JP2015505949A - Dual compressor air heat source heat pump hot water supply / heating system - Google Patents

Dual compressor air heat source heat pump hot water supply / heating system Download PDF

Info

Publication number
JP2015505949A
JP2015505949A JP2014553612A JP2014553612A JP2015505949A JP 2015505949 A JP2015505949 A JP 2015505949A JP 2014553612 A JP2014553612 A JP 2014553612A JP 2014553612 A JP2014553612 A JP 2014553612A JP 2015505949 A JP2015505949 A JP 2015505949A
Authority
JP
Japan
Prior art keywords
heating
compressor
temperature
hot water
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014553612A
Other languages
Japanese (ja)
Inventor
ジェンリャン チン
ジェンリャン チン
Original Assignee
ジェンリャン チン
ジェンリャン チン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジェンリャン チン, ジェンリャン チン filed Critical ジェンリャン チン
Publication of JP2015505949A publication Critical patent/JP2015505949A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/315Control of valves of mixing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • F24H15/464Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible using local wireless communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Water Supply & Treatment (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

本発明は、機器ユニット部分と給湯部分と暖房部分とインテリジェント制御部分と、を含むデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムを開示する。前記機器ユニット部分は、空気熱源ヒートポンプの加熱部分と電熱部分と水路管路材部分と制御回路部分とを含む。前記制御回路部分が検出した入水温度と環境温度に基づき空気熱源ヒートポンプの加熱部分を制御して異なるコンプレッサー組合せを使用し、コンプレッサーがオンになった後、出水温度が設定温度に達したと検出された時、電熱部分が出力しないよう制御し、設定温度に達することができないと検出した時、検出した入出水温差、及び、水路管路材部分で検出した流量に基づき、電熱部分を制御して必要な電熱の電力を出力し、空気熱源ヒートポンプの加熱部分と電熱部分がいずれも全電力の出力で、且つ、出水温度が設定温度に達していない時、検出した温度に基づき水路管路材部分を制御し流量調節弁によって流量を調節することで出水温度を一定に保たせることに用いられる。The present invention discloses a dual compressor air heat source heat pump hot water supply / heating system including an equipment unit portion, a hot water supply portion, a heating portion, and an intelligent control portion. The equipment unit part includes a heating part, an electric heating part, a water conduit material part, and a control circuit part of an air heat source heat pump. Based on the incoming water temperature and environmental temperature detected by the control circuit part, the heating part of the air heat source heat pump is controlled to use a different compressor combination. When it detects that the set temperature cannot be reached, it controls the electric heating part based on the detected inlet / outlet water temperature difference and the flow rate detected in the conduit material part. Outputs necessary electric heat power, and when both the heating part and electric heating part of the air heat source heat pump are full power output, and the water discharge temperature does not reach the set temperature, the water pipe line material part based on the detected temperature This is used to keep the water temperature constant by controlling the flow rate and adjusting the flow rate with the flow rate control valve.

Description

本発明は、デュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房分野に関し、特に、インテリジェント制御機能付きのすぐ使える状態になるデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムに関する。   The present invention relates to the field of dual compressor air heat source heat pump hot water supply / heating, and more particularly to a dual compressor air heat source heat pump hot water supply / heating system with an intelligent control function.

従来のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムは、一般的に3部分からなり、1つ目が本体部分、2つ目がタンク部分、3つ目が暖房システム部分である。家庭用タイプタンクについて1、容量が一般的に150〜320Lで、タンクの体積が非常に大きく、据付時も建築面積の広いスペースを占用する必要があり、タンクをブラケットで壁外に取り付けることもあり、タンク本体に水の重量を加えと、このような取り付け方式は非常に危険である。2、タンク内層部本体に使用される材料及び技術は、ステンレス鋼内層部或いは陶磁内層部を問わず、製造技術の欠陥により、タンクからの漏水が避けられない。3、タンク内部の熱交換器は、一般的に銅管又はステンレス鋼管が使用され、水質の悪い地域では、熱交換チューブが腐食して破損してしまい、冷媒の漏えいにつながる。一度漏えいが起きると、機器ユニットにとって致命的な損傷となってしまう。4、本体とタンクの間に接続管により相互連結する必要があるため、据付時に人為的なミスで冷媒の漏えいが起きることが避けられない。5、貯湯式ヒートポンプの特性は、水温を比較的高い温度まで上昇させる必要があり、且つ所要時間が比較的長いため、すぐにお湯を使いたいという要求を満たすことができず、また長時間使用し続けると、水温変化が比較的大きく、使用に当たっての快適性に影響を及ぼす。また、凝縮温度の高さが機器ユニットのエネルギー消費を決定する。従来のタンク付き機器ユニットでは、長期に渡って高凝縮温度と高凝縮圧力の下で運転されるため、コンプレッサーの寿命にとって極めて大きな試練となる。6、貯湯式タンクを採用すると、水を使う時水とお湯を混ぜ合わせなければならず、このようにすると以下のいくつかの問題があり、つまり1)タンク内の熱湯使用率が高くない、2)タンクが保温過程中において、水温が下がっていてエネルギー消費が増える、3)利用者の家に水栓を取り付ける時、必ず混水栓を取り付ける必要があるため、材料コストが増す。7、一般的に暖房システムでタンク内の熱エネルギーを取る時、タンク内部に1個の熱交換コイルを取り付けて床暖房コイル或いは加熱板及び循環水ポンプと閉合回路を構成する必要があり、こうなるとタンク生産技術の困難性が高まり、タンクの容積を占めてしまう。8、従来の給湯・暖房システムには、インテリジェント制御機能がなく、給湯・暖房システムに対し各種遠隔監視を行うことができないため、現代人の多様なニーズに応えることができない。1)例えば利用者が事前或いは定刻に暖房を起動させようとしても、家に誰もいない時、実現できない。2)利用者が長時間出かけ、暖房又は給湯用水のオフを忘れた際、遠隔で暖房又は給湯操作をオフにすることができない。3)従来の給湯・暖房システムにある種の故障が発生して、現場での分析や解決する場合、特にアフターサービス拠点が不足地域、若しくは辺鄙な地域になると、アフターサービスの適時性及び顧客満足度が大幅に下がる。   A conventional dual compressor air heat source heat pump hot water supply / heating system generally comprises three parts, the first part being a main body part, the second being a tank part, and the third being a heating system part. 1 for household type tanks, capacity is generally 150-320L, the volume of the tank is very large, and it is necessary to occupy a large building area during installation, and the tank can be attached outside the wall with a bracket Yes, such a mounting method is very dangerous when the weight of water is added to the tank body. 2. The material and technology used for the tank inner layer main body, regardless of whether it is a stainless steel inner layer or a ceramic inner layer, cannot be avoided due to defects in manufacturing technology. 3. A copper tube or a stainless steel tube is generally used for the heat exchanger in the tank, and in an area with poor water quality, the heat exchange tube is corroded and broken, leading to refrigerant leakage. Once leaked, it will be fatal to the equipment unit. 4. Since it is necessary to connect the main body and the tank by a connecting pipe, it is inevitable that the refrigerant leaks due to human error during installation. 5. The characteristics of the hot water storage type heat pump are that it is necessary to raise the water temperature to a relatively high temperature, and the required time is relatively long. If it continues, the water temperature change is relatively large, which affects the comfort in use. Also, the high condensation temperature determines the energy consumption of the equipment unit. The conventional equipment unit with a tank is operated under a high condensation temperature and a high condensation pressure for a long period of time, which is a great challenge for the life of the compressor. 6. If you use a hot water storage tank, you have to mix water and hot water when you use water. If you do this, there are some problems as follows: 1) Hot water usage rate in the tank is not high, 2) While the tank is in the process of keeping warm, the water temperature decreases and energy consumption increases. 3) When a faucet is attached to the user's house, it is necessary to attach a faucet, which increases the material cost. 7. Generally, when taking heat energy in the tank in the heating system, it is necessary to install a single heat exchange coil inside the tank to form a closed circuit with the floor heating coil or heating plate and circulating water pump. Then, the difficulty of tank production technology will increase and it will occupy the volume of the tank. 8. The conventional hot water supply / heating system does not have an intelligent control function and cannot remotely monitor the hot water supply / heating system, so it cannot meet the diverse needs of modern people. 1) For example, even if a user tries to activate heating in advance or on time, it cannot be realized when no one is at home. 2) When the user goes out for a long time and forgets to turn off the water for heating or hot water supply, the heating or hot water supply operation cannot be turned off remotely. 3) When certain types of failures occur in conventional hot-water supply / heating systems and are analyzed and resolved in the field, the timeliness and customer satisfaction of after-sales service are particularly important when the after-sales service bases are in shortage or remote areas. The degree drops significantly.

