JP2015231365A - Method of inducing inner ear cell - Google Patents

Method of inducing inner ear cell Download PDF

Info

Publication number
JP2015231365A
JP2015231365A JP2015098423A JP2015098423A JP2015231365A JP 2015231365 A JP2015231365 A JP 2015231365A JP 2015098423 A JP2015098423 A JP 2015098423A JP 2015098423 A JP2015098423 A JP 2015098423A JP 2015231365 A JP2015231365 A JP 2015231365A
Authority
JP
Japan
Prior art keywords
cells
inner ear
culturing
cell
bfgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015098423A
Other languages
Japanese (ja)
Other versions
JP6218152B2 (en
JP2015231365A5 (en
Inventor
誠 細谷
Makoto Hosoya
誠 細谷
岡野 栄之
Hideyuki Okano
栄之 岡野
正人 藤岡
Masato Fujioka
正人 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2015098423A priority Critical patent/JP6218152B2/en
Publication of JP2015231365A publication Critical patent/JP2015231365A/en
Publication of JP2015231365A5 publication Critical patent/JP2015231365A5/ja
Application granted granted Critical
Publication of JP6218152B2 publication Critical patent/JP6218152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of inducing an inner ear cell from a pluripotent stem cell.SOLUTION: In a method of inducing an inner ear cell, a process of culturing a pluripotent stem cell under the presence of ROCK Inhibitor; a process of culturing the stem cell under the absence of ROCK Inhibitor; a process of culturing the stem cell on a serum-free medium; a process of culturing the stem cell on a serum-free medium containing a growth factor; and a process of dissociating the stem cell into a single cell are performed in this order, and the cell is induced from the pluripotent stem cell to an inner ear stem cell. The pluripotent stem cell is an embryonic stem cell (ES cell) or an artificial pluripotent stem cell (iPS cell). The method further includes a process of culturing the cell dissociated into the single cell on a culture dish coated by poly-O-fibronectine.

Description

本発明は、内耳細胞誘導方法に関する。   The present invention relates to a method for guiding inner ear cells.

胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)等の多能性幹細胞は、再生医療あるいはリサーチ・ツール(創薬、病態解明)などへの応用に大きな期待が集まっている。   The pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) are highly expected to be applied to regenerative medicine or research tools (drug discovery, pathological elucidation).

しかしながら、いずれの用途に利用する場合も、高品質の細胞を安定的に大量かつ適切な価格で供給する必要があるが、従来ヒトES細胞から内耳幹細胞を誘導する場合、胚葉体形成およびそれにともなう目視下における内耳幹細胞の選択が必要であり、長期の培養期間および低効率が問題であった(非特許文献1−2)。さらに、内耳幹細胞から内耳有毛細胞の誘導法は報告されている(非特許文献1−2)が、非常に効率が悪く、薬剤毒性確認および内耳有毛細胞繊毛の評価に耐えうる質の有毛細胞は報告されておらず、創薬および再生医療に応用するには、品質の面で問題があった。   However, when used for any purpose, it is necessary to stably supply a large amount of high-quality cells at an appropriate price. Conventionally, when inner ear stem cells are derived from human ES cells, embryoid body formation and accompanying methods are involved. It was necessary to select inner ear stem cells under visual observation, and a long culture period and low efficiency were problems (Non-Patent Document 1-2). Furthermore, although a method for inducing inner ear hair cells from inner ear stem cells has been reported (Non-patent Document 1-2), it is very inefficient and has a quality sufficient to withstand drug toxicity confirmation and evaluation of inner ear hair cell cilia. Hair cells have not been reported, and there have been problems in terms of quality when applied to drug discovery and regenerative medicine.

また、これまでに内耳を構成する細胞であり、薬物毒性等による聴力障害に深く関与すると考えられている内耳線維細胞および血管条細胞は、多能性幹細胞からの誘導法がなく、内耳研究の制約となっていた。   In addition, inner ear fiber cells and vascular streak cells, which are cells that constitute the inner ear so far and are thought to be deeply involved in hearing loss due to drug toxicity, have not been induced from pluripotent stem cells, It was a restriction.

このように、内耳細胞は、多能性幹細胞から誘導するのが困難であるか、誘導できても品質が悪く、再生医療あるいはリサーチ・ツールに利用することは極めて困難な状況にあり、効率的かつ高品質な内耳細胞の誘導法が求められていた。   In this way, inner ear cells are difficult to derive from pluripotent stem cells, or even if induced, the quality is poor, and it is extremely difficult to use for regenerative medicine or research tools. In addition, a high-quality method for inducing inner ear cells has been demanded.

一方で、種々の原因により惹起される聴覚障害、取り分け薬剤起因の聴覚障害に関し、実験動物では聴覚の測定/比較が困難であり、科学的評価が難しく、この点からも、内耳細胞の誘導法の開発が期待されている。   On the other hand, with regard to hearing impairments caused by various causes, and in particular, hearing impairments caused by drugs, it is difficult to measure / compare hearing in laboratory animals, and scientific evaluation is difficult. Development is expected.

Nature 2012 Oct 11;490(7419):278-82Nature 2012 Oct 11; 490 (7419): 278-82 Stem cells Dev. 2014 Mar 10 published onlineStem cells Dev. 2014 Mar 10 published online

本発明は、内耳細胞誘導方法を提供することを目的とする。   It is an object of the present invention to provide a method for inducing inner ear cells.

本発明の一実施態様は、多能性幹細胞から内耳幹細胞への誘導方法であって、前記多能性幹細胞をROCK Inhibitor存在下で培養する工程と、ROCK Inhibitor非存在下で培養する工程と、無血清培地で培養する工程と、増殖因子含有無血清培地で培養する工程と、単一細胞に解離する工程とを、この順で行う、誘導方法である。前記多能性幹細胞が、 胚性幹細胞(ES細胞)または 人工多能性幹細胞(iPS細胞)であってもよい。前記単一細胞に解離した細胞を、poly-O-fibronectine でコートした培養皿で培養する工程と、をさらに含んでもよい。   One embodiment of the present invention is a method for inducing pluripotent stem cells into inner ear stem cells, the step of culturing the pluripotent stem cells in the presence of ROCK Inhibitor, the step of culturing in the absence of ROCK Inhibitor, This is an induction method in which a step of culturing in a serum-free medium, a step of culturing in a growth factor-containing serum-free medium, and a step of dissociating into single cells are performed in this order. The pluripotent stem cell may be an embryonic stem cell (ES cell) or an induced pluripotent stem cell (iPS cell). And further culturing the cells dissociated into single cells in a culture dish coated with poly-O-fibronectine.

本発明のさらなる一実施態様は、内耳幹細胞から内耳感覚上皮(支持細胞、有毛細胞)および、蝸牛神経節細胞の誘導方法であって、前記内耳幹細胞をFGF9およびFGF20存在下で浮遊培養する工程と、接着培養する工程とを、この順で行う、誘導方法である。   A further embodiment of the present invention is a method for inducing inner ear sensory epithelium (support cells, hair cells) and cochlear ganglion cells from inner ear stem cells, wherein the inner ear stem cells are cultured in suspension in the presence of FGF9 and FGF20. And an adhesion culture method in which the steps of adhesion culture are performed in this order.

本発明のさらなる一実施態様は、内耳幹細胞から血管条辺縁細胞の誘導方法であって、前記内耳幹細胞をFGF3および/またはFGF10存在下で浮遊培養する工程と、接着培養する工程とを、この順で行う、誘導方法である。   A further embodiment of the present invention is a method for inducing vascular marginal cells from inner ear stem cells, comprising the steps of suspension culture of the inner ear stem cells in the presence of FGF3 and / or FGF10, and adhesion culture. It is a guidance method performed in order.

本発明のさらなる一実施態様は、内耳幹細胞から、Periotic mesenchymal 細胞の誘導方法であって、前記内耳幹細胞をbFGF存在下で培養する工程を含む、誘導方法である。   A further embodiment of the present invention is a method for inducing Periotic mesenchymal cells from inner ear stem cells, comprising the step of culturing the inner ear stem cells in the presence of bFGF.

本発明のさらなる一実施態様は、Periotic mesenchymal 細胞から、蝸牛線維細胞及び血管条細胞の誘導方法であって、前記Periotic mesenchymal 細胞をbFGF存在下で培養する工程と、bFGF非存在下で培養し、蝸牛線維細胞及び血管条細胞を得る工程と、をこの順で行う、誘導方法である。この血管条細胞は、血管条基底細胞であってもよい。   A further embodiment of the present invention is a method for inducing cochlear fibrocytes and vascular streak cells from Periotic mesenchymal cells, the step of culturing the Periotic mesenchymal cells in the presence of bFGF, and culturing in the absence of bFGF. And a step of obtaining cochlear fiber cells and vascular streak cells in this order. The vascular streak cell may be a vascular basal cell.

本発明のさらなる一実施態様は、Periotic mesenchymal 細胞から、Pendrin陽性細胞の誘導方法であって、前記Periotic mesenchymal 細胞をbFGF存在下で培養する工程と、bFGF非存在下で、NaHCO3存在下で培養し、Pendrin陽性細胞を得る工程と、をこの順で行う。誘導方法である。 A further embodiment of the present invention is a method for inducing Pendrin positive cells from Periotic mesenchymal cells, comprising culturing the Periotic mesenchymal cells in the presence of bFGF, and culturing in the presence of NaHCO 3 in the absence of bFGF. Then, the process of obtaining Pendrin positive cells is performed in this order. It is a guidance method.

