌タンパク質で細胞の形態(type)と時期によって増殖抑制、複製、浸潤、転移、細胞死滅、免疫応答、そして血管生成など多様な役割を行うだけでなく、TGF−β1のように、TGF−β2も信号経路を非活性化させるか、あるいは細胞周期の非正常的な調節などに起因して、TGF−β2による増殖抑制作用に抵抗性を生じる腫瘍が進行(progression)する後期に至ると、TGF−β2は腫瘍をさらに発展させる役割をすることになる。よって、人体の免疫体系を克服して増殖した腫瘍細胞はTGF−β2を分泌することで、免疫監視から自由であり同時に増殖と浸潤転移及び血管生成にプラス要因として作用することになる。TGF−β2がTGF−β1とは明白に異なった作用をする点は以下である。TGF−β2がFoxp3を誘導して免疫抑制誘導を著しく進行させるとのことと、腫瘍の転移、新生血管形成、そして増殖などにも影響を及ぼして悪性としての腫瘍進行を誘導することである。   Similar to TGF-β1, TGF-β2 not only inhibits the immune response to increasingly large tumors by suppressing the proliferation and differentiation of cytotoxic T cells, natural killer cells, macrophages, etc. It is a secreted protein that not only plays various roles such as growth inhibition, replication, invasion, metastasis, cell death, immune response, and angiogenesis depending on the cell type and timing, but also TGF-β2 like TGF-β1. When TGF-β2 progresses to the later stage of progression, the TGF-β2 is resistant to growth inhibition due to inactivation of the signal pathway or abnormal regulation of the cell cycle. -Β2 will play a role in further developing the tumor. Thus, tumor cells that have proliferated over the human immune system secrete TGF-β2, thereby being free from immune surveillance and at the same time acting as a positive factor on proliferation, invasion metastasis, and blood vessel formation. The point that TGF-β2 acts clearly different from TGF-β1 is as follows. TGF-β2 induces Foxp3 to significantly promote immunosuppression, and also affects tumor metastasis, neovascularization, proliferation, etc., and induces tumor progression as malignant.

TGF−β2に係る先行研究である、非特許文献1には、人間TGF−β2のコーディング配列に対する合成18−merホスホチオエートアンチセンスオリゴヌクレオチド(phosphothioate antisense oligonucleotide)を用い、腫瘍の免疫抑制除去、腫瘍の大きさ減少、リンパ節への転移及び血管形成減少などが観察されたが、その効果は不十分であった。   Non-patent document 1, which is a prior study on TGF-β2, uses a synthetic 18-mer phosphothioate antisense oligonucleotide against the coding sequence of human TGF-β2 to remove tumor immunosuppression, Although tumor size reduction, lymph node metastasis, and angiogenesis reduction were observed, the effects were insufficient.

非特許文献2には、murineのTGF−β2に対するshRNAを、TGCTGTTGACAGTGAGCGCGGTGTATAAATCGAGACCAAATTAGTGTGAAGCCACAGATGTATTTGGTCTCGATTTATACACCTTGCCCCTACTGCCTCGGA(target)で製作し、さらにTGF−β2 shRNAを生成するレンチウイルス(lentivirus)を製作したが、レンチウイルスが染色体にインテグレーション(integration)して癌がなくなった後にも正常細胞には引き続き伝達される副作用が大きな問題となった。   Non-patent document 2 describes murine TGF-β2 shRNA, TGCTGTTGAGAGTGAGCGCGGTGTATAAATCGAGACCAAATTTAGGTGTGAAGCCACGAGTGTATTTGGTCCTCGATTTATACACCTTGCCCCTACTGTCTCTGGA ) Side effects that continue to be transmitted to normal cells after cancer disappeared.

Schlingensiepen et al、 Transforming growth factor-beta2 gene silencing with trabedersen(AP 12009) in pancreatic cancer、 Cancer Sci 102: 1193-1200、2011.Schlingensiepen et al, Transforming growth factor-beta2 gene silencing with trabedersen (AP 12009) in pancreatic cancer, Cancer Sci 102: 1193-1200, 2011. Chenyu Zhanget al、 Transforming growth factor-β2 is a molecular determinant for site-specific melanoma metastasis in the brain、 Cancer Res.2009 February 1;69(3):828-35.Chenyu Zhanget al, Transforming growth factor-β2 is a molecular determinant for site-specific melanoma metastasis in the brain, Cancer Res. 2009 February 1; 69 (3): 828-35.

そこで、本発明者は、上記のような問題点を解決するために研究努力した結果、人間TGF−β2またはマウスTGF−β2の沈黙(silencing)を効果的に誘導するターゲットを選定してshRNAを製作し、これをアデノウイルスに搭載させて既存の非ウイルス性製剤によるshRNAの伝達能力を画期的に改善させることで、本発明が完成された。   Therefore, as a result of research efforts to solve the above problems, the present inventor selected a target that effectively induces silencing of human TGF-β2 or mouse TGF-β2 and selected shRNA. The present invention was completed by producing and mounting it on an adenovirus to dramatically improve the shRNA transmission ability of existing non-viral preparations.

したがって、本発明は、配列番号1または2と表される塩基配列を標的配列とし、TGF−β2発現を抑制するshRNAを提供することにその目的がある。   Therefore, an object of the present invention is to provide an shRNA that suppresses TGF-β2 expression using the base sequence represented by SEQ ID NO: 1 or 2 as a target sequence.

本発明は、また、前記shRNAを有効成分として含む抗腫瘍組成物を提供することに他の目的がある。   Another object of the present invention is to provide an antitumor composition comprising the shRNA as an active ingredient.

本発明は、また、前記shRNA発現する組換え発現ベクターを提供することにさらに他の目的がある。   Another object of the present invention is to provide a recombinant expression vector for expressing the shRNA.

本発明は、また、前記組換え発現ベクターを有効成分とする抗腫瘍組成物を提供することにさらに他の目的がある。   Another object of the present invention is to provide an antitumor composition comprising the recombinant expression vector as an active ingredient.

本発明は、また、前記組換え発現ベクターが導入されたアデノウイルスを提供することにさらに他の目的がある。   Another object of the present invention is to provide an adenovirus into which the recombinant expression vector has been introduced.

本発明は、前記課題を解決するための手段として、配列番号1または2に表される塩基配列を標的配列とし、TGF−β2発現を抑制するshRNAを提供する。   The present invention provides a shRNA that suppresses the expression of TGF-β2 using the base sequence represented by SEQ ID NO: 1 or 2 as a target sequence as means for solving the above-mentioned problems.

本発明は、前記課題を解決するための他の手段として、前記shRNAを有効成分で含む抗腫瘍組成物を提供する。   The present invention provides an antitumor composition comprising the shRNA as an active ingredient as another means for solving the above-mentioned problems.

本発明は、前記課題を解決するためのさらに他の手段として、前記shRNA発現用の組換え発現ベクターを提供する。   The present invention provides the recombinant expression vector for shRNA expression as still another means for solving the above-mentioned problems.

本発明は、前記課題を解決するためのさらに他の手段として、前記組換え発現ベクターを有効成分として含む抗腫瘍組成物を提供する。   The present invention provides an antitumor composition comprising the recombinant expression vector as an active ingredient as yet another means for solving the above-mentioned problems.

本発明は、前記課題を解決するためのさらに他の手段として、前記組換え発現ベクターが導入されたアデノウイルスを提供する。   The present invention provides an adenovirus into which the recombinant expression vector has been introduced, as yet another means for solving the above problems.

本発明は、TGF−β2発現を抑制する新たなshRNAを製作し、遺伝子伝達体としてアデノウイルスを使用して感染率を増加させることで、従来技術と比較して特異性、伝達能及び発現抑制能を大きく向上させた。   The present invention produces a new shRNA that suppresses TGF-β2 expression and uses adenovirus as a gene carrier to increase the infection rate, thereby reducing specificity, transmission ability and expression suppression compared to the prior art. Greatly improved performance.

すなわち、本発明により、TGF−β2発現を抑制するshRNAを含む抗腫瘍組成物が提供される。特に、大部分の癌細胞において伝達効率性が優れたアデノウイルスに標的性を付与することで、すべての癌に適用可能である。   That is, according to the present invention, an antitumor composition comprising shRNA that suppresses TGF-β2 expression is provided. In particular, it can be applied to all cancers by imparting targeting to adenoviruses with excellent transmission efficiency in most cancer cells.