本発明は、上記の技術に存在する欠陥と不足に鑑み、一体設計で、生産と取り付けがより一層便利で、水を使う時の快適性を向上できると同時に暖房機能を提供することで、機器ユニット機能の多様性及びネットワーク経由のインテリジェント遠隔制御を実現し、現代人の多様なニーズに答えることができるインテリジェント制御機能付きのデュアルコンプレッサーシステムのすぐ使える状態になる定温デュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムを提供する。   In view of the deficiencies and shortcomings that exist in the above technology, the present invention is an integrated design, which is more convenient for production and installation, can improve the comfort when using water, and at the same time provide a heating function, Constant temperature dual compressor air source heat pump hot water supply and heating that enables ready use of dual compressor system with intelligent control function that can realize diverse remote control over the network and intelligent remote control via network Provide a system.

上記技術の問題点を解決するため、本発明の技術的思想として、機器ユニット部分と給湯部分と暖房部分とインテリジェント制御部分と、を含むデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムを提供する。前記機器ユニット部分は、空気熱源ヒートポンプの加熱部分と電熱部分と水路管路材部分と制御回路部分とを含み、前記制御回路部分は検出した入水温度と環境温度に基づき空気熱源ヒートポンプの加熱部分を制御して異なるコンプレッサー組合せを使用、又はコンプレッサーがオンになった後、出水温度が設定温度に達したと検出された時、電熱部分が出力しないよう制御、若しくは出水温度が設定温度に達することができないと検出した時、検出した入出水温差及び水路管路材部分で検出した流量に基づき、電熱部分を制御して必要な電熱の電力を出力、或いは空気熱源ヒートポンプの加熱部分と電熱部分がいずれも全電力の出力で、且つ出水温度が設定温度に達していない時、検出した温度に基づき水路管路材部分を制御し流量調節弁によって流量を調節することで出水温度を一定に保持、又は暖房の需要コマンドを受信した時、検出した室内環境温度或いは床暖房コイルの温度に基づき暖房コマンドを実行するかどうかを判断し、室内環境温度或いは床暖房コイルの温度が暖房起動の要求温度に達した時、暖房機能を実行させ、室内環境温度或いは床暖房コイルの温度が稼働停止温度に達していることを検出した時暖房機能をオフにすることに用いられる。   In order to solve the problems of the above technique, a dual compressor air heat source heat pump hot water supply / heating system including an equipment unit portion, a hot water supply portion, a heating portion, and an intelligent control portion is provided as a technical idea of the present invention. The device unit part includes a heating part of an air heat source heat pump, an electric heating part, a water conduit material part, and a control circuit part, and the control circuit part determines the heating part of the air heat source heat pump based on the detected incoming water temperature and environmental temperature. Use different compressor combinations to control, or when it is detected that the water temperature has reached the set temperature after the compressor is turned on, the electric heating part will not output or the water temperature will reach the set temperature. When it is detected that it cannot be performed, the electric heating part is controlled based on the detected temperature difference between the incoming and outgoing water and the flow rate detected in the pipe line material part to output the necessary electric heating power, or the heating part and the electric heating part of the air heat source heat pump Is a full-power output, and when the water temperature does not reach the set temperature, the flow control valve is controlled based on the detected temperature. Therefore, by adjusting the flow rate, when the water temperature is kept constant or when a heating demand command is received, it is determined whether to execute the heating command based on the detected indoor environment temperature or the temperature of the floor heating coil. When the temperature or the temperature of the floor heating coil reaches the required heating activation temperature, the heating function is executed, and when it is detected that the indoor environment temperature or the floor heating coil temperature has reached the operation stop temperature, the heating function is turned off. Used to make

前記空気熱源ヒートポンプの加熱部分は、第1のコンプレッサーと第2のコンプレッサーと第1の電磁弁と第2の電磁弁と第3の電磁弁と第4の電磁弁と第5の電磁弁と第6の電磁弁と集中プレート式熱交換器と暖房用プレート式熱交換器と第1のフィルタと第2のフィルタと膨張弁と第1の蒸発器と第2の蒸発器と第1の圧力除去用凝縮器と第2の圧力除去用凝縮器と第1の圧力除去用節流細管と第2の圧力除去用節流細管と気液分離器とファンブレードとモータと第1の節流細管と除霜細管と、を含む。上記の部材が管路を通じて接続した後で、密閉式ヒートポンプ給湯・暖房システムが形成される。順番通り接続した第1のコンプレッサーと第2の電磁弁と集中プレート式熱交換器と暖房用プレート式熱交換器と第1のフィルタと膨張弁と第1の蒸発器と気液分離器と第1のコンプレッサーが、第1のコンプレッサーシステムの第1給湯・暖房経路を形成する。順番通り互いに接続した第1のコンプレッサーと第6の電磁弁と暖房用プレート式熱交換器と第1のフィルタと膨張弁と第1の蒸発器と気液分離器と第1のコンプレッサーが、第1のコンプレッサーシステムの第2給湯・暖房経路を形成する。順番通り互いに接続した第1のコンプレッサーと第4の電磁弁と第1の圧力除去用凝縮器と第1の圧力除去用節流細管と第1の蒸発器と気液分離器と第1のコンプレッサーが、第1のコンプレッサーシステムの圧力除去経路を形成する。順番通り互いに接続した第1のコンプレッサーと第1の電磁弁と除霜細管と第1の蒸発器と気液分離器と第1のコンプレッサーが、第1のコンプレッサーシステムの除霜経路を形成する。順番通り互いに接続した第2のコンプレッサーと第3の電磁弁と集中プレート式熱交換器と第2のフィルタと第1の節流細管と第2の蒸発器と第2のコンプレッサーが、第2のコンプレッサーシステムの給湯・暖房経路を形成する。順番通り互いに接続した第2のコンプレッサーと第5の電磁弁と第2の圧力除去用凝縮器と第2の圧力除去用節流細管と第2の蒸発器と第2のコンプレッサーが、第2のコンプレッサーシステムの圧力除去経路を形成する。   The heating portion of the air heat source heat pump includes a first compressor, a second compressor, a first solenoid valve, a second solenoid valve, a third solenoid valve, a fourth solenoid valve, a fifth solenoid valve, and a first solenoid valve. 6 solenoid valve, concentrated plate heat exchanger, heating plate heat exchanger, first filter, second filter, expansion valve, first evaporator, second evaporator, and first pressure relief Condenser, second pressure relief condenser, first pressure relief current-carrying tube, second pressure relief current-carrying capillary, gas-liquid separator, fan blade, motor, and first current-carrying capillary. A defrosting tubule. After the above-mentioned members are connected through the pipeline, a closed heat pump hot water supply / heating system is formed. The first compressor, the second solenoid valve, the central plate heat exchanger, the heating plate heat exchanger, the first filter, the expansion valve, the first evaporator, the gas-liquid separator, and the first connected in order. One compressor forms the first hot water supply / heating path of the first compressor system. The first compressor, the sixth solenoid valve, the heating plate heat exchanger, the first filter, the expansion valve, the first evaporator, the gas-liquid separator, and the first compressor connected to each other in order. The 2nd hot-water supply / heating route of the compressor system of 1 is formed. The first compressor, the fourth solenoid valve, the first pressure relief condenser, the first pressure relief flow-saving capillary, the first evaporator, the gas-liquid separator, and the first compressor connected to each other in order. Forms the pressure relief path of the first compressor system. The first compressor, the first solenoid valve, the defrosting capillary, the first evaporator, the gas-liquid separator, and the first compressor, which are connected to each other in order, form the defrosting path of the first compressor system. A second compressor, a third solenoid valve, a concentrated plate heat exchanger, a second filter, a first current-saving capillary, a second evaporator, and a second compressor, which are connected to each other in order, Form a hot water supply / heating route for the compressor system. A second compressor, a fifth solenoid valve, a second pressure relief condenser, a second pressure relief flow-saving capillary, a second evaporator, and a second compressor, which are connected to each other in order, Create a pressure relief path for the compressor system.

