JP2015233369A - Vibration power generator - Google Patents

Vibration power generator Download PDF

Info

Publication number
JP2015233369A
JP2015233369A JP2014118800A JP2014118800A JP2015233369A JP 2015233369 A JP2015233369 A JP 2015233369A JP 2014118800 A JP2014118800 A JP 2014118800A JP 2014118800 A JP2014118800 A JP 2014118800A JP 2015233369 A JP2015233369 A JP 2015233369A
Authority
JP
Japan
Prior art keywords
power generation
vibration
inertial mass
power
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014118800A
Other languages
Japanese (ja)
Other versions
JP6315260B2 (en
Inventor
磯田 和彦
Kazuhiko Isoda
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2014118800A priority Critical patent/JP6315260B2/en
Publication of JP2015233369A publication Critical patent/JP2015233369A/en
Application granted granted Critical
Publication of JP6315260B2 publication Critical patent/JP6315260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vibration power generator capable of more effectively and efficiently performing power generation by utilizing vibration energy of non-utilized energy.SOLUTION: The vibration power generator includes: a rotational inertial mass mechanism 1 which is provided while being connected to a vibrating structure 10 and generates rotational inertial mass effects by rotating a weight when the structure 10 is displaced; a power generation mechanism 2 which is provided while being connected to the rotational inertial mass mechanism 1 and driven by rotating the rotational inertial mass mechanism 1 to generate power; and an additional spring 3 which is connected in series to the rotational inertial mass mechanism 1 and the power generation mechanism 2. A vibration frequency that is determined by the rotational inertial mass mechanism 1 and the additional spring 3, is tuned to a dominant vibration frequency of the structure 10.

Description

本発明は、振動発電装置に関する。   The present invention relates to a vibration power generator.

従来、TMD(Tuned Mass Damper)と称する制振装置を建物の頂部側(屋上など)に設置し、建物の地震時応答を低減させることが提案、実用化されている(例えば、特許文献1、特許文献2参照)。   Conventionally, it has been proposed and put into practical use that a damping device called TMD (Tuned Mass Damper) is installed on the top side of a building (such as a rooftop) to reduce the earthquake response of the building (for example, Patent Document 1, Patent Document 2).

このTMDは、例えば、付帯フレームに振り子(錘体(重錘))を取り付け、錘体が往復振動する1自由度振動系として構成されている。そして、建物の1次固有周期と同調させて、建物の振動と逆方向に錘体を振動させることにより、すなわち、錘体が振動することによる慣性抵抗力(慣性質量効果)を利用することにより、建物に作用した地震エネルギーを減衰させ、建物の応答を低減させることができる。   This TMD is configured, for example, as a one-degree-of-freedom vibration system in which a pendulum (weight (weight)) is attached to an accompanying frame and the weight reciprocates. And by synchronizing the primary natural period of the building and vibrating the weight in the opposite direction to the vibration of the building, that is, by utilizing the inertial resistance force (inertial mass effect) due to the vibration of the weight It can attenuate the seismic energy acting on the building and reduce the response of the building.

一方、非特許文献1には、TMDの錘体等、建物内外で発生する小さな振動を振動増幅器で増幅させることにより、振動発電機の発電量を増加させるシステム(振動発電装置)が開示されている。   On the other hand, Non-Patent Document 1 discloses a system (vibration power generator) that increases the amount of power generated by a vibration generator by amplifying small vibrations generated inside and outside a building, such as a TMD weight body, by a vibration amplifier. Yes.

特開2000−18323号公報JP 2000-18323 A 特開2011−220511号公報JP 2011-220511 A

株式会社竹中工務店:2010年9月16日,株式会社竹中工務店ホームページリリース,「http://www.takenaka.co.jp/news/2010/09/02/index.html」Takenaka Corporation: September 16, 2010, Takenaka Corporation homepage release, “http://www.takenaka.co.jp/news/2010/09/02/index.html”

しかしながら、上記の振動発電装置は、微振動を対象としたもので、効率的な発電が行える振動数が25〜30Hzである。すなわち、広範の振動数帯域の振動エネルギーを効果的に利用して発電することができないという問題がある。   However, the vibration power generator described above is intended for micro vibrations, and the frequency at which efficient power generation can be performed is 25 to 30 Hz. That is, there is a problem that power cannot be generated by effectively using vibration energy in a wide frequency band.

本発明は、上記事情に鑑み、未利用エネルギーの振動エネルギーを利用して、より効果的且つ効率的に発電を行うことを可能にする振動発電装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a vibration power generation apparatus that can generate power more effectively and efficiently by using vibration energy of unused energy.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の振動発電装置は、振動する構造物に連結して設けられ、該構造物が変位すると錘が回転して回転慣性質量効果を発生させる回転慣性質量機構と、前記回転慣性質量機構に連結して設けられ、前記回転慣性質量機構の回転によって駆動して発電する発電機構と、前記回転慣性質量機構及び前記発電機構に直列に連結された付加ばねとを備え、前記回転慣性質量機構と前記付加ばねとにより定まる振動数を前記構造物の卓越する振動数に同調させるようにしたことを特徴とする。   The vibration power generation apparatus of the present invention is connected to a vibrating structure, and when the structure is displaced, a weight rotates to generate a rotating inertial mass effect, and the rotating inertial mass mechanism is connected to the rotating inertial mass mechanism. A power generation mechanism that is driven by the rotation of the rotary inertial mass mechanism to generate power, and the rotary inertial mass mechanism and an additional spring connected in series to the power generation mechanism, the rotary inertial mass mechanism and the The frequency determined by the additional spring is tuned to the dominant frequency of the structure.