本発明によれば、内耳細胞誘導方法を提供することができる。   According to the present invention, a method for inducing inner ear cells can be provided.

(A)本発明の一実施例において、得られた内耳幹細胞の位相差顕微鏡写真である。(B)本発明の一実施例において、得られた内耳幹細胞を(a)抗PAX2抗体、(b)抗PAX8抗体、(c)抗SOX2抗体で染色した結果を示した顕微鏡写真である。(A) In one Example of this invention, it is a phase-contrast micrograph of the obtained inner ear stem cell. (B) In one Example of this invention, it is the microscope picture which showed the result of having dyed the obtained inner ear stem cell with (a) anti-PAX2 antibody, (b) anti-PAX8 antibody, (c) anti-SOX2 antibody. 本発明の一実施例(有毛細胞の分化誘導)において、内耳幹細胞を浮遊培養し、FGF9およびFGF20存在下で培養することによって、有毛細胞のマーカーであるエスピン、ミオシン7a、プレスチンが発現することを示した顕微鏡写真である。(左図;三重染色)エスピン、ミオシン7a、プレスチン(右上)ミオシン7a(右下)エスピンの抗体で、染色した。In one embodiment of the present invention (hair cell differentiation induction), inner ear stem cells are cultured in suspension and cultured in the presence of FGF9 and FGF20 to express hair cell markers espin, myosin 7a, and prestin. It is the microscope picture which showed that. (Left figure; triple staining) Stained with Espin, Myosin 7a, Prestin (upper right) Myosin 7a (lower right) Espin antibody. 本発明の一実施例(支持細胞の分化誘導)において、内耳幹細胞を浮遊培養し、FGF9およびFGF20存在下で培養することによって、支持細胞マーカーであるp27kip1、ISLET1が発現することを示した顕微鏡写真である。(左図;三重染色)p27kip1、ISLET1、プレスチン(右図;二重染色)ISLET1、プレスチンの抗体で、染色した。In one example of the present invention (induction of support cell differentiation), a micrograph showing that the inner ear stem cells are cultured in suspension and cultured in the presence of FGF9 and FGF20, and the support cell markers p27kip1 and ISLET1 are expressed. It is. (Left figure; triple staining) p27kip1, ISLET1, Prestin (right figure; double staining) ISLET1, Prestin antibody was stained. 本発明の一実施例(蝸牛神経節細胞の分化誘導)において、内耳幹細胞を浮遊培養し、FGF9およびFGF20存在下で培養することによって、蝸牛神経節グリア細胞のマーカーであるGFAP、成熟神経細胞のマーカーであるカルビンジン及びベータIIIチューブリンが発現することを示した顕微鏡写真である。GFAP、カルビンジン及びベータIIIチューブリンの抗体で、三重染色をした。In one embodiment of the present invention (induction of differentiation of cochlear ganglion cells), inner ear stem cells are cultured in suspension and cultured in the presence of FGF9 and FGF20, so that GFAP, a marker of cochlear ganglion glial cells, It is the microscope picture which showed that the calbindin and beta III tubulin which are markers express. Triple staining was performed with antibodies of GFAP, calbindin and beta III tubulin. 本発明の一実施例(Periotic mesenchymal 細胞の分化誘導)において、内耳幹細胞をbFGF存在下で培養することにより、Periotic mesenchymal 細胞のマーカーであるS100、POU3F4、カルデスモン、TBX18が発現することを示した顕微鏡写真である。(上左)S100、カルデスモン、TBX18 (上右)cx26、TBX18、POU3f4の抗体で、三重染色をした。(下図)bFGF存在下で長期間培養したときの位相差顕微鏡写真である。In one embodiment of the present invention (induction of differentiation of Periotic mesenchymal cells), a microscope showing that S100, POU3F4, caldesmon and TBX18, which are markers for Periotic mesenchymal cells, are expressed by culturing inner ear stem cells in the presence of bFGF. It is a photograph. (Upper left) S100, Caldesmon, TBX18 (Upper right) Triple staining was performed with antibodies of cx26, TBX18, and POU3f4. (Bottom) A phase contrast micrograph when cultured for a long time in the presence of bFGF. 本発明の一実施例(内耳線維細胞及びPENDRIN陽性細胞の分化誘導)において、Periotic mesenchymal 細胞をbFGF存在下で培養した後、bFGF非存在下で培養することにより、蝸牛線維細胞、および蝸牛血管条基底細胞のマーカーである炭酸脱水素酵素、アクアポリン1、ナトリウムカリウムATPアーゼ、ビメンチン、コネキシン26および3が発現すること、Periotic mesenchymal 細胞をbFGF存在下で培養した後、NaHCO3存在下で培養することにより、Pendrinが発現すること、を示した顕微鏡写真である。(上左)CAIIとコネキシン26(上中)ナトリウムカリウムATPアーゼとコネキシン26(上右)アクアポリン1とコネキシン26(下左)ビメンチンとコネキシン26、の抗体で二重染色した。(下右)CAIIとPendrinの抗体で二重染色した。In one example of the present invention (induction of differentiation of inner ear fiber cells and PENDRIN positive cells), by culturing Periotic mesenchymal cells in the presence of bFGF and then in the absence of bFGF, cochlear fiber cells and cochlear vascular strips are obtained. Expression of basal cell markers carbonic acid dehydrogenase, aquaporin 1, sodium potassium ATPase, vimentin, connexins 26 and 3, Periotic mesenchymal cells are cultured in the presence of bFGF and then cultured in the presence of NaHCO 3 Is a photomicrograph showing that Pendrin is expressed. (Upper left) CAII and connexin 26 (upper middle) Sodium potassium ATPase and connexin 26 (upper right) Aquaporin 1 and connexin 26 (lower left) Vimentin and connexin 26 were double-stained. (Lower right) Double staining with CAII and Pendrin antibodies. 本発明の一実施例において、ゲンタマイシン投与により内耳感覚上皮障害が誘導されたことを示した結果である。In one Example of this invention, it is the result which showed that inner ear sensory epithelial disorder was induced by gentamicin administration. 本発明の一実施例において、内耳幹細胞が血管条辺縁細胞に分化誘導され、NaKatpaseA1、NKCC1が発現すること、を示した顕微鏡写真である。FIG. 3 is a micrograph showing that inner ear stem cells are induced to differentiate into vascular marginal cells and NaKatpase A1 and NKCC1 are expressed in one example of the present invention.

以下、本発明の実施の形態を、実施例を挙げながら詳細に説明する。なお、本発明の目的、特徴、利点、および、そのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をこれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。   Hereinafter, embodiments of the present invention will be described in detail with reference to examples. The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention, and are shown for illustration or explanation. It is not limited. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.

本発明にかかる、多能性幹細胞(ES/iPS細胞)からの内耳細胞誘導法は、以下の流れに沿って行うことができる。   The inner ear cell induction method from pluripotent stem cells (ES / iPS cells) according to the present invention can be performed along the following flow.

(1)多能性幹細胞から内耳幹細胞への分化誘導
本発明にかかる、多能性幹細胞から内耳幹細胞への誘導方法においては、
第1工程:多能性幹細胞をROCK阻害剤存在下で培養する工程
第2工程:ROCK阻害剤非存在下で培養する工程
第3工程:無血清培地で培養する工程
第4工程:増殖因子含有無血清培地で培養する工程
第5工程:単一細胞に解離する工程
を、この順で行う。なお、工程間には、本発明には本質的ではない工程が挿入されてもかまわない。
(1) Differentiation induction from pluripotent stem cells to inner ear stem cells In the method for induction from pluripotent stem cells to inner ear stem cells according to the present invention,
1st step: a step of culturing pluripotent stem cells in the presence of a ROCK inhibitor 2nd step: a step of culturing in the absence of a ROCK inhibitor 3rd step: a step of culturing in a serum-free medium 4th step: containing a growth factor Step of culturing in serum-free medium Step 5: The step of dissociating into single cells is performed in this order. It should be noted that steps that are not essential to the present invention may be inserted between the steps.

多能性幹細胞は分化多能性(multipotencyまたはpluripotency)を有する細胞であれば特に限定されず、胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)、Muse細胞などが例示できるが、万能性(totipotency)を有する細胞が特に好ましい。   The pluripotent stem cell is not particularly limited as long as it has differentiation pluripotency (multipotency or pluripotency), and examples thereof include embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), Muse cells, and the like. Particularly preferred are cells having totipotency.

ROCK(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)阻害剤も特に限定されず、例えば、Y-27632、Fasudil hydrochloride、K-115(リパスジル塩酸塩水和物) 、DE-104などが例示できる。ROCK阻害剤の濃度は、適宜最適濃度を容易に決定できるが、0.05%〜0.2%が好ましく、0.1%がより好ましい。   The ROCK (Rho-associated coiled-coil forming kinase) inhibitor is not particularly limited, and examples thereof include Y-27632, Fasudil hydrochloride, K-115 (lipasyl hydrochloride hydrate), DE-104 and the like. . As for the concentration of the ROCK inhibitor, an optimal concentration can be easily determined as appropriate, but it is preferably 0.05% to 0.2%, more preferably 0.1%.