前記電熱部分は、発熱体アセンブリーとシリコン制御整流素子アセンブリーと第1のサーモスタットと第2のサーモスタットと筐体と発熱体アセンブリーの入水管と発熱体アセンブリーの出水管と端子台等と、を含む。   The electric heating part includes a heating element assembly, a silicon controlled rectifier element assembly, a first thermostat, a second thermostat, a casing, a water inlet pipe of the heating element assembly, a water outlet pipe of the heating element assembly, a terminal block, and the like.

前記水路管路材部分は、順番通り互いに接続した水流スイッチと集中プレート式熱交換器と電動混合栓と流量計と前記電熱部分に接続する流量調節弁と、を含む。   The water pipe line material part includes a water flow switch, a concentrated plate heat exchanger, an electric mixing plug, a flow meter, and a flow rate control valve connected to the electric heat part connected to each other in order.

前記制御回路は、主制御盤と操作盤とを含み、前記主制御盤がMCUと温度検出回路と電熱用電力制御回路とを備える。   The control circuit includes a main control panel and an operation panel, and the main control panel includes an MCU, a temperature detection circuit, and an electric heating power control circuit.

前記制御回路部分は、更に正確なコンプレッサー組合せを選択した後で過温現象が現れた時、検出した出水温度に基づき前記第4の電磁弁或いは第5の電磁弁の動作を制御することに用いられる。   The control circuit portion is used to control the operation of the fourth solenoid valve or the fifth solenoid valve based on the detected water discharge temperature when an overheating phenomenon appears after selecting a more accurate compressor combination. It is done.

前記制御回路部分は、更に正確なコンプレッサーの組合せを選択した後で過温現象が現れた時、電動混合栓を通じてヒートポンプ出水と冷水の入出割合を調節することに用いられる。   The control circuit part is used to adjust the heat pump water and cold water flow rate through the electric mixer when an overheating phenomenon occurs after selecting a more accurate compressor combination.

前記インテリジェント制御部分は、前記制御回路と制御端末とサーバーと無線通信モジュールとを含む。前記サーバーが無線ネットワークを通じて前記制御端末及び無線通信モジュールに接続し、前記操作盤が第1のRS485/232通信回路を通じて主制御盤に接続し、前記無線通信モジュールが無線ネットワークを通じてサーバーを中継局として制御端末と通信し、第2のRS485/232通信回路を通じて前記主制御盤と接続する。   The intelligent control part includes the control circuit, a control terminal, a server, and a wireless communication module. The server connects to the control terminal and the wireless communication module through a wireless network, the operation panel connects to the main control panel through a first RS485 / 232 communication circuit, and the wireless communication module uses the server as a relay station through the wireless network. It communicates with the control terminal and is connected to the main control panel through a second RS485 / 232 communication circuit.

前記無線通信モジュールと前記操作盤が統合する。   The wireless communication module and the operation panel are integrated.

前記無線通信モジュールと主制御盤が統合する。   The wireless communication module and the main control panel are integrated.

本発明の有益な効果は、一体設計で、生産と取り付けがより一層便利で、水を使う時の快適性を向上できると同時に暖房機能を提供することで、機器ユニット機能の多様性及びネットワーク経由のインテリジェント遠隔制御を実現し、現代人の多様なニーズに答えることができるインテリジェント制御機能付きのデュアルコンプレッサーシステムのすぐ使える状態になる定温デュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムを提供する。   The beneficial effect of the present invention is the integrated design, more convenient for production and installation, can improve the comfort when using water, and at the same time provide the heating function, the diversity of equipment unit functions and via the network To provide intelligent remote control and provide a constant temperature dual compressor air heat source heat pump hot water supply / heating system that can be used immediately with a dual compressor system with intelligent control function that can meet the diverse needs of modern people.

図1は、本発明の第1の実施形態に係るデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムを示す図である。   FIG. 1 is a diagram showing a dual compressor air heat source heat pump hot water supply / heating system according to the first embodiment of the present invention.

図2は、本発明の電熱部分の構造を示す図である。   FIG. 2 is a diagram showing the structure of the electrothermal portion of the present invention.

図3は、本発明の一実施形態に係るインテリジェント制御部分を示す図である。   FIG. 3 is a diagram illustrating an intelligent control portion according to an embodiment of the present invention.

第1のコンプレッサー1、第2のコンプレッサー24、第2の電磁弁2、第3の電磁弁25、第4の電磁弁26、第5の電磁弁27、第1の電磁弁12、電熱部分7、第1の電磁弁12、第2のコンプレッサー24、第3の電磁弁25、第4の電磁弁26、第5の電磁弁27、第6の電磁弁28、暖房用プレート式熱交換器29、第1のフィルタ10、第2のフィルタ19、膨張弁11、第1の蒸発器22、第2の蒸発器20、第1の圧力除去用凝縮器23、第2の圧力除去用凝縮器21、第1の圧力除去用節流細管16、第2の圧力除去用節流細管17、気液分離器9、ファンブレード15、モータ14、第1の節流細管18、除霜細管13、水流スイッチ8、集中プレート式熱交換器3、電動混合栓4、流量計5、流量調節弁6、発熱体アセンブリーの出水管71、発熱体アセンブリー72、第1のサーモスタット73、筐体74、第2のサーモスタット75、端子台76、シリコン制御整流素子アセンブリー77、発熱体アセンブリーの入水管78、シャワー201、湯船202、循環水ポンプ301、水流スイッチ303、床暖房コイル或いは放熱板302。   1st compressor 1, 2nd compressor 24, 2nd solenoid valve 2, 3rd solenoid valve 25, 4th solenoid valve 26, 5th solenoid valve 27, 1st solenoid valve 12, electric heating part 7 , First solenoid valve 12, second compressor 24, third solenoid valve 25, fourth solenoid valve 26, fifth solenoid valve 27, sixth solenoid valve 28, heating plate heat exchanger 29 , First filter 10, second filter 19, expansion valve 11, first evaporator 22, second evaporator 20, first pressure relief condenser 23, second pressure relief condenser 21. , First pressure-relieving tubule 16, second pressure-relieving tubule 17, gas-liquid separator 9, fan blade 15, motor 14, first pressure-reducing tubule 18, defrosting tubule 13, water flow Switch 8, centralized plate heat exchanger 3, electric mixer tap 4, flow meter 5, flow control valve 6, heating element Assembly outlet pipe 71, heating element assembly 72, first thermostat 73, housing 74, second thermostat 75, terminal block 76, silicon controlled rectifier element assembly 77, heating element assembly inlet pipe 78, shower 201, bathtub 202, circulating water pump 301, water flow switch 303, floor heating coil or heat sink 302.