また、本発明の振動発電装置においては、前記発電機構に、下記の式(1)で定められる負荷抵抗が接続されていることが望ましい。   In the vibration power generator of the present invention, it is desirable that a load resistance defined by the following formula (1) is connected to the power generation mechanism.

Figure 2015233369
ここで、R:回路抵抗、L:ボールねじのリード、K:起電力定数、K:トルク係数、m:構造物の質量、k:構造ばね(剛性)、μ:慣性質量と構造物の質量の比(Ψ/m)である。
Figure 2015233369
Here, R: circuit resistance, L d : ball screw lead, K E : electromotive force constant, K T : torque coefficient, m: mass of structure, k: structural spring (rigidity), μ: inertia mass and structure This is the mass ratio (Ψ / m) of the object.

本発明の振動発電装置においては、構造物に接続して設置することにより、構造物から伝わる振動エネルギーを回転慣性質量機構で回転運動エネルギーに変換し、発電機構で発電することが可能になる。   In the vibration power generation device of the present invention, the vibration energy transmitted from the structure is converted into rotational kinetic energy by the rotating inertial mass mechanism by being connected to the structure, and the power generation mechanism can generate power.

また、付加ばねを備えることで構造物に同調させることができ、これにより、構造物の振幅より発電装置の振幅を増幅させ、発電効率を高めることが可能になる。   Moreover, it can synchronize with a structure by providing an additional spring, and it becomes possible to amplify the amplitude of a power generator from the amplitude of a structure, and to improve electric power generation efficiency.

さらに、比較的簡易な装置構成で、微振動だけでなく大振幅の振動にも適用できる。また、低振動数での同調効果も得られ、発電効率に優れ、信頼性が高い振動発電装置を安価に製造することができる。さらに、構造物に加わる振動を電気エネルギーに変換できるので、建物などの構造物の振動を低減する副次的効果も期待できる。   Furthermore, it can be applied not only to fine vibrations but also to large amplitude vibrations with a relatively simple device configuration. In addition, a tuning effect can be obtained at a low frequency, and a vibration power generator having excellent power generation efficiency and high reliability can be manufactured at low cost. Furthermore, since the vibration applied to the structure can be converted into electric energy, a secondary effect of reducing the vibration of the structure such as a building can be expected.

本発明の一実施形態に係る振動発電装置を示す図である。It is a figure which shows the vibration electric power generating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る振動発電装置のモデル図である。It is a model figure of the vibration electric power generating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る振動発電装置のモデル図である。It is a model figure of the vibration electric power generating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る振動発電装置の慣性質量比と発生電力の関係を示す図である。It is a figure which shows the relationship between the inertial mass ratio of the vibration electric power generating apparatus which concerns on one Embodiment of this invention, and generated electric power. 本発明の一実施形態に係る振動発電装置の慣性質量比と変位応答倍率の関係を示す図である。It is a figure which shows the relationship between the inertial mass ratio of the vibration electric power generating apparatus which concerns on one Embodiment of this invention, and a displacement response magnification. 本発明の一実施形態に係る振動発電装置の慣性質量比と減衰係数比の関係を示す図である。It is a figure which shows the relationship between the inertial mass ratio and damping coefficient ratio of the vibration electric power generating apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る振動発電装置の慣性質量比と吸収エネルギー比の関係を示す図である。It is a figure which shows the relationship between the inertial mass ratio and absorption energy ratio of the vibration electric power generating apparatus which concern on one Embodiment of this invention.

以下、図1から図7を参照し、本発明の一実施形態に係る振動発電装置について説明する。   Hereinafter, a vibration power generation apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 7.

本実施形態の振動発電装置Aは、図1に示すように、回転慣性質量機構(回転慣性質量)1と発電モーターの発電機構2を一体化して構成されている。さらに、本実施形態では、図2に示すように、回転慣性質量機構1及び発電機構2と、付加ばね3とを直列に接続して振動発電装置Aが構成されている。   As shown in FIG. 1, the vibration power generation apparatus A of the present embodiment is configured by integrating a rotary inertia mass mechanism (rotational inertia mass) 1 and a power generation mechanism 2 of a power generation motor. Further, in the present embodiment, as shown in FIG. 2, the vibration power generation apparatus A is configured by connecting the rotary inertia mass mechanism 1 and the power generation mechanism 2 and the additional spring 3 in series.

具体的に、本実施形態の振動発電装置Aの回転慣性質量機構1は、図1に示すように、ボールねじ機構(ボールねじ4と、ボールねじ4に螺合したボールナット5を主な構成要素とした機構)等により軸方向O1変位を回転に変換し、錘6を回転させることにより錘の数千倍もの大きな慣性質量効果を発生させるように構成されている。   Specifically, as shown in FIG. 1, the rotary inertia mass mechanism 1 of the vibration power generator A of the present embodiment mainly includes a ball screw mechanism (a ball screw 4 and a ball nut 5 screwed to the ball screw 4). The axial O1 displacement is converted into rotation by a mechanism as an element) and the weight 6 is rotated to generate an inertial mass effect that is several thousand times as large as the weight.

さらに、本実施形態の振動発電装置Aは、ボールねじ4に回転軸を接続し、回転慣性質量機構1の回転で回転軸が回転するように発電機構2が回転慣性質量機構1に一体に連結されている。これにより、軸方向O1変位に比例して発電機構2が回転するように構成されている。   Furthermore, in the vibration power generation apparatus A of the present embodiment, a rotating shaft is connected to the ball screw 4, and the power generation mechanism 2 is integrally coupled to the rotating inertial mass mechanism 1 so that the rotating shaft rotates by the rotation of the rotating inertial mass mechanism 1. Has been. Thus, the power generation mechanism 2 is configured to rotate in proportion to the axial O1 displacement.