第1工程及び第2工程で用いる培地は、多能性幹細胞が維持できる培地であれば特に限定されず、mTeSR1が例示できる。第1工程は、1〜3日間行うことが好ましく、1〜2日間行うことがより好ましい。第2工程は、1〜3日間行うことが好ましく、1〜2日間行うことがより好ましい。   The medium used in the first step and the second step is not particularly limited as long as it can maintain pluripotent stem cells, and mTeSR1 can be exemplified. The first step is preferably performed for 1 to 3 days, and more preferably for 1 to 2 days. The second step is preferably performed for 1 to 3 days, and more preferably for 1 to 2 days.

第2工程において、ROCK阻害剤非存在下の意味は、ROCK阻害剤が実質的に非存在であればよく、効果がないレベルの濃度で含まれていてもよい。   In the second step, the meaning in the absence of the ROCK inhibitor may be contained at a concentration at which the ROCK inhibitor is substantially absent as long as the ROCK inhibitor is substantially absent.

第3工程で用いる無血清培地は、DMEM/F12+B27+N2+GlutaMax+Nonessential aminoacidなどが例示できる。第3工程の培養は、2〜6日間行うことが好ましく、2〜4日間行うことがより好ましく、3日間行うことが最も好ましい。   Examples of the serum-free medium used in the third step include DMEM / F12 + B27 + N2 + GlutaMax + Nonessential aminoacid. The culture in the third step is preferably performed for 2 to 6 days, more preferably 2 to 4 days, and most preferably 3 days.

第4工程で用いる無血清培地は、DMEM/F12+B27+N2+GlutaMax+Nonessential aminoacidなどが例示できるが、第3工程で用いる無血清培地と同じものを用いることが好ましい。増殖因子は、bFGF, FGF3, FGF10, FGF19からなる群のうち、少なくとも一つの増殖因子を添加すればよいが、全部添加することが好ましい。それぞれの好ましい濃度は、10〜50ng/ml、10〜50 ng/ml、10〜50 ng/ml、10〜50 ng/mlである。また、培養の前期にBMP4の存在化で培養し、後期にBMP4の非存在下で培養することが好ましい。前期に添加するBMP4の濃度は、5〜50ng/mlが好ましい。後期の培養で、BMP4非存在下の意味は、BMP4が実質的に非存在であればよく、効果がないレベルの濃度で含まれていてもよい。前期の培養は、2〜6日間行うことが好ましく、2〜4日間行うことがより好ましく、3日間行うことが最も好ましい。また、後期の培養は、2〜6日間行うことが好ましく、2〜4日間行うことがより好ましく、3日間行うことが最も好ましい。このようにして得られた内耳幹細胞は、内耳幹細胞への分化能を有する。   The serum-free medium used in the fourth step can be exemplified by DMEM / F12 + B27 + N2 + GlutaMax + Nonessential aminoacid, but the same serum-free medium used in the third step is preferably used. As the growth factor, at least one growth factor in the group consisting of bFGF, FGF3, FGF10, and FGF19 may be added, but it is preferable to add all of them. Preferred concentrations for each are 10-50 ng / ml, 10-50 ng / ml, 10-50 ng / ml, 10-50 ng / ml. In addition, it is preferable to culture in the presence of BMP4 in the first stage of culture and in the absence of BMP4 in the second stage. The concentration of BMP4 added in the previous period is preferably 5 to 50 ng / ml. The meaning of absence of BMP4 in the latter culture is sufficient if BMP4 is substantially absent, and it may be contained at a level at which there is no effect. The first culture is preferably performed for 2 to 6 days, more preferably 2 to 4 days, and most preferably 3 days. Further, the late culture is preferably performed for 2 to 6 days, more preferably 2 to 4 days, and most preferably 3 days. The inner ear stem cells thus obtained have the ability to differentiate into inner ear stem cells.

第5工程として、第4工程で得られた細胞塊を解離し、単一細胞にする。単一細胞に解離する方法は特に限定されず、例えばトリプシンやアクターゼを用いることができる。酵素や物理的処理(ピペッティングなど)で解離した後、未分化細胞や細胞塊を除去するため、ナイロンメッシュ等を用いて、単一細胞に解離した細胞を選択し、残存する細胞塊を除去するのが好ましい。   As the fifth step, the cell mass obtained in the fourth step is dissociated into a single cell. The method for dissociating into single cells is not particularly limited, and for example, trypsin or actase can be used. After dissociating with an enzyme or physical treatment (such as pipetting), to remove undifferentiated cells and cell clumps, use nylon mesh etc. to select cells dissociated into single cells and remove the remaining cell clumps It is preferable to do this.

また、内耳幹細胞を培養するには、コーティング剤でコートした培養皿を用い、幹細胞能の維持のために低酸素条件において細胞を培養する(第6工程)。用いるコーティング剤は特に限定されないが、poly-O-fibronectineが最も好ましい。培養する幹細胞は、第4工程で得られたものであっても第5工程で出られたものであってもよい。本工程で用いる血清入培地は、DMEMやF12などが例示できるが、血清(例えばFBSなど)以外にもN2及びB27を含有したDMEM/F12が最も好ましい。また、本工程の低酸素条件では、酸素濃度は、4%〜10%が好ましく、4%〜6%がより好ましく、4%が最も好ましい。培養に添加する増殖因子は、bFGF , EGF, IGF1からなる群のうち、少なくとも一つの増殖因子を添加すればよいが、全部添加することが好ましい。それぞれの好ましい濃度は、10〜30ng/ml、10〜30ng/ml、10〜50ng/ml、である。 In order to culture inner ear stem cells, the culture dish coated with a coating agent is used, and the cells are cultured under hypoxic conditions in order to maintain stem cell ability (sixth step). The coating agent to be used is not particularly limited, but poly-O-fibronectine is most preferable. The stem cells to be cultured may be those obtained in the fourth step or those obtained in the fifth step. Examples of the serum-containing medium used in this step include DMEM and F12, but DMEM / F12 containing N2 and B27 is most preferable in addition to serum (for example, FBS). Further, in the low oxygen condition of this step, the oxygen concentration is preferably 4% to 10%, more preferably 4% to 6%, and most preferably 4%. The growth factor added to the culture may be at least one growth factor selected from the group consisting of bFGF, EGF, and IGF1, but it is preferable to add all of them. Preferred concentrations for each are 10-30 ng / ml, 10-30 ng / ml, 10-50 ng / ml.

(2)内耳幹細胞から内耳感覚上皮(支持細胞、有毛細胞)、蝸牛神経節細胞及び血管条辺縁細胞への分化誘導
本発明にかかる、内耳幹細胞から内耳感覚上皮、蝸牛神経節細胞及び血管条辺縁細胞への誘導方法においては、
第1工程:増殖因子の存在下で前記内耳幹細胞を浮遊培養する工程と、
第2工程:接着培養する工程と
をこの順で行う。なお、工程の前後や工程間には、本発明には本質的ではない工程が挿入されてもかまわない。
(2) Differentiation induction from inner ear stem cells to inner ear sensory epithelium (support cells, hair cells), cochlear ganglion cells and vascular marginal cells According to the present invention, inner ear stem cells to inner ear sensory epithelium, cochlear ganglion cells and blood vessels In the induction method to the limbic cell,
First step: Suspension culture of the inner ear stem cells in the presence of a growth factor;
2nd process: The process of adhesion culture is performed in this order. It should be noted that steps that are not essential to the present invention may be inserted before and after the step or between the steps.