以下、本発明の技術内容、構造の特徴、達成する目的及び効果を理解させるため、実施例を添付図面に基づき詳細に説明する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described below in detail with reference to the accompanying drawings in order to understand the technical contents, structural features, objects to be achieved, and effects of the present invention.

図1を参照すると、本発明の第1の実施形態に係るデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムを示す図である。デュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムは、機器ユニット部分と給湯部分と暖房部分とを含む。   FIG. 1 is a diagram showing a dual compressor air heat source heat pump hot water supply / heating system according to a first embodiment of the present invention. The dual compressor air heat source heat pump hot water supply / heating system includes an equipment unit portion, a hot water supply portion, and a heating portion.

前記機器ユニット部分は、空気熱源ヒートポンプの加熱部分と電熱部分7と水路管路材部分と制御回路部分とを含み、前記制御回路部分は検出した入水温度と環境温度に基づき空気熱源ヒートポンプの加熱部分を制御して異なるコンプレッサー組合せを使用、又はコンプレッサーがオンになった後、出水温度が設定温度に達したと検出された時、電熱部分が出力しないよう制御、若しくは出水温度が設定温度に達することができないと検出した時、検出した入出水温差及び水路管路材部分で検出した流量に基づき、電熱部分を制御して必要な電熱の電力を出力、或いは空気熱源ヒートポンプの加熱部分と電熱部分がいずれも全電力の出力で、且つ出水温度が設定温度に達していない時、検出した温度に基づき水路管路材部分を制御し流量調節弁によって流量を調節することで出水温度を一定に保持、又は暖房の需要コマンドを受信した時、検出した室内環境温度或いは床暖房コイルの温度に基づき暖房コマンドを実行するかどうかを判断し、室内環境温度或いは床暖房コイルの温度が暖房起動の要求温度に達した時、暖房機能を実行させ、室内環境温度或いは床暖房コイルの温度が稼働停止温度に達していることを検出した時暖房機能をオフにすることに用いられる。   The device unit part includes a heating part of an air heat source heat pump, an electric heating part 7, a water conduit material part, and a control circuit part, and the control circuit part is a heating part of the air heat source heat pump based on the detected incoming water temperature and environmental temperature. Use a different compressor combination by controlling the control, or when it is detected that the outlet water temperature has reached the set temperature after the compressor is turned on, control is performed so that the electric heating part does not output, or the outlet temperature reaches the set temperature. When it is detected that it is not possible to control the electric heating part based on the detected inlet / outlet water temperature difference and the flow rate detected in the pipe channel material part, it outputs the necessary electric heat power, or the heating part and electric heating part of the air heat source heat pump In any case, when all the power is output and the water temperature does not reach the set temperature, the water flow pipe material is controlled based on the detected temperature to adjust the flow rate. The flow rate is adjusted to keep the water temperature constant, or when a heating demand command is received, it is determined whether to execute the heating command based on the detected indoor environment temperature or the temperature of the floor heating coil. When the temperature or the temperature of the floor heating coil reaches the required heating activation temperature, the heating function is executed, and when it is detected that the indoor environment temperature or the floor heating coil temperature has reached the operation stop temperature, the heating function is turned off. Used to make

具体的には、前記空気熱源ヒートポンプの加熱部分は、第1のコンプレッサー1と第2のコンプレッサー24と第2の電磁弁2と第3の電磁弁25と第4の電磁弁26と第5の電磁弁27と第1の電磁弁12と集中プレート式熱交換器3と暖房用プレート式熱交換器29と第1のフィルタ10と第2のフィルタ19と膨張弁11と第1の蒸発器22と第2の蒸発器20と第1の圧力除去用凝縮器23と第2の圧力除去用凝縮器21と第1の圧力除去用節流細管16と第2の圧力除去用節流細管17と気液分離器9とファンブレード15とモータ14と第1の節流細管18と除霜細管13と、を含む。   Specifically, the heating part of the air heat source heat pump includes the first compressor 1, the second compressor 24, the second solenoid valve 2, the third solenoid valve 25, the fourth solenoid valve 26, and the fifth solenoid valve. The electromagnetic valve 27, the first electromagnetic valve 12, the centralized plate heat exchanger 3, the heating plate heat exchanger 29, the first filter 10, the second filter 19, the expansion valve 11, and the first evaporator 22 The second evaporator 20, the first pressure relief condenser 23, the second pressure relief condenser 21, the first pressure relief current-saving capillary 16, and the second pressure relief current-saving capillary 17. The gas-liquid separator 9, the fan blade 15, the motor 14, the first moderating tubule 18, and the defrosting tubule 13 are included.

前記第1のコンプレッサー1、第2の電磁弁2、集中プレート式熱交換器3、暖房用プレート式熱交換器29、第1のフィルタ10、膨張弁11、第1の蒸発器22、気液分離器9、第1のコンプレッサー1が順番通り接続することで第1のコンプレッサーシステムの第1給湯・暖房経路を構成する。前記第1のコンプレッサー1、第6の電磁弁28、暖房用プレート式熱交換器29、第1のフィルタ10、膨張弁11、第1の蒸発器22、気液分離器9、第1のコンプレッサー1が順番通り接続して第1のコンプレッサーシステムの第2給湯・暖房経路を構成する。第1のコンプレッサー1、第4の電磁弁26、第1の圧力除去用凝縮器23、第1の圧力除去用節流細管16、第1の蒸発器22、気液分離器9、第1のコンプレッサー1が順番通り接続して第1のコンプレッサーシステムの圧力除去経路を構成する。第2のコンプレッサー24、第3の電磁弁25、集中プレート式熱交換器3、第2のフィルタ19、第1の節流細管18、第2の蒸発器20、第2のコンプレッサー24が順番通り接続して第2のコンプレッサーシステムの給湯・暖房経路を構成する。第2のコンプレッサー24、第5の電磁弁27、第2の圧力除去用凝縮器21、第2の圧力除去用節流細管17、第2の蒸発器20、第2のコンプレッサー24が順番通り接続して第2のコンプレッサーシステム圧力除去経路を構成する。第1のコンプレッサー1、第1の電磁弁12、除霜細管13、第1の蒸発器22、気液分離器9、第1のコンプレッサー1が順番通り接続して第1のコンプレッサーシステムの除霜経路を構成する。以上のシステムフローの運転中にモータ14のファンブレード15は必要性に応じて運転を起動と停止する。   The first compressor 1, the second solenoid valve 2, the centralized plate heat exchanger 3, the heating plate heat exchanger 29, the first filter 10, the expansion valve 11, the first evaporator 22, and the gas-liquid The separator 9 and the first compressor 1 are connected in order to constitute the first hot water supply / heating route of the first compressor system. The first compressor 1, the sixth electromagnetic valve 28, the heating plate heat exchanger 29, the first filter 10, the expansion valve 11, the first evaporator 22, the gas-liquid separator 9, and the first compressor 1 are connected in order to constitute the second hot water supply / heating route of the first compressor system. The first compressor 1, the fourth solenoid valve 26, the first pressure relief condenser 23, the first pressure relief flow-saving capillary 16, the first evaporator 22, the gas-liquid separator 9, the first The compressors 1 are connected in order to form a pressure relief path for the first compressor system. The second compressor 24, the third solenoid valve 25, the concentrated plate heat exchanger 3, the second filter 19, the first current-saving capillary 18, the second evaporator 20, and the second compressor 24 are in order. Connected to form the hot water supply / heating route of the second compressor system. The second compressor 24, the fifth solenoid valve 27, the second pressure-removing condenser 21, the second pressure-relieving tubule 17, the second evaporator 20, and the second compressor 24 are connected in order. A second compressor system pressure relief path. The first compressor 1, the first solenoid valve 12, the defrosting thin tube 13, the first evaporator 22, the gas-liquid separator 9, and the first compressor 1 are connected in order to defrost the first compressor system. Configure the route. During the operation of the system flow described above, the fan blade 15 of the motor 14 starts and stops operation as necessary.