そして、本実施形態の振動発電装置Aは、回転慣性質量機構1の一端部(軸受け7を固着した一端部側)8を発電機構2に連結し、他端部(ボールナット5を固着した他端部側)9を構造物(振動する構造物)10に連結し、回転慣性質量機構1の一端部8側と他端部9側を回転拘束した状態で設置される。これにより、構造物10に振動が生じると、この振動で軸方向O1変位が生じて回転慣性質量機構1が回転し、回転慣性質量機構1が回転するとともに発電機構2が駆動して発電する。   The vibration power generator A of the present embodiment is configured such that one end portion (one end portion side to which the bearing 7 is fixed) 8 of the rotary inertia mass mechanism 1 is connected to the power generation mechanism 2 and the other end portion (the ball nut 5 is fixed). (End side) 9 is connected to a structure (vibrating structure) 10 and the one end 8 side and the other end 9 side of the rotary inertia mass mechanism 1 are rotationally restrained. As a result, when vibration occurs in the structure 10, the vibration causes an axial O1 displacement to rotate the rotary inertia mass mechanism 1, and the rotary inertia mass mechanism 1 rotates and the power generation mechanism 2 drives to generate power.

よって、この振動発電装置Aを構造物10に接続して設置することにより、構造物10から伝わる振動エネルギーを回転慣性質量機構1で増幅させ、この未利用エネルギーである振動エネルギーで発電モーターの発電機構2を回転させ、発電することが可能になる。
また、回転慣性質量機構1を回転慣性質量ダンパーとして扱う場合には、発電機構2の回転抵抗力を回転慣性質量ダンパーの減衰として利用することができる。
Therefore, by installing this vibration power generation apparatus A connected to the structure 10, the vibration energy transmitted from the structure 10 is amplified by the rotary inertia mass mechanism 1, and the generator motor generates power using the vibration energy that is the unused energy. The mechanism 2 can be rotated to generate power.
Further, when the rotary inertia mass mechanism 1 is handled as a rotary inertia mass damper, the rotational resistance force of the power generation mechanism 2 can be used as attenuation of the rotary inertia mass damper.

ここで、発電機構2の起電力Eは、変位x、回転量θ=2πx/L、起電力定数K(単位:V・s/rad)とすると、次の式(2)で表される。 Here, the electromotive force E of the power generation mechanism 2 is expressed by the following equation (2), assuming that the displacement x, the rotation amount θ = 2πx / L d , and the electromotive force constant K E (unit: V · s / rad). The

Figure 2015233369
Figure 2015233369

また、負荷回路の電流Iは、回路抵抗をRとするとI=E/Rとなり、加振機(回転慣性質量機構1)の抵抗Fは、この電流による発電機構2のトルク係数K(単位:N・m/A)と錘6の回転慣性モーメントIθを用い、次の式(3)で表される。 The load circuit current I is I = E / R, where R is the circuit resistance, and the resistance F of the vibration exciter (rotational inertial mass mechanism 1) is the torque coefficient K T (unit) of the power generation mechanism 2 by this current. : N · m / A) and the rotational moment of inertia I θ of the weight 6 are expressed by the following equation (3).

Figure 2015233369
Figure 2015233369

一方、防災用の手回し発電機や自転車用のダイナモ発電機などのように、コイル(発電機構)に抵抗(負荷として照明ランプ等)を接続したものは既知であり、ランプを点灯した際に回転抵抗が増す(重くなる)。そして、この原理によって減衰力を発揮する装置が例えば「砂子田、大竹、松岡:発電式振動抑制装置の研究、日本機械学会論文集、2005年8月」に示され、且つ速度に比例した減衰力が発揮されることが示されている。   On the other hand, it is known that a resistance (such as an illumination lamp as a load) is connected to a coil (power generation mechanism), such as a handwheel generator for disaster prevention or a dynamo generator for bicycles, and it rotates when the lamp is turned on. Resistance increases (heavy). A device that exhibits a damping force based on this principle is shown in, for example, “Sagoda, Otake, Matsuoka: Research on Power Generation Type Vibration Suppressor, Transactions of the Japan Society of Mechanical Engineers, August 2005” and a damping force proportional to speed. Has been shown to be demonstrated.

上記のことから、発電機構2と回転慣性質量機構1を一体化してなる本実施形態の振動発電装置Aは、発電機構2によって回転慣性質量機構1の両端の相対速度x(上に・)に比例した減衰力と、相対加速度x(上に・・)に比例した抵抗力を有する。そして、次の式(4)、式(5)の関係を満たす場合、減衰係数cと慣性力Ψを並列にした振動発電装置Aとして構成されることになる。   From the above, the vibration power generation apparatus A of the present embodiment, in which the power generation mechanism 2 and the rotary inertia mass mechanism 1 are integrated, has the relative speed x (above) at both ends of the rotary inertia mass mechanism 1 by the power generation mechanism 2. It has a proportional damping force and a resistance force proportional to the relative acceleration x (above). And when satisfy | filling the relationship of following Formula (4) and Formula (5), it will be comprised as the vibration electric power generating apparatus A which made the damping coefficient c and the inertial force Ψ parallel.