第1工程において、内耳幹細胞を増殖因子の存在下で浮遊培養する。具体的には、まず、第5工程と同様にして、内耳幹細胞を単一細胞に解離する。解離した細胞の培養は浮遊状態で行い、そのため、培養皿は、非接着状態で培養できる浮遊培養用のディッシュを用いる。例えば、細菌培養用プラスティックディッシュなどの、非接着培養用ディッシュを用いればよい。ここで、浮遊培養とは、目的の細胞や細胞塊を培養器の底面に接着させずに培養することを意味し、接着培養とは、目的の細胞や細胞塊を培養器の底面に接着させて培養することを意味する。ここで、培養中、細胞や細胞塊が培養器の底面に接着するとは、細胞や細胞塊が、ECMなどに含まれる細胞基質接着分子を通じて、培養器底面と接着している状態を意味し、培養液を軽く揺らしても細胞や細胞塊が培養液中に浮かんでこない状態を言う。一方、培養中、細胞や細胞塊が培養器の底面に接着しないとは、細胞や細胞塊が、ECMなどに含まれる細胞-基質接着分子を通じて培養器底面と接着していない状態を意味し、たとえ底面に触れていても培養液を軽く揺らすと細胞や細胞塊が培養液中に浮かんでくるような状態を言う。接着培養の際は、細胞の基質への接着を促進するために、プラスティックディッシュの底表面を化学処理したり、接着を促進する接着用コーティング剤(ゼラチン、ポリリジン、寒天など)でコートしたりすることが好ましい。浮遊培養の際は、プラスティックディッシュの底表面は処理しないか、細胞の気質への接着を阻止するための接着阻止用コーティング剤(ポリ(2−ヒドロキシエチルメタクリレート)など)でコートしたりすることが好ましい。なお、接着培養であっても、目的の細胞が接着するまでに時間がかかり、ある程度の時間、浮遊状態にある場合があるが、時間がかかってもその細胞が最終的に接着する場合は、接着培養に含めることとする。浮遊培養に用いる培地は特に限定されず、DMEMやF12などが例示できるが、血清(例えばFBSなど)、N2、B27、及び増殖因子などの外部因子を含有した培地が好ましく、その培地としてDMEM/F12を用いるのが最も好ましい。内耳感覚上皮(支持細胞、有毛細胞)、蝸牛神経節細胞を誘導する場合、添加する外部因子としては、bFGF、EGF、IGF1、Wnt3a、FGF9、FGF20、ヘパリン、TGFβ阻害薬からなる群のうち、少なくとも一つの因子(特にFGF9とFGF20を含むのが好ましい)を含めばよいが、増殖因子とヘパリンを含むことが好ましく、全部含むことがより好ましい。bFGF、EGF、IGF1、Wnt3a、FGF9、FGF20、ヘパリンの好ましい濃度は、それぞれ10〜50、10〜50、10〜100、10〜50、10〜100、10〜100、1〜50 ng/mlであるが、特に限定されない。血管条細胞の誘導にはbFGF、EGF、IGF1、ヘパリン、FGF3、FGF10からなる群のうち、少なくとも一つの因子(特にFGF3および/またはFGF10を含むのが好ましい)を含めばよいが、増殖因子とヘパリンを含むことが好ましく、全部含むことがより好ましい。bFGF、EGF、IGF1、ヘパリン、FGF3、FGF10の好ましい濃度は、それぞれ10〜50、10〜50、10〜100、1〜50、25〜100、25〜100ng/mlであるが、特に限定されない。この浮遊培養は、3〜7日間行うことが好ましく、4〜6日間行うことがより好ましく、5日間行うことが最も好ましい。   In the first step, inner ear stem cells are cultured in suspension in the presence of a growth factor. Specifically, first, inner ear stem cells are dissociated into single cells as in the fifth step. The dissociated cells are cultured in a floating state. Therefore, a dish for floating culture that can be cultured in a non-adherent state is used as the culture dish. For example, a non-adhesive culture dish such as a plastic culture dish may be used. Here, suspension culture means culturing the target cells or cell mass without adhering to the bottom of the incubator, and adhesion culture means adhering the target cells or cell mass to the bottom of the incubator. It means to culture. Here, during culture, cells and cell clumps adhere to the bottom of the incubator means that the cells and cell clumps adhere to the bottom of the incubator through cell substrate adhesion molecules contained in ECM, A state in which cells and cell masses do not float in the culture solution even if the culture solution is shaken lightly. On the other hand, during culture, cells and cell clusters do not adhere to the bottom of the incubator, which means that the cells and cell clusters do not adhere to the bottom of the incubator through cell-substrate adhesion molecules contained in ECM, Even if it touches the bottom surface, it means a state where cells and cell masses float in the culture solution when the culture solution is shaken lightly. During adhesion culture, the bottom surface of the plastic dish is chemically treated or coated with an adhesive coating agent (gelatin, polylysine, agar, etc.) that promotes adhesion in order to promote cell adhesion to the substrate. It is preferable. During suspension culture, the bottom surface of the plastic dish may not be treated, or may be coated with an adhesion-preventing coating agent (such as poly (2-hydroxyethyl methacrylate)) to prevent cells from adhering to the temperament. preferable. In addition, even in adhesion culture, it takes time until the target cell adheres, and it may be in a floating state for a certain amount of time, but if the cell eventually adheres even if it takes time, Include in adherent culture. The medium used for the suspension culture is not particularly limited, and examples thereof include DMEM and F12. A medium containing external factors such as serum (for example, FBS), N2, B27, and growth factors is preferable, and the medium includes DMEM / Most preferably, F12 is used. When inducing inner ear sensory epithelium (supporting cells, hair cells), cochlear ganglion cells, external factors to be added are among the group consisting of bFGF, EGF, IGF1, Wnt3a, FGF9, FGF20, heparin, TGFβ inhibitor However, it is preferable to include at least one factor (particularly including FGF9 and FGF20), but it is preferable to include a growth factor and heparin, and more preferable to include all of them. The preferred concentrations of bFGF, EGF, IGF1, Wnt3a, FGF9, FGF20, heparin are 10-50, 10-50, 10-100, 10-50, 10-100, 10-100, 1-50 ng / ml, respectively. There is no particular limitation. The induction of vascular cells may include at least one factor (particularly preferably including FGF3 and / or FGF10) from the group consisting of bFGF, EGF, IGF1, heparin, FGF3, and FGF10. It is preferable that heparin is included, and it is more preferable that heparin is included. Preferred concentrations of bFGF, EGF, IGF1, heparin, FGF3, and FGF10 are 10 to 50, 10 to 50, 10 to 100, 1 to 50, 25 to 100, and 25 to 100 ng / ml, respectively, but are not particularly limited. This suspension culture is preferably performed for 3 to 7 days, more preferably 4 to 6 days, and most preferably 5 days.

その後、培地を追加して、さらに浮遊培養を続ける。この培養は、3〜7日間行うことが好ましく、4〜6日間行うことがより好ましく、5日間行うことが最も好ましい。追加する培地は特に限定されず、DMEMやF12などが例示できるが、血清(例えばFBSなど)、N2、B27、及び増殖因子などの外部因子を含有した培地が好ましく、その培地としてDMEM/F12を用いるのが最も好ましいが、外部因子以外は、最初の浮遊培養で用いた培地と同一のものを用いるのが好ましい。添加する外部因子としては、bFGF、EGF、IGF1からなる群のうち、少なくとも一つの増殖因子を含めばよいが、全部含むことがより好ましい。それぞれの好ましい濃度は、10〜30ng/ml、10〜30ng/ml、10〜50ng/ml、である。   Thereafter, the culture medium is added and the suspension culture is further continued. This culture is preferably performed for 3 to 7 days, more preferably 4 to 6 days, and most preferably 5 days. The medium to be added is not particularly limited, and examples thereof include DMEM and F12. A medium containing external factors such as serum (for example, FBS), N2, B27, and growth factors is preferable, and DMEM / F12 is used as the medium. Although it is most preferable to use it, it is preferable to use the same medium as that used in the initial suspension culture except for external factors. As an external factor to be added, at least one growth factor may be included in the group consisting of bFGF, EGF, and IGF1, but it is more preferable to include all of them. Preferred concentrations for each are 10-30 ng / ml, 10-30 ng / ml, 10-50 ng / ml.

次に第2工程として、形成されたスフェアを壊さないようにして回収し、接着培養を行う。培地は、引き続き浮遊培養で用いた培地と同一のものを用いてもよい。1時間〜2日後、好ましくは1時間〜36時間後、最も好ましくは翌日に、培地を、血清(例えばFBSなど)、N2、B27、及び増殖因子などの外部因子を含有した新たな培地に交換する。この際、外部因子以外は、最初の浮遊培養で用いた培地と同一のものを用いるのが好ましい。内耳感覚上皮(支持細胞、有毛細胞)、蝸牛神経節細胞を誘導する場合、添加する外部因子としては、T3及び/又はIGF1とするのが好ましく、それぞれの好ましい濃度は、10〜100、1〜50 ng/mlである。血管条辺縁細胞の誘導には、添加する外部因子としてEGFまたはIGF1とするのが好ましく、それぞれの好ましい濃度は、10〜50、10〜50ng/mlである。この培養は、3日以上行うことが好ましく、5日以上行うことがより好ましい。この間、培地交換のみ行えばよい。   Next, as a second step, the formed spheres are collected without breaking them, and adhesion culture is performed. As the medium, the same medium as that used in the subsequent suspension culture may be used. After 1 hour to 2 days, preferably 1 hour to 36 hours, and most preferably the next day, the medium is replaced with fresh medium containing external factors such as serum (eg FBS), N2, B27, and growth factors. To do. At this time, it is preferable to use the same medium as that used in the initial suspension culture except for external factors. When inducing inner ear sensory epithelium (support cells, hair cells), cochlear ganglion cells, the external factor to be added is preferably T3 and / or IGF1, and the preferred concentrations thereof are 10 to 100, 1 ~ 50 ng / ml. For the induction of vascular marginal cells, it is preferable to use EGF or IGF1 as an external factor to be added, and the preferred concentrations are 10 to 50 and 10 to 50 ng / ml, respectively. This culture is preferably performed for 3 days or more, more preferably 5 days or more. During this time, only the medium exchange may be performed.

(3)内耳幹細胞から、Periotic mesenchymal 細胞を経由して、蝸牛線維細胞、血管条細胞、PENDRIN陽性細胞へと至る分化誘導
本発明にかかる、内耳幹細胞からPeriotic mesenchymal 細胞への誘導方法においては、内耳幹細胞をbFGF含有培地で培養する工程を含む。なお、この方法に、本発明には本質的ではない工程が挿入されてもかまわない。
(3) Induction of differentiation from inner ear stem cells via periotic mesenchymal cells into cochlear fibrocytes, vascular streak cells, and PENDRIN positive cells In the method for induction from inner ear stem cells to Periotic mesenchymal cells according to the present invention, Culturing stem cells in a bFGF-containing medium. It should be noted that steps that are not essential to the present invention may be inserted into this method.

