JP2015231642A - Electrolytic processing method and electrolytic processing device for hard metal - Google Patents

Electrolytic processing method and electrolytic processing device for hard metal Download PDF

Info

Publication number
JP2015231642A
JP2015231642A JP2014118449A JP2014118449A JP2015231642A JP 2015231642 A JP2015231642 A JP 2015231642A JP 2014118449 A JP2014118449 A JP 2014118449A JP 2014118449 A JP2014118449 A JP 2014118449A JP 2015231642 A JP2015231642 A JP 2015231642A
Authority
JP
Japan
Prior art keywords
electrode
cemented carbide
electrolytic processing
electrolytic
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014118449A
Other languages
Japanese (ja)
Inventor
隆 湯澤
Takashi Yuzawa
隆 湯澤
後藤 昭弘
Akihiro Goto
昭弘 後藤
長男 齋藤
Nagao Saito
長男 齋藤
毛利 尚武
Naotake Mori
尚武 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014118449A priority Critical patent/JP2015231642A/en
Publication of JP2015231642A publication Critical patent/JP2015231642A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic processing method for hard metal, capable of preventing Co elution on a part where it contacts an electrolyte during electrolytic processing, and preventing Co elution on a processed surface, in Co ion addition to the electrolyte.SOLUTION: When the hard metal is subjected to electrolytic processing, as an electrolytic processing solution, a solution mainly formed of salt water or nitric acid soda solution, is used. Cobalt ion is added to the electrolytic processing solution, and during electrolytic processing, flushing is performed so that the electrolyte is circulated between an electrode and workpiece. A charge amount of current in which the electrode is a negative electrode is larger than a charge amount of current in which the electrode is a positive electrode.

Description

本発明は、超硬合金の電解加工に関するものである。   The present invention relates to electrolytic machining of cemented carbide.

超硬合金は炭化タングステン(WC)を、コバルト(Co)をバインダとして焼結した材料であり、炭化チタン(TiC)、炭化タンタル(TaC)などを成分として加える場合が多い。超硬合金は硬さが高く、高い耐摩耗性を有する材料であり、従来、形状加工には放電加工が用いられることが多かった。
放電加工で加工する場合には、荒加工において、加工速度最大1gr/min、を得る時のあらさは50μmRz程度、銅―タングステン電極の消耗比は15%程度となる。クラックの発生もある。クラックの発生を減少するため、加工速度を0.2gr/min程度と下げても仕上面あらさは10μmRzないし20μmRz、電極消耗比は15%程度は避けられない。
仕上面あらさを4μmRzとすれば加工速度は最大で0.05g/minとなり、電極消耗比は15%以上となる。しかし、その当時は超硬合金の形状加工に放電加工を用い、放電加工においてクラックの発生などはあっても、加工速度を著しく下げて加工してクラックを減少させ、さらに、みがき作業によりクラックを除去して製品として使用していた。
A cemented carbide is a material obtained by sintering tungsten carbide (WC) and cobalt (Co) as a binder, and titanium carbide (TiC), tantalum carbide (TaC) and the like are often added as components. Cemented carbide is a material having high hardness and high wear resistance, and conventionally, electric discharge machining has often been used for shape machining.
In the case of machining by electric discharge machining, in rough machining, the roughness when obtaining the maximum machining speed of 1 gr / min is about 50 μm Rz, and the consumption ratio of the copper-tungsten electrode is about 15%. There are also cracks. In order to reduce the generation of cracks, even if the processing speed is reduced to about 0.2 gr / min, the finished surface roughness is 10 μmRz to 20 μmRz and the electrode wear ratio is about 15%.
If the finished surface roughness is 4 μm Rz, the processing speed is 0.05 g / min at the maximum, and the electrode wear ratio is 15% or more. However, at that time, EDM was used for shape machining of cemented carbide, and even if cracks were generated in EDM, the machining speed was significantly reduced to reduce cracks, and cracks were further removed by polishing work. It was removed and used as a product.

また、近年、切削加工による形状加工が試みられつつある。超硬合金の加工が切削加工で可能という研究発表も散見されるが、工具刃先の消耗が大きく特におおよその形状を加工する荒加工段階の加工速度が遅く、経済的に成り立つには、まだ困難がある。高速切削加工や中加工では、工具磨耗のため加工の切込みや送りなどの切削条件を大きくできず、加工時間が長くかかるという問題がある。現状の加工速度では、放電加工の何倍も長い時間がかかっている。研削加工や電着工具を用いた研削加工も切削加工同様試みられているが、同様の問題を持っている。   In recent years, shape processing by cutting has been attempted. There are also some research announcements that machining of cemented carbide is possible with cutting, but the tool edge is very worn, especially at the roughing stage where rough shapes are processed, and it is still difficult to be economically viable There is. In high-speed cutting and medium machining, there is a problem that machining conditions such as cutting and feeding cannot be increased due to tool wear, and the machining time is long. At the current machining speed, it takes many times longer than electric discharge machining. Grinding and grinding using an electrodeposition tool have been tried as well as cutting, but have similar problems.

一方、数10年前に電解加工が研究されていた(例えば、非特許文献1、特許文献1、特許文献2参照)。電解加工では、電極消耗はほぼ零であり、仕上面あらさが細かい領域(3〜4μmRz)の加工速度が大きく、放電加工のような加工面の亀裂発生もない。電解加工の加工速度は1967年頃に実施した結果でも、面粗さ3〜4μmRzを得る時の加工速度は2g/minと、極めて高速であった。(図1、図2)   On the other hand, electrolytic processing has been studied several decades ago (see, for example, Non-Patent Document 1, Patent Document 1, and Patent Document 2). In electrolytic machining, the electrode consumption is almost zero, the machining speed of the region (3-4 μmRz) with a fine finished surface roughness is high, and there is no cracking of the machining surface as in electric discharge machining. Even when the machining speed of the electrolytic machining was carried out around 1967, the machining speed when obtaining a surface roughness of 3 to 4 μm Rz was as extremely high as 2 g / min. (Fig. 1 and Fig. 2)

前田祐雄、齋藤長男、葉石雄一郎著、「三菱電機技報」Vol.41、No.10(1967) 1272-1279Yuedo Maeda, Nagao Saito, Yuichiro Haishi, "Mitsubishi Electric Technical Review" Vol. 41, No. 10 (1967) 1272-1279 特公昭41−1086号公報Japanese Patent Publication No.41-1086 特公昭41−1087号公報Japanese Patent Publication No.41-1087

このように本質的には極めて優れた加工特性をもっているが、大きな欠点があり現在まで実用化されていなかった。その欠点とは加工が進むにつれて電解加工液が変質して加工を継続できなくなること、塩素ガスが発生する安全上の問題があること、加工により生成される化学変化したスラッジの処理の方法が確立していなかったこと、そして、当時は認識されていなかったが、超硬合金を電解加工液に浸漬させることによって起きる超硬合金の構成成分であるコバルト(Co)の溶出による品質劣化である。   In this way, it has extremely excellent processing characteristics, but has a large drawback and has not been put into practical use until now. The disadvantages are that the electrolytic processing fluid changes in quality as processing progresses, making it impossible to continue processing, there is a safety problem that generates chlorine gas, and a method for treating chemically changed sludge generated by processing is established. It was not recognized at the time, and quality degradation due to elution of cobalt (Co), which is a constituent component of cemented carbide, caused by immersing the cemented carbide in the electrolytic processing liquid.