前記制御回路は、MCUと温度検出回路と電熱用電力制御回路とを備える主制御盤と、操作盤とを含む。前記制御回路部分は、更に正確なコンプレッサー組合せを選択した後で過温現象が現れた時、検出した出水温度に基づき前記第4の電磁弁或いは第5の電磁弁の動作を制御、又は正確なコンプレッサーの組合せを選択した後で過温現象が現れた時、電動混合栓を通じてヒートポンプ出水と冷水の入出割合を調節することに用いられる。   The control circuit includes a main control panel including an MCU, a temperature detection circuit, and an electric heating power control circuit, and an operation panel. The control circuit portion controls the operation of the fourth solenoid valve or the fifth solenoid valve based on the detected outlet water temperature when an overheating phenomenon occurs after selecting a more accurate compressor combination, When an overheating phenomenon appears after selecting a combination of compressors, it is used to adjust the heat pump water and cold water flow rate through the electric mixer tap.

前記水路管路材部分は、順番通り互いに接続した水流スイッチ8と集中プレート式熱交換器3と電動混合栓4と流量計5と前記電熱部分7に接続する流量調節弁6と、を含む。MCUは、出力した電力が更に大きな入水要求を満たすことができると検出した時、制御回路部分を通じて電動混合栓4のステッピングモータを駆動して混水することで、大水量を提供する。   The water conduit material portion includes a water flow switch 8, a concentrated plate heat exchanger 3, an electric mixer tap 4, a flow meter 5, and a flow rate adjusting valve 6 connected to the electric heat portion 7 that are connected to each other in order. When the MCU detects that the output power can satisfy a larger water input requirement, the MCU supplies a large amount of water by driving the stepping motor of the electric mixer tap 4 through the control circuit and mixing the water.

図2を参照すると、本発明の電熱部分の構造を示す図である。電熱部分は、発熱体アセンブリーの出水管71と発熱体アセンブリー72と第1のサーモスタット73と筐体74と第2のサーモスタット75と端子台76とシリコン制御整流素子アセンブリー77と発熱体アセンブリーの入水管78とを含む。電熱部分の動作原理は、出水温度センサーが出水温度を検出すると共に設定温度と比較した後、メッセージをMCUにフィードバックし、電熱部分をオンにするかどうかを判断し、制御発熱体アセンブリー72が通電した後、MCUがシリコン制御整流素子アセンブリー77を正確に制御し、且つ必要な発熱電力を供給することで、出水を一定に保つ。   Referring to FIG. 2, it is a diagram showing the structure of the electrothermal portion of the present invention. The heating portion includes a water discharge pipe 71 of the heating element assembly, a heating element assembly 72, a first thermostat 73, a housing 74, a second thermostat 75, a terminal block 76, a silicon control rectifier element assembly 77, and a water inlet pipe of the heating element assembly. 78. The operation principle of the electric heating part is that the outlet temperature sensor detects the outlet water temperature and compares it with the set temperature, and then feeds back a message to the MCU to determine whether to turn on the electric heating part, and the control heating element assembly 72 is energized. After that, the MCU accurately controls the silicon control rectifier element assembly 77 and supplies necessary heat generation power to keep the water discharge constant.

図3を参照すると、本発明の一実施形態に係るインテリジェント制御部分を示す図である。前記インテリジェント制御部分は、前記制御回路と制御端末とサーバーと無線通信モジュールとを含む。前記サーバーが無線ネットワークを通じて前記制御端末及び無線通信モジュールに接続し、前記操作盤が第1のRS485/232通信回路を通じて主制御盤に接続し、前記無線通信モジュールが無線ネットワークを通じてサーバーを中継局として制御端末と通信し、第2のRS485/232通信回路を通じて前記主制御盤と接続する。本実施形態において、前記無線通信モジュールと前記操作盤が統合し、別の実施形態において、前記無線通信モジュールと主制御盤が統合する。   Referring to FIG. 3, an intelligent control part according to an embodiment of the present invention is shown. The intelligent control part includes the control circuit, a control terminal, a server, and a wireless communication module. The server connects to the control terminal and the wireless communication module through a wireless network, the operation panel connects to the main control panel through a first RS485 / 232 communication circuit, and the wireless communication module uses the server as a relay station through the wireless network. It communicates with the control terminal and is connected to the main control panel through a second RS485 / 232 communication circuit. In the present embodiment, the wireless communication module and the operation panel are integrated, and in another embodiment, the wireless communication module and the main control panel are integrated.

前記給湯部分は、シャワー201と湯船202とを含む。その配置は利用者の家の実際の内装及び取付状況によって定め、水使用側は同時に数個の水の使用点の水使用要求を満たすことができる。前記暖房部分は循環水ポンプ301と水流スイッチ303と床暖房コイル或いは放熱板302とを含む。利用者の暖房の需要に基づき、同時に床暖房コイルと放熱板の使用を満たすことができる。   The hot water supply portion includes a shower 201 and a bathtub 202. The arrangement is determined by the actual interior and installation conditions of the user's house, and the water usage side can simultaneously meet the water usage requirements of several water usage points. The heating part includes a circulating water pump 301, a water flow switch 303, and a floor heating coil or heat radiating plate 302. Based on the user's demand for heating, the use of floor heating coils and heat sinks can be satisfied at the same time.