E3シャトルベクターであるpSP72ΔE3/si−negativeベクターを示す図である。It is a figure which shows pSP72 (DELTA) E3 / si-negative vector which is an E3 shuttle vector. TGF−β2 shRNAが、シャトルベクターでサブクローニング(subcloning)された後に、アデノウイルスバックボーンであるdl324と相同組換えする過程の模式図である。It is a schematic diagram of a process in which TGF-β2 shRNA undergoes homologous recombination with dl324, which is an adenovirus backbone, after subcloning with a shuttle vector. 実際に、組換えが容易なバクテリアから相同組換えされたコロニーの選択のために、(a)はアデノウイルスのE3部位のPCR結果を示すものであり、(b)はアデノウイルスのIX遺伝子部位のPCR結果を示すものであり、(c)は相同組換えされたアデノウイルスゲノム(genomic)DNAのトランスフェクション(transfection)可能可否を確認するPacI切断後の断片(fragment)DNAが出現する結果を示すものである。Actually, for selection of colonies homologously recombined from bacteria that can be easily recombined, (a) shows the PCR results of the E3 site of adenovirus, and (b) shows the IX gene site of adenovirus. (C) shows the result of the appearance of fragment DNA after cleavage of PacI confirming the feasibility of transfection of homologously recombined adenovirus genomic DNA. It is shown. HindIII切断パターン(digestion pattern)で最終組換えされたコロニーを選択確認したものである。The colony finally recombined with the HindIII cleavage pattern (selection pattern) was selected and confirmed. 図4の選択されたコロニーがshRNA hTGF−β2塩基配列を有しているか否かを配列分析で確認した結果である。It is the result of having confirmed by sequence analysis whether the selected colony of FIG. 4 has shRNA hTGF- (beta) 2 base sequence. 実施例2の人間TGF−β2 shRNAを発現するアデノウイルスによるTGF−β2発現抑制能をリアルタイム−PCRで確認したものである。The ability to suppress TGF-β2 expression by adenovirus expressing human TGF-β2 shRNA of Example 2 was confirmed by real-time PCR. 実施例2のマウスTGF−β2 shRNAを発現するアデノウイルスによるTGF−β2発現抑制能をリアルタイム−PCRで確認したものである。The ability to suppress TGF-β2 expression by adenovirus expressing mouse TGF-β2 shRNA of Example 2 was confirmed by real-time PCR. 実施例2のマウスTGF−β2 shRNAを発現するシャトルベクターによるTGF−β2発現抑制能をリアルタイム−PCRで確認したものである。The ability to suppress TGF-β2 expression by the shuttle vector expressing mouse TGF-β2 shRNA of Example 2 was confirmed by real-time PCR. 実施例2の人間TGF−β2 shRNAを発現するアデノウイルスによるTGF−β2発現抑制能をELISAで確認したものである。The ability to suppress TGF-β2 expression by adenovirus expressing human TGF-β2 shRNA of Example 2 was confirmed by ELISA. pBSKII−3484ベクター(a)、pCA14−3484ベクター(b)、pCA14−CMV−3484ベクター(c)、及びpCA14−CMV−3484−ΔE1B55ベクター(d)を示すものである。pBSKII-3484 vector (a), pCA14-3484 vector (b), pCA14-CMV-3484 vector (c), and pCA14-CMV-3484-ΔE1B55 vector (d) are shown. dl324アデノウイルスからdl324−CMV−3484−shTGF−β2アデノウイルスを製作する過程を示す模式図である。It is a schematic diagram which shows the process of producing dl324-CMV-3484-shTGF- (beta) 2 adenovirus from dl324 adenovirus. マウスshTGF−β2が含まれた相同組換え過程を示すものであって、E3スクリーニングで相同組換えされたコロニーを選択確認し(a)、HindIII切断パターンによる相同組換えされたクローン(1、2、4)を選択確認し(b)、前記クローン1、2、4のDNAをPacIで切断した場合、クローン1だけがまともに相同組換えされたことを確認(c)したものである[C:対照群、dl324−△E3−sh−mTGFβ2、S:シャトルベクターpCA14−CMV−3484−△E1B55、1〜6:相同組換えされたコロニー]。This shows a homologous recombination process including mouse shTGF-β2, and a colony homologously recombined by E3 screening is selected and confirmed (a), and a clone homologously recombined by HindIII cleavage pattern (1, 2 4) is selected and confirmed (b), and when the DNAs of the clones 1, 2, and 4 are cleaved with PacI, it is confirmed that only clone 1 has been homologously recombined (c) [C] : Control group, dl324-ΔE3-sh-mTGFβ2, S: shuttle vector pCA14-CMV-3484-ΔE1B55, 1-6: homologous recombination colonies]. 人間shTGF−β2が含まれた相同組換え過程を示すものであって、HindIII切断パターン(digestionpattern)で相同組換えされたコロニーを選択確認(a)、PacI切断後に相同組換えされたコロニーを最終選択確認(b)したものである[C:対照群、dl324−△E3−sh−mTGFβ2、1〜3:相同組換えされたコロニー]。This shows a homologous recombination process including human shTGF-β2, and a colony that has been homologously recombined with HindIII cleavage pattern (digestion pattern) is selected and confirmed (a). The selection was confirmed (b) [C: control group, dl324-ΔE3-sh-mTGFβ2, 1-3: homologous recombination colonies]. 実施例4の腫瘍選択的複製可能アデノウイルスの癌細胞から細胞溶血を確認したものである。Cell hemolysis was confirmed from the cancer cells of the tumor-selective replicable adenovirus of Example 4. 人間TGF−β2 shRNAを発現するアデノウイルスと人間TGF−β1 shRNAを発現するアデノウイルスによるhTGF−β1、2、3発現抑制能をリアルタイム−PCR結果として比較したものである。This is a comparison of the ability of hTGF-β1, 2, 3 expression suppression by adenovirus expressing human TGF-β2 shRNA and adenovirus expressing human TGF-β1 shRNA as real-time PCR results. 人間TGF−β2 shRNAを発現するアデノウイルスと人間TGF−β1 shRNAを発現するアデノウイルスによるTGF−β1、2、3発現抑制能をELISA結果として比較したものである。FIG. 2 compares the TGF-β1, 2, 3 expression inhibitory ability of adenovirus expressing human TGF-β2 shRNA and adenovirus expressing human TGF-β1 shRNA as ELISA results.

RNA干渉(RNA interference、RNAi)は、標的遺伝子の発現を選択的に抑制する天然のメカニズムである。配列特異的なmRNA分解の媒介者は、より長いdsRNAからリボヌクレアーゼIIIの切断により生産された19〜23ヌクレオチドの小さな干渉RNAである。細胞質のRISC(RNA−induced silencing complex)はsiRNAに結合し、そのsiRNAのうち、1本鎖に相補的な配列を含むmRNAの分解を指示する。哺乳動物においてRNA干渉の適用は、治療遺伝子沈黙(silencing)の効能を有する。siRNAの長所を有しながらも、siRNAは試験管内で製造しなければならなく、ノックダウン遺伝子を、通常的に6〜10日間一時的形質感染によって伝達されるべきであるとのことから臨床適用に制限を有する。本発明に係るshRNA(small−hairpin RNA)発現システムが上記のような短所を解決することができる。   RNA interference (RNAi) is a natural mechanism that selectively suppresses the expression of target genes. A mediator of sequence-specific mRNA degradation is a small interfering RNA of 19-23 nucleotides produced by cleavage of ribonuclease III from a longer dsRNA. Cytoplasmic RISC (RNA-induced silencing complex) binds to siRNA and directs degradation of mRNA containing a sequence complementary to a single strand of the siRNA. Application of RNA interference in mammals has the effect of therapeutic gene silencing. While having the advantages of siRNA, siRNA must be produced in vitro and the knockdown gene should normally be transmitted by transient trait infection for 6-10 days for clinical application Have a limit. The shRNA (small-hairpin RNA) expression system according to the present invention can solve the above disadvantages.

shRNAは、1本鎖のRNAにおいて部分的に回文状の塩基配列を含むことで、分子内で2本鎖の構造を有し、ヘアピンのような構造となる約20塩基以上の分子である。   shRNA is a molecule of about 20 bases or more that has a double-stranded structure in the molecule and has a hairpin-like structure by including a partially palindromic base sequence in single-stranded RNA. .

本発明は、TGF−β2発現を抑制するshRNAに関し、下記配列を標的配列とすることを特徴とする。   The present invention relates to a shRNA that suppresses TGF-β2 expression, and is characterized in that the following sequence is a target sequence.

マウス標的配列:5’−GGATTGAACTGTATCAGATCCTTAA−3’[配列番号1]   Mouse target sequence: 5'-GGATTGAACTGTATCAGATCCTTAA-3 '[SEQ ID NO: 1]

人間標的配列:5’−GGATTGAGCTATATCAGATTCTCAA−3’[配列番号2]   Human target sequence: 5'-GGATTGAGCTATATCAGATTCCAA-3 '[SEQ ID NO: 2]

本発明において、TGF−β2発現を抑制するshRNAは、TGF−β2遺伝子の一部に相補的な配列を有し、TGF−β2遺伝子のmRNAを分解したり、翻訳を抑制したりすることができる。相補性が80〜90%の場合には、mRNAの翻訳を抑制することができ、100%の場合には、mRNAを分解させることができる。   In the present invention, the shRNA that suppresses TGF-β2 expression has a sequence complementary to part of the TGF-β2 gene, and can degrade the mRNA of the TGF-β2 gene or suppress translation. . When complementarity is 80 to 90%, translation of mRNA can be suppressed, and when it is 100%, mRNA can be degraded.

したがって、本発明においてTGF−β2発現を抑制するshRNAは、マウスmRNAの494〜518番目のヌクレオチドに、人間mRNAの578〜602番目のヌクレオチドに対する相補的な配列に対して80%以上、好ましくは90%以上、より好ましくは100%相同性を有する塩基配列を含むことができる。   Therefore, in the present invention, the shRNA that suppresses TGF-β2 expression is 80% or more, preferably 90% of the sequence complementary to the nucleotides 494 to 518 of mouse mRNA and the nucleotides 578 to 602 of human mRNA. % Or more, more preferably 100% homologous base sequence can be included.

一態様として、マウスのshRNAは、配列番号1(標的配列)に示された塩基配列とその相補的な塩基配列からなっていて、人間のshRNAは配列番号2(標的配列)に示された塩基配列とその相補的な塩基配列からなることができる。前記のそれぞれの塩基配列とその相補的な塩基配列は、4〜10bpのループ領域により回文的に(palindrom)連結されてヘアピン構造を形成することができる。   In one embodiment, the mouse shRNA is composed of the base sequence shown in SEQ ID NO: 1 (target sequence) and its complementary base sequence, and the human shRNA is the base shown in SEQ ID NO: 2 (target sequence). It can consist of a sequence and its complementary base sequence. Each of the aforementioned base sequences and its complementary base sequence can be palindromically linked by a 4 to 10 bp loop region to form a hairpin structure.

本発明のshRNAの具体的な例としては、下記配列を含むことができる:   Specific examples of shRNAs of the invention can include the following sequences:

配列番号1のマウス標的配列とするshRNA:5’−GGATTGAACTGTATCAGATCCTTAA tctc TTAAGGATCTGATACAGTTCAATCC−3’[配列番号3]   ShRNA to be used as the mouse target sequence of SEQ ID NO: 1: 5'-GGATTGAACTGTATCAGATCCTTAA tctc TTAAGGATCTGATACAGTTCATCC-3 '[SEQ ID NO: 3]

配列番号2の人間標的配列のためのshRNA:5’−GGATTGAGCTATATCAGATTCTCAA tctc TTGAGAATCTGATATAGCTCAATCC−3’[配列番号4]。   ShRNA for the human target sequence of SEQ ID NO: 2: 5'-GGATTGAGCTCATATCAGATTTCCAA tctc TTGAGAATCTGATATAGCTCAATCC-3 '[SEQ ID NO: 4].

RNAiによりTGF−β2の発現を抑制する物質としては、3’末端に突出部を有する短いヘアピン構造で構成されたshRNA(short hairpin RNA)を使用することができる。   As a substance that suppresses the expression of TGF-β2 by RNAi, shRNA (short hairpin RNA) composed of a short hairpin structure having a protruding portion at the 3 ′ end can be used.

RNAiによりTGF−β2の発現を抑制する物質は、人工的に化学合成してもよく、センス鎖及びアンチセンス鎖のDNA配列を逆方向に連結したヘアピン構造のDNAをT7RNAポリメラーゼにより実験室条件(in vitro)でRNAを合成して製作してもよい。実験室条件で合成する場合、T7RNAポリメラーゼ及びT7プロモーターを用いて、鋳型DNAからアンチセンス及びセンスRNAを合成することができる。これらを実験室条件でアニーリングした後に、細胞に導入するとRNAiが誘発され、TGF−β2 mRNAの分解を誘導する。細胞への導入は、例えば、リン酸カルシウム法、または各種トランスフェクション試薬(例えば、oligofectamine、 lipofectamine及びlipofectionなど)を用いた方法によって行われる。   A substance that suppresses the expression of TGF-β2 by RNAi may be artificially chemically synthesized. A DNA having a hairpin structure in which the DNA sequences of the sense strand and the antisense strand are linked in the reverse direction is subjected to laboratory conditions ( In vitro) RNA may be synthesized and produced. When synthesized under laboratory conditions, antisense and sense RNA can be synthesized from template DNA using T7 RNA polymerase and T7 promoter. When these are annealed under laboratory conditions and then introduced into cells, RNAi is induced and induces degradation of TGF-β2 mRNA. Introduction into cells is performed, for example, by a calcium phosphate method or a method using various transfection reagents (for example, oligofectamine, lipofectamine, lipofection, etc.).