以上述べたように、当時の電解加工技術は、研究成果は得られていたが工業製品としては未熟であったといえる。その問題点について以下に詳述するが、その前に当時の超硬合金の電解加工技術について説明を加える。   As described above, the electrolytic processing technology at that time was not yet mature as an industrial product, although research results were obtained. The problem will be described in detail below, but before that, a description will be given of the electrolytic processing technology of cemented carbide at that time.

超硬合金がどのような電気化学反応によって加工されるのかを以下に説明する。超硬合金は、WC、Coを主成分とし、TiC、TaCを含むものもある。それぞれの成分がどのような電気化学反応によって溶出除去されるかを述べる。電解液はNaCl水溶液、あるいは、NaCl+NaOH水溶液を使用するものと想定している   It will be described below what kind of electrochemical reaction the cemented carbide is processed. Some cemented carbides are mainly composed of WC and Co and include TiC and TaC. It describes what kind of electrochemical reaction each component is eluted and removed. The electrolyte is assumed to use NaCl aqueous solution or NaCl + NaOH aqueous solution.

まず、超硬合金の主成分である炭化タングステン(WC)の反応について見る。超硬合金を正極にすると、表面が陽極酸化されて青らん色の膜を生ずる。これはWCが酸化されて生成したWO3である。ついで超硬合金を負極にすると、WO3がNaイオンにふれることにより、表面すなわちWO3からガスが激しく発生し超硬合金の地肌色になる。この反応を化学式で示すと以下のようになる。
(陽極)WC+9/2[O] → WO3+1/2CO+1/2CO2 ―(1)
(陰極)WO3+2NaOH → Na2WO4+H2O ―(2)
電解加工液は、NaClの代わりにNaNO3を置きかえて加工することも可能である。
First, let us look at the reaction of tungsten carbide (WC), the main component of cemented carbide. When cemented carbide is used as the positive electrode, the surface is anodized to produce a blue-blue film. This is WO 3 produced by oxidation of WC. Then, when the cemented carbide is used as the negative electrode, WO 3 comes into contact with Na ions, so that gas is vigorously generated from the surface, that is, WO 3, and the background color of the cemented carbide is obtained. This reaction is represented by the following chemical formula.
(Anode) WC + 9/2 [O] → WO 3 + 1 / 2CO + 1 / 2CO 2- (1)
(Cathode) WO 3 + 2NaOH → Na 2 WO 4 + H 2 O ― (2)
The electrolytic machining fluid can be processed by replacing NaNO 3 instead of NaCl.

次にコバルト(Co)の溶出について述べる。Coは通常の金属であるので、超硬合金が正極のときに以下のように反応し、溶出する。
Co+2Cl-−2e- → CoCl2 ― (3)
CoCl2は水に可溶性をもち、CoCl2は数時間の時間経過の後、電解液中の水(H2O)と反応し、Co(OH)2となりClを放出しNaイオンと反応しNaClを生ずる。
Next, elution of cobalt (Co) will be described. Since Co is a normal metal, it reacts and elutes as follows when the cemented carbide is a positive electrode.
Co + 2Cl - -2e - → CoCl 2 - (3)
CoCl 2 is soluble in water. CoCl 2 reacts with water (H 2 O) in the electrolyte after several hours, releases Co (OH) 2 , releases Cl, reacts with Na ions, and NaCl. Is produced.

次に炭化チタン(TiC)の溶出について述べる。TiCは以下の化学反応で溶出すると考えられている。
(陽極)TiC+7/2[O] → TiO2+1/2Co+1/2Co2 ―(4)
(陰極)TiO2+2H2O → Ti(OH)2 ―(5)
この、上記一連の化学反応式は、実験にもとづき反応生成物を分析等によって検討して、想定した反応式である。TiO2がTi(OH)2に化学反応するにはTiCl2の過程がある。
炭化タンタル(TaC)の場合も、TiCの場合と同様の反応と考えられている。
なお、電解加工液としては、NaCl水溶液を基本とし、それにNaOHを添加した場合を想定しているが、硝酸ナトリウム(NaNO3)を使用する場合も、Clの代わりにNO3を置き換えればよい。
Next, elution of titanium carbide (TiC) will be described. TiC is thought to elute by the following chemical reaction.
(Anode) TiC + 7/2 [O] → TiO 2 + 1 / 2Co + 1 / 2Co 2 ― (4)
(Cathode) TiO 2 + 2H 2 O → Ti (OH) 2- (5)
This series of chemical reaction formulas are reaction formulas that are assumed by examining reaction products by analysis or the like based on experiments. There is a TiCl 2 process for the chemical reaction of TiO 2 with Ti (OH) 2 .
In the case of tantalum carbide (TaC), it is considered that the reaction is similar to that in the case of TiC.
In addition, as the electrolytic processing liquid, it is assumed that a NaCl aqueous solution is basically added and NaOH is added thereto. However, when sodium nitrate (NaNO 3 ) is used, NO 3 may be replaced instead of Cl.