Figure 2015233369
Figure 2015233369
Figure 2015233369
Figure 2015233369

さらに具体的に、発電機構2及び回転慣性質量機構1と、付加ばね3とを直列にした本実施形態の振動発電装置Aを、図2及び図3(b)に示すように、構造物10に接続し、構造ばね(剛性)kと並列に配置した場合について説明する。この場合には、発電機構2の回転と錘6の回転が同じ(または増速比β倍)であり、発電機構2と回転慣性質量機構1は並列となり、振動モデル上で、この振動発電装置Aは、式(4)と式(5)の減衰係数cと回転慣性質量Ψを並列配したものと等価になる。   More specifically, the vibration power generation apparatus A according to the present embodiment in which the power generation mechanism 2, the rotary inertia mass mechanism 1, and the additional spring 3 are connected in series is structured as shown in FIGS. Will be described in connection with the structural spring (rigidity) k. In this case, the rotation of the power generation mechanism 2 and the rotation of the weight 6 are the same (or the speed increasing ratio β times), and the power generation mechanism 2 and the rotary inertia mass mechanism 1 are in parallel, and this vibration power generation device is on the vibration model. A is equivalent to the parallel arrangement of the damping coefficient c and the rotational inertial mass Ψ in the equations (4) and (5).

なお、上記のモデルにおいて、回転慣性質量機構1によって制振効果を発揮させる場合には、各諸元の最適値を、「斉藤健二、栗田哲、井上範夫:慣性接続要素を利用した線形粘性ダンパーによる一質点構造の最適応答制御とKelvinモデル化手法に関する考察,構造工学論文集,Vol.53B,pp.53−66,2007年3月」を参考に、次のように設定すればよい。   In the above model, when the damping effect is exerted by the rotary inertial mass mechanism 1, the optimum values of each specification are expressed as “Kenji Saito, Satoru Kurita, Norio Inoue: Linear viscous damper using inertial connection elements” The following may be set with reference to “Study on Optimal Response Control and Kelvin Modeling Method for One-mass Structure by Mathematical Structure, Vol. 53B, pp. 53-66, March 2007”.

まず、慣性質量Ψは、回転錘6の回転慣性モーメントIθとボールねじ4のリード(ねじ山間隔)Lより、式(6)で求められる。 First, the inertial mass Ψ is obtained from the rotational inertia moment I θ of the rotary weight 6 and the lead (screw thread interval) L d of the ball screw 4 by Expression (6).

Figure 2015233369
Figure 2015233369

構造物10の質量mとの比をμ=Ψ/m、構造剛性をkとすると、付加ばね3の最適値kは式(7)、慣性質量Ψに並列する減衰の最適値cは式(8)となる。 If the ratio of the structure 10 to the mass m is μ = Ψ / m and the structural rigidity is k, the optimum value k d of the additional spring 3 is the expression (7), and the optimum value c of the damping parallel to the inertia mass Ψ is the expression (8)

Figure 2015233369
Figure 2015233369
Figure 2015233369
Figure 2015233369

次に、式(6)、式(7)、式(8)と、式(4)から、発電機構2に接続する最適負荷抵抗(インピーダンス)Rは式(9)となる。   Next, from the equations (6), (7), (8), and (4), the optimum load resistance (impedance) R connected to the power generation mechanism 2 is represented by equation (9).

Figure 2015233369
Figure 2015233369

そして、このように構成すると、構造物10の固有振動数近傍では構造物10の振幅よりも振動発電装置Aの振幅の方が同調効果によって大きくなる。このため、振幅を拡大した箇所に発電機構2を設けることで、発電効率を向上させることができる。また、発電機構2への負荷抵抗が同じであれば、発電機構2の振幅(速度振幅)がn倍になると、発電機構2に生じる電圧(起電力)も電流もn倍になるため、発電機構2で生じる電力がn倍となる。この発電した電力を構造物10の照明11に利用したり、蓄電して他の電力(買電、太陽光発電、風力発電等)と組み合わせたりすることができる。 And if comprised in this way, near the natural frequency of the structure 10, the amplitude of the vibration electric power generating apparatus A will become larger than the amplitude of the structure 10 by a tuning effect. For this reason, the power generation efficiency can be improved by providing the power generation mechanism 2 at a location where the amplitude is enlarged. Further, if the load resistance to the power generation mechanism 2 is the same, if the amplitude (speed amplitude) of the power generation mechanism 2 is increased n times, the voltage (electromotive force) and current generated in the power generation mechanism 2 are also increased n times. The power generated by mechanism 2 is n 2 times. This generated power can be used for the illumination 11 of the structure 10 or can be stored and combined with other power (buying, solar power, wind power, etc.).

より詳しく説明すると、次のようになる。
図2に示したモデルにおいて、発電機構2で生じる電力は以下のように求めることができる。
More detailed description is as follows.
In the model shown in FIG. 2, the electric power generated by the power generation mechanism 2 can be obtained as follows.

下記の式(10)に示すように、構造物10に作用する加振力fを角振動数ωの正弦波とする。   As shown in the following formula (10), the excitation force f acting on the structure 10 is a sine wave having an angular frequency ω.

Figure 2015233369
ここで、i=√(−1)、tは時間である。また、構造物10の固有角振動数をω=√(k/m)とし、構造減衰は無視する。
Figure 2015233369
Here, i = √ (−1), t is time. Further, the natural angular frequency of the structure 10 is set to ω 0 = √ (k / m), and the structure damping is ignored.

そして、式(6)から式(9)で示した最適設計では、同調時に振動数伝達関数の最大値を最小化するように最適化しており、2つの極大値のうち大きい方の角振動数をω、構造物10の固有角振動数ωに対する比νをν=ω/ω、付加ばねkと慣性質量Ψとによる固有角振動数ω=√(k/Ψ)のωに対する比γをγ=ω/ωとすると、構造物10の振幅Xに対する振動発電装置Aの振幅Xは次の式(11)で表される。 In the optimum design expressed by the equations (6) to (9), the maximum value of the frequency transfer function is optimized at the time of tuning, and the larger angular frequency of the two maximum values. Ω Q , the ratio ν Q to the natural angular frequency ω 0 of the structure 10 ν Q = ω Q / ω 0 , and the natural angular frequency ω d = √ (k d / by the additional spring k d and the inertial mass Ψ. When the ratio γ of Ψ) to ω 0 is γ = ω d / ω 0 , the amplitude X d of the vibration power generator A with respect to the amplitude X of the structure 10 is expressed by the following equation (11).