RNAiによりTGF−β2の発現を抑制する物質としては、shRNAまたは前記DNAを含む発現ベクターを用いてもよく、前記発現ベクターを含む細胞を用いてもよい。前記発現ベクターや細胞の種類は特に限定しないが、既に医薬として使用されている発現ベクターや細胞が好ましい。   As a substance that suppresses the expression of TGF-β2 by RNAi, an expression vector containing shRNA or the DNA may be used, or a cell containing the expression vector may be used. The type of the expression vector or cell is not particularly limited, but an expression vector or cell that has already been used as a pharmaceutical is preferable.

本発明では、配列番号1または2に表される塩基配列を標的配列とするshRNAが用いられる。   In the present invention, shRNA having the base sequence represented by SEQ ID NO: 1 or 2 as a target sequence is used.

したがって、本発明は、前記shRNA発現用の組換え発現ベクターを含む。   Accordingly, the present invention includes the recombinant expression vector for expressing shRNA.

本発明の組換えベクターは、当該分野に公知された組換えDNA方法によって構成される。   The recombinant vector of the present invention is constructed by a recombinant DNA method known in the art.

本発明においてshRNAを伝達するのに有用なウイルス(またはウイルスベクター)としては、アデノウイルス、レトロウイルス、レンチウイルス、アデノ随伴ウイルスなどがあり、腫瘍のように制限的な発現誘導が必要な理由として、アデノウイルスが好ましい。   Examples of viruses (or viral vectors) useful for transmitting shRNA in the present invention include adenoviruses, retroviruses, lentiviruses, adeno-associated viruses, and the like. Adenovirus is preferred.

アデノウイルスに前記shRNAを導入するために、shRNA配列に基づいて下記のDNAを製作することができる。   In order to introduce the shRNA into adenovirus, the following DNA can be prepared based on the shRNA sequence.

<マウス標的配列に対するDNA>
トップストランド:5’−gatcc GGATTGAACTGTATCAGATCCTTAA tctc TTAAGGATCTGATACAGTTCAATCC tttt a−3’[配列番号5]
<DNA for mouse target sequence>
Top strand: 5'-gatcc GGATTGAACTGTATCAGATCCTTAA tctc TTAAGGATCTGATACAGTTCATCC ttt a-3 '[SEQ ID NO: 5]

ボトムストランド:5’−agctt aaaa GGATTGAACTGTATCAGATCCTTAA gaga TTAAGGATCTGATACAGTTCAATCC g−3’[配列番号6]   Bottom strand: 5'-agcttt aaaaa GGATTGAACTGTATCAGATCCTTAA gaga TTAAGGATCTGATACAGTTCATCC g-3 '[SEQ ID NO: 6]

<人間標的配列に対するDNA>
トップストランド:5’−gatcc GGATTGAGCTATATCAGATTCTCAA tctc TTGAGAATCTGATATAGCTCAATCC tttt a−3’[配列番号7]
<DNA for human target sequence>
Top strand: 5′-gatcc GGATTGAGCTCATATCAGATTTCCAA tctc TTGAGAATCTGATATAGCTCAATCC ttt a-3 ′ [SEQ ID NO: 7]

ボトムストランド:5’−agctt aaaa GGATTGAGCTATATCAGATTCTCAA gaga TTGAGAATCTGATATAGCTCAATCC g−3’[配列番号8]   Bottom strand: 5'-agcttt aaaaa GGATTGAGCTCATATCAGATTTCCAA gaga TTGAGAATCTGATATAGCTCAATCC g-3 '[SEQ ID NO: 8]

また、本発明においてshRNAを伝達するのに有用な非ウイルスベクターとしては、上述のウイルスベクターを除いた通常に遺伝子療法に用いるすべてのベクターを意味し、そのような例としては、真核細胞で発現可能な多様なプラスミド及びリボソームなどがある。   In addition, the non-viral vector useful for transmitting shRNA in the present invention means all vectors normally used for gene therapy except the above-mentioned viral vectors. Examples of such vectors include eukaryotic cells. There are various plasmids and ribosomes that can be expressed.

一方、本発明においてTGF−β2発現を抑制するshRNAは、伝達された細胞に適切に転写されるために、少なくともプロモーターに作動可能に連結されることが好ましい。前記プロモーターは真核細胞で機能するプロモーターであればどれでもよいが、U6プロモーターがRNA重合酵素IIIとしてsmall size RNAを生成するのに有利な理由として特に好ましい。TGF−β2発現を抑制するshRNAの効率的な転写のために必要に応じてリーダー配列、ポリアデニル化配列、プロモーター、エンハンサー(enhancer)、アップストリーム(upstream)活性化配列、シグナルペプチド配列及び転写終結因子を含む調節配列をさらに含むことができる。   On the other hand, in the present invention, the shRNA that suppresses TGF-β2 expression is preferably operably linked to at least a promoter in order to be appropriately transcribed into the transferred cell. The promoter may be any promoter that functions in eukaryotic cells, but the U6 promoter is particularly preferable as an advantageous reason for producing small size RNA as RNA polymerase III. Leader sequence, polyadenylation sequence, promoter, enhancer, upstream activation sequence, signal peptide sequence and transcription termination factor as necessary for efficient transcription of shRNA that suppresses TGF-β2 expression A regulatory sequence can be further included.

ここで、用いられる用語「作動可能に連結された」とは、核酸配列との間の結合が機能的に連関されていることを意味する。任意の核酸配列が作動可能に連結された場合は、任意の核酸配列が他の核酸配列と機能的に関連性を有するように位置している場合である。本発明において、任意の転写調節配列がshRNAの転写に影響を及ぼす場合、前記転写調節配列が前記shRNAと作動可能に連結されているという。   As used herein, the term “operably linked” means that the binding between the nucleic acid sequences is functionally linked. When any nucleic acid sequence is operably linked, any nucleic acid sequence is positioned so as to be functionally related to another nucleic acid sequence. In the present invention, when any transcriptional regulatory sequence affects shRNA transcription, the transcriptional regulatory sequence is said to be operably linked to the shRNA.

また、本発明は、前記配列番号3または4のTGF−β2発現を抑制するshRNA、配列番号5に表されるトップストランド(top strand)と、配列番号6に表されるボトムストランド(bottom strand)を含むDNAまたは配列番号7に表されるトップストランド(top strand)と、配列番号8に表されるボトムストランド(bottom strand)を含むDNAまたはこれを発現する組換え発現ベクターを有効成分として含む抗腫瘍組成物に関する。   The present invention also provides a shRNA that suppresses TGF-β2 expression of SEQ ID NO: 3 or 4, a top strand represented by SEQ ID NO: 5, and a bottom strand represented by SEQ ID NO: 6. An anti-DNA comprising a DNA comprising DNA or a top strand represented by SEQ ID NO: 7 and a DNA comprising a bottom strand represented by SEQ ID NO: 8 or a recombinant expression vector expressing the same as an active ingredient It relates to a tumor composition.

本発明の抗腫瘍組成物の投与経路は、特に限定されず、経口投与または非経口投与(例えば、静脈内投与、筋肉内投与、皮下投与、皮内投与、粘膜投与、直腸内投与、膣内投与、患者への局所投与、皮膚投与など)のいずれか1つの投与経路に投与してもよい。経口投与の適当な製剤形態としては、固形または液体の形態が可能であって、非経口投与の適当な製剤形態としては、注射剤、点滴剤、坐剤、外用剤、点眼剤、点鼻剤などの形態が可能である。本発明の抗腫瘍組成物は、その製剤形態によって、必要に応じて薬学的に許容可能な添加剤を含んでもよい。薬学的に許容可能な添加剤の具体的な例としては、例えば、賦形剤、結合剤、崩壊剤、滑択剤、抗酸化剤、保存剤、安定化剤、等張化剤、着色剤、矯味剤、希釈剤、乳化剤、懸濁化剤、溶媒、充填剤、増量剤、緩衝剤、送達担体、キャリア、賦形剤及び/または薬学的アジュバントなどがあげられる。   The administration route of the antitumor composition of the present invention is not particularly limited, and is oral or parenteral (for example, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, mucosal administration, rectal administration, intravaginal Administration, topical administration to a patient, dermal administration, etc.). Suitable dosage forms for oral administration can be in solid or liquid form. Suitable dosage forms for parenteral administration include injections, drops, suppositories, external preparations, eye drops, and nasal drops. Etc. are possible. The antitumor composition of the present invention may contain a pharmaceutically acceptable additive as necessary depending on the preparation form. Specific examples of pharmaceutically acceptable additives include, for example, excipients, binders, disintegrants, lubricants, antioxidants, preservatives, stabilizers, isotonic agents, and coloring agents. , Flavoring agents, diluents, emulsifiers, suspending agents, solvents, fillers, fillers, buffers, delivery carriers, carriers, excipients and / or pharmaceutical adjuvants.

経口用の固形製剤形態の本発明の抗腫瘍組成物としては、例えば、有効成分に賦形剤を加え、それと共に、必要に応じて、結合剤、崩壊剤、滑択剤、着色剤または矯味剤などの製剤用添加物を加えた後、通常方法で、錠剤、顆粒剤、散剤、カプセル剤として調製することができる。経口用液体製剤形態の本発明の抗腫瘍組成物としては、有効成分として、矯味剤、安定化剤、または保存剤などの製剤用添加物1種または2種以上を加え、通常方法により、内服液剤、シロップ剤、エリキシル剤などとして調製することができる。   As the antitumor composition of the present invention in the form of an oral solid preparation, for example, an excipient is added to an active ingredient, and a binder, a disintegrating agent, a lubricant, a coloring agent, or a taste masking agent, if necessary. After adding a pharmaceutical additive such as an agent, it can be prepared as a tablet, granule, powder, or capsule by a conventional method. As an antitumor composition of the present invention in the form of an oral liquid preparation, one or more additives for preparation such as a corrigent, stabilizer or preservative are added as active ingredients, It can be prepared as a liquid, syrup, elixir or the like.

本発明の抗腫瘍組成物を液体製剤として処方するために用いる溶媒としては、水性または非水性のいずれでもよい。液体製剤は当該分野に周知の方法により調製することができる。例えば、注射剤は、生理食塩水、PBSのような緩衝液、滅菌水などの溶剤に溶解した後、濾過紙などに濾過滅菌し、続いて滅菌容器(例えば、アンプルなど)に充填して調製することができる。この注射剤には、必要に応じて、慣用の薬学的キャリアを含んでもよい。   The solvent used for formulating the antitumor composition of the present invention as a liquid preparation may be either aqueous or non-aqueous. Liquid formulations can be prepared by methods well known in the art. For example, an injection is prepared by dissolving in a physiological saline solution, a buffer solution such as PBS, or a solvent such as sterilized water, sterilizing by filtration on filter paper, and then filling in a sterilized container (for example, an ampoule). can do. This injection may contain a conventional pharmaceutical carrier, if necessary.