超硬合金の電解加工において問題になるのは、あまり議論されることがなかったが、超硬合金の構成成分であるコバルト(Co)が選択的に溶出されて材料強度が低下してしまい金型としての使用に耐えないということである。図3は超硬合金を(電解加工ではなく)水に約8時間浸漬して放置したときの超硬合金表面の写真である。この写真はワイヤ放電加工の問題点を調べるための試験として行ったものであり、浸漬した液体は水であり、電解液に比べてCoの溶出は少ないにも関わらず、Coが抜けて材料が劣化していることがわかる。(ただし、現在のワイヤ放電では、コバルトの溶出を抑えるための技術が開発されており、このようにコバルトが溶出するわけではない。)多くの超硬合金ユーザーが超硬合金を導電性の液体に触れさせることに対して嫌悪感を持っていることも忘れてはいけない。   The problem in the electrolytic processing of cemented carbide has not been discussed much, but cobalt (Co), which is a constituent of cemented carbide, is selectively eluted and the strength of the material is reduced. It means that it cannot withstand use as a mold. FIG. 3 is a photograph of the surface of the cemented carbide when the cemented carbide is left immersed in water (rather than electrolytic processing) for about 8 hours. This photo was conducted as a test to investigate the problems of wire electrical discharge machining. The immersion liquid was water, and although the elution of Co was less than that of the electrolyte, Co was removed and the material was removed. It turns out that it has deteriorated. (However, in the current wire discharge, technology to suppress the elution of cobalt has been developed, and cobalt does not elute in this way.) Many cemented carbide users use cemented carbide as a conductive liquid. Don't forget that you have an aversion to touching.

一般的に、電解加工に用いる電解液には、NaClやNaNO3等の水溶液が用いられる。非特許文献1では、NaOHを含んだ電解液を使用することで、WC(WO3)を溶出できることが示されているが、取扱い上NaOHを避けるためNaCl主体の電解液を使用して、超硬合金を加工することも提案している。
電解加工を行う際には、加工面の品質劣化がないことはもちろん重要であるが、直接の加工面でなくても電解液に触れる部分があり、それらの部分の品質劣化がないことも重要である。まず、加工面以外の電解液に触れる部分への影響の調査として、NaCl、NaOHを電解液として浸漬試験を行った。NaOHを用いたのは、NaCl溶液でCoが溶出する反応が、
H2O+1/2O2+2e- → 2OH-
Co → Co2++2e-
(Co+2Cl- → CoCl2+2e-
の反応であり、OH-を増せば、Coの溶出を防止できるのではないかと考えたからである。図4は、NaCl、NaOH、NaCl+NaOHのそれぞれの溶液に超硬合金を18時間浸漬したときの超硬合金表面のSEM写真である。使用した溶液は、表1の通りで、(a) NaCl溶液、(b) NaOH溶液、(c) NaCl+NaOH溶液(2:1) 、(d) NaCl+NaOH溶液(1:2)である。それぞれ溶液中100ml中に超硬合金(粒径約0.8μm、WC約87wt%、Co約13wt%)(5mm×5mm×30mm)を18時間浸漬した。試験片は、5mm×5mmの面を研磨紙で乾式研磨した後、ダイヤモンドペーストで仕上げた。HIP処理を行った材料ではないので、細かな空隙は存在している。比較のため研磨したままの状態の超硬合金の写真を(o)に示す。SEM観察したのは、研磨した5mm×5mmの面である。同じ溶液中に110時間浸漬したときの写真を図5に示す。
図4より、NaCl溶液中に超硬合金を浸漬すると、電圧を印加しなくてもCoだけが選択的に溶出することがわかる。一方で、NaOH溶液の場合にはCoの溶出現象が抑えられていることがわかる。さらに、NaCl+NaOH溶液の場合でも、Coの溶出は抑えられているように見える。しかし、長時間の浸漬試験では、表面のSEM写真で黒い部分が増えており、Coの溶出が起きているように見える。図6は磨いた状態の表面の元素分析結果、図7は図5(c)の表面の元素分析結果である。Coが溶出しているように見える。
NaCl溶液に長時間浸漬した試験片の表面は、変色しておりSEM観察がうまくできなかった。付着物が表面についているようにも見えるが、よくわかっていない。
電解液としては極端な場合であるNaOH溶液ではCoの溶出現象が抑えられているようであるがCoを電解加工することができない可能性があり、また、衛生上も問題がある。NaOH主体の溶液でない電解液を使用し、Coの選択的な溶出を防止することが望ましい。
表1 浸漬試験の溶液

Figure 2015231642
In general, an aqueous solution such as NaCl or NaNO 3 is used as an electrolytic solution for electrolytic processing. Non-Patent Document 1 shows that WC (WO 3 ) can be eluted by using an electrolytic solution containing NaOH. However, in order to avoid NaOH in handling, an electrolytic solution mainly composed of NaCl is used. It has also been proposed to process hard alloys.
When performing electrolytic machining, it is of course important that there is no quality degradation of the machined surface, but it is also important that there are parts that come into contact with the electrolyte even if it is not a direct machining surface, and there is no quality degradation of those parts. It is. First, an immersion test was conducted using NaCl and NaOH as an electrolyte solution as an investigation of the influence on the portion other than the processed surface that touches the electrolyte solution. NaOH was used because the reaction of Co eluting with NaCl solution
H 2 O + 1 / 2O 2 + 2e - → 2OH -
Co → Co 2+ + 2e -
(Co + 2Cl - → CoCl 2 + 2e -)
This is because it was thought that the increase of OH could prevent the elution of Co. FIG. 4 is an SEM photograph of the surface of the cemented carbide when the cemented carbide is immersed in a solution of NaCl, NaOH, NaCl + NaOH for 18 hours. The solutions used are as shown in Table 1, and are (a) NaCl solution, (b) NaOH solution, (c) NaCl + NaOH solution (2: 1), and (d) NaCl + NaOH solution (1: 2). Cemented carbide (particle size: about 0.8 μm, WC: about 87 wt%, Co: about 13 wt%) (5 mm × 5 mm × 30 mm) was immersed in 100 ml of the solution for 18 hours. The test piece was finished with a diamond paste after dry polishing a 5 mm × 5 mm surface with abrasive paper. Since it is not a material that has been subjected to HIP processing, fine voids exist. For comparison, a photograph of the cemented carbide as-polished is shown in (o). The SEM observation is a polished 5 mm × 5 mm surface. A photograph when immersed in the same solution for 110 hours is shown in FIG.
FIG. 4 shows that when the cemented carbide is immersed in a NaCl solution, only Co is selectively eluted without applying a voltage. On the other hand, in the case of NaOH solution, it can be seen that the Co elution phenomenon is suppressed. Furthermore, even in the case of NaCl + NaOH solution, Co elution seems to be suppressed. However, in the immersion test for a long time, the black part increases in the SEM photograph of the surface, and it seems that Co elution occurs. FIG. 6 shows the result of elemental analysis on the polished surface, and FIG. 7 shows the result of elemental analysis on the surface shown in FIG. Co appears to elute.
The surface of the test piece immersed in the NaCl solution for a long time was discolored and SEM observation was not successful. Although it appears that the deposit is on the surface, it is not well understood.
The NaOH solution, which is an extreme case as an electrolytic solution, seems to suppress the elution phenomenon of Co, but there is a possibility that Co cannot be electrolytically processed, and there is a problem in terms of hygiene. It is desirable to use an electrolyte that is not a NaOH-based solution to prevent selective elution of Co.
Table 1 Solution for immersion test
Figure 2015231642

本発明では、これらの超硬合金の電解加工技術の問題点を解決し、高速で高品位・高精度な加工技術を確立することを目的とする。   The object of the present invention is to solve these problems of electrolytic processing technology of cemented carbide and establish processing technology with high quality and high accuracy at high speed.