ここで用いる培地は特に限定されず、DMEMやF12などが例示できるが、血清(例えばFBSなど)及びbFGFを含有した培地が好ましく、その培地としてDMEMを用いるのが最も好ましい。bFGFの好ましい濃度は、1〜50 ng/mlである。この培養は、7日間以上行うことが好ましく、10日間以上行うことがより好ましく、14日間以上行うことが最も好ましく、培養後、線維細胞状の構造を有するPeriotic mesenchymal細胞が得られる。   The medium used here is not particularly limited, and examples thereof include DMEM and F12. A medium containing serum (for example, FBS) and bFGF is preferable, and DMEM is most preferably used as the medium. A preferred concentration of bFGF is 1-50 ng / ml. This culture is preferably carried out for 7 days or more, more preferably for 10 days or more, most preferably for 14 days or more, and after cultivation, Periotic mesenchymal cells having a fibrous cellular structure are obtained.

培地からbFGFを除去した新しい培地で、さらに培養を続けると、蝸牛線維細胞や血管条細胞(特に血管条基底細胞)が得られる。この培養は、7日間以上行うことが好ましく、10日間以上行うことがより好ましく、14日間以上行うことが最も好ましい。   If culture is further continued with a new medium in which bFGF is removed from the medium, cochlear fiber cells and vascular streak cells (particularly vascular basal cells) can be obtained. This culture is preferably performed for 7 days or longer, more preferably for 10 days or longer, and most preferably for 14 days or longer.

また、bFGFを除去した新しい培地に、NaHCO3を添加して培養することによって、PENDRIN陽性細胞が得られる。NaHCO3の好ましい濃度は、0.3%〜1%である。この培養は、7日間以上行うことが好ましく、10日間以上行うことがより好ましく、14日間以上行うことが最も好ましい。 Further, PENDRIN-positive cells can be obtained by adding NaHCO 3 to a new medium from which bFGF has been removed and culturing. The preferred concentration of NaHCO 3 is 0.3% to 1%. This culture is preferably performed for 7 days or longer, more preferably for 10 days or longer, and most preferably for 14 days or longer.

<実施例1>
本実施例では、iPS細胞細胞から内耳幹細胞を分化誘導させた。
<Example 1>
In this example, inner ear stem cells were induced to differentiate from iPS cell cells.

[分化誘導方法]
Day 0
1) 1ウエル(6ウエル・プレート)をMatri Gelコーティングした。
2)コンフルエント なFeeder-Freeヒト iPS細胞 をアクターゼ処理し、ディッシュから剥離した。
3) PBSで希釈後遠心し、細胞を回収した。
4) 上澄みをすて、ROCK阻害剤(Y27632)(10μmol/L)を加えたmTeSR1に細胞を懸濁した。
5) ナイロンメッシュで単一細胞に解離した細胞だけを得て、血球板で細胞数を数えた。
6) 前記1)でMatri Gelコーティングしたウエルに、Y27632含有mTeSR1を加えた。
7) 1ウエルあたり2.0×104/cm2となるように解離した細胞を加えた。
[Differentiation induction method]
Day 0
1) One well (6 well plate) was coated with Matri Gel.
2) Confluent Feeder-Free human iPS cells were treated with actinase and detached from the dish.
3) After dilution with PBS, the cells were collected by centrifugation.
4) The supernatant was drained, and the cells were suspended in mTeSR1 supplemented with ROCK inhibitor (Y27632) (10 μmol / L).
5) Only cells dissociated into single cells with a nylon mesh were obtained, and the number of cells was counted with a hemocytometer.
6) mTeSR1 containing Y27632 was added to the Matri Gel-coated well in 1) above.
7) Dissociated cells were added at 2.0 × 10 4 / cm 2 per well.

Day 1
ROCK阻害剤を含まないmTeSR1に培地交換した。
Day 1
The medium was changed to mTeSR1 containing no ROCK inhibitor.

Day 2
無血清培地(DMEM/F12+B27+N2+GlutaMax+Nonessential aminoacid)に培地交換した。以後、Day4まで、毎日培地交換した。
Day 2
The medium was changed to a serum-free medium (DMEM / F12 + B27 + N2 + GlutaMax + Nonessential aminoacid). Thereafter, the medium was changed every day until Day 4.

Day 5
無血清培地(DMEM/F12+B27+N2+GlutaMax+Nonessential aminoacid+bFGF, FGF3, FGF10, FGF19+BMP4(25ng/ml、25 ng/ml、25 ng/ml、25ng/ml、10ng/ml))に培地交換した。以後、Day7まで、毎日培地交換した。
Day 5
Serum-free medium (DMEM / F12 + B27 + N2 + GlutaMax + Nonessential aminoacid + bFGF, FGF3, FGF10, FGF19 + BMP4 (25ng / ml, 25ng / ml, 25ng / ml, 25ng / ml, 10ng / ml)) The medium was changed. Thereafter, the medium was changed every day until Day 7.

Day 8
無血清培地(DMEM/F12+B27+N2+GlutaMax+Nonessential aminoacid +bFGF, FGF3, FGF10, FGF19(増殖因子の濃度は全て25ng/ml))に培地交換した。以後DAY10まで、毎日培地交換した。
Day 8
The medium was changed to a serum-free medium (DMEM / F12 + B27 + N2 + GlutaMax + Nonessential aminoacid + bFGF, FGF3, FGF10, FGF19 (the growth factor concentrations were all 25 ng / ml)). Thereafter, the medium was changed every day until DAY10.

Day 11
新鮮な無血清培地(DMEM/F12+B27+N2+GlutaMax+Nonessential aminoacid+bFGF,FGF3, FGF10,FGF19)に培地交換した。
Day 11
The medium was replaced with a fresh serum-free medium (DMEM / F12 + B27 + N2 + GlutaMax + Nonessential aminoacid + bFGF, FGF3, FGF10, FGF19).

Day 12
細胞をアクターゼ処理後、遠心して細胞を回収し、DMEM/F12+N2+B27培地 +bFGF, FGF3, FGF10, FGF19(25ng/ml、25 ng/ml、25 ng/ml、25ng/ml)で懸濁した。ナイロンメッシュで単一細胞に解離した細胞を集め、poly-O-fibronectine コートしたウエルに播種した(細胞数などをご教示ください)。培養は、低酸素条件下で(O4%、CO5%)で行った。以後、3日ごとに、培地をDMEM/F12+N2+B27培地 + bFGF , EGF, IGF1(20ng/ml、20 ng/ml、50 ng/ml)に交換し、約6日ごとに継代した。
Day 12
Centrifuge the cells, collect the cells by centrifugation, and suspend with DMEM / F12 + N2 + B27 medium + bFGF, FGF3, FGF10, FGF19 (25 ng / ml, 25 ng / ml, 25 ng / ml, 25 ng / ml) It became cloudy. Cells dissociated into single cells with a nylon mesh were collected and seeded in wells coated with poly-O-fibronectine (please tell us the number of cells). Culturing was performed under hypoxic conditions (O 2 4%, CO 2 5%). Thereafter, every 3 days, the medium was changed to DMEM / F12 + N2 + B27 medium + bFGF, EGF, IGF1 (20 ng / ml, 20 ng / ml, 50 ng / ml) and passaged about every 6 days. .

こうしてえられた内耳幹細胞を増殖させ、コンフルエントになったディッシュを、位相差顕微鏡で撮影した(図1A)   The thus obtained inner ear stem cells were proliferated and the confluent dish was photographed with a phase contrast microscope (FIG. 1A).

[抗体染色]
得られた細胞について、内耳幹細胞のマーカーである抗PAX2抗体、抗PAX8抗体、抗SOX2抗体を用いて蛍光抗体染色を行った。蛍光抗体染色は、スライド上に固定した細胞に対して、抗原賦活化操作を行ったのち、ウサギ抗PAX2抗体、マウス抗PAX8抗体、ヤギ抗SOX2抗体を加えた(それぞれ、50倍、100倍、100倍希釈)。その後、それぞれの動物種IgGに特異的な蛍光2次抗体を使い標識し、蛍光顕微鏡で観察した。ポジティブコントロールとして、ヘキストで核染色を行った。図1Bに示すように、約80%の細胞が、内耳幹細胞のマーカーを発現しており、本発明の内耳幹細胞分化誘導方法が、極めて効率が高いことを示す。
[Antibody staining]
The obtained cells were subjected to fluorescent antibody staining using anti-PAX2 antibody, anti-PAX8 antibody, and anti-SOX2 antibody, which are markers for inner ear stem cells. In the fluorescent antibody staining, the cells fixed on the slide were subjected to antigen activation, and then rabbit anti-PAX2 antibody, mouse anti-PAX8 antibody, and goat anti-SOX2 antibody were added (50 times, 100 times, respectively). 100-fold dilution). Then, it labeled using the fluorescent secondary antibody specific for each animal species IgG, and observed with the fluorescence microscope. As a positive control, nuclear staining was performed with Hoechst. As shown in FIG. 1B, about 80% of cells express a marker of inner ear stem cells, which indicates that the inner ear stem cell differentiation inducing method of the present invention is extremely efficient.