上述の技術的思想を採用する利点は、1、タンクレス設計を採用することで、設置スペースを節約し、簡単に据付できると共に使用上の安全性がある。2、タンクに漏水が起きる現象を根絶できる。3、タンク内のコイルが腐食破損により機器ユニットの廃棄状況を避けることができる。4、接続管使用の部分を減らすことで、冷媒の漏れ確率を大幅に低下する。5、本発明に係る設計された機器ユニットは、蛇口をひねるだけですぐにお湯が使えるため、用水の待ち時間を節約でき、出水温度を一定に保つことで、水を使う時快適性を高め、且つ水を使う時持続性を保証できる。機器ユニットがこのような水を使う状況において、効率がより一層高まり、より一層省エネで、ヒートポンプの機器ユニットの安全且つ安定した運転に有利にあることで、機器ユニットの寿命も保障できる。6、タンクレス設計を採用するため、熱湯の使用率が低くなるという問題が無くなり、保温効果が悪いことによりエネルギー無駄の問題も生じず、これ以外にも利用者の弁類の使用コストを削減できる。7、設計を通じて圧力除去用凝縮器を使用し、出水温度が高すぎることを避けながら機器ユニットの運転負荷を低下できることで、機器ユニットのエネルギー消費を大幅に引き下げることができるため、国の省エネ・二酸化炭素排出量削減の要求に適合している。8、残存電力に基づき、水量を増大している時も出水を一定に保つことを保証できると判断した状態において、電動混合栓を通じてバイパス混水を行い、こうすると総出水流量が更に大きくなり、水を使う時もより一層快適になる。9、用水負荷の大きさによって、相応しいコンプレッサーを選択でき、ヒートポンプを十分利用して水を使う時快適性を保証すると同時に、ヒートポンプの効率をアップし、電力消費を低下できる。10、給湯の要求を満たすという前提のもとで、操作盤を通じて暖房モードを選択することで、部屋の暖房要求を満たすことができる。11、該給湯・暖房システムはデュアルコンプレッサーシステムを採用し、用水負荷の大きさによって、相応しいコンプレッサーを選択し、瞬間給湯システムと結合することで、出水を一定に保つことを確保できる。12、遠隔制御機能を採用することで、利用者は例えば携帯電話又はその他のインターネットに接続できる機器のような制御端末を使用して給湯・暖房システムに対しインテリジェント制御を行うことで、システムの人間的な設計を実現できる。   Advantages of adopting the above technical idea are as follows. 1. By adopting a tankless design, installation space is saved, installation is easy, and there is safety in use. 2. Eliminate the phenomenon of water leakage in the tank. 3. The disposal status of the equipment unit can be avoided due to corrosion damage to the coil in the tank. 4. Reducing the leak rate of refrigerant by reducing the use of connecting pipes. 5. The equipment unit designed according to the present invention can use hot water immediately by twisting the faucet, so it can save the waiting time of water supply and keep the water temperature constant to improve the comfort when using water. And it can guarantee the durability when using water. In a situation where the equipment unit uses such water, the efficiency of the equipment unit is further increased, the energy consumption is further saved, and the safety and stable operation of the equipment unit of the heat pump is advantageous, so that the life of the equipment unit can be guaranteed. 6. Since the tankless design is adopted, there is no problem that the usage rate of hot water is low, and there is no problem of wasting energy due to the poor heat retention effect. it can. 7. By using a pressure relief condenser throughout the design and reducing the operating load of the equipment unit while avoiding the water temperature being too high, the energy consumption of the equipment unit can be greatly reduced. It meets the requirements for reducing carbon dioxide emissions. 8. Based on the remaining power, when it is judged that it is possible to guarantee that the water discharge is kept constant even when the amount of water is increasing, bypass water is mixed through the electric mixer tap, and this increases the total water flow rate. Even more comfortable when using water. 9. Depending on the size of the water load, a suitable compressor can be selected, and the heat pump can be fully utilized to ensure comfort when using water, while at the same time increasing the efficiency of the heat pump and reducing power consumption. 10. The room heating requirement can be satisfied by selecting the heating mode through the operation panel on the premise that the requirement for hot water supply is satisfied. 11. The hot water supply / heating system adopts a dual compressor system, and by selecting an appropriate compressor according to the size of the water load and combining it with the instantaneous hot water supply system, it is possible to ensure that the water discharge is kept constant. 12. By adopting the remote control function, the user can perform intelligent control on the hot water supply / heating system using a control terminal such as a mobile phone or other devices that can be connected to the Internet. Realistic design.

発明の詳細な説明の項においてなされた具体的な実施例は、あくまでも本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の明細書と添付図面の内容に基づいて行ったこれと同じ効果を持つ効果、若しくはフローの変更、或いはその他関連の技術分野に直接的又は間接的に運用することは、本発明の特許請求の範囲内に含めるものであるのが勿論である。   The specific embodiments made in the section of the detailed description of the invention are merely to clarify the technical contents of the present invention, and should not be construed in a narrow sense by limiting to such specific examples. In addition, it is possible to directly or indirectly operate an effect having the same effect based on the contents of the specification of the present invention and the accompanying drawings, a change in flow, or other related technical fields. Of course, it is intended to be included within the scope of the following claims.

Claims (10)