尚、これまでの説明はNaClを主成分とする電解加工液について行ったが、NaNO3等、他の電解加工液でも同様の議論ができる。電解液の成分として一般的であるNaNO3水溶液でも同じ浸漬試験(18時間)を行った。その結果を図8に示す。NaCl水溶液を使用した場合と同様、超硬合金表面のCoが溶出している様子が観察される。 Although the description so far has been made with respect to the electrolytic processing liquid containing NaCl as a main component, the same discussion can be made with other electrolytic processing liquids such as NaNO 3 . The same immersion test (18 hours) was performed with a NaNO 3 aqueous solution, which is a common component of the electrolytic solution. The result is shown in FIG. As in the case of using the NaCl aqueous solution, it is observed that Co on the cemented carbide surface is eluted.

第1の発明に係る超硬合金の電解加工方法は、電極と工作物である超硬合金との間に、電極を負極として電圧を印加し電流を流すことで工作物である超硬合金の成分である炭化タングステン(WC)を陽極酸化させて酸化タングステン(WO3)とすると同時にコバルト(Co)を電解溶出し、電極を負極として電圧を印加し電流を流すことで、陽極酸化して生成した酸化タングステン(WO3)を化学的に溶解させることにより加工を行う超硬合金の電解加工において、電解加工液として、食塩水(NaCl水溶液)又は硝酸ソーダ水溶液(NaNO3)を主成分とした水溶液を用い、該電解加工液にコバルトイオン(Co2+)を加えることにより、電解加工中および電解加工終了後に電解加工液にふれた超硬合金から構成成分であるコバルト(Co)が電解加工液中に溶出する現象を防止することを特徴とするものである。 According to a first aspect of the present invention, there is provided a method of electrolytic machining a cemented carbide comprising: a cemented carbide that is a workpiece by applying a voltage between the electrode and the cemented carbide that is the workpiece and applying a voltage to the electrode as a negative electrode. Tungsten carbide (WC), which is a component, is anodized to form tungsten oxide (WO 3 ), and at the same time, cobalt (Co) is electrolytically eluted. In the machining of cemented carbide, where tungsten oxide (WO 3 ) is chemically dissolved, the main component is saline (NaCl aqueous solution) or sodium nitrate aqueous solution (NaNO 3 ) as the electrolytic machining fluid By adding cobalt ions (Co 2+ ) to the electrolytic processing solution using an aqueous solution, cobalt (Co), which is a constituent component, from the cemented carbide contacted with the electrolytic processing solution during and after electrolytic processing is electrolytically processed. In liquid It is characterized in preventing the phenomenon of elution.

第2の発明に係る超硬合金の電解加工方法は、電極と工作物である超硬合金との間に、電極を負極として電圧を印加し電流を流すことで工作物である超硬合金の成分である炭化タングステン(WC)を陽極酸化させて酸化タングステン(WO3)とすると同時にコバルト(Co)を電解溶出し、電極を負極として電圧を印加し電流を流すことで、陽極酸化して生成した酸化タングステン(WO3)を化学的に溶解させることにより加工を行う超硬合金の電解加工において、電解加工液として、食塩水(NaCl水溶液)又は硝酸ソーダ水溶液(NaNO3)を主成分とした水溶液を用い、該電解加工液にコバルトイオン(Co2+)を加え、電解加工中には、電極と工作物間に電解液が循環するようにフラッシングを行い、
電極を負極として流す電流の電荷量を、電極を正極として流す電流の電荷量よりも多くしたことを特徴とするものである。
According to a second aspect of the present invention, there is provided a method of electrolytic machining a cemented carbide which is a workpiece by applying a voltage between the electrode and a cemented carbide which is a workpiece and applying a voltage to the electrode as a negative electrode. Tungsten carbide (WC), which is a component, is anodized to form tungsten oxide (WO 3 ), and at the same time, cobalt (Co) is electrolytically eluted. In the machining of cemented carbide, where tungsten oxide (WO 3 ) is chemically dissolved, the main component is saline (NaCl aqueous solution) or sodium nitrate aqueous solution (NaNO 3 ) as the electrolytic machining fluid Using an aqueous solution, cobalt ions (Co 2+ ) are added to the electrolytic processing solution, and during the electrolytic processing, flushing is performed so that the electrolytic solution circulates between the electrode and the workpiece,
It is characterized in that the charge amount of the current flowing with the electrode as the negative electrode is made larger than the charge amount of the current flowing with the electrode as the positive electrode.

本願発明によれば、超硬合金の電解加工において、電解液へCoイオンを添加することで、電解加工中に電解液に触れる部分のCo溶出を防止することと、加工面のCo溶出の防止とを両立することができる。   According to the present invention, in the electrolytic processing of cemented carbide, by adding Co ions to the electrolytic solution, it prevents Co elution at the part that touches the electrolytic solution during electrolytic processing, and prevents Co elution from the processed surface. And both.

従来の電解加工の加工例を示す説明図である。It is explanatory drawing which shows the example of a process of the conventional electrolytic process. 従来の電解加工の加工例を示す説明図である。It is explanatory drawing which shows the example of a process of the conventional electrolytic process. 超硬合金のCo溶出の問題を説明する図である。It is a figure explaining the problem of Co elution of a cemented carbide. 電解液に浸漬した超硬合金の写真である。It is the photograph of the cemented carbide immersed in electrolyte solution. 電解液に浸漬した超硬合金の写真である。It is the photograph of the cemented carbide immersed in electrolyte solution. 磨いた超硬合金の元素分析である。Elemental analysis of polished cemented carbide. 電解液に浸漬した超硬合金の元素分析である。It is an elemental analysis of the cemented carbide immersed in electrolyte solution. 電解液(NaNO3)に浸漬した超硬合金の写真である。Is a photograph of dipping the cemented carbide in the electrolyte solution (NaNO 3). Coイオンを添加した電解液に浸漬した超硬合金の写真である。It is the photograph of the cemented carbide immersed in the electrolyte solution which added Co ion. Coイオンを添加した電解液に浸漬した超硬合金の元素分析である。It is an elemental analysis of the cemented carbide immersed in the electrolyte solution which added Co ion. 電解加工装置の説明図である。It is explanatory drawing of an electrolytic processing apparatus. 電解加工装置の波形の説明図である。It is explanatory drawing of the waveform of an electrolytic processing apparatus. NaCl溶液での両極性加工結果の写真である。It is a photograph of the bipolar processing result in NaCl solution. NaCl溶液での両極性加工結果の写真である。It is a photograph of the bipolar processing result in NaCl solution. NaCl+NaOH溶液での両極性加工結果の写真である。It is the photograph of the bipolar processing result in NaCl + NaOH solution. NaCl溶液での両極性加工結果の写真である。It is a photograph of the bipolar processing result in NaCl solution. NaCl溶液での両極性加工結果の元素分析である。It is the elemental analysis of the bipolar processing result in NaCl solution. Coイオンを添加したNaCl溶液での両極性加工結果の写真である。It is a photograph of the bipolar processing result in the NaCl solution which added Co ion. Coイオンを添加したNaCl溶液での両極性加工結果の元素分析である。It is an elemental analysis of the bipolar processing result in the NaCl solution which added Co ion.