また、非侵襲的なカテーテルを用いる投与方法を使用してもよい。本発明で使用することができるキャリアとしては、中性、緩衝化生理食塩水、または血清アルブミンを含む生理食塩水などがあげられる。   Alternatively, administration methods using non-invasive catheters may be used. Carriers that can be used in the present invention include neutral, buffered saline, or saline containing serum albumin.

TGF−β2発現を抑制するshRNA発現ベクターなど遺伝子送逹については、適用される細胞内においてTGF−β2発現を抑制するshRNAまたはshRNA発現ベクターを発現させている限り、特に方法は限定しないが、例えば、ウイルスベクター、リポソームを用いた遺伝子導入を利用することが可能である。ウイルスベクターとしては、例えば、レトロウイルス、ワクシニアウイルス、アデノウイルス、 レンチウイルス などの動物ウイルスがあげられる。   As for gene delivery such as shRNA expression vector that suppresses TGF-β2 expression, the method is not particularly limited as long as shRNA or shRNA expression vector that suppresses TGF-β2 expression is expressed in the applied cells. It is possible to utilize gene transfer using viral vectors and liposomes. Examples of viral vectors include animal viruses such as retroviruses, vaccinia viruses, adenoviruses, and lentiviruses.

RNAiによりTGF−β2発現を抑制する物質は、細胞に直接注入してもよい。   A substance that suppresses TGF-β2 expression by RNAi may be directly injected into cells.

本発明の抗腫瘍組成物の有効成分は治療学的有効量として用い、前記組成物の投与量は、使用目的、疾患の中毒度、患者の年齢、体重、性別、既往歴、または有効成分として用いる物質の種類などを考慮して当業者が決定することができる。例えば、有効成分として、大人1kg当たり約1×1010〜1×1012particlesである。本発明の抗腫瘍組成物の投与頻度は、例えば、1日1回〜数ヶ月に1回であればよい。 The active ingredient of the antitumor composition of the present invention is used as a therapeutically effective amount. Those skilled in the art can determine the type of substance to be used in consideration. For example, the active ingredient is about 1 × 10 10 to 1 × 10 12 particles per kg adult. The administration frequency of the antitumor composition of the present invention may be, for example, once a day to once every several months.

本発明のshRNAは、TGF−β2発現を抑制するので、本発明の薬剤学的組成物は、腫瘍と係る多様な疾病または疾患、例えば癌、具体的には、脳癌、胃癌、肺癌、乳房癌、卵巣癌、肝臓癌、気管支癌、鼻咽頭癌、喉頭癌、食道癌、膵臓癌、膀胱癌、前立腺癌、大腸癌、結腸癌及び子宮頸部癌などの予防及び治療に利用される。本明細書において用語「治療」は(i)腫瘍細胞形成の予防;(ii)腫瘍細胞の除去による腫瘍と係る疾病または疾患の抑制;及び(iii)腫瘍細胞の除去による腫瘍と係る疾病または疾患の軽減を意味する。よって、本明細書において用語「治療学的有効量」は上記の薬理学的効果を達成するのに十分な量を意味する。   Since the shRNA of the present invention suppresses TGF-β2 expression, the pharmaceutical composition of the present invention can be used for various diseases or diseases related to tumors such as cancer, specifically brain cancer, stomach cancer, lung cancer, breast cancer. It is used for prevention and treatment of cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, esophageal cancer, pancreatic cancer, bladder cancer, prostate cancer, colon cancer, colon cancer, cervical cancer and the like. As used herein, the term “treatment” refers to (i) prevention of tumor cell formation; (ii) suppression of a disease or disorder associated with the tumor by removal of tumor cells; and (iii) a disease or disorder associated with the tumor by removal of tumor cells. Means lessening. Thus, as used herein, the term “therapeutically effective amount” means an amount sufficient to achieve the pharmacological effect described above.

以下、本発明に係る実施例で本発明をより詳しく説明されるが、本発明の範囲が下記実施例によって制限されない。
実施例1:shRNA製造−TGF−β2の沈黙(silencing)を効果的に誘導するターゲット選定
Hereinafter, the present invention will be described in more detail by way of examples according to the present invention, but the scope of the present invention is not limited by the following examples.
Example 1: shRNA production-Target selection that effectively induces TGF-β2 silencing

本発明は、TGF−β2の沈黙(silencing)を誘導するために、センス25mer/アンチセンス25mer(4個塩基を有するループを中に含む)に基づいたshRNAを製作し、アデノウイルスで発現させるためにシャトルベクターに導入し、相同組換え(homologous recombination)ウイルスを製作した。   In order to induce silencing of TGF-β2, the present invention creates a shRNA based on sense 25mer / antisense 25mer (including a loop with 4 bases) and expresses it in adenovirus. Into a shuttle vector to produce a homologous recombination virus.

shRNA TGF−β2の特異性検証のために、スクランブルド(scrambled)shRNAを有するシャトルベクターも同時に製作した。従来方法と比較して特異性と発現抑制能が大きく向上した。   For verification of the specificity of shRNA TGF-β2, a shuttle vector having scrambled shRNA was also produced at the same time. Compared with the conventional method, specificity and expression suppression ability were greatly improved.

このために、TGF−β2のshRNA最小10nMでマウスのTGF−β2 mRNAを75%以上抑制する効果があるshRNAを、リアルタイムPCR方法を介して確保した。   For this purpose, shRNA having an effect of suppressing 75% or more of mouse TGF-β2 mRNA with a minimum of 10 nM shRNA of TGF-β2 was secured through a real-time PCR method.

このために、マウス用shRNAは、皮膚癌細胞であるB16F10にトランスフェクションさせ、24時間が過ぎた後に減少される程度を調査した。   For this purpose, mouse shRNA was transfected into skin cancer cells, B16F10, and the extent to which it was reduced after 24 hours was investigated.

次は、実験方法である。
リアルタイムRT−PCRで多様な種類の候補shRNA 10nMを30% B16F10にトランスフェクションし、24時間培養後、確認(validation)を介してマウスTGF−β2に対して5個のshRNAスクリーニングの結果、ターゲットに該当されるshRNAにおいて73.75%の沈黙(silencing)効果を確認した。
Next is the experimental method.
Various types of candidate shRNA 10 nM were transfected into 30% B16F10 by real-time RT-PCR, cultured for 24 hours, and then subjected to 5 shRNA screening against mouse TGF-β2 via validation. A 73.75% silencing effect was confirmed in the corresponding shRNA.

リアルタイムRT−PCRのために、正方向プライマーとしては、5’−GTGAATGGCTCTCCTTCGAC−3’[配列番号9]と逆方向プライマーとしては、5’−CCTCGAGCTCTTCGCTTTTA−3’[配列番号10]であって、反応条件は、次のように行った。   For real-time RT-PCR, the forward primer is 5′-GTGAATGGCTCTCCTCTGAC-3 ′ [SEQ ID NO: 9] and the reverse primer is 5′-CCTCGAGCTCTTCGCTTTTA-3 ′ [SEQ ID NO: 10] The conditions were as follows.

1段階:逆転写(42℃ 5min、95℃ 10sec)、
2段階:PCR反応(95℃ 5sec、60℃ 20sec)50cycles、
3段階:分離(60℃−>95℃)で行った。
1st step: reverse transcription (42 ° C. 5 min, 95 ° C. 10 sec),
Two steps: PCR reaction (95 ° C. 5 sec, 60 ° C. 20 sec) 50 cycles,
Three steps: performed in separation (60 ° C .-> 95 ° C.).

確認(validation)実験結果、10個の標的配列候補のうち、下記表1に基づいて下記ターゲットを選定した。   As a result of the validation experiment, the following targets were selected based on Table 1 below among the 10 target sequence candidates.

マウス標的配列:5’−GGATTGAACTGTATCAGATCCTTAA−3’[配列番号1]   Mouse target sequence: 5'-GGATTGAACTGTATCAGATCCTTAA-3 '[SEQ ID NO: 1]

注)ct:cycle threshold, saturationに到達するのに所要されたサイクル数、小さいほど元のmRNA量は多くなる。 Note) ct: The number of cycles required to reach cycle threshold, saturation, the smaller the original mRNA amount, the smaller.

△ct:TGF−β2用ctからaction用ctを引いた値。
△△ct:TGF−β2 shRNA処理サンプルの△ctから対照群のTGF−β2の△ctを引いた値。
2−△△ct:2のマイナス指数の△△ct値
発現抑制率:2−△△ctを百分率で表したものである。
Δct: value obtained by subtracting ct for action from ct for TGF-β2.
ΔΔct: a value obtained by subtracting Δct of TGF-β2 of the control group from Δct of the TGF-β2 shRNA-treated sample.
2-ΔΔct: ΔΔct value of minus index of 2 Expression suppression rate: 2-ΔΔct expressed as a percentage.

前記標的配列に対して25/25+4ループを有するshRNAを合成し、これらの標的配列に対する抑制効果をリアルタイムPCRで確認した。   ShRNA having a 25/25 + 4 loop with respect to the target sequence was synthesized, and the inhibitory effect on these target sequences was confirmed by real-time PCR.

マウス標的配列(配列番号1)とするshRNA:5’−GGATTGAACTGTATCAGATCCTTAA tctc TTAAGGATCTGATACAGTTCAATCC−3’[配列番号3]   ShRNA as mouse target sequence (SEQ ID NO: 1): 5'-GGATTGAACTGTATCAGATCCTTAA tctc TTAAGGATCTGATACAGTTCATCC-3 '[SEQ ID NO: 3]

上述のリアルタイムPCRによって選定された配列番号3の塩基配列をアデノウイルスで発現させるために、両端にBamHIとHindIII塩基サイトを挿入し、中間にtctcの4個の塩基を有するループ(loop)を有するように製作した。すなわち、マウスshRNAの基本的な構造は5’−25mer−ループ(4mer)−25mer−3’で構成されている。   In order to allow the adenovirus to express the nucleotide sequence of SEQ ID NO: 3 selected by the above-mentioned real-time PCR, BamHI and HindIII base sites are inserted at both ends, and a loop having four tctc bases in between is inserted. Was produced as follows. That is, the basic structure of mouse shRNA is composed of 5'-25mer-loop (4mer) -25mer-3 '.

これに基づいて、アデノウイルスに導入するための下記の2本鎖のDNAストランド(strand)を製作してshRNA生成を誘導した。   Based on this, the following double-stranded DNA strand for introduction into adenovirus was prepared to induce shRNA production.