Figure 2015233369
ここで、hは慣性質量Ψに並列する減衰係数の最適値cから慣性質量比μ=Ψ/m(最適値に対しμ=(γ−1)/γ)を用い、次の式(12)で定められる。
Figure 2015233369
Here, h d is using the optimum value inertial mass ratio from c μ = Ψ / m of attenuation coefficients in parallel to the inertial mass [psi (relative optimum μ = (γ 2 -1) / γ 2), the following equation (12).

Figure 2015233369
Figure 2015233369

また、最適値の算定からνは次の式(13)となる。 Further, from the calculation of the optimum value, ν Q is expressed by the following equation (13).

Figure 2015233369
Figure 2015233369

そして、これら式(12)、式(13)を式(11)に代入すると、式(14)となる。   Then, when these formulas (12) and (13) are substituted into formula (11), formula (14) is obtained.

Figure 2015233369
Figure 2015233369

|X/X|は振動発電装置Aの変位と構造物10の変位の比であるため、発電機構2を振動発電装置Aに具備した場合(図3(b):減衰係数c+慣性質量Ψ(+付加ばねkd)の場合)と、発電機構2を構造物10と固定端の間に設けた場合(図3(a):減衰係数cのみの場合)の起電力(電圧)の比であり、負荷抵抗が同じなら電流の比と同じになる。また、発電機構2で生じる電力は「起電力(電圧)×電流となり、|X/X|は発電機構2を振動発電装置Aに具備した場合と、構造物10と固定端の間に設けた場合の電力の比とみなせる。 Since | X d / X | is the ratio of the displacement of the vibration power generator A and the displacement of the structure 10, when the power generation mechanism 2 is provided in the vibration power generator A (FIG. 3B: damping coefficient c + inertial mass Ψ (+ Additional spring kd)) and the ratio of the electromotive force (voltage) when the power generation mechanism 2 is provided between the structure 10 and the fixed end (FIG. 3 (a): only the damping coefficient c) Yes, if the load resistance is the same, the current ratio will be the same. In addition, the electric power generated by the power generation mechanism 2 is “electromotive force (voltage) × current, and | X d / X | 2 is between the case where the vibration power generation apparatus A includes the power generation mechanism 2 and the structure 10 and the fixed end. It can be regarded as the ratio of power when provided.

最適値に対してγ=1/(1−μ)の関係を式(14)に代入すると、慣性質量比μと発生電力E(発電機構2を構造物10と固定端の間に設けた場合の電力との比較)の関係は図4となる。
すなわち、慣性質量比が小さいほど電力増幅率が高く、上記の式(8)から減衰係数cが小さくなるので発生電力は小さいが、効率よく発電できることが分かる。
Substituting the relationship of γ 2 = 1 / (1-μ) with respect to the optimum value into the equation (14), the inertial mass ratio μ and the generated power E (the power generation mechanism 2 is provided between the structure 10 and the fixed end) The comparison with the power in the case is as shown in FIG.
That is, the smaller the inertial mass ratio, the higher the power amplification factor. From the above equation (8), the attenuation coefficient c becomes smaller, so that the generated power is small, but it can be seen that power can be generated efficiently.

一方、加振力に対する構造物10の振動についても考慮する必要がある。構造物10の変位振幅Xは加振力に対する静的変位(f/k)に対する応答倍率で求まり、次の式(15)で表される。
そして、この式(15)の関係を図示すると、図5となる。
On the other hand, it is necessary to consider the vibration of the structure 10 with respect to the excitation force. The displacement amplitude X of the structure 10 is obtained by the response magnification with respect to the static displacement (f 0 / k) with respect to the excitation force, and is expressed by the following equation (15).
FIG. 5 shows the relationship of the equation (15).

Figure 2015233369
Figure 2015233369

ここで、例えば、「発電機構2と回転慣性質量機構1を一体化した振動発電装置A」において、慣性質量Ψを構造物10の5%に設定した場合(μ=0.05)、構造物10の変位応答は「加振力fを構造剛性kに作用させたときの静的変位」の6倍となり、このときの発電機構2の電力は構造物10と固定端との間に設けた場合の12.5倍となる。 Here, for example, in the case of “vibration power generation apparatus A in which the power generation mechanism 2 and the rotary inertia mass mechanism 1 are integrated”, the inertia mass Ψ is set to 5% of the structure 10 (μ = 0.05). The displacement response of 10 is 6 times the “static displacement when the excitation force f 0 is applied to the structural rigidity k”, and the power of the power generation mechanism 2 at this time is provided between the structure 10 and the fixed end. 12.5 times greater than

また、慣性質量Ψを構造物10の15%に設定した場合(μ=0.15)、構造物10の変位応答倍率はこの半分の3倍に低減し、応答抑制効果が向上するが、このときの発電機構2の電力は構造物10と固定端との間に設けた場合の5倍となり、増幅効率が低下する。
但し、増幅率は常に1より大きいので発電機構2を回転慣性質量機構1に一体化するだけで、他の場所に設置するよりはるかに発電効率を高めることができると言える。
In addition, when the inertial mass Ψ is set to 15% of the structure 10 (μ = 0.15), the displacement response magnification of the structure 10 is reduced to three times this half, and the response suppression effect is improved. The power of the power generation mechanism 2 at that time is five times that provided between the structure 10 and the fixed end, and the amplification efficiency decreases.
However, since the amplification factor is always larger than 1, it can be said that the power generation efficiency can be improved much more than the case where the power generation mechanism 2 is integrated with the rotary inertial mass mechanism 1 as compared with other places.