<実施例2>
本実施例では、内耳幹細胞から有毛細胞、支持細胞、蝸牛神経節細胞を分化誘導させた。
<Example 2>
In this example, hair cells, support cells, and cochlear ganglion cells were induced to differentiate from inner ear stem cells.

[分化誘導方法]
実施例1で作製した内耳幹細胞をアクターゼ処理して細胞をディッシュから剥離し、遠心して細胞を回収した。DMEM/F12+N2+B27 培地 + bFGF, EGF, IGF1, Wnt3a, FGF9, FGF20, Heparin, (+TGFβ阻害薬)(各因子の濃度は25ng/ml、25ng/ml、50ng/ml, 20ng/ml, 50ng/ml, 50ng/ml, 10ng/ml)を加え、低吸着プレート(Corning超低接着表面(Ultra-Low Attachment)プレート)上で浮遊培養した(約20000細胞/well(96well)。日後、スフェア(細胞塊)の形成が観察され始めた。浮遊培養後5日目に培地DMEM/F12+N2+B27 + bFGF, EGF, IGF1 (各因子の濃度は25ng/ml、25ng/ml、50ng/ml)を等量追加した。
[Differentiation induction method]
The inner ear stem cells prepared in Example 1 were treated with actase to detach the cells from the dish, and centrifuged to collect the cells. DMEM / F12 + N2 + B27 medium + bFGF, EGF, IGF1, Wnt3a, FGF9, FGF20, Heparin, (+ TGFβ inhibitor) (concentration of each factor is 25ng / ml, 25ng / ml, 50ng / ml, 20ng / ml , 50ng / ml, 50ng / ml , 10ng / ml) was added and suspension cultured on low suction plate (Corning ultra low adhesive surface (ultra-low Attachment) plate) (about 20,000 cells / well (96 well). after one day On the 5th day after suspension culture, the medium DMEM / F12 + N2 + B27 + bFGF, EGF, IGF1 (the concentration of each factor was 25ng / ml, 25ng / ml, 50ng) / ml) was added in an equal amount.

浮遊培養後10日目にスフェアを壊さないように回収し、poly-O-fibronectine コートしたプレートに移し、接着培養した(スフェア5-10個程度)。翌日にDMEM/F12+N2+B27 培地+T3, IGF1 (各因子の濃度は60ng/ml, 10ng/ml)に培地交換し、その後は、3日に1度で培地交換した。接着培養5日後から、有毛細胞、支持細胞、蝸牛神経節細胞が得られた。   On the 10th day after suspension culture, the spheres were collected so as not to break, transferred to a poly-O-fibronectine-coated plate, and cultured for adhesion (about 5-10 spheres). On the next day, the medium was changed to DMEM / F12 + N2 + B27 medium + T3, IGF1 (the concentration of each factor was 60 ng / ml, 10 ng / ml), and then the medium was changed once every three days. Hair cells, support cells, and cochlear ganglion cells were obtained after 5 days of adhesion culture.

[抗体染色]
蛍光抗体染色は、スライド上に固定した細胞に対して、抗原賦活化操作を行ったのち、ウサギ抗ミオシンVIIa抗体、マウス抗エスピン抗体、ヤギ抗プレスチン抗体を加えた(それぞれ、200倍、100倍、50倍希釈)。その後、それぞれの動物種IgGに特異的な蛍光2次抗体を使い標識し、蛍光顕微鏡で観察した。
[Antibody staining]
In the fluorescent antibody staining, the cells fixed on the slide were subjected to antigen activation, and then rabbit anti-myosin VIIa antibody, mouse anti-espin antibody, and goat anti-prestin antibody were added (200 times and 100 times, respectively). 50-fold dilution). Then, it labeled using the fluorescent secondary antibody specific for each animal species IgG, and observed with the fluorescence microscope.

得られた細胞について、有毛細胞のマーカーであるエスピン、ミオシン7a、プレスチンについて、それぞれの抗体を用いて蛍光抗体染色を行った(図2)。また、神経細胞のマーカーであるislet1、有毛細胞のマーカーであるp27/Kip1、有毛細胞のマーカーであるプレスチンについて、それぞれの抗体を用いて蛍光抗体染色を行った(図3)。また、蝸牛神経節グリア細胞のマーカーであるGFAP、成熟神経細胞のマーカーであるカルビンジン及びベータIIIチューブリンについて、それぞれの抗体を用いて蛍光抗体染色を行った(図4)。   The obtained cells were stained with fluorescent antibodies using Escher, Myosin 7a, and Prestin, which are hair cell markers, using the respective antibodies (FIG. 2). Further, fluorescent antibody staining was performed on each of the antibodies for islet1, a marker for nerve cells, p27 / Kip1, a marker for hair cells, and prestin, a marker for hair cells (FIG. 3). Further, GFAP, which is a marker for cochlear ganglia, and calbindin and beta III tubulin, which are markers for mature neurons, were stained with fluorescent antibodies using the respective antibodies (FIG. 4).

図2〜3に示すように、有毛細胞マーカーである、ミオシン7a、エスピン、プレスチン陽性細胞、および支持細胞マーカーであるp27kip1、ISLET1発現細胞が誘導されることが確認された。また、図4に示すように、同時に蝸牛神経細胞のマーカーである、カルビンジン陽性細胞とそれに付随するグリアが発現するGFAPを発現する細胞が得られた。このように、本方法では、内耳感覚上皮細胞を構成する主要細胞である有毛細胞、支持細胞、蝸牛神経節細胞が立体上に生体内と同様の配列をもって誘導されてくる。   As shown in FIGS. 2 to 3, it was confirmed that hair cell markers, myosin 7a, espin, prestin-positive cells, and supporting cell markers p27kip1, ISLET1-expressing cells were induced. In addition, as shown in FIG. 4, cells expressing GFAP expressed by calbindin positive cells and associated glia, which are markers of cochlear neurons, were obtained at the same time. Thus, in this method, hair cells, supporting cells, and cochlear ganglion cells, which are main cells constituting the inner ear sensory epithelial cells, are induced in a three-dimensional manner with the same arrangement as in vivo.

<実施例3>
本実施例では、Periotic mesenchymal 細胞、蝸牛線維細胞及び血管条細胞、PENDRIN陽性細胞の分化誘導を行った。
<Example 3>
In this example, differentiation induction of Periotic mesenchymal cells, cochlear fiber cells and vascular streak cells, and PENDRIN positive cells was performed.

実施例1で得られた内耳幹細胞をPOMC medium (DMEM 500ml (D5796), 1M HEPES 5ml, FBS 30ml, bFGF(10ng/ml) 2.0ml)に培地交換をして、通常酸素下で培養したところ、培養10日目位からPeriotic mesenchymal細胞が観察された。その後培養を続けると、2週間後に線維細胞状の構造となった。(図5)   The inner ear stem cells obtained in Example 1 were replaced with POMC medium (DMEM 500 ml (D5796), 1 M HEPES 5 ml, FBS 30 ml, bFGF (10 ng / ml) 2.0 ml) and cultured under normal oxygen. Periotic mesenchymal cells were observed from about day 10 of culture. When the culture was continued thereafter, a fibrous cellular structure was formed after 2 weeks. (Fig. 5)

線維細胞状の細胞形態になった細胞の培地をFBS(10%)+DMEM 培地に培地交換し、さらに2週間程度培養すると、蝸牛線維細胞、血管条細胞(特に血管条基底細胞)が得られた。(図6)
また、FBS(10%)+DMEM 培地にNaHCO3(0.375%)を添加した培地を用いることによって、PENDRIN陽性細胞が得られた。(図6)
When the medium of the cells in the form of fibrous cells was changed to FBS (10%) + DMEM medium and cultured for about 2 weeks, cochlear fibrocytes and vascular streak cells (especially vascular basal cells) were obtained. . (Fig. 6)
Moreover, PENDRIN positive cells were obtained by using a medium in which NaHCO 3 (0.375%) was added to FBS (10%) + DMEM medium. (Fig. 6)

[抗体染色]
蛍光抗体染色は、スライド上に固定した細胞に対して、抗原賦活化操作を行ったのち、ウサギ抗S100抗体およびPOU3F4抗体、マウス抗カルデスモン抗体、ヤギ抗TBX18抗体を加えた(それぞれ、3倍、100倍、100倍、50倍希釈)。その後、それぞれの動物種IgGに特異的な蛍光2次抗体を使って標識し、蛍光顕微鏡で観察した。
[Antibody staining]
For fluorescent antibody staining, cells immobilized on a slide were subjected to antigen activation, and then rabbit anti-S100 antibody, POU3F4 antibody, mouse anti-caldesmon antibody, and goat anti-TBX18 antibody were added (each 3 times, (100, 100, 50 times dilution). Then, it labeled using the fluorescent secondary antibody specific for each animal species IgG, and observed with the fluorescence microscope.