トップストランド:5’−gatcc GGATTGAACTGTATCAGATCCTTAA tctc TTAAGGATCTGATACAGTTCAATCC tttt a−3’[配列番号5]   Top strand: 5'-gatcc GGATTGAACTGTATCAGATCCTTAA tctc TTAAGGATCTGATACAGTTCATCC ttt a-3 '[SEQ ID NO: 5]

ボトムストランド:5’−agctt aaaa GGATTGAACTGTATCAGATCCTTAA gaga TTAAGGATCTGATACAGTTCAATCC g−3’[配列番号6]   Bottom strand: 5'-agcttt aaaaa GGATTGAACTGTATCAGATCCTTAA gaga TTAAGGATCTGATACAGTTCATCC g-3 '[SEQ ID NO: 6]

人間TGF−β2抑制のためのリアルタイムPCR用プライマーは次のようである。   The primers for real-time PCR for human TGF-β2 suppression are as follows.

正方向プライマー:5’−GCTGCCTACGTCCACTTTACAT−3’[配列番号11]   Forward primer: 5'-GCTGCCCTCGTCACTTTATACAT-3 '[SEQ ID NO: 11]

逆方向プライマー:5’−ATATAAGCTCAGGACCCTGCTG−3’[配列番号12]   Reverse primer: 5'-ATATAAGCTCAGGACCCTGCTG-3 '[SEQ ID NO: 12]

反応条件は、1段階:逆転写(42℃ 5min、95℃ 10sec)、2段階:PCR反応(95℃ 5sec、60℃ 20sec)50cycles、3段階:分離(60℃−>95℃)で行った。   The reaction conditions were 1 step: reverse transcription (42 ° C 5 min, 95 ° C 10 sec), 2 steps: PCR reaction (95 ° C 5 sec, 60 ° C 20 sec), 50 cycles, 3 steps: separation (60 ° C-> 95 ° C). .

確認(validation)実験結果、3個の標的配列候補のうち、下記表2に基づいて下記ターゲットを選定した。   As a result of the validation experiment, the following targets were selected from the three target sequence candidates based on Table 2 below.

人間標的配列:5’−GGATTGAGCTATATCAGATTCTCAA−3’[配列番号2]   Human target sequence: 5'-GGATTGAGCTATATCAGATTCCAA-3 '[SEQ ID NO: 2]

前記標的配列に対して25/25+4ループを有するshRNAを合成し、これらの標的配列に対する抑制効果をリアルタイムPCRで確認した。   ShRNA having a 25/25 + 4 loop with respect to the target sequence was synthesized, and the inhibitory effect on these target sequences was confirmed by real-time PCR.

人間標的配列(配列番号2)のためのshRNA:5’−GGATTGAGCTATATCAGATTCTCAA tctc TTGAGAATCTGATATAGCTCAATCC−3’[配列番号4]   ShRNA for human target sequence (SEQ ID NO: 2): 5'-GGATTGAGCTCATATCAGATTTCCAA tctc TTGAGAATCTGATATAGCTCAATCC-3 '[SEQ ID NO: 4]

上述のリアルタイムPCRにより選定された配列番号4の塩基配列をアデノウイルスで発現させるために、両端にBamHIとHindIII塩基サイトを挿入し、中間にtctcの4個の塩基を有するループを有するように製作した。すなわち、人間shRNAの基本構造は、5’−25mer−ループ(4mer)−25mer−3’で構成されている。   In order to express the base sequence of SEQ ID NO: 4 selected by the above-mentioned real-time PCR in adenovirus, BamHI and HindIII base sites are inserted at both ends, and a loop having 4 bases of tctc in the middle is produced. did. That is, the basic structure of human shRNA is composed of 5'-25mer-loop (4mer) -25mer-3 '.

これに基づいて、アデノウイルスに導入させるための下記2本鎖のDNAを製作した。   Based on this, the following double-stranded DNA for introduction into adenovirus was prepared.

トップストランド:5’−gatcc GGATTGAGCTATATCAGATTCTCAA tctc TTGAGAATCTGATATAGCTCAATCC tttt a−3’[配列番号7]   Top strand: 5'-gatcc GGATTGAGCTCATATCAGATTCCAA tctc TTGAGAATCTGATATAGCTCAATCC ttt a-3 '[SEQ ID NO: 7]

ボトムストランド:5’−agctt aaaa GGATTGAGCTATATCAGATTCTCAA gaga TTGAGAATCTGATATAGCTCAATCC g−3’[配列番号8]
実施例2:ターゲット配列に対するshRNA発現する複製不能アデノウイルスベクター製作
Bottom strand: 5′-agcttt aaaaa GGATTGAGCTATATCAGATTTCCAA gaga TTGAGAATCTGATATAGCTCAATCC g-3 ′ [SEQ ID NO: 8]
Example 2: Construction of a replication-incompetent adenovirus vector expressing shRNA against a target sequence

リアルタイムRT−PCRを介して確認された最も効果的に発現を抑制するshRNA塩基配列をセンスとアンチセンス配列がtctcあるいはtctctcを間に置いて位置するようにし、両端にBamHIとHindIII制限酵素塩基配列を有した塩基で構成された、オリゴヌクレオチドと相補的なオリゴヌクレオチドをそれぞれ合成して合体(annealing)させた後、E3シャトルベクターであるpSP72ΔE3/si−negativeベクター[図1、pSP72cloningベクター(Promega)にアデノウイルスE3L(26591−28588)とE3R(30504−31057)を挿入し、Ambion社のpsilencer 2.1−U6 hygroで−EcoRI−U6 promoter+−BamHI−nonsense shRNA用塩基配列であるactaccgttgttataggtgttcaagagacacctataacaacggtagttttttggaa−HindIIIが入った形態のpSP72ΔE3/si−negative(scrambled)]を製作した。   The shRNA base sequence confirmed through real-time RT-PCR most effectively suppresses the expression so that the sense and antisense sequences are located with tctc or tctctc in between, and BamHI and HindIII restriction enzyme base sequences at both ends. After synthesizing and annealing oligonucleotides complementary to the oligonucleotides composed of bases having an E3, an E3 shuttle vector pSP72ΔE3 / si-negative vector [FIG. 1, pSP72 cloning vector (Promega) Adenovirus E3L (26591-28588) and E3R (30504-31057) were inserted into Ambion's psilencer 2.1-U6 hygro -EcoRI-U6 promoter +- BamHI-nonsense shRNA for a nucleotide sequence actaccgttgttataggtgttcaagagacacctataacaacggtagttttttggaa-HindIII is entered form of pSP72ΔE3 / si-negative (scrambled)] was manufactured.

人間またはマウスのshRNA TGF−β2導入のために、まず、上記のpSP72ΔE3/si−negativeプラスミドをBamHIとHindIIIで処理した後、人間またはマウスのshRNA TGF−β2を挿入させてpSP72ΔE3−sh−human TGF−β2またはpSP72ΔE3−sh−mouse TGF−β2を製作した[図2]。陰性対照群アデノウイルスとしては、両端にBamHIとHindIIIを有するようにし、スクランブルド(scrambled)塩基配列(actaccgttgttataggtg)とloop(ttcaagaga)を製作した。   In order to introduce human or mouse shRNA TGF-β2, first, the above-mentioned pSP72ΔE3 / si-negative plasmid was treated with BamHI and HindIII, and human or mouse shRNA TGF-β2 was then inserted into pSP72ΔE3-sh-human TGF. -Β2 or pSP72ΔE3-sh-mouse TGF-β2 was produced [Figure 2]. As a negative control group adenovirus, BamHI and HindIII were present at both ends, and a scrambled nucleotide sequence (actaccgtttgttataggt) and loop (ttcaagaga) were prepared.

アデノウイルスのE3部位PCRで養成クローン(#1、2、5、6、7、8、9)だけを選択した後、[図3の(a):dl324/IXアデノウイルスバックボーン(backbone)ゲノム(genomic)DNAとpSP72−sh−hTGF−β2シャトルベクターとの相同組換え後、sh−hTGF−β2が含まれたクローンを選択するPCR結果、図3の(b):dl324/IXアデノウイルスバックボーンゲノムDNAとpSP72−sh−hTGF−β2シャトルベクターとの相同組換え後、IX遺伝子有無を介して図3の(a)で確認されたsh−hTGF−β2が含まれたクローンのうちからゲノムDNAも含まれたクローンを再び選択するPCR結果]、図3の(c)で示すように、HindIII切断パターン(digestionpattern)で最終の相同組換え体を選択した[図4]。   After selecting only the trained clones (# 1, 2, 5, 6, 7, 8, 9) by E3 site PCR of adenovirus, [Fig. 3 (a): dl324 / IX adenovirus backbone genome ( Genomic) DNA and pSP72-sh-hTGF-β2 shuttle vector followed by homologous recombination, followed by PCR to select clones containing sh-hTGF-β2, FIG. 3 (b): dl324 / IX adenovirus backbone genome After homologous recombination between the DNA and the pSP72-sh-hTGF-β2 shuttle vector, genomic DNA was selected from the clones containing sh-hTGF-β2 confirmed in (a) of FIG. PCR results for selecting the included clones again], as shown in FIG. The final homologous recombination were selected igestionpattern) [4].

次に、図3及び図4を詳細に説明する。   Next, FIGS. 3 and 4 will be described in detail.

図3の(a)において、dl324/IXレーンはdl324バックボーンであり;シャトルレーンはpSP72−sh−hTGF−β2である。レーン1〜10は、dl324バックボーンとpSP72−sh−hTGF−β2との間の相同組換え後、バクテリアクローン(bacterial clone)から得たプラスミドをE3部位に増幅させた結果を示すもので、約2kbに相当するバンドが示されればpositiveである。E3部分をPCRしたとき、E3部分のないdl324バックボーンでは2kbに相当するバンドが示されないが、E3部分に、U6プロモーターとsh−hTGF−β2とのshコンストラクト(construct)が挿入されたシャトルベクターの場合、PCRすると2kbのプロダクト(product)の大きさ(size)が示されることにより相同組換えされたか否かを確認することができる。   In FIG. 3 (a), the dl324 / IX lane is the dl324 backbone; the shuttle lane is pSP72-sh-hTGF-β2. Lanes 1 to 10 show the results of amplification of a plasmid obtained from a bacterial clone after homologous recombination between the dl324 backbone and pSP72-sh-hTGF-β2 to the E3 site, about 2 kb. If a band corresponding to is shown, it is positive. When PCR was performed on the E3 part, a band corresponding to 2 kb was not shown in the dl324 backbone without the E3 part, but the shuttle vector in which the sh construct of the U6 promoter and sh-hTGF-β2 was inserted into the E3 part. In this case, it can be confirmed whether or not homologous recombination has been achieved by showing the size of the 2 kb product when PCR is performed.