一方、構造物10と固定端との間に発電機構2を設け、変位応答倍率を最小化する最適減衰となるように負荷抵抗を設けた場合には、発電機構2に負荷抵抗を付加した機構による等価減衰定数をhとすると、最大変位応答倍率は次の式(16)で表される。 On the other hand, when the power generation mechanism 2 is provided between the structure 10 and the fixed end and the load resistance is provided so as to achieve the optimum attenuation that minimizes the displacement response magnification, the mechanism in which the load resistance is added to the power generation mechanism 2 the equivalent damping constant When h 1 by a maximum displacement response magnification is expressed by the following equation (16).

Figure 2015233369
ここで、hは振動発電装置Aの減衰係数をcとしたとき、h=c/(2mω)で表される。
Figure 2015233369
Here, h 1 is represented by h 1 = c 1 / (2 mω 0 ), where c 1 is the damping coefficient of the vibration power generator A.

次に、式(15)、式(16)より、応答倍率を揃えると、次の式(17)、式(18)、式(19)のようになる。   Next, when the response magnifications are made uniform from the equations (15) and (16), the following equations (17), (18), and (19) are obtained.

Figure 2015233369
Figure 2015233369
Figure 2015233369
Figure 2015233369
Figure 2015233369
Figure 2015233369

したがって、構造物10と固定端との間に発電機構2を設けた場合の吸収エネルギーに対する本実施形態の振動発電装置Aの場合の吸収エネルギーの比率R(発電する電力の比率と同じ)は、式(8)より、次の式(20)で表される。   Therefore, the ratio R (the same as the ratio of the power to be generated) of the absorbed energy in the vibration power generator A of the present embodiment to the absorbed energy when the power generation mechanism 2 is provided between the structure 10 and the fixed end is: From the equation (8), it is expressed by the following equation (20).

Figure 2015233369
Figure 2015233369

そして、式(20)の関係を図示すると、図6及び図7となる。
これにより、例えば、回転慣性質量機構1と発電機構2を一体に備えた振動発電装置Aにおいては、慣性質量Ψを構造物10の5%にした場合(μ=0.05)、構造物10と固定端との間に設けて変位応答を同じにする場合の0.1倍の減衰係数で、1.07倍の吸収エネルギー、すなわち1.07倍の発電電力を得ることができる。
Then, the relationship of Expression (20) is illustrated in FIGS. 6 and 7.
Thus, for example, in the vibration power generation apparatus A integrally including the rotary inertia mass mechanism 1 and the power generation mechanism 2, when the inertia mass Ψ is 5% of the structure 10 (μ = 0.05), the structure 10 The absorption energy of 1.07 times, that is, the generated electric power of 1.07 times can be obtained with the attenuation coefficient of 0.1 times when the displacement response is made the same by providing between the first and the fixed ends.

また、慣性質量Ψを構造物10の15%に設定した場合(μ=0.15)、同じく0.25倍の減衰係数で1.25倍の吸収エネルギー/発電電力を得ることができる。   Further, when the inertial mass Ψ is set to 15% of the structure 10 (μ = 0.15), the absorption energy / generated power of 1.25 times can be obtained with the attenuation factor of 0.25.

このように、本実施形態の振動発電装置Aにおいては、減衰係数をα倍に低減しても従来以上の電力が得られる。これは、式(4)、式(5)の起電力定数Kやトルク係数Kが小さくて済むことを意味しており、これにより、本実施形態の振動発電装置Aにおいては、小型で安価な発電機(発電機構2)で効率よく大きな電力を得ることができる。
なお、図6及び図7より、μ≧0.25ならR>1となり、本実施形態の振動発電装置Aの方がより多くの電力が得られることが分かるが、これは回転慣性質量機構1と付加ばね3を直列して同調型にすることで共振時に両者を逆位相にし、回転慣性質量機構1と一体化した発電機構2の振幅を拡大することによる。
Thus, in the vibration power generator A of the present embodiment, even if the attenuation coefficient is reduced by α c times, more power than the conventional power can be obtained. This equation (4), which means that only a small electromotive force constant K E and torque coefficient K T of the formula (5), thereby, in the vibration generator unit A of this embodiment, a small Large electric power can be obtained efficiently with an inexpensive generator (power generation mechanism 2).
6 and 7, if μ ≧ 0.25, R> 1, and it can be seen that the vibration power generation apparatus A of the present embodiment can obtain more electric power. And the additional spring 3 are connected in series to make them tuned so that they are in opposite phases during resonance and the amplitude of the power generation mechanism 2 integrated with the rotary inertial mass mechanism 1 is increased.

よって、本実施形態の振動発電装置Aにおいては、回転慣性質量機構1と発電機構2を一体化して構成することで、また、付加ばね3を設けて構造物10に同調させるように構成することで、発電機構2の振幅を拡大して従来よりも優れた発電効率を達成することができる。   Therefore, in the vibration power generation apparatus A of the present embodiment, the rotary inertia mass mechanism 1 and the power generation mechanism 2 are integrally configured, and the additional spring 3 is provided to be synchronized with the structure 10. Thus, it is possible to increase the amplitude of the power generation mechanism 2 and achieve power generation efficiency superior to the conventional one.