実施の形態1.
Coの溶出が、
Co → Co2++2e-
(Co+2Cl- → CoCl2+2e-
(2H++2e- → H2
の反応であることに注目すると、電解液中のCo2+濃度を上げることで、Coの溶出を抑制できると考えられる。そこで、NaCl溶液にCoCl2を添加して浸漬試験を行った。使用した溶液の中で後に写真を示したものは表2のとおりである。(CoCl2の重量は6水和物の重量である)
表2 浸漬試験の溶液

Figure 2015231642
それぞれの溶液に110時間浸漬した試験片の表面SEM写真を図9に示す。また、図9(1)(2)の試験片表面の元素分析の結果を図10に示す。SEM写真からも元素分析結果からもCo量が減少しておらず、Coの溶出が抑えられているように見える。図9(2)(3)の表面は荒れて見えるが、図10(2)からCl元素が検出されており、CoCl2が表面に付着したものと考えられる。(元素分析の際に同定する元素からClは除外している。)
SEMによる観察結果と表面の元素分析とからの結果ではあるが、電解液中のCo2+濃度を上げることで、電解液に触れた超硬合金からのCoの溶出を防止できることがわかった。Coの溶出を抑制するために必要なCo2+濃度は他の溶液を用いた浸漬試験から極微量でよいことがわかり、約0.1wt%程度から効果があり、できれば、約0.5wt%以上であるのが望ましいようである。 Embodiment 1 FIG.
Co elution
Co → Co 2+ + 2e -
(Co + 2Cl - → CoCl 2 + 2e -)
(2H + + 2e - → H 2)
It is considered that the elution of Co can be suppressed by increasing the Co 2+ concentration in the electrolytic solution. Therefore, the immersion test was performed by adding CoCl 2 to the NaCl solution. Table 2 shows photographs of the solutions used later. (The weight of CoCl 2 is the weight of hexahydrate)
Table 2 Solutions for immersion test
Figure 2015231642
The surface SEM photograph of the test piece immersed in each solution for 110 hours is shown in FIG. Moreover, the result of the elemental analysis of the test piece surface of FIG. 9 (1) (2) is shown in FIG. From the SEM photograph and the elemental analysis results, the amount of Co does not decrease, and it seems that the elution of Co is suppressed. Although the surfaces of FIGS. 9 (2) and 9 (3) appear rough, it is considered that Cl element was detected from FIG. 10 (2) and CoCl 2 was adhered to the surface. (Cl is excluded from the elements identified during elemental analysis.)
Although it is a result from the observation result by SEM and the elemental analysis of the surface, it was found that elution of Co from the cemented carbide contacted with the electrolytic solution can be prevented by increasing the Co 2+ concentration in the electrolytic solution. From the immersion test using other solutions, it is clear that the Co 2+ concentration required to suppress the elution of Co is very small and is effective from about 0.1 wt%. It seems to be desirable.

実施の形態2.
図11に加工装置の概略図を、図12に電極と工作物の間(以下、極間と呼ぶ)の電圧・電流波形の例を示す。加工装置は、電極1と工作物2との間に電圧を印加し電流を流せるように電源E1、E2を接続しており、加工槽4には電解加工液3が貯められ電解加工液3中に工作物2が固定されている。電源E1は工作物2にプラスの電圧を印加し、電源E2 はマイナスの電圧を印加する。スイッチング素子(FET)SW1、SW2のON/OFFのタイミングを(図示しない)制御回路で制御する。スイッチング素子SW1、SW2のON/OFFにより電極1にプラス電圧を印加する時間、マイナス電圧を印加する時間、電圧を印加しない時間を決めることができる。ここでは、電圧を印加しない時間は設けず、ファンクションジェネレータを用いてプラス電圧とマイナス電圧を交互に印加した。(直流での加工試験は、工作物プラスの電圧を連続して印加した。)
Embodiment 2. FIG.
FIG. 11 shows a schematic diagram of the machining apparatus, and FIG. 12 shows an example of voltage / current waveforms between the electrode and the workpiece (hereinafter referred to as “between the electrodes”). The machining apparatus is connected to power sources E1 and E2 so that a voltage can be applied between the electrode 1 and the workpiece 2 so that a current can flow. The machining tank 4 stores the electrolytic machining liquid 3 in the electrolytic machining liquid 3. The work piece 2 is fixed to. The power supply E1 applies a positive voltage to the workpiece 2 and the power supply E2 applies a negative voltage. The ON / OFF timing of the switching elements (FET) SW1 and SW2 is controlled by a control circuit (not shown). The time for applying a positive voltage to the electrode 1, the time for applying a negative voltage, and the time for not applying a voltage can be determined by turning ON / OFF the switching elements SW1 and SW2. Here, a time during which no voltage is applied is not provided, and a plus voltage and a minus voltage are alternately applied using a function generator. (In the DC machining test, a positive workpiece voltage was applied continuously.)