図3の(b)において、dl324/IXレーンはdl324バックボーンであり;シャトルベクターはpSP72−hTGF−β2である。図3の(a)で確認されたsh−hTGF−β2が含まれたクローン(#1、2、5、6、7、8、9)のうちからゲノムDNAも含まれたクローンを再び選択するPCR結果で相同組換えされたことを確認する、図3の(a)に続いて連続的な選択実験により両方でpositiveしたクローンが相同組換えされたことを意味する。IX遺伝子部分をPCRしたとき、IX遺伝子を有するdl324バックボーンとIX遺伝子を有しないシャトルベクターとの差を用いて相同組換えされたか否かを確認した。その結果、#1、2、6、7だけが再び選択された。   In FIG. 3 (b), the dl324 / IX lane is the dl324 backbone; the shuttle vector is pSP72-hTGF-β2. Among the clones (# 1, 2, 5, 6, 7, 8, 9) containing sh-hTGF-β2 confirmed in (a) of FIG. 3, clones containing genomic DNA are again selected. It means that the positive clones in both cases were homologously recombined by a continuous selection experiment following (a) in FIG. 3 confirming that the PCR results were homologous recombination. When PCR was performed on the IX gene portion, it was confirmed whether homologous recombination was performed using the difference between the dl324 backbone having the IX gene and the shuttle vector not having the IX gene. As a result, only # 1, 2, 6, and 7 were selected again.

図3の(c)は、バックボーンとサンプルとをHindIIIでカットティング(cutting)したときに変化するパターンとの差により相同組換えされたか否かを最終的に確認したものである。レーン1〜3は前記#1クローン由来DNAであり、レーン4〜6は#2クローン、レーン7〜9は#6クローンで得たDNAをDH5aというコンピテントセル(competent cell)に再びトランスフォーメーション(transformation)して得た子孫(progeny)クローンで各母体(parental)クローンから来由されたそれぞれの3個のDNAのうち#1クローンだけが既存のdl324−IX(もっぱら左側一番目lane)とは異なったHindIIIパターンを示した。これは、バックボーンアデノウイルスDNAがシャトルベクターと相同組換えをなしたことを意味し、よって、本発明は#1クローンに基づいている。   (C) of FIG. 3 finally confirms whether or not homologous recombination has occurred due to a difference with a pattern that changes when the backbone and the sample are cut with HindIII. Lanes 1 to 3 are the DNAs derived from the # 1 clone, lanes 4 to 6 are the # 2 clones, and lanes 7 to 9 are the DNAs obtained from the # 6 clones again transformed into a competent cell called DH5a ( What is the existing dl324-IX (exclusively the first lane on the left side) of the three progeny clones obtained from the transformation and only the # 1 clone out of the three DNAs derived from each parental clone? A different HindIII pattern was shown. This means that the backbone adenovirus DNA has undergone homologous recombination with the shuttle vector, and thus the present invention is based on the # 1 clone.

図4は、pPoly2というプラスミドにPacI部位に挿入されているAd−dl324−IX−sh−hTGF−β2をPacIで切断してpPoly2がまともに切断されたか否かを確認することで、ウイルス生産に要求される最終コンストラクト(construct)を決定する実験である。図3の(c)から確認した#1クローンに属する3個のDNAは、PacIで切断時すべて約2kbに相当するpPoly2バックボーンDNAが全部出てしまった。これらが、それぞれのshRNA hTGF−β2塩基配列を有しているか否かを配列分析して確認した結果、すべてのクローンで同一のshRNA hTGF−β2塩基配列を有することを確認した(図5)。その後、これらをPacI切断後に一緒に293A細胞にトランスフェクション(transfection)してアデノウイルスを生産した。   FIG. 4 shows that the production of virus was confirmed by cutting Ad-dl324-IX-sh-hTGF-β2 inserted in the PacI site into a plasmid called pPoly2 with PacI and confirming that pPoly2 was cut correctly. This is an experiment to determine the required final construct. As for the three DNAs belonging to the # 1 clone confirmed from FIG. 3 (c), all of the pPoly2 backbone DNA corresponding to about 2 kb appeared when cut with PacI. As a result of confirming whether or not these had the respective shRNA hTGF-β2 base sequences by sequence analysis, it was confirmed that all clones had the same shRNA hTGF-β2 base sequences (FIG. 5). Thereafter, these were cotransfected into 293A cells after PacI digestion to produce adenovirus.

すなわち、前記方法で製作されたE3シャトルベクターをそれぞれのXmnI制限酵素で処理して単一鎖に作った後、SpeI制限酵素を処理して単一鎖となった複製不能アデノウイルスであるdl324とともに、大膓菌BJ5183で同時に形質転換させて遺伝子相同組換えを誘導した。相同組換えされたプラスミドDNAを収得してHindIII制限酵素で処理してDNAパターンの変化を確認し、最終的に配列分析して相同組換え有無を確認した後、確認されたプラスミドをPacIで切断した後、293細胞株に形質転換してshRNA TGF−β2を発現する複製不能アデノウイルスを製作した(複製可能アデノウイルスにshRNAを製作する場合には、shRNAによる抑制効果と細胞リシース(lysis)効果とが混在されていて、抑制効果だけを明確に確認することができなかったので、複製不能アデノウイルスを製作した)。このアデノウイルスは、293細胞株で増殖させてCsCl変化度(gradient)で濃縮して限界希釈培養法(limiting dilution)または溶菌斑検査(plaque assay)でウイルス力価を決定した。   That is, the E3 shuttle vector prepared by the above method was treated with each XmnI restriction enzyme to make a single strand, and then treated with SpeI restriction enzyme to make a single strand, along with dl324, a non-replicatable adenovirus. The gene homologous recombination was induced by simultaneous transformation with B. gonorrhoeae BJ5183. The homologous recombination plasmid DNA is obtained and treated with HindIII restriction enzyme to confirm the DNA pattern change, and finally the sequence analysis is performed to confirm the presence or absence of homologous recombination, and then the confirmed plasmid is cleaved with PacI. After that, the 293 cell line was transformed to produce a non-replicatable adenovirus expressing shRNA TGF-β2 (in the case of producing shRNA in a replicable adenovirus, the suppressive effect by shRNA and the cell lysis effect) ), And it was not possible to clearly confirm only the suppressive effect. The adenovirus was grown in the 293 cell line, concentrated with the CsCl gradient, and the virus titer was determined by limiting dilution or plaque assay.

最終ウイルス力価(virus titer)は、限界希釈適正法(limiting dilution titration)により2.5×10pfu/mlであった。
実施例3:癌細胞での効果確認−shRNA発現するアデノウイルスによるTGF−β2発現抑制確認
The final virus titer was 2.5 × 10 9 pfu / ml by the limiting dilution titration.
Example 3: Confirmation of effect in cancer cells-Confirmation of suppression of TGF-β2 expression by adenovirus expressing shRNA

1)リアルタイムRT−PCRで確認
TGF−β2発現抑制確認は、人間の場合、人間前立腺癌細胞であるDU−145に実施例2のアデノウイルス1〜100moiで感染させて2日後、トリゾール(Trizol)で細胞をリーシス(lysis)させ、クロロホルム、イソプロパノール、エタノールなどを連続的に処理してRNAを収穫した後、TGF−β2 mRNA発現抑制の程度をリアルタイムPCRで確認した。
1) Confirmation by real-time RT-PCR In the case of humans, TGF-β2 expression inhibition confirmation was confirmed by infecting human prostate cancer cells DU-145 with the adenovirus 1 to 100 moi of Example 2 and two days later, Trizol. The cells were lysed and treated with chloroform, isopropanol, ethanol, and the like to harvest RNA, and the extent of TGF-β2 mRNA expression suppression was confirmed by real-time PCR.

マウスの場合、マウス黒色腫細胞であるB16F10に、実施例2のアデノウイルス100、500、1000moiで感染させ、その後の過程は人間の場合と同様に実施した。   In the case of mice, B16F10, which is a mouse melanoma cell, was infected with the adenovirus 100, 500, 1000 moi of Example 2, and the subsequent process was performed in the same manner as in humans.

人間TGF−β2抑制のためのリアルタイムPCR用プライマーは、正方向プライマー:5’−GCTGCCTACGTCCACTTTACAT−3’[配列番号11]と逆方向プライマー:5’−ATATAAGCTCAGGACCCTGCTG−3’[配列番号12]を用い、AB powerSYBR Green RNA−to−Ct 1step kitを用いてRT enzyme mix(125X)0.2μl、RT−PCR Mix(2x)12.5μl、Forward Primer(100pM)0.5μl、 reverse Primer(100pM)0.5μl、 RNA(10ng/μl)5μl、 Nuclease−free water 6.3μlで総体積は25μlとなるようにし、反応条件は、次の表3のようである。   As primers for real-time PCR for human TGF-β2 suppression, forward primer: 5′-GCTGCCCTCGTCACTTTATACAT-3 ′ [SEQ ID NO: 11] and reverse primer: 5′-ATATAGCTCAGGACCCTGCTG-3 ′ [SEQ ID NO: 12] RT energy mix (125X) 0.2 μl, RT-PCR Mix (2 ×) 12.5 μl, Forward Primer (100 pM) 0.5 μl, reverse Primer (100 pM) using AB powerSYBR Green RNA-to-Ct 1step kit 5 μl, RNA (10 ng / μl) 5 μl, Nuclease-free water 6.3 μl so that the total volume is 25 μl. The reaction conditions are as shown in Table 3 below. It is.

マウスTGF−β2抑制のためのリアルタイムPCR用プライマーは、正方向プライマー:5’−GTGAATGGCTCTCCTTCGAC−3’[配列番号9]と逆方向プライマー:5’−CCTCGAGCTCTTCGCTTTTA−3’[配列番号10]を用い、AB powerSYBR Green RNA−to−Ct 1step kitを用いてRT enzyme mix(125X)0.2μl、RT−PCR Mix(2x)12.5μl、Forward Primer(100pM)0.5μl、reverse Primer(100pM)0.5μl、RNA(10ng/μl)5μl、Nuclease−free water 6.3μlで総体積は25μlとなるようにし、反応条件は、次の表3のようである。   As primers for real-time PCR for suppressing mouse TGF-β2, forward primer: 5′-GTGAATGGCTCTCTTCGAC-3 ′ [SEQ ID NO: 9] and reverse primer: 5′-CCTCGAGCTCTTCGCTTTTA-3 ′ [SEQ ID NO: 10] RT energy mix (125X) 0.2 μl, RT-PCR Mix (2 ×) 12.5 μl, Forward Primer (100 pM) 0.5 μl, reverse Primer (100) using AB powerSYBR Green RNA-to-Ct 1step kit The total volume is 5 μl, RNA (10 ng / μl) 5 μl, Nuclease-free water 6.3 μl, and the total volume is 25 μl. The reaction conditions are as shown in Table 3 below.