したがって、本実施形態の振動発電装置Aにおいては、構造物10に接続して設置することにより、構造物10から伝わる振動エネルギーを回転慣性質量機構1で回転運動エネルギーに変換して発電機構2を回転させ、発電することが可能になる。   Therefore, in the vibration power generation apparatus A of the present embodiment, the vibration energy transmitted from the structure 10 is converted into rotational kinetic energy by the rotary inertia mass mechanism 1 by installing the power generation mechanism 2 by connecting to the structure 10. It can be rotated to generate electricity.

また、付加ばね3を備えることで構造物10に同調させることができ、これにより、構造物10の振幅より発電機構2の振幅を増幅させ、発電効率を高めることが可能になる。   Moreover, it can synchronize with the structure 10 by providing the additional spring 3, and it becomes possible to amplify the amplitude of the electric power generation mechanism 2 from the amplitude of the structure 10, and to improve electric power generation efficiency here.

さらに、比較的簡易な装置構成で、微振動だけでなく大振幅の振動にも適用できる。また、回転慣性質量機構1に対する10Hz以下の低振動数での同調効果も確認されており、信頼性が高い振動発電装置Aを安価に製造することができる。さらに、構造物10に加わる振動を電気エネルギーに変換できるので、建物などの構造物10の振動を低減する副次的効果も期待できる。   Furthermore, it can be applied not only to fine vibrations but also to large amplitude vibrations with a relatively simple device configuration. Further, a tuning effect at a low frequency of 10 Hz or less with respect to the rotary inertia mass mechanism 1 has been confirmed, and the vibration power generator A having high reliability can be manufactured at low cost. Furthermore, since the vibration applied to the structure 10 can be converted into electric energy, a secondary effect of reducing the vibration of the structure 10 such as a building can be expected.

以上、本発明に係る振動発電装置の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   The embodiment of the vibration power generation apparatus according to the present invention has been described above, but the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

例えば、本実施形態の振動発電装置Aは、例えば、特許第5146757号公報の慣性質量ダンパーと置き換えるようにして用いてもよい。すなわち、大スパン構造物のH形梁の両端から張弦梁のように斜材を設け、その中央に回転慣性質量機構1及び発電機構2を接合して振動発電装置Aを構成してもよい。この場合には、斜材が付加ばね3に相当し、その鉛直剛性をkで評価する。また、この振動発電装置A(回転慣性質量機構1及び発電機構2)は慣性質量Ψと減衰係数cを並列にもち、この減衰係数cを発電機構2による抵抗力で評価する。 For example, the vibration power generation apparatus A of the present embodiment may be used by replacing the inertial mass damper disclosed in Japanese Patent No. 5146757, for example. That is, the vibration power generation apparatus A may be configured by providing diagonal members like a stringed beam from both ends of an H-shaped beam of a large span structure and joining the rotary inertia mass mechanism 1 and the power generation mechanism 2 at the center thereof. In this case, the slant member is equivalent to the additional spring 3, to evaluate the vertical stiffness k d. The vibration power generator A (the rotary inertia mass mechanism 1 and the power generation mechanism 2) has the inertia mass Ψ and the damping coefficient c in parallel, and evaluates the damping coefficient c by the resistance force of the power generation mechanism 2.

また、本実施形態の振動発電装置Aは、橋梁等に設置し、交通振動、歩行振動、風荷重による振動等の未利用エネルギー(振動エネルギー)を利用して効率的な発電を行うように用いられてもよい。   The vibration power generation apparatus A of the present embodiment is installed on a bridge or the like, and is used to efficiently generate power using unused energy (vibration energy) such as traffic vibration, walking vibration, and vibration caused by wind load. May be.

1 回転慣性質量機構(回転慣性質量)
2 発電機構
3 付加ばね
4 ボールねじ
5 ボールナット
6 回転錘
7 軸受け
8 一端部
9 他端部
10 構造物
11 照明
A 振動発電装置
O1 軸方向
1 Rotational inertial mass mechanism (rotational inertial mass)
2 Power generation mechanism 3 Additional spring 4 Ball screw 5 Ball nut 6 Rotary weight 7 Bearing 8 One end 9 Other end 10 Structure 11 Illumination A Vibration power generation device O1 Axial direction

Claims (2)

振動する構造物に連結して設けられ、該構造物が変位すると錘が回転して回転慣性質量効果を発生させる回転慣性質量機構と、
前記回転慣性質量機構に連結して設けられ、前記回転慣性質量機構の回転によって駆動して発電する発電機構と、
前記回転慣性質量機構及び前記発電機構に直列に連結された付加ばねとを備え、
前記回転慣性質量機構と前記付加ばねとにより定まる振動数を前記構造物の卓越する振動数に同調させるようにしたことを特徴とする振動発電装置。
A rotary inertial mass mechanism that is connected to a vibrating structure and rotates when a displacement of the structure causes a rotational inertial mass effect;
A power generation mechanism that is connected to the rotary inertial mass mechanism and that generates power by being driven by the rotation of the rotary inertial mass mechanism;
An additional spring connected in series with the rotary inertia mass mechanism and the power generation mechanism,
A vibration power generator characterized in that a frequency determined by the rotary inertia mass mechanism and the additional spring is synchronized with an excellent frequency of the structure.
請求項1記載の振動発電装置において、
前記発電機構に、下記の式(1)で定められる負荷抵抗が接続されていることを特徴とする振動発電装置。
Figure 2015233369
ここで、R:回路抵抗、L:ボールねじのリード、K:起電力定数、K:トルク係数、m:構造物の質量、k:構造ばね(剛性)、μ:慣性質量と構造物の質量の比(Ψ/m)である。
The vibration power generator according to claim 1,
A vibration power generation apparatus, wherein a load resistance defined by the following formula (1) is connected to the power generation mechanism.
Figure 2015233369
Here, R: circuit resistance, L d : ball screw lead, K E : electromotive force constant, K T : torque coefficient, m: mass of structure, k: structural spring (rigidity), μ: inertia mass and structure This is the mass ratio (Ψ / m) of the object.
JP2014118800A 2014-06-09 2014-06-09 Vibration power generator Active JP6315260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118800A JP6315260B2 (en) 2014-06-09 2014-06-09 Vibration power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014118800A JP6315260B2 (en) 2014-06-09 2014-06-09 Vibration power generator