加工試験は、加工槽としてビーカーを用い、ビーカーに200mlの水と溶質を混合した溶液をいれて、5mm×5mm×30mmの寸法の超硬合金を鋼材製の治具に直立した状態で固定して浸漬した。電極は30mm×30mmの面のGrを使用した。ここでは、超硬合金の加工の際のCo溶出現象のみに注目したため、極間距離は約1mmとし、電極・工作物は固定したまま電極送りはせずに加工を行った。液のフラッシングも行っていない。各条件それぞれ10分間加工を行った。
超硬合金の電解加工の方法については、非特許文献1の方法をベースにする。加工原理は、非特許文献1、非特許文献2等にあるように、以下の反応を使用する。すなわち、電極マイナスの極性の場合、
陽極側では
Co+2Cl-−2e- → CoCl2
2OH-−2e- → H2O+[O]
WC+9/2[O] → WO3+1/2CO+1/2CO2
陰極側では
2H++2e- → H2
電極プラスの極性になると、
WO3+2NaOH → Na2WO4+H2O
2Cl-−2e- → Cl2
となる。すなわち、超硬合金の成分であるCoは純粋な電解加工現象で、WCは酸化されてWO3になった後、アルカリに溶解されるという原理である。
倉藤尚雄著、「 電解加工, 電気学会雑誌」 Vol.85-5, No.920,(1965)743-747
In the processing test, a beaker was used as a processing tank, a 200 ml water and solute mixed solution was put into the beaker, and a cemented carbide of 5 mm x 5 mm x 30 mm dimensions was fixed upright in a steel jig. Soaked. The electrode used was 30 mm × 30 mm Gr. Here, we focused on only the Co elution phenomenon during the machining of cemented carbide, so the distance between the electrodes was set to about 1 mm, and the electrode / workpiece was fixed and machining was performed without feeding the electrode. Liquid flushing is not performed. Each condition was processed for 10 minutes.
The method of electrolytic processing of cemented carbide is based on the method of Non-Patent Document 1. The processing principle uses the following reaction as described in Non-Patent Document 1, Non-Patent Document 2, and the like. That is, if the electrode has a negative polarity,
On the anode side
Co + 2Cl - -2e - → CoCl 2
2OH - -2e - → H 2 O + [O]
WC + 9/2 [O] → WO 3 + 1 / 2CO + 1 / 2CO 2
On the cathode side
2H + + 2e - → H 2
When the polarity of the electrode is positive,
WO 3 + 2NaOH → Na 2 WO 4 + H 2 O
2Cl - -2e - → Cl 2
It becomes. That is, Co, which is a component of cemented carbide, is a pure electrolytic phenomenon, and WC is oxidized to WO 3 and then dissolved in alkali.
By Nao Kurato, "Electrochemical Processing, Journal of the Institute of Electrical Engineers of Japan" Vol.85-5, No.920, (1965) 743-747

表3 電解液の種類

Figure 2015231642
次に表3の電解液を使用して、両極性電流により電解加工を行った(T1=10ms、T2=10ms)。図13にNaCl溶液で電解加工を行った超硬合金の表面写真を示す。Coが優先的に除去されると予想したが、実際には、加工面には、Coが多く存在していた。この表面のCoは超硬合金のCoが溶出せずに残ったものではなく、電極がプラスの極性になった時に、
Co2++2e- → Co
と、析出してきたものと考えられる。電解液にNaCl+NaOHを使用した場合もほぼ同じような状況だった。これは、加工中にフラッシングをしていないことが原因と考えられ、本来の電解加工を行った場合の状況とは異なると考えられるが、一方で、超硬合金近傍の電解液中のCo2+イオン濃度が増したときには同様の現象が起きるということでもある。Co2+イオン濃度を高い状態にし、極性を制御することで、加工面のCoの溶出量を調整できる可能性があると考えることができる。図14にNaCl溶液を用いて、T1=16ms、T2=4ms(Duty 80%)で加工を行った超硬合金の表面写真、図15にNaCl+NaOHで加工を行った超硬合金の表面写真を示す。工作物がプラスの極性の時間が長くなることで、Coの付着が抑えられている(Coの溶出が進んだ)ことがわかる。尚、図13、14、15は加工した超硬合金(5mm×5mm)の中央付近の写真である。 Table 3 Types of electrolyte
Figure 2015231642
Next, electrolytic processing was performed with a bipolar current using the electrolytic solution of Table 3 (T1 = 10 ms, T2 = 10 ms). FIG. 13 shows a surface photograph of a cemented carbide that has been electrolytically processed with a NaCl solution. Although Co was expected to be removed preferentially, in practice, there was a lot of Co on the machined surface. The Co on this surface is not a cemented carbide that remains without eluting, and when the electrode has a positive polarity,
Co 2+ + 2e - → Co
It is thought that it has precipitated. The situation was almost the same when NaCl + NaOH was used as the electrolyte. This is thought to be caused by the fact that no flashing was performed during processing, and is considered to be different from the situation when the original electrolytic processing was performed, but on the other hand, Co 2 in the electrolyte near the cemented carbide + This also means that the same phenomenon occurs when the ion concentration increases. It can be considered that the amount of Co elution on the processed surface may be adjusted by setting the Co 2+ ion concentration to a high level and controlling the polarity. FIG. 14 shows a surface photograph of a cemented carbide processed with a NaCl solution at T1 = 16 ms and T2 = 4 ms (Duty 80%), and FIG. 15 shows a surface photograph of a cemented carbide processed with NaCl + NaOH. . It can be seen that the adhesion of Co is suppressed (the elution of Co has progressed) as the time of the positive polarity of the workpiece becomes longer. FIGS. 13, 14 and 15 are photographs of the vicinity of the center of the processed cemented carbide (5 mm × 5 mm).

実際に電解加工を行う場合には、電解液を極間に流すので、これらの試験の場合のように、極間のCo2+イオン濃度が高まることはないと考えられる。加工中にCo2+イオン濃度が比較的低いと考えられる工作物の加工面の縁付近の様子を観察した写真を図16に、元素分析の結果を図17に示す。中央部と縁の部分とでは様子が異なっていることがわかる。さらに、縁の部分では、Coの量が減少している(Coが選択的に溶出している)こともわかる。同様の傾向は、他の電解液を用いた工作物でも見られた。この状態が、本来の電解加工の状態、すなわち、電解液のフラッシングを十分に行った場合の状態に近いと考えられる。すなわち、NaCl主体の電解液を用いて超硬合金を電解加工した場合には、Coが選択的に溶出しやすい状況にあるということである。次に、この部分のCoの溶出を、電解液中のCo2+イオン濃度を高めることで抑制できるかどうかを確認した。 When actually performing electrolytic processing, since the electrolytic solution flows between the electrodes, it is considered that the Co 2+ ion concentration between the electrodes does not increase as in the case of these tests. FIG. 16 shows a photograph observing the vicinity of the edge of the processed surface of a workpiece that is considered to have a relatively low Co 2+ ion concentration during processing, and FIG. 17 shows the result of elemental analysis. It can be seen that the state is different between the central part and the edge part. Furthermore, it can be seen that the amount of Co is reduced (Co is selectively eluted) at the edge portion. Similar trends were seen for workpieces using other electrolytes. This state is considered to be close to the original electrolytic processing state, that is, the state in which the electrolyte solution is sufficiently flushed. That is, when a cemented carbide is electrolytically processed using an electrolytic solution mainly composed of NaCl, Co is likely to be selectively eluted. Next, it was confirmed whether or not the elution of Co in this portion could be suppressed by increasing the Co 2+ ion concentration in the electrolyte.