人間TGF−β2のshRNA確認結果、1moiのアデノウイルスで73%の沈黙(silencing)効果を示すなど、50moiのアデノウイルスで90%以上のTGF−β2発現抑制が観察された[表4、図6]。   As a result of confirming the shRNA of human TGF-β2, 90% or more suppression of TGF-β2 expression was observed with 50 moi adenovirus, such as 73% silencing effect with 1 moi adenovirus [Table 4, FIG. ].

マウスTGF−β2のshRNA確認結果、1000moiのアデノウイルスで50%の沈黙(silencing)効果を示した[図7]。人間と比較して相対的に低い抑制率は、マウス細胞に対するアデノウイルスの低い感染率に起因したものと見られる。これに対する確認は、マウスshTGF−β2が発現するプラスミドをトランスフェクション(transfection)することで,発現されたshRNAが効果的にTGF−β2 mRNAを抑制するものと確認した[図8]。   As a result of confirming the shRNA of mouse TGF-β2, it showed a silencing effect of 50% with 1000 moi adenovirus [FIG. 7]. The relatively low inhibition rate compared to humans is likely due to the low infection rate of adenovirus on mouse cells. Confirmation of this confirmed that the expressed shRNA effectively suppressed TGF-β2 mRNA by transfecting a plasmid expressing mouse shTGF-β2 [FIG. 8].

2)ELISAで確認
上述のアデノウイルス1、5、10、50moi感染後、2日間人間の実施例2の前立腺癌細胞に培養しながら最後の24時間は無血清バッジに分泌されたTGF−β2量を測定した。
2) Confirmation by ELISA The amount of TGF-β2 secreted in the serum-free badge for the last 24 hours while being cultured in human prostate cancer cells of Example 2 for 2 days after infection with adenovirus 1, 5, 10, 50moi described above Was measured.

TGF−β2のshRNAを発現するアデノウイルスを1moiだけ感染しても一日間に分泌されるTGF−β2はほとんど検出されなかった[表5、図9]。これは、TGF−β2のshRNAが非常に効果的にTGF−β2のmRNAを分解していることを意味する。   TGF-β2 secreted during one day was hardly detected even when only 1 moi of the adenovirus expressing shRNA of TGF-β2 was infected [Table 5, FIG. 9]. This means that the TGF-β2 shRNA is very effectively degrading the TGF-β2 mRNA.

実施例4:腫瘍選択的殺傷アデノウイルス製作 Example 4: Production of tumor selective killing adenovirus

複製不能なアデノウイルスでTGF−β2に対するshRNAの効果を確認した後、このshRNAを発現しながら腫瘍選択的に細胞を殺傷するアデノウイルスを製作した。腫瘍選択的殺傷複製可能なアデノウイルスを作る前にアデノウイルスのE1A部分に多様な遺伝子を入れることができるシャトルベクターを製作しようと、pBSKIIプラスミド[Stratagene、 USA]にE1AとE1B55kDa遺伝子を含み、多様な酵素部位(Enzyme site)を含むpBSKII−3484合成遺伝子を製作した[図10の(a)]。合成された遺伝子を相同組換え確認を容易にするためのpCA14シャトルベクターに導入するための形態に変えるためにpBSKII−3484をPCRしてFspIで制限酵素を処理した後に、ブランティング(blunting)酵素でブラントエンド(blunt end)を作って再びBamHIで処理した。pCA14[Microbix BiosystemsInc、 Canada]は、SspIで制限酵素を用いて切った後、ブランティング酵素を用いてブラントエンドを作った後に、BglIIを処理して同一伝達制限酵素(Isoschizomer)であるBamHIとBglII、そして両端のブラントエンドを介して合成した遺伝子を挿入してシャトルベクターpCA14−3484を製作した[図10の(b)]。その後に、CMVプロモーター遺伝子をKpnIとXhoIでpCA14−3484に挿入してpCA14−CMV−3484を製作した[図10の(c)]。そして、pCA14−CMV−3484でEcoRIとSalI制限酵素によりE1B55kDa部分を切断し、ブランティング(blunting)した後、再び連結(ligation)されたpCA14−CMV−3484−ΔE1B55を得た[図10の(d)]。製作されたシャトルベクターpCA14−CMV−3484−ΔE1B55をXmnIで切断してlinearizationさせた後、IX遺伝子のないdl324−BstBI−human shTGF−β2(または、mouse shTGF−β2)をBstBIで切断した後、大膓菌BJ5183で同時に形質転換させて相同組換えを誘導した。   After confirming the effect of shRNA on TGF-β2 with a non-replicatable adenovirus, an adenovirus was produced that selectively kills cells while expressing this shRNA. In order to construct a shuttle vector that can put various genes into the E1A part of adenovirus before making tumor-selective killing and replicating adenovirus, pBSKII plasmid [Stratagene, USA] contains E1A and E1B55kDa genes A synthetic gene for pBSKII-3484 containing an enzyme site (Enzyme site) was produced [Fig. 10 (a)]. In order to change the synthesized gene into a form for introduction into a pCA14 shuttle vector for facilitating confirmation of homologous recombination, pBSKII-3484 is subjected to PCR and treated with a restriction enzyme with FspI, followed by a blunting enzyme. A blunt end was made and treated with BamHI again. pCA14 [Microbix Biosystems Inc, Canada] was prepared by cutting a restriction enzyme with SspI and then creating a blunt end with a blunting enzyme, and then treating BglII with BamHI and BglII, which are the same transfer restriction enzymes (Isoschizomer). Then, a shuttle vector pCA14-3484 was produced by inserting a gene synthesized through the blunt ends at both ends [(b) of FIG. 10]. Thereafter, the CMV promoter gene was inserted into pCA14-3484 with KpnI and XhoI to produce pCA14-CMV-3484 [(c) of FIG. 10]. Then, the E1B55 kDa part was cleaved with EcoRI and SalI restriction enzymes with pCA14-CMV-3484, blunted, and then ligated again to obtain pCA14-CMV-3484-ΔE1B55 [FIG. d)]. After the prepared shuttle vector pCA14-CMV-3484-ΔE1B55 was cleaved with XmnI and linearized, dl324-BstBI-human shTGF-β2 (or mouse shTGF-β2) without IX gene was cleaved with BstBI. Homologous recombination was induced by simultaneous transformation with O. koji BJ5183.

相同組換えされたプラスミドDNAを収得してHindIII制限酵素で処理してDNAパターンの変化を確認し、最終的に配列分析して相同組換え有無を確認した後、確認されたプラスミドをPacIで切断した後、293細胞株に形質転換して腫瘍を選択的に殺傷しながら人間(またはマウス)TGF−β2の発現を抑制するdl324−CMV−3484−shTGF−β2アデノウイルスを製作した[図11]。   The homologous recombination plasmid DNA is obtained and treated with HindIII restriction enzyme to confirm the DNA pattern change, and finally the sequence analysis is performed to confirm the presence or absence of homologous recombination, and then the confirmed plasmid is cleaved with PacI. After that, the 293 cell line was transformed to produce dl324-CMV-3484-shTGF-β2 adenovirus that suppresses the expression of human (or mouse) TGF-β2 while selectively killing the tumor [FIG. 11]. .

図12は、実際マウスshTGF−β2が含まれた腫瘍選択的複製可能アデノウイルス製作のための相同組換え過程を示すものであって、E3スクリーニング結果、1、2、4、5、6クローンがpositive cloneで1次選択され(a)、HindIII切断パターン(digestion pattern)で相同組換えされたコロニーを選択し、1、2、4番コロニーのすべてを対照区とパターン比較した結果、組換えされたものと確認され(b)、PacI切断後、1、2、4コロニーのうちの1番だけPacIで切断して2kb程度のバンドを確認することで、1番コロニーのDNAが相同組換えされたdl324−CMV−3484−△E1B55−△E3−sh−mTGF−β2のDNAであることを確認することができた(c)。   FIG. 12 shows the process of homologous recombination for producing a tumor-selective replicable adenovirus that actually contains mouse shTGF-β2, and the E3 screening results show that 1, 2, 4, 5, and 6 clones As a result of selecting a colony that was primarily selected by positive clone (a) and homologously recombined with HindIII digestion pattern, and all of the first, second, and fourth colonies were compared with the control group, (B) After cutting with PacI, only 1st of 1, 2, and 4 colonies were cut with PacI and a band of about 2 kb was confirmed, so that the DNA of the 1st colony was homologously recombined. Dl324-CMV-3484-ΔE1B55-ΔE3-sh-mTGF-β2 can be confirmed. (C).

図13は、人間shTGF−β2が含まれた腫瘍選択的複製可能アデノウイルス製作のための相同組換え過程を示すものであって、HindIII切断パターンによる相同組換えされたクローン(1、2、3)が選択され(a)、前記クローン1、2、3のDNAをPacIで切断した場合、クローンDNA1、2、3すべてが切断されて2kb程度のバンドが確認されており、これは、1、2、3コロニーのDNAが相同組換えされたdl324−CMV−3484−ΔE1B55−ΔE3−sh−hTGF−β2のDNAを確認することができた(b)。
実施例5:細胞溶血確認
FIG. 13 shows a homologous recombination process for producing a tumor-selective replicable adenovirus containing human shTGF-β2, which is a homologous recombination clone (1, 2, 3) using a HindIII cleavage pattern. ) Is selected and when the DNAs of clones 1, 2, and 3 are cleaved with PacI, the clone DNAs 1, 2, and 3 are all cleaved to confirm a band of about 2 kb. It was possible to confirm the DNA of dl324-CMV-3484-ΔE1B55-ΔE3-sh-hTGF-β2 in which DNA of a few colonies was homologously recombined (b).
Example 5: Confirmation of cell hemolysis

複製可能なアデノウイルスの細胞殺傷能を確認するために、24ウェルプレート(well plate)に各種類の細胞を4×10から1×10まで細胞の大きさに応じて細胞数を定めた後、分株して培養した後、翌日survivin promoterとCMVプロモーターを有した複製可能なアデノウイルスをMOIごとに感染させて養成対照群である293A細胞株から最も低いMOIで細胞がウイルスによってすべて死んだときに実験を終了して、各プレートに死なないで生きていた細胞をクリスタルバイオレットで染色した。3.7%パラホルムアルデヒド(Paraform aldehyde)で細胞を5分間常温で固定した後、0.05%のクリスタルバイオレットにより常温で30分間染色した後、水で洗浄して染色された細胞を観察した。2つの種類の腫瘍殺傷ウイルスでウイルスの腫瘍殺傷効果を比較した結果、プロモーターによる殺傷効果との差は大きくないものと示され、2つとも腫瘍選択性が優れるものとして確認された。 In order to confirm the cell killing ability of replicable adenovirus, the number of cells was determined according to the cell size from 4 × 10 4 to 1 × 10 5 in a 24-well plate (well plate). Then, after dividing and culturing, the cells were killed by the virus at the lowest MOI from the 293A cell line, which was a control group, by infecting each MOI with a replicable adenovirus having survivin promoter and CMV promoter the next day. At that time, the experiment was terminated, and cells that did not die on each plate were stained with crystal violet. The cells were fixed with 3.7% paraformaldehyde for 5 minutes at room temperature, then stained with 0.05% crystal violet for 30 minutes at room temperature, washed with water, and the stained cells were observed. As a result of comparing the tumor killing effect of the virus with the two types of tumor killing viruses, it was shown that the difference from the killing effect by the promoter was not large, and both were confirmed to have excellent tumor selectivity.