Publications (2)

Publication Number Publication Date
JP2015233369A true JP2015233369A (en) 2015-12-24
JP6315260B2 JP6315260B2 (en) 2018-04-25

Family

ID=54934519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118800A Active JP6315260B2 (en) 2014-06-09 2014-06-09 Vibration power generator

Country Status (1)

Country Link
JP (1) JP6315260B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133947A (en) * 2006-10-23 2008-06-12 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2009257486A (en) * 2008-04-17 2009-11-05 Shimizu Corp Response control system
JP2010096077A (en) * 2008-10-16 2010-04-30 Mhi Solution Technologies Co Ltd Method for converting water energy to electric power and apparatus thereof
JP2010139024A (en) * 2008-12-12 2010-06-24 Shimizu Corp Power generation type damper
JP2010281407A (en) * 2009-06-05 2010-12-16 Shimizu Corp Damping mechanism and installation method therefor
JP2011106519A (en) * 2009-11-13 2011-06-02 Aseismic Devices Co Ltd Damper and base isolation/vibration control mechanism
WO2011158383A1 (en) * 2010-06-17 2011-12-22 トヨタ自動車株式会社 Electric shock absorber
JP2012207651A (en) * 2011-03-17 2012-10-25 Mitsubishi Heavy Ind Ltd Natural vibration adjusting mechanism of wave power plant
JP2013535605A (en) * 2010-07-19 2013-09-12 ドラギッチ,ミレ Ocean wave power plant
JP2014011858A (en) * 2012-06-28 2014-01-20 Kazuto Sedo Vibration power generating device
JP2014011859A (en) * 2012-06-28 2014-01-20 Kazuto Sedo Vibration power generating device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133947A (en) * 2006-10-23 2008-06-12 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2009257486A (en) * 2008-04-17 2009-11-05 Shimizu Corp Response control system
JP2010096077A (en) * 2008-10-16 2010-04-30 Mhi Solution Technologies Co Ltd Method for converting water energy to electric power and apparatus thereof
JP2010139024A (en) * 2008-12-12 2010-06-24 Shimizu Corp Power generation type damper
JP2010281407A (en) * 2009-06-05 2010-12-16 Shimizu Corp Damping mechanism and installation method therefor
JP2011106519A (en) * 2009-11-13 2011-06-02 Aseismic Devices Co Ltd Damper and base isolation/vibration control mechanism
WO2011158383A1 (en) * 2010-06-17 2011-12-22 トヨタ自動車株式会社 Electric shock absorber
JP2013535605A (en) * 2010-07-19 2013-09-12 ドラギッチ,ミレ Ocean wave power plant
JP2012207651A (en) * 2011-03-17 2012-10-25 Mitsubishi Heavy Ind Ltd Natural vibration adjusting mechanism of wave power plant
JP2014011858A (en) * 2012-06-28 2014-01-20 Kazuto Sedo Vibration power generating device
JP2014011859A (en) * 2012-06-28 2014-01-20 Kazuto Sedo Vibration power generating device

Also Published As

Publication number Publication date
JP6315260B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
Ikago et al. Seismic control of single‐degree‐of‐freedom structure using tuned viscous mass damper
JP2008101769A (en) Vibration reducing mechanism and its specification setting method
US9893653B2 (en) Power generation device
Sarkar et al. Pendulum type liquid column damper (PLCD) for controlling vibrations of a structure–Theoretical and experimental study
JPWO2019044722A1 (en) Eddy current damper
US5934424A (en) Centrifugal delayed resonator pendulum absorber
Tang et al. Self-powered active control of structures with TMDs
Michajłow et al. Semi‐active reduction of vibrations in the mechanical system driven by an electric motor
JP5207353B2 (en) Vibration control method and vibration control apparatus
JP5601825B2 (en) Damper and seismic isolation mechanism
Graves et al. Design and experimental validation of a pendulum energy harvester with string-driven single clutch mechanical motion rectifier
JP2008163727A (en) Vibration reducing mechanism and method for setting specifications thereof
Chowdhury et al. The optimum inertial amplifier tuned mass dampers for nonlinear dynamic systems
JP6315260B2 (en) Vibration power generator
Suzuki et al. Active vibration control of drum type of washing machine using linear oscillatory actuator
Heidari et al. Design and fabrication of an energy-harvesting device using vibration absorber
JP4986076B2 (en) Response control system
Yoshitake et al. Vibration control and electricity generating device using a number of hula-hoops and generators
JP6726381B2 (en) Installation structure of rotary mass damper
JP2009085362A (en) Vibration isolation mechanism
JP2012167820A (en) Vibration reduction mechanism and specification setting method for the same
Hassaan Optimal design of a vibration absorber-harvester dynamic system
Makihara et al. Using tuned electrical resonance to enhance bang-bang vibration control
Kęcik Energy harvesting of a pendulum vibration absorber
JPS6231735A (en) Two-node pendulum type vibration absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180314

R150 Certificate of patent or registration of utility model

Ref document number: 6315260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150