NaCl水溶液(水200ml、NaCl30g)にCoCl2を10g添加した水溶液を電解液として使用し、電解加工を行った。図16と同じような工作物縁の部分の写真を図18に、元素分析の結果を図19に示す。図18より、縁の部分は図16と同様に中央部とは様子が違うことがわかるが、図19より、縁の部分でもCoの溶出は抑えられていることがわかる。この結果より、Co2+イオンの添加により、超硬合金の加工において、懸念していたCoの溶出を防止できることが確認できた。今回使用した加工条件がDuty 80%(T1=16ms、T2=4ms)とCoが溶出しやすい条件であるにも関わらずCoの溶出を抑制できるということは、加工速度の高速化を狙う場合に、加工条件の選択肢が広くなるということを意味する。また、この実験では、電解液にNaOHを添加していない。アルカリ環境にしない状態でもCoの溶出を防止できたことは、安全面においても、選択肢が増えたということができる。Co2+イオン濃度は実施の形態1と同様、微量でも効果があるが、加工を行う場合には、それぞれの極性で流す電荷の割合とCo2+イオン濃度とが影響することになる。すなわち、Co2+イオン濃度がたかければ、工作物プラスで流す電荷が多くてもCoの選択的な溶出は怒らないが、Co2+イオン濃度が低くなるに従い、工作物プラスで流す電荷を徐々に減らす必要がある。CoCl2換算で、0.5wt%程度以上の場合には、工作物プラスで流す電荷をマイナスで流す電荷よりも多くすることができ、すなわち、両方の極性で流す電流が等しいならば、Duty を50%以上にすることができる。これは、超硬合金の電解加工は電極プラスの極性で、Coの溶出(除去加工)と、WCの陽極酸化によるWO3への反応を行うため、加工速度の向上につながる。 Electrolytic processing was performed using an aqueous solution obtained by adding 10 g of CoCl 2 to an aqueous NaCl solution (water 200 ml, NaCl 30 g) as an electrolytic solution. FIG. 18 shows a photograph of a work edge portion similar to FIG. 16, and FIG. 19 shows the result of elemental analysis. FIG. 18 shows that the edge portion is different from the central portion as in FIG. 16, but FIG. 19 shows that the elution of Co is also suppressed in the edge portion. From this result, it was confirmed that the addition of Co 2+ ions can prevent the elution of Co, which was a concern in the processing of cemented carbide. Although the processing conditions used this time are Duty 80% (T1 = 16ms, T2 = 4ms) and Co is likely to elute, Co elution can be suppressed when aiming to increase the processing speed. This means that the choice of processing conditions is widened. In this experiment, NaOH was not added to the electrolytic solution. The fact that Co elution was prevented even in an alkaline environment could be said to have increased options in terms of safety. As in the first embodiment, the Co 2+ ion concentration is effective even in a small amount, but when processing is performed, the ratio of the electric charge flowing in each polarity and the Co 2+ ion concentration are affected. In other words, if the Co 2+ ion concentration is high, the selective elution of Co is not angry even if there is a large amount of charge flowing through the workpiece plus, but as the Co 2+ ion concentration decreases, the charge flowing through the workpiece plus increases. It is necessary to reduce gradually. In CoCl 2 terms, in the case of more than about 0.5 wt%, the workpiece can be a positive flow in the charge larger than the charge flow in negative, i.e., if the current flowing in both polarities equal, the Duty 50 % Or more. This is because the electrolytic processing of cemented carbide has a positive polarity of the electrode, and Co elution (removal processing) and reaction to WO 3 by anodic oxidation of WC lead to an increase in processing speed.

この発明による超硬合金の電解加工方法は、電解液へのCoイオンの添加で、電解加工中に電解液に触れる部分のCo溶出を防止することと、加工面のCo溶出の防止とを両立することができる。   The method of electrolytic machining of cemented carbide according to the present invention achieves both the prevention of Co elution at the part that touches the electrolytic solution during electrolytic machining and the prevention of Co elution on the machined surface by adding Co ions to the electrolytic solution. can do.

1 電極
2 工作物
3 電解加工液
4 加工槽
E1、E2 電源
SW1、SW2 スイッチング素子
DESCRIPTION OF SYMBOLS 1 Electrode 2 Workpiece 3 Electrolytic machining fluid 4 Processing tank E1, E2 Power supply SW1, SW2 Switching element

Claims (3)