機器ユニット部分と給湯部分と暖房部分とインテリジェント制御部分と、を含むデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システムであって、
前記機器ユニット部分は、空気熱源ヒートポンプの加熱部分と電熱部分と水路管路材部分と制御回路部分とを含み、前記制御回路部分は検出した入水温度と環境温度に基づき前記空気熱源ヒートポンプの加熱部分を制御して異なるコンプレッサー組合せを使用、又は、コンプレッサーがオンになった後、出水温度が設定温度に達したと検出された時、前記電熱部分が出力しないよう制御、若しくは、出水温度が設定温度に達することができないと検出した時、検出した入出水温差、及び、前記水路管路材部分で検出した流量に基づき、前記電熱部分を制御して必要な電熱の電力を出力、或いは、前記空気熱源ヒートポンプの加熱部分と前記電熱部分がいずれも全電力の出力で、且つ、出水温度が設定温度に達していない時、検出した温度に基づき前記水路管路材部分を制御し流量調節弁によって流量を調節することで出水温度を一定に保持、又は、暖房の需要コマンドを受信した時、検出した室内環境温度、或いは、床暖房コイルの温度に基づき暖房コマンドを実行するかどうかを判断し、室内環境温度、或いは、床暖房コイルの温度が暖房起動の要求温度に達した時、暖房機能を実行させ、室内環境温度、或いは、床暖房コイルの温度が稼働停止温度に達していることを検出した時暖房機能をオフにすることに用いられることを特徴とするデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。
A dual compressor air heat source heat pump hot water supply / heating system including an equipment unit part, a hot water supply part, a heating part, and an intelligent control part,
The equipment unit part includes a heating part of an air heat source heat pump, an electric heating part, a water conduit material part, and a control circuit part, and the control circuit part is a heating part of the air heat source heat pump based on the detected incoming water temperature and environmental temperature. To control the use of different compressor combinations, or after the compressor is turned on, control is made so that the electric heating part does not output when it is detected that the outlet water temperature has reached the preset temperature, or the outlet water temperature is set to the preset temperature. When it is detected that the temperature cannot be reached, the electric heating portion is controlled based on the detected temperature difference between the incoming and outgoing water and the flow rate detected in the conduit material portion, or the necessary electric heat power is output, or the air Based on the detected temperature when the heating part of the heat source heat pump and the electric heating part both output full power and the outlet temperature does not reach the set temperature. The water temperature is kept constant by controlling the water pipe line material part and adjusting the flow rate by the flow control valve, or when the demand command for heating is received, the detected indoor environment temperature or the floor heating coil It is determined whether to execute a heating command based on the temperature, and when the indoor environment temperature or the temperature of the floor heating coil reaches the required temperature for starting the heating, the heating function is executed, and the indoor environment temperature or the floor heating is executed. A dual compressor air heat source heat pump hot water supply / heating system, which is used to turn off the heating function when it is detected that the coil temperature has reached the operation stop temperature.
前記空気熱源ヒートポンプの加熱部分は、第1のコンプレッサーと第2のコンプレッサーと第1の電磁弁と第2の電磁弁と第3の電磁弁と第4の電磁弁と第5の電磁弁と第6の電磁弁と集中プレート式熱交換器と暖房用プレート式熱交換器と第1のフィルタと第2のフィルタと膨張弁と第1の蒸発器と第2の蒸発器と第1の圧力除去用凝縮器と第2の圧力除去用凝縮器と第1の圧力除去用節流細管と第2の圧力除去用節流細管と気液分離器とファンブレードとモータと第1の節流細管と除霜細管と、を含み、上記の部材が管路を通じて接続した後で、密閉式ヒートポンプ給湯・暖房システムが形成され、
順番通り接続した第1のコンプレッサーと第2の電磁弁と集中プレート式熱交換器と暖房用プレート式熱交換器と第1のフィルタと膨張弁と第1の蒸発器と気液分離器と第1のコンプレッサーが、第1のコンプレッサーシステムの第1給湯・暖房経路を形成し、
順番通り互いに接続した第1のコンプレッサーと第6の電磁弁と暖房用プレート式熱交換器と第1のフィルタと膨張弁と第1の蒸発器と気液分離器と第1のコンプレッサーが、第1のコンプレッサーシステムの第2給湯・暖房経路を形成し、
順番通り互いに接続した第1のコンプレッサーと第4の電磁弁と第1の圧力除去用凝縮器と第1の圧力除去用節流細管と第1の蒸発器と気液分離器と第1のコンプレッサーが、第1のコンプレッサーシステムの圧力除去経路を形成し、
順番通り互いに接続した第1のコンプレッサーと第1の電磁弁と除霜細管と第1の蒸発器と気液分離器と第1のコンプレッサーが、第1のコンプレッサーシステムの除霜経路を形成し、
順番通り互いに接続した第2のコンプレッサーと第3の電磁弁と集中プレート式熱交換器と第2のフィルタと第1の節流細管と第2の蒸発器と第2のコンプレッサーが、第2のコンプレッサーシステムの給湯・暖房経路を形成し、
順番通り互いに接続した第2のコンプレッサーと第5の電磁弁と第2の圧力除去用凝縮器と第2の圧力除去用節流細管と第2の蒸発器と第2のコンプレッサーが、第2のコンプレッサーシステムの圧力除去経路を形成することを特徴とする請求項1に記載のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。
The heating portion of the air heat source heat pump includes a first compressor, a second compressor, a first solenoid valve, a second solenoid valve, a third solenoid valve, a fourth solenoid valve, a fifth solenoid valve, and a first solenoid valve. 6 solenoid valve, concentrated plate heat exchanger, heating plate heat exchanger, first filter, second filter, expansion valve, first evaporator, second evaporator, and first pressure relief Condenser, second pressure relief condenser, first pressure relief current-carrying tube, second pressure relief current-carrying capillary, gas-liquid separator, fan blade, motor, and first current-carrying capillary. A defrosting thin tube, and after the above-mentioned members are connected through the pipeline, a sealed heat pump hot water supply / heating system is formed,
The first compressor, the second solenoid valve, the central plate heat exchanger, the heating plate heat exchanger, the first filter, the expansion valve, the first evaporator, the gas-liquid separator, and the first connected in order. 1 compressor forms the first hot water supply / heating path of the first compressor system,
The first compressor, the sixth solenoid valve, the heating plate heat exchanger, the first filter, the expansion valve, the first evaporator, the gas-liquid separator, and the first compressor connected to each other in order. Forming a second hot water supply / heating path for the compressor system of 1;
The first compressor, the fourth solenoid valve, the first pressure relief condenser, the first pressure relief flow-saving capillary, the first evaporator, the gas-liquid separator, and the first compressor connected to each other in order. Forms the pressure relief path of the first compressor system,
The first compressor, the first solenoid valve, the defrosting capillary, the first evaporator, the gas-liquid separator, and the first compressor, which are connected to each other in order, form the defrosting path of the first compressor system,
A second compressor, a third solenoid valve, a concentrated plate heat exchanger, a second filter, a first current-saving capillary, a second evaporator, and a second compressor, which are connected to each other in order, Form a hot water supply / heating route for the compressor system,
A second compressor, a fifth solenoid valve, a second pressure relief condenser, a second pressure relief flow-saving capillary, a second evaporator, and a second compressor, which are connected to each other in order, The dual compressor air heat source heat pump hot water supply / heating system according to claim 1, wherein a pressure relief path of the compressor system is formed.
前記電熱部分は、発熱体アセンブリーとシリコン制御整流素子アセンブリーと第1のサーモスタットと第2のサーモスタットと筐体と発熱体アセンブリーの入水管と発熱体アセンブリーの出水管と端子台等と、を含むことを特徴とする請求項1に記載のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。   The electric heating part includes a heating element assembly, a silicon controlled rectifier element assembly, a first thermostat, a second thermostat, a housing, a water inlet pipe of the heating element assembly, a water outlet pipe of the heating element assembly, a terminal block, and the like. The dual compressor air heat source heat pump hot water supply / heating system according to claim 1. 前記水路管路材部分は、順番通り互いに接続した水流スイッチと集中プレート式熱交換器と電動混合栓と流量計と前記電熱部分に接続する流量調節弁と、を含むことを特徴とする請求項1に記載のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。   The water channel pipe material part includes a water flow switch, a central plate heat exchanger, an electric mixer plug, a flow meter, and a flow rate control valve connected to the electric heat part connected to each other in order. The dual compressor air heat source heat pump hot water supply / heating system according to 1. 前記制御回路は、MCUと温度検出回路と電熱用電力制御回路とを備える主制御盤と、操作盤とを含むことを特徴とする請求項1に記載のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。   The dual compressor air heat source heat pump hot water supply / heating system according to claim 1, wherein the control circuit includes a main control panel including an MCU, a temperature detection circuit, and an electric heating power control circuit, and an operation panel. 前記制御回路部分は、更に正確なコンプレッサー組合せを選択した後で過温現象が現れた時、検出した出水温度に基づき前記第4の電磁弁、或いは、前記第5の電磁弁の動作を制御することに用いられることを特徴とする請求項2に記載のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。   The control circuit portion controls the operation of the fourth solenoid valve or the fifth solenoid valve based on the detected water discharge temperature when an overheating phenomenon appears after selecting a more accurate compressor combination. The dual compressor air heat source heat pump hot water supply / heating system according to claim 2, wherein the dual compressor air heat source heat pump hot water supply / heating system is used. 前記制御回路部分は、更に正確なコンプレッサーの組合せを選択した後で過温現象が現れた時、電動混合栓を通じてヒートポンプ出水と冷水の入出割合を調節することに用いられることを特徴とする請求項4に記載のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。   The control circuit part may be used to adjust a heat pump water flow rate and a cold water flow rate through an electric mixer when an overheating phenomenon occurs after selecting a more accurate compressor combination. 4. The dual compressor air heat source heat pump hot water supply / heating system according to 4. 前記インテリジェント制御部分は、前記制御回路と制御端末とサーバーと無線通信モジュールとを含み、前記サーバーが無線ネットワークを通じて前記制御端末、及び、無線通信モジュールに接続し、前記操作盤が第1のRS485/232通信回路を通じて主制御盤に接続し、前記無線通信モジュールが無線ネットワークを通じて前記サーバーを中継局として制御端末と通信し、第2のRS485/232通信回路を通じて前記主制御盤と接続することを特徴とする請求項5に記載のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。   The intelligent control portion includes the control circuit, a control terminal, a server, and a wireless communication module, the server is connected to the control terminal and the wireless communication module through a wireless network, and the operation panel is a first RS485 / The wireless communication module communicates with the control terminal using the server as a relay station through a wireless network, and connects with the main control panel through a second RS485 / 232 communication circuit. The dual compressor air heat source heat pump hot water supply / heating system according to claim 5. 前記無線通信モジュールと前記操作盤が統合することを特徴とする請求項8に記載のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。   The dual compressor air heat source heat pump hot water supply / heating system according to claim 8, wherein the wireless communication module and the operation panel are integrated. 前記無線通信モジュールと前記主制御盤が統合することを特徴とする請求項8に記載のデュアルコンプレッサー空気熱源ヒートポンプ給湯・暖房システム。   The dual compressor air heat source heat pump hot water supply / heating system according to claim 8, wherein the wireless communication module and the main control panel are integrated.
JP2014553612A 2012-12-25 2013-09-05 Dual compressor air heat source heat pump hot water supply / heating system Pending JP2015505949A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210572510.7 2012-12-25
CN201210572510.7A CN103900138B (en) 2012-12-25 2012-12-25 A kind of double-compressor air energy heat pump heating system
PCT/CN2013/082977 WO2014101463A1 (en) 2012-12-25 2013-09-05 Dual compressor air heat pump heat supply and heating supply system

Publications (1)

Publication Number Publication Date
JP2015505949A true JP2015505949A (en) 2015-02-26

Family

ID=50991626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014553612A Pending JP2015505949A (en) 2012-12-25 2013-09-05 Dual compressor air heat source heat pump hot water supply / heating system

Country Status (6)