図5に示すように、Periotic mesenchymal 細胞のマーカーであるS100、POU3F4、カルデスモン、TBX18の発現を認める細胞が誘導されていることが確認された。   As shown in FIG. 5, it was confirmed that cells in which the expression of S100, POU3F4, caldesmon, and TBX18, which are markers for Periotic mesenchymal cells, were induced were induced.

それぞれの誘導法で細胞誘導を行った後、スライド上に固定した細胞に対して、抗原賦活化操作を行ったのち、ウサギ抗炭酸脱水素酵素II抗体、抗アクアポリン1抗体、抗ナトリウムカリウムATPアーゼ抗体およびビメンチン抗体、マウス抗コネキシン26、コネキシン30抗体、ヤギ抗PENDRIN抗体を加えた(すべて100倍希釈)。その後、それぞれの動物種IgGに特異的な蛍光2次抗体を使い標識し、蛍光顕微鏡で観察した。   After cell induction by each induction method, antigen-stimulating operation was performed on the cells fixed on the slide, and then rabbit anti-carbonic acid dehydrogenase II antibody, anti-aquaporin 1 antibody, anti-sodium potassium ATPase Antibody and vimentin antibody, mouse anti-connexin 26, connexin 30 antibody, goat anti-PENDRIN antibody were added (all diluted 100 times). Then, it labeled using the fluorescent secondary antibody specific for each animal species IgG, and observed with the fluorescence microscope.

図6に示すように、蝸牛線維細胞、および蝸牛血管条基底細胞に発現する炭酸脱水素酵素、アクアポリン1、ナトリウムカリウムATPアーゼ、ビメンチン、コネキシン26および30が発現していることから、これらの細胞が誘導されていることを確認した。また、PENDRINが発現
していることから、PENDRIN陽性細胞が誘導されていることを確認した。
As shown in FIG. 6, since carbonic acid dehydrogenase, aquaporin 1, sodium potassium ATPase, vimentin, and connexins 26 and 30 expressed in cochlear fiber cells and cochlear vascular basal cells are expressed, these cells Was confirmed to be induced. Moreover, since PENDRIN was expressed, it was confirmed that PENDRIN positive cells were induced.

<実施例4>
本実施例では、本発明の方法によって分化誘導された内耳感覚上皮細胞が、内耳毒性の知られているゲンタマイシン投与によって障害を受けることを示す。
<Example 4>
In this example, it is shown that inner ear sensory epithelial cells induced to differentiate by the method of the present invention are damaged by administration of gentamicin, which is known for inner ear toxicity.

本発明の方法によって誘導された内耳感覚上皮細胞に対して、80倍希釈したゲンタマイシン注射薬を10日間投与した。   A gentamicin injection diluted 80-fold was administered for 10 days to inner ear sensory epithelial cells induced by the method of the present invention.

本薬剤の投与によりコントロール群に比較して優位に細胞数が減少しており、ゲンタマイシン投与による細胞毒性が生体と同様におこることが示された。   The administration of this drug significantly reduced the number of cells compared to the control group, indicating that cytotoxicity caused by gentamicin administration occurred in the same manner as in the living body.

<実施例5>
血管条は、辺縁細胞、中間細胞、基底細胞からなり、血管条細胞として、これら3つの細胞種が知られている。本実施例では、内耳幹細胞から血管条辺縁細胞を分化誘導させた。
<Example 5>
A blood vessel line consists of a marginal cell, an intermediate cell, and a basal cell, and these three cell types are known as a blood vessel cell. In this example, vascular marginal cells were induced to differentiate from inner ear stem cells.

[分化誘導方法]
実施例1で作製した内耳幹細胞をアクターゼ処理して細胞をディッシュから剥離し、遠心して細胞を回収した。DMEM/F12+N2+B27 培地 + bFGF, EGF, IGF1, FGF3, FGF10, Heparin,(各因子の濃度はそれぞれ20ng/ml、20ng/ml、50ng/ml, 100ng/ml, 100ng/ml, 10ng/ml)を加え、低吸着プレート(Corning超低接着表面(Ultra-Low Attachment)プレート)上で浮遊培養した(約20000細胞/well(96wellプレート)。1日後、スフェア(細胞塊)の形成が観察され始めた。浮遊培養後3日目に培地DMEM/F12+N2+B27 + bFGF, EGF, IGF1 (各因子の濃度はそれぞれ25ng/ml、25ng/ml、50ng/ml)を等量追加した。
[Differentiation induction method]
The inner ear stem cells prepared in Example 1 were treated with actase to detach the cells from the dish, and centrifuged to collect the cells. DMEM / F12 + N2 + B27 medium + bFGF, EGF, IGF1, FGF3, FGF10, Heparin (concentration of each factor is 20ng / ml, 20ng / ml, 50ng / ml, 100ng / ml, 100ng / ml, 10ng / ml) and suspended culture on a low adsorption plate (Corning Ultra-Low Attachment plate) (approx. 20000 cells / well (96-well plate). After 1 day, formation of spheres (cell mass) was observed. On the third day after suspension culture, medium DMEM / F12 + N2 + B27 + bFGF, EGF, IGF1 (the concentrations of each factor were 25 ng / ml, 25 ng / ml, 50 ng / ml, respectively) were added in equal amounts.

浮遊培養後6日目にスフェアを壊さないように回収し、poly-O-fibronectine コートしたプレートに移し、接着培養した(スフェア5-10個程度)。翌日にDMEM/F12+N2+B27 培地+EGF, IGF1 (各因子の濃度は20ng/ml, 50ng/ml)に培地交換し、その後は、3日に1度で培地交換した。接着培養5日後から、血管条辺縁細胞が得られた。   On the 6th day after suspension culture, the spheres were collected without breaking them, transferred to a poly-O-fibronectine-coated plate, and cultured for adhesion (about 5-10 spheres). On the next day, the medium was changed to DMEM / F12 + N2 + B27 medium + EGF, IGF1 (concentration of each factor was 20 ng / ml, 50 ng / ml), and then the medium was changed once every three days. From 5 days after adhesion culture, vascular marginal cells were obtained.

[抗体染色]
得られた細胞について、血管条辺縁細胞のマーカーであるNaKatpaseA1、NKCC1について、それぞれの抗体を用いて蛍光抗体染色を行った。コントロールとして、蝸牛線維細胞のマーカーであって、血管条辺縁細胞では発現していないCRYM(μクリスタリン)の抗体を用いて、その発現を調べた。
[Antibody staining]
The obtained cells were subjected to fluorescent antibody staining using NaKatpase A1 and NKCC1, which are markers of vascular marginal cells, using respective antibodies. As a control, the expression of cochlear fibrocytes was examined using an antibody of CRYM (μ crystallin) that is not expressed in vascular marginal cells.

蛍光抗体染色は、スライド上に固定した細胞に対して、抗原賦活化操作を行ったのち、マウス抗CRYM抗体、ウサギ抗NaKatpaseA1抗体、ヤギ抗NKCC1抗体を加えた(それぞれ、300倍、300倍、100倍希釈)。その後、それぞれの動物種IgGに特異的な蛍光2次抗体を使い標識し、蛍光顕微鏡で観察した。   Fluorescent antibody staining was performed on the cells fixed on the slide after antigen activation, and then added with mouse anti-CRYM antibody, rabbit anti-NaKatpaseA1 antibody, and goat anti-NKCC1 antibody (respectively 300 times, 300 times, 100-fold dilution). Then, it labeled using the fluorescent secondary antibody specific for each animal species IgG, and observed with the fluorescence microscope.

図8に示すように、NaKatpaseA1、NKCC1の発現が検出され、CRYMの発現は認められなかった。このように、本実施例の処理によって血管条細胞が誘導されることが確認された。   As shown in FIG. 8, expression of NaKatpaseA1 and NKCC1 was detected, and expression of CRYM was not observed. Thus, it was confirmed that the vascular cells were induced by the treatment of this example.

得られた内耳細胞は、再生医療、あるいは薬剤起因の内耳感覚上皮障害評価モデルなどの内耳細胞のリサーチ・ツールに利用できる。   The obtained inner ear cells can be used for research tools for inner ear cells such as regenerative medicine or a drug-induced inner ear sensory epithelial disorder evaluation model.