図14は、腫瘍選択的複製可能アデノウイルス(CMV promoterとE1B 55KDaが発現されないdl324−CMV−3484とsurviving promoterにより選択性を付与し、55KDaが発現されるdl324−hSurvivin−3484)が正常細胞(BJ細胞)では、複製が起きないのに対し、多様な種類の人間癌細胞では複製が起きて細胞の溶血が起きることを示したものである。
実施例6:癌細胞での効果確認
FIG. 14 shows that tumor-selective replicable adenoviruses (dl324-CMV-3484 in which CMV promoter and E1B 55KDa are not expressed and surviving promoter, and dl324-hSurvivin-3484 in which 55 KDa is expressed are normal cells ( In BJ cells), replication does not occur, whereas in various types of human cancer cells, replication occurs and cell hemolysis occurs.
Example 6: Confirmation of effect in cancer cells

A375メルラノ−マ細胞株で人間sh−TGF−β1またはsh−TGF−β2を発現する実施例2の複製不能アデノウイルスを1、5、10、50、100moiで感染させてから細胞内に存在するTGF−β1、TGF−β2、TGF−β3mRNAの水準をリアルタイムPCR方法で行った。   Infected with the non-replicating adenovirus of Example 2 expressing human sh-TGF-β1 or sh-TGF-β2 in the A375 merlanoma cell line at 1, 5, 10, 50, 100 moi and then intracellular The levels of TGF-β1, TGF-β2, and TGF-β3 mRNA were measured by a real-time PCR method.

その結果、TGF−β1のshRNAを発現する場合、細胞内TGF−β1 mRNAを減少させるものの、TGF−β2 mRNAやTGF−β3 mRNAが増加する傾向を示した。一方、TGF−β2のshRNAを発現する場合、細胞内TGF−β2 mRNAを効果的に減少させると共に、TGF−β2 mRNAやTGF−β3 mRNAが減少する傾向を示した[図15]。これは、細胞内の補償効果側面による効能低下の心配が、少なくともTGF−β2のshRNAを発現する場合には、その現象がなかっただけでなく、他のTGF−βのisotypeも抑制させる付随効果も有することができる長所となる。これと同様な結果がELISAを用いてTGF−βタンパク質の発現減少効果パターンにもリアルタイムPCRで同様に現れた[図16]。   As a result, when TGF-β1 shRNA was expressed, intracellular TGF-β1 mRNA was decreased, but TGF-β2 mRNA and TGF-β3 mRNA tended to increase. On the other hand, when TGF-β2 shRNA was expressed, intracellular TGF-β2 mRNA was effectively reduced and TGF-β2 mRNA and TGF-β3 mRNA tended to decrease [FIG. 15]. This is because there is no concern that the effect of reducing the efficacy due to the intracellular compensation effect side is expressed at least when TGF-β2 shRNA is expressed, but also the accompanying effect of suppressing other TGF-β isotypes. It can also be an advantage. A result similar to this appeared in real-time PCR in the expression reduction effect pattern of TGF-β protein using ELISA [FIG. 16].

これは、TGF−β2に対するshRNA発現するアデノウイルスが、TGF−β1に対するshRNA発現するアデノウイルスよりも発現抑制効果が相対的に優れることを確認させたことである。   This is to confirm that the adenovirus expressing shRNA against TGF-β2 has a relatively superior expression suppressing effect than the adenovirus expressing shRNA against TGF-β1.

Claims (10)

配列番号1または2に表される塩基配列を標的配列とし、TGF−β2発現を抑制するshRNA。   A shRNA that suppresses TGF-β2 expression using the base sequence represented by SEQ ID NO: 1 or 2 as a target sequence. 配列番号3または4に表される請求項1に記載のshRNA。   The shRNA according to claim 1, which is represented by SEQ ID NO: 3 or 4. 請求項1に記載のshRNAを有効成分として含む抗腫瘍組成物。   An antitumor composition comprising the shRNA according to claim 1 as an active ingredient. 請求項1に記載のshRNAを発現する組換え発現ベクター。   A recombinant expression vector for expressing the shRNA according to claim 1. 配列番号5に表されるトップストランド(top strand)と、配列番号6に表されるボトムストランド(bottom strand)と、を有するDNAを含む請求項4に記載の組換え発現ベクター。   5. The recombinant expression vector according to claim 4, comprising DNA having a top strand represented by SEQ ID NO: 5 and a bottom strand represented by SEQ ID NO: 6. 配列番号7に表されるトップストランド(top strand)と、配列番号8に表されるボトムストランド(bottom strand)と、を有するDNAを含む請求項4に記載の組換え発現ベクター。   5. The recombinant expression vector according to claim 4, comprising DNA having a top strand represented by SEQ ID NO: 7 and a bottom strand represented by SEQ ID NO: 8. U6プロモーターを含むベクターにDNAを組換えさせて収得する請求項4に記載の組換え発現ベクター。   The recombinant expression vector according to claim 4, which is obtained by recombining DNA into a vector containing a U6 promoter. pSP72△E3−sh−human TGF−β2またはpSP72△E3−sh−mouse TGF−β2である請求項4に記載の組換え発現ベクター。   The recombinant expression vector according to claim 4, which is pSP72ΔE3-sh-human TGF-β2 or pSP72ΔE3-sh-mouse TGF-β2. 請求項4に記載の組換え発現ベクターを有効成分とする抗腫瘍組成物。   An antitumor composition comprising the recombinant expression vector according to claim 4 as an active ingredient. 請求項4に記載の組換え発現ベクターを導入したアデノウイルス。   An adenovirus into which the recombinant expression vector according to claim 4 has been introduced.
JP2014555484A 2012-01-31 2013-01-31 ShRNA that suppresses TGF-β2 expression Pending JP2015506696A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20120009811 2012-01-31
KR10-2012-0009811 2012-01-31
KR10-2013-0010233 2013-01-30
KR1020130010233A KR101420564B1 (en) 2012-01-31 2013-01-30 The shRNA downregulating TGF-β2 for treatment of tumor
PCT/KR2013/000791 WO2013115579A1 (en) 2012-01-31 2013-01-31 Shrna for suppressing tgf-β2 expression

Publications (1)

Publication Number Publication Date
JP2015506696A true JP2015506696A (en) 2015-03-05

Family

ID=49215002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014555484A Pending JP2015506696A (en) 2012-01-31 2013-01-31 ShRNA that suppresses TGF-β2 expression

Country Status (3)

Country Link
JP (1) JP2015506696A (en)
KR (1) KR101420564B1 (en)
CN (1) CN104245936B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152609A1 (en) * 2014-03-31 2015-10-08 연세대학교 산학협력단 Antitumor composition containing gm-csf gene, decorin gene, shrna inhibiting tgf-β2 expression, and shrna inhibiting foxp3 expression
KR101713407B1 (en) * 2014-03-31 2017-03-07 연세대학교 산학협력단 Melanoma cell line capable of adenoviral infection and replication
CN109072253B (en) * 2015-12-08 2021-12-21 延世大学校产学协力团 Antitumor composition comprising GM-CSF gene, Flt3L-TRAIL fusion gene, shRNA inhibiting expression of TGF-beta, and shRNA inhibiting expression of HSP

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154542A1 (en) * 2010-06-11 2011-12-15 Artisense Pharma Gmbh Method for selective oligonucleotide modification

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426914A (en) * 2005-12-30 2009-05-06 因特拉迪格姆公司 SiRNA compositions promoting scar-free wound healing of skin and methods for wound treatment
CN101974529B (en) * 2010-09-21 2013-04-03 南京大学(苏州)高新技术研究院 TGF-beta specific siRNA containing free triphosphoric acid group and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154542A1 (en) * 2010-06-11 2011-12-15 Artisense Pharma Gmbh Method for selective oligonucleotide modification

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015033218; Cancer Res, 2009, vol.69, no.3, p.828-835 *
JPN6015033222; siDirect version 2.0 highly effective, target specific siRNA online design site 2009, [Retrieved on August 13, 2015], URL:http://sidirect2.rnai.jp/ *

Also Published As

Publication number Publication date
KR20130088792A (en) 2013-08-08
KR101420564B1 (en) 2014-07-17
CN104245936B (en) 2016-04-06
CN104245936A (en) 2014-12-24

Similar Documents

Publication Publication Date Title
CN107406852B (en) Oligonucleotide therapy for leber&#39;s congenital amaurosis
JP5383186B2 (en) Nucleic acid agents that down-regulate H19 and methods of using the same
WO2013173637A1 (en) Compositions and methods for modulating gene expression
US20100086526A1 (en) Nucleic acid constructs and methods for specific silencing of h19
US9222090B2 (en) RNA interference target for treating AIDS
US20190255090A1 (en) Egfr gene expression-suppressing sirna, precursor of same, and applications thereof
CN109563513B (en) siRNA for inhibiting K-RAS gene expression and precursor and application thereof
CN113694077A (en) Compositions and methods of short hairpin RNAs and micrornas for wound healing
JP2022525302A (en) Non-viral DNA vector and its use for expressing phenylalanine hydroxylase (PAH) therapeutic agents
CN111876421A (en) Targeting KrasG12DgRNA sequence of mutant transcript, vector and application thereof
JP2015506696A (en) ShRNA that suppresses TGF-β2 expression
KR101286053B1 (en) The shRNA downregulating TGF-β1 for treatment of tumor
JP2018109058A (en) Composition for treating cancer associated with hpv infection
KR101374585B1 (en) The shRNA downregulating HSP27 for treatment of tumor
WO2021218802A1 (en) Isolated recombinant oncolytic poxvirus capable of being regulated and controlled by microrna and use thereof
US11498976B2 (en) Viral complex comprising shRNA and anti-EpCAM antibody and uses thereof
CN115927472A (en) Construction and application of anti-VEGF antibody in-vivo expression system
KR101683964B1 (en) An expression vector comprising nucleic acid downregulating Daxx, TRAIL gene and nucleic acid downregulating Bcl-xL
WO2013115579A1 (en) Shrna for suppressing tgf-β2 expression
US20090060889A1 (en) Ii-RNAi involved Ii suppression in cancer immunotherapy
JP4505566B2 (en) Lung cancer therapeutic agent
CN107184984A (en) Application of the RPL10 inhibitor in the medicine for preparing treatment oophoroma
US20210332364A1 (en) siNA MOLECULES, METHODS OF PRODUCTION AND USES THEREOF
WO2023023597A1 (en) Virus-like particle
CN117778474A (en) Expression vector based on CRISPR-Cas13a targeting knockdown oncogene and application thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160201