Country Link
US (1) US20150292779A1 (en)
JP (1) JP2015505949A (en)
CN (1) CN103900138B (en)
AU (1) AU2013350341A1 (en)
DE (1) DE112013003771T5 (en)
WO (1) WO2014101463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113854928A (en) * 2021-11-18 2021-12-31 佛山市顺德区乐普达电机有限公司 Motor structure with heating function for dish washing machine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318078B2 (en) * 2014-11-21 2018-04-25 ヤンマー株式会社 heat pump
CN104360546B (en) * 2014-12-03 2017-10-03 京东方科技集团股份有限公司 Frame-free displaying device and its manufacture method
CN105241141B (en) * 2015-09-23 2018-09-07 广东美的暖通设备有限公司 Air-cooled heat pump water chiller-heater units and its defrosting control method
USD857191S1 (en) 2016-01-21 2019-08-20 Becton, Dickinson And Company Wearable drug delivery device
USD830547S1 (en) 2016-01-21 2018-10-09 Becton, Dickinson And Company Adhesive liner for wearable drug delivery device
USD830537S1 (en) 2016-01-21 2018-10-09 Becton, Dickinson And Company Wearable drug delivery device with adhesive and liner
USD805631S1 (en) 2016-01-21 2017-12-19 Becton, Dickinson And Company Drug delivery device with insertion mechanism button safety
USD829894S1 (en) 2016-01-21 2018-10-02 Becton, Dickinson And Company Wearable drug delivery device baseplate
USD829889S1 (en) 2016-01-21 2018-10-02 Becton, Dickinson And Company Wearable drug delivery device with adhesive
USD806232S1 (en) 2016-01-21 2017-12-26 Becton, Dickinson And Company Drug delivery device with insertion mechanism
CN107218739B (en) * 2017-06-30 2019-11-08 大连理工大学 A kind of refrigerating plant room based on the integrated race of BIM
CN107401855B (en) * 2017-08-03 2019-09-27 大连理工大学 A kind of PVT heat pump system for realizing timesharing thermoelectricity cold supply round the clock using solar radiation and sky cold emission
CN110781548B (en) * 2019-11-04 2023-08-01 舒创电气科技(辽宁)有限公司 Heat pump unit indoor pipeline design method and heat pump indoor pipeline
CN111929088B (en) * 2020-07-30 2022-08-16 广东纽恩泰新能源科技发展有限公司 High-efficiency energy-saving air source heat pump water chilling unit testing system and method
CN114353324B (en) * 2022-01-07 2023-09-26 吉林瑞科汉斯电气股份有限公司 Double-compressor air source heat pump heating system
CN114963273A (en) * 2022-01-22 2022-08-30 昆明理工大学 Synergistic air source heat pump heating system adopting heating backwater active frost inhibition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310505A (en) * 2001-04-13 2002-10-23 Noritz Corp External water heater-utilizing hot water supply apparatus
JP2003279121A (en) * 2002-03-27 2003-10-02 Osaka Gas Co Ltd External server and communication system
JP2004257646A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Hot water heating apparatus and its control method
JP2004360970A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
WO2012013157A1 (en) * 2010-07-30 2012-02-02 Chen Jianliang Air source instant water heater

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713525A (en) * 1986-07-23 1987-12-15 Kowah, Inc. Microcomputer controlled instant electric water heating and delivery system
US5325822A (en) * 1991-10-22 1994-07-05 Fernandez Guillermo N Electrtic, modular tankless fluids heater
US5984198A (en) * 1997-06-09 1999-11-16 Lennox Manufacturing Inc. Heat pump apparatus for heating liquid
US6782309B2 (en) * 2000-11-07 2004-08-24 9090-3493 Quebec, Inc. SPA controller computer interface
KR100471442B1 (en) * 2002-07-03 2005-03-08 엘지전자 주식회사 Control Method of air-conditioner using multi-compressors
US7802441B2 (en) * 2004-05-12 2010-09-28 Electro Industries, Inc. Heat pump with accumulator at boost compressor output
CN1279322C (en) * 2004-10-28 2006-10-11 上海交通大学 Household cold, heat and power triple supply system adopting vapor compression type electrothermal pump
JP2007278677A (en) * 2006-04-12 2007-10-25 Sharp Corp Heat pump type water heater
JP5078421B2 (en) * 2007-05-01 2012-11-21 日立アプライアンス株式会社 Heat pump hot water floor heater
US8280237B2 (en) * 2007-05-28 2012-10-02 Panasonic Corporation Cogeneration system using surplus electrical current
CN201074920Y (en) * 2007-06-27 2008-06-18 王全龄 Heat pump type air conditioner and water heater being suitable for broad temperature surroundings running in high efficiency
US8498523B2 (en) * 2009-02-03 2013-07-30 Intellihot, Inc. Apparatus and control method for a hybrid tankless water heater
GB2476274B (en) * 2009-12-17 2012-08-01 Aquamarine Power Ltd A heating or cooling system and method
KR101216085B1 (en) * 2010-08-17 2012-12-26 엘지전자 주식회사 Heat pump
CN202119094U (en) * 2011-05-31 2012-01-18 中国科学院广州能源研究所 Instant heating type heat pump heater in multi-level serial connection
CN203190488U (en) * 2012-12-25 2013-09-11 福州斯狄渢电热水器有限公司 Double-compressor air-energy heat-pump heat-supply and heating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310505A (en) * 2001-04-13 2002-10-23 Noritz Corp External water heater-utilizing hot water supply apparatus
JP2003279121A (en) * 2002-03-27 2003-10-02 Osaka Gas Co Ltd External server and communication system
JP2004257646A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Hot water heating apparatus and its control method
JP2004360970A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
WO2012013157A1 (en) * 2010-07-30 2012-02-02 Chen Jianliang Air source instant water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113854928A (en) * 2021-11-18 2021-12-31 佛山市顺德区乐普达电机有限公司 Motor structure with heating function for dish washing machine
CN113854928B (en) * 2021-11-18 2022-09-02 佛山市顺德区乐普达电机有限公司 Motor structure with heating function for dish washing machine

Also Published As

Publication number Publication date
US20150292779A1 (en) 2015-10-15
WO2014101463A1 (en) 2014-07-03
DE112013003771T5 (en) 2015-05-07
AU2013350341A1 (en) 2014-07-10
CN103900138A (en) 2014-07-02
CN103900138B (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP2015505949A (en) Dual compressor air heat source heat pump hot water supply / heating system
CN2884024Y (en) Curculation and water-saving type backwater device of water-heater
JP2007333337A (en) Heat pump type hot water supply device
CN105588335B (en) Water heater and method of supplying hot water
CN106322768A (en) Water heater and control method thereof
CN103542614B (en) heating and refrigerating system
CN103900139B (en) A kind of inner water-tank air energy heat pump heating system
CN103900247A (en) Instant water heater
JP6040872B2 (en) Hot water storage water heater
CN203052987U (en) Instantaneous water heater
CN203052802U (en) Air-energy heat-pump heat supply heating system with built-in water tank
CN203052984U (en) Instant-heat type water heater
CN211345878U (en) Gas water heater system capable of adjusting temperature
CN203190488U (en) Double-compressor air-energy heat-pump heat-supply and heating system
WO2009049551A1 (en) Water heater
CN104344600A (en) Integrated multi-functional comfort system
JP2012207848A (en) Hot water supply device
CN202709357U (en) Pipeline cold and heat circulation system
CN107560147B (en) Household air source heat pump hot water system assisted by gas wall-mounted boiler and control method thereof
CN111520918A (en) Zero-cold-water control method for wall-mounted boiler
CN101089519A (en) Refrigeration heating and hot water supply system
CN214470230U (en) Heat exchange equipment and water heater
CN210070007U (en) Low-temperature floor radiation heating system
CN216080137U (en) Multi-mode central heating and hot water supply system
CN210569338U (en) Triple co-generation system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201