Claims (9)

多能性幹細胞から内耳幹細胞への誘導方法であって、
前記多能性幹細胞をROCK Inhibitor存在下で培養する工程と、
ROCK Inhibitor非存在下で培養する工程と、
無血清培地で培養する工程と、
増殖因子含有無血清培地で培養する工程と、
単一細胞に解離する工程と
を、この順で行う、誘導方法。
A method for inducing pluripotent stem cells into inner ear stem cells,
Culturing the pluripotent stem cells in the presence of ROCK Inhibitor;
Culturing in the absence of ROCK Inhibitor;
Culturing in a serum-free medium;
Culturing in a serum-free medium containing a growth factor;
A method of induction in which the step of dissociating into single cells is performed in this order.
前記多能性幹細胞が、 胚性幹細胞(ES細胞)または 人工多能性幹細胞(iPS細胞)である請求項1に記載の誘導方法。   The induction method according to claim 1, wherein the pluripotent stem cell is an embryonic stem cell (ES cell) or an induced pluripotent stem cell (iPS cell). 前記単一細胞に解離した細胞を、poly-O-fibronectine でコートした培養皿で培養する工程と、
をさらに含む、誘導方法。
Culturing the cells dissociated into single cells in a culture dish coated with poly-O-fibronectine;
A guidance method further comprising:
内耳幹細胞から内耳感覚上皮(支持細胞、有毛細胞) 及び蝸牛神経節細胞(神経細胞、グリア細胞)の誘導方法であって、
前記内耳幹細胞をFGF9およびFGF20存在下で浮遊培養する工程と、
接着培養する工程と、
を、この順で行う、誘導方法。
A method of inducing inner ear sensory epithelium (support cells, hair cells) and cochlear ganglion cells (neurons, glial cells) from inner ear stem cells,
A step of suspension culture of the inner ear stem cells in the presence of FGF9 and FGF20;
An adhesion culture step;
Are guided in this order.
内耳幹細胞から血管条辺縁細胞の誘導方法であって、
前記内耳幹細胞をFGF3および/またはFGF10存在下で浮遊培養する工程と、
接着培養する工程と、
を、この順で行う、誘導方法。
A method for inducing vascular marginal cells from inner ear stem cells,
The suspension culture of the inner ear stem cells in the presence of FGF3 and / or FGF10;
An adhesion culture step;
Are guided in this order.
内耳幹細胞から、Periotic mesenchymal 細胞の誘導方法であって、
前記内耳幹細胞をbFGF存在下で培養する工程を含む、誘導方法。
A method for inducing Periotic mesenchymal cells from inner ear stem cells,
An induction method comprising a step of culturing the inner ear stem cells in the presence of bFGF.
Periotic mesenchymal 細胞から、蝸牛線維細胞及び血管条細胞の誘導方法であって、
前記Periotic mesenchymal 細胞をbFGF存在下で培養する工程と、
bFGF非存在下で培養し、蝸牛線維細胞及び血管条細胞を得る工程と、
をこの順で行う、誘導方法。
A method of inducing cochlear fiber cells and vascular streak cells from Periotic mesenchymal cells,
Culturing the Periotic mesenchymal cells in the presence of bFGF;
culturing in the absence of bFGF to obtain cochlear fiber cells and vascular streak cells;
In this order, the guidance method.
前記血管条細胞が血管条基底細胞である、請求項7に記載の誘導方法。   The induction method according to claim 7, wherein the vascular cells are vascular basal cells. Periotic mesenchymal 細胞から、Pendrin陽性細胞の誘導方法であって、
前記Periotic mesenchymal 細胞をbFGF存在下で培養する工程と、
bFGF非存在下で、NaHCO3存在下で培養し、Pendrin陽性細胞を得る工程と、
をこの順で行う。誘導方法。
A method of inducing Pendrin positive cells from Periotic mesenchymal cells,
Culturing the Periotic mesenchymal cells in the presence of bFGF;
culturing in the presence of NaHCO 3 in the absence of bFGF to obtain Pendrin positive cells;
In this order. Guidance method.
JP2015098423A 2014-05-13 2015-05-13 Inner ear cell induction method Active JP6218152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015098423A JP6218152B2 (en) 2014-05-13 2015-05-13 Inner ear cell induction method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014100017 2014-05-13
JP2014100017 2014-05-13
JP2015098423A JP6218152B2 (en) 2014-05-13 2015-05-13 Inner ear cell induction method

Publications (3)

Publication Number Publication Date
JP2015231365A true JP2015231365A (en) 2015-12-24
JP2015231365A5 JP2015231365A5 (en) 2017-06-01
JP6218152B2 JP6218152B2 (en) 2017-10-25

Family

ID=54933292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098423A Active JP6218152B2 (en) 2014-05-13 2015-05-13 Inner ear cell induction method

Country Status (1)

Country Link
JP (1) JP6218152B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017146035A1 (en) * 2016-02-22 2018-12-20 学校法人順天堂 Method for producing inner ear cells
WO2021251419A1 (en) * 2020-06-09 2021-12-16 株式会社オトリンク Inner ear hair cell production method, drug evaluation method, and composition for inducing cell differentiation
WO2021251418A1 (en) * 2020-06-09 2021-12-16 株式会社オトリンク Method for producing inner ear progenitor cells, method for producing inner ear hair cells, method for assessing drug, and composition for inducing differentiation of inner ear cells
WO2023033149A1 (en) * 2021-09-03 2023-03-09 学校法人北里研究所 Method for producing inner ear stria vascularis marginal cells, chemical agent assessment method, and cell culture for assessing chemical agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501502A (en) * 2009-08-12 2013-01-17 国立大学法人京都大学 Differentiation induction method from pluripotent stem cells to neural progenitor cells
WO2013166488A1 (en) * 2012-05-04 2013-11-07 Indiana University Research & Technology Corporation Methods for generating the inner ear and other cranial placode-derived tissues using pluripotent stem cells
WO2013187416A1 (en) * 2012-06-12 2013-12-19 学校法人 慶應義塾 METHOD FOR AMPLIFYING iPS CELL SUITABLE FOR NEURAL DIFFERENTIATION, AND METHOD FOR INDUCING NEURAL STEM CELL

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501502A (en) * 2009-08-12 2013-01-17 国立大学法人京都大学 Differentiation induction method from pluripotent stem cells to neural progenitor cells
WO2013166488A1 (en) * 2012-05-04 2013-11-07 Indiana University Research & Technology Corporation Methods for generating the inner ear and other cranial placode-derived tissues using pluripotent stem cells
WO2013187416A1 (en) * 2012-06-12 2013-12-19 学校法人 慶應義塾 METHOD FOR AMPLIFYING iPS CELL SUITABLE FOR NEURAL DIFFERENTIATION, AND METHOD FOR INDUCING NEURAL STEM CELL

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CELL, 2010, 141, PP.704-16, JPN6017016843, ISSN: 0003626851 *
DEVELOPMENT, 2003, PP.6329-39, JPN6017016847, ISSN: 0003626853 *
DEVELOPMENTAL BIOLOGY, 2007, 308, PP.379-91, JPN6017016845, ISSN: 0003626852 *
DEVELOPMENTAL BIOLOGY, 2013, 379, PP.208-20, JPN6017016849, ISSN: 0003626854 *
NATURE, 2012, 490(7419):278-82, JPN6017016852, ISSN: 0003626855 *
STEM CELLS AND DEVELOPMENT, PUBLISHED ONLINE 2014 FEB 10, 23(11):1275-84, JPN6017016854, ISSN: 0003626856 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017146035A1 (en) * 2016-02-22 2018-12-20 学校法人順天堂 Method for producing inner ear cells
WO2021251419A1 (en) * 2020-06-09 2021-12-16 株式会社オトリンク Inner ear hair cell production method, drug evaluation method, and composition for inducing cell differentiation
WO2021251418A1 (en) * 2020-06-09 2021-12-16 株式会社オトリンク Method for producing inner ear progenitor cells, method for producing inner ear hair cells, method for assessing drug, and composition for inducing differentiation of inner ear cells
WO2023033149A1 (en) * 2021-09-03 2023-03-09 学校法人北里研究所 Method for producing inner ear stria vascularis marginal cells, chemical agent assessment method, and cell culture for assessing chemical agent

Also Published As

Publication number Publication date
JP6218152B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
Fonoudi et al. A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells
US20180265842A1 (en) Pluripotent stem cell culture on micro-carriers
Hookway et al. Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny
Cheung et al. Directed differentiation of embryonic origin–specific vascular smooth muscle subtypes from human pluripotent stem cells
DK2838992T3 (en) Maintaining differentiated cells with laminins
JP6097076B2 (en) Progeny of differentiated pluripotent stem cells that exclude excluded phenotypes
JP6218152B2 (en) Inner ear cell induction method
JP2019022509A (en) Adhesive signature-based methods for isolating stem cells and cells derived therefrom
Kumar et al. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells
CN113811316A (en) Method for purifying neural crest cells or corneal epithelial cells
JP7198524B2 (en) Method for producing spheroids and method for expressing pluripotent stem cell markers
CN114672455B (en) Method for inducing bone marrow stromal cells by utilizing pluripotent stem cells
WO2021251418A1 (en) Method for producing inner ear progenitor cells, method for producing inner ear hair cells, method for assessing drug, and composition for inducing differentiation of inner ear cells
WO2022188395A1 (en) Method for culturing pluripotent stem cells
Lee et al. Clump-passaging-based efficient 3D culture of human pluripotent stem cells under chemically defined conditions
WO2023033149A1 (en) Method for producing inner ear stria vascularis marginal cells, chemical agent assessment method, and cell culture for assessing chemical agent
Okubo et al. Fabrication of three-dimensional lacrimal gland-like tissue organoids from human pluripotent stem cells
WO2021251419A1 (en) Inner ear hair cell production method, drug evaluation method, and composition for inducing cell differentiation
Kondoh et al. Definitive Endoderm from EpiSC Aggregates in Matrigel
KR20240131080A (en) Medium composition for culture of extraembryonic endoderm stem cells
Karamil Soft tissue stiffness influences early commitment of mouse embryonic stem cells towards endodermal lineage
Obrtlíková Differentiation of Human Embryonic Stem Cells into Endothelial and Smooth Muscle Cells as a Model for Vascular Development

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170407

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170407

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6218152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250