電極と工作物である超硬合金との間に、電極を負極として電圧を印加し電流を流すことで工作物である超硬合金の成分である炭化タングステン(WC)を陽極酸化させて酸化タングステン(WO3)とすると同時にコバルト(Co)を電解溶出し、電極を負極として電圧を印加し電流を流すことで、陽極酸化して生成した酸化タングステン(WO3)を化学的に溶解させることにより加工を行う超硬合金の電解加工において、
電解加工液として、食塩水(NaCl水溶液)又は硝酸ソーダ水溶液(NaNO3水溶液)を主成分とした水溶液を用い、
該電解加工液にコバルトイオン(Co2+)を加えることにより、
電解加工中および電解加工終了後に電解加工液にふれた超硬合金から構成成分であるコバルト(Co)が電解加工液中に溶出する現象を防止することを特徴とする超硬合金の電解加工方法。
Tungsten carbide (WC), which is a component of cemented carbide, which is a workpiece, is anodized by applying a voltage between the electrode and the cemented carbide, which is the workpiece, and applying a current to the electrode as a negative electrode to produce tungsten oxide. (WO 3 ) and electrolytically eluting cobalt (Co), applying a voltage with an electrode as a negative electrode and applying a current to chemically dissolve tungsten oxide (WO 3 ) produced by anodization. In electrolytic machining of cemented carbide to be processed,
As an electrolytic processing solution, an aqueous solution mainly composed of saline (NaCl aqueous solution) or sodium nitrate aqueous solution (NaNO 3 aqueous solution) is used.
By adding cobalt ions (Co 2+ ) to the electrolytic processing liquid,
A method of electrolytic processing of a cemented carbide comprising preventing a phenomenon that cobalt (Co) as a constituent component is eluted from the cemented carbide in contact with the electrolytic processing fluid during and after the electrolytic processing. .
電極と工作物である超硬合金との間に、電極を負極として電圧を印加し電流を流すことで工作物である超硬合金の成分である炭化タングステン(WC)を陽極酸化させて酸化タングステン(WO3)とすると同時にコバルト(Co)を電解溶出し、電極を負極として電圧を印加し電流を流すことで、陽極酸化して生成した酸化タングステン(WO3)を化学的に溶解させることにより加工を行う超硬合金の電解加工において、
電解加工液として、食塩水(NaCl水溶液)又は硝酸ソーダ水溶液(NaNO3水溶液)を主成分とした水溶液を用い、
該電解加工液にコバルトイオン(Co2+)を加え、
電解加工中には、電極と工作物間に電解液が循環するようにフラッシングを行い、
電極を負極として流す電流の電荷量を、電極を正極として流す電流の電荷量よりも多くしたことを特徴とする超硬合金の電解加工方法。
Tungsten carbide (WC), which is a component of cemented carbide, which is a workpiece, is anodized by applying a voltage between the electrode and the cemented carbide, which is the workpiece, and applying a current to the electrode as a negative electrode to produce tungsten oxide. (WO 3 ) and electrolytically eluting cobalt (Co), applying a voltage with an electrode as a negative electrode and applying a current to chemically dissolve tungsten oxide (WO 3 ) produced by anodization. In electrolytic machining of cemented carbide to be processed,
As an electrolytic processing solution, an aqueous solution mainly composed of saline (NaCl aqueous solution) or sodium nitrate aqueous solution (NaNO 3 aqueous solution) is used.
Cobalt ions (Co 2+ ) are added to the electrolytic processing liquid,
During electrolytic machining, flushing is performed so that the electrolyte circulates between the electrode and the workpiece,
A method of electrolytic processing of a cemented carbide characterized in that the amount of electric charge flowing through an electrode as a negative electrode is larger than the amount of electric charge flowing through an electrode as a positive electrode.
電極と超硬合金である被加工物との間に交流電圧を印加する電源と、
食塩水(NaCl水溶液)又は硝酸ソーダ水溶液(NaNO3水溶液)にコバルトイオン(Co2+)を加えた電解加工液を貯める加工槽とを備えた電解加工装置。
A power source for applying an alternating voltage between the electrode and a workpiece made of cemented carbide;
An electrolytic processing apparatus provided with a processing tank for storing an electrolytic processing solution obtained by adding cobalt ions (Co 2+ ) to a saline solution (NaCl aqueous solution) or a sodium nitrate aqueous solution (NaNO 3 aqueous solution).
JP2014118449A 2014-06-09 2014-06-09 Electrolytic processing method and electrolytic processing device for hard metal Pending JP2015231642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118449A JP2015231642A (en) 2014-06-09 2014-06-09 Electrolytic processing method and electrolytic processing device for hard metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014118449A JP2015231642A (en) 2014-06-09 2014-06-09 Electrolytic processing method and electrolytic processing device for hard metal

Publications (1)

Publication Number Publication Date
JP2015231642A true JP2015231642A (en) 2015-12-24

Family

ID=54933477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118449A Pending JP2015231642A (en) 2014-06-09 2014-06-09 Electrolytic processing method and electrolytic processing device for hard metal

Country Status (1)

Country Link
JP (1) JP2015231642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144618A (en) * 2019-06-03 2019-08-20 河南四方达超硬材料股份有限公司 A kind of method of metallic cobalt in removal composite polycrystal-diamond

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112452B1 (en) * 1966-01-29 1976-04-20
JPH03281125A (en) * 1990-03-30 1991-12-11 Mitsubishi Materials Corp Cathode body for electrolytic milling and electrolytic milling method
JPH0419016A (en) * 1990-05-09 1992-01-23 Takahisa Masuzawa Method and device for electrolytic processing using pulsated current

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112452B1 (en) * 1966-01-29 1976-04-20
JPH03281125A (en) * 1990-03-30 1991-12-11 Mitsubishi Materials Corp Cathode body for electrolytic milling and electrolytic milling method
JPH0419016A (en) * 1990-05-09 1992-01-23 Takahisa Masuzawa Method and device for electrolytic processing using pulsated current

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144618A (en) * 2019-06-03 2019-08-20 河南四方达超硬材料股份有限公司 A kind of method of metallic cobalt in removal composite polycrystal-diamond

Similar Documents

Publication Publication Date Title
Nestler et al. Plasma electrolytic polishing–an overview of applied technologies and current challenges to extend the polishable material range
US20180178302A1 (en) Electrochemical system and method for electropolishing superconductive radio frequency cavities
JP5601435B1 (en) Electrolytic processing method, electrolytic processing apparatus and electrolytic processing liquid
US20200123675A1 (en) Smoothing the surface finish of rough metal articles
MX2012014510A (en) Electrochemical system and method for machining strongly passivating metals.
US20160362810A1 (en) Electrochemical machining employing electrical voltage pulses to drive reduction and oxidation reactions
KR20170013464A (en) Electropolishing system of deeping type electrolyte flow
JP2015231642A (en) Electrolytic processing method and electrolytic processing device for hard metal
CN111996582A (en) Electrochemical polishing solution for silver workpiece, application of electrochemical polishing solution and anti-oxidation method for silver workpiece
Wang et al. Prevention of material deterioration in ECM of Sintered Carbide with Iron Ions (2nd Report)
JP2013244542A (en) Electrical discharge machining method of polycrystalline diamond
WO2009147856A1 (en) Electric discharge machining apparatus and electric discharge machining method
KR20160078556A (en) Method of surface modificaiton of stainless steel containing copper
US3461056A (en) Electrolytic machining and grinding apparatus with graphite electrode
Goto et al. Study on Electrochemical Machining of Sintered Carbide
Tak et al. Anodic dissolution behavior of passive layer during hybrid electrochemical micromachining of Ti6Al4V in NaNO3 solution
JP5809137B2 (en) Electrolytic machining method for electrolytically machining workpieces
JP2002292524A (en) Electrolyte finishing method for electric discharging surface
JP2018145477A (en) Method of removing oxide film of metal surface
US20190262923A1 (en) Methods and systems for electrochemical machining
JP6969774B2 (en) Multi-tasking equipment
US3230160A (en) Electrolyte for electrochemical material removal
CN112334604B (en) Device and method for electrochemical processing of materials
JP2018188702A (en) Removal method of oxide film on surface of metal material
JP2020172678A (en) Manufacturing method of titanium or titanium alloy oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171219