JP2015230117A - Air-cooled steam condensing device - Google Patents

Air-cooled steam condensing device Download PDF

Info

Publication number
JP2015230117A
JP2015230117A JP2014115985A JP2014115985A JP2015230117A JP 2015230117 A JP2015230117 A JP 2015230117A JP 2014115985 A JP2014115985 A JP 2014115985A JP 2014115985 A JP2014115985 A JP 2014115985A JP 2015230117 A JP2015230117 A JP 2015230117A
Authority
JP
Japan
Prior art keywords
air
cooling air
condensate
condensate pipe
condensing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014115985A
Other languages
Japanese (ja)
Other versions
JP6309351B2 (en
Inventor
戸高 光正
Mitsumasa Todaka
光正 戸高
敏郎 加藤
Toshiro Kato
敏郎 加藤
勝信 上廣
Katsunobu Kamihiro
勝信 上廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
NS Plant Designing Corp
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Plant Designing Corp, Nippon Steel and Sumikin Engineering Co Ltd filed Critical NS Plant Designing Corp
Priority to JP2014115985A priority Critical patent/JP6309351B2/en
Publication of JP2015230117A publication Critical patent/JP2015230117A/en
Application granted granted Critical
Publication of JP6309351B2 publication Critical patent/JP6309351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-cooled steam condensing device that has higher heat exchange performance than conventional ones, enables a compact design, and is hard to generate dew condensation.SOLUTION: In an air-cooled steam condensing device 11, cooling air F is sprayed toward a condensing pipe unit 21 comprising a plurality of condensing pipes 23 where exhaust steam discharged from equipment flows, then the cooling air cools the condensing pipes 23, and thereby the exhaust steam in the condensing pipes 23 are condensed. The plural stages of the condensing pipe units 21 are arranged with intervals in a cooling air flow direction. Between condensing pipe units 21 adjacent in the cooling air flow direction, provided is a water spray nozzle 24 for spraying water to the cooling air F.

Description

本発明は、蒸気タービン発電機等の設備機器から排出される排気蒸気が流れる複数の復水管が束ねられた復水管ユニットに向けて冷却用空気を吹き付けて復水管を空冷することにより、該復水管内の排気蒸気を復水する空冷式蒸気復水装置に関する。   According to the present invention, the condensate pipe is air-cooled by blowing cooling air toward a condensate pipe unit in which a plurality of condensate pipes through which exhaust steam discharged from equipment such as a steam turbine generator flows is bundled. The present invention relates to an air-cooled steam condensing device that condenses exhaust steam in a water pipe.

発電設備を備えるごみ焼却炉では、ごみ焼却炉から排出される排ガスの熱を利用してボイラで蒸気を生成し、生成された蒸気を蒸気タービン発電機に供給することで発電を行っている。蒸気タービン発電機から排出された排気蒸気は、蒸気復水装置で復水され、復水タンクに貯留される。復水タンクに貯留された復水は、脱気器に送られて溶存酸素などの気体が除去された後、再びボイラに供給される。   In a waste incinerator equipped with a power generation facility, steam is generated in a boiler using the heat of exhaust gas discharged from the waste incinerator, and power is generated by supplying the generated steam to a steam turbine generator. The exhaust steam discharged from the steam turbine generator is condensed by a steam condensing device and stored in a condensate tank. The condensate stored in the condensate tank is sent to a deaerator to remove gases such as dissolved oxygen and then supplied to the boiler again.

排気蒸気が流れる復水管に冷却用空気を吹き付けて復水管を空冷することにより、該復水管内の排気蒸気を復水する空冷式蒸気復水装置では、熱交換性能向上のため、冷却用空気の温度を低下させて復水温度との温度差を大きくすることが望まれる。例えば特許文献1には、復水管を外側から強制空冷する蒸気復水器と蒸気復水器に空気を供給する空気通路とを備え、空気通路に水噴霧ノズルを設けた空冷式蒸気復水装置が開示されている。空気通路に導入された空気に水を噴霧して冷却用空気とし、冷却用空気で復水管を外側から強制空冷する。この空冷式蒸気復水装置では、水の蒸発潜熱を利用して空気通路に導入される空気の温度を下げて復水温度との温度差を大きくすることにより、熱交換性能の向上を図っている。   In the air-cooled steam condensing device that condenses the exhaust steam in the condensate pipe by air cooling the condensate pipe by blowing cooling air to the condensate pipe through which the exhaust steam flows, the cooling air is used to improve the heat exchange performance. It is desirable to increase the temperature difference from the condensate temperature by lowering the temperature of the water. For example, Patent Document 1 discloses an air-cooled steam condensing device that includes a steam condenser that forcibly cools a condenser pipe from the outside and an air passage that supplies air to the steam condenser, and is provided with a water spray nozzle in the air passage. Is disclosed. Water is sprayed on the air introduced into the air passage to form cooling air, and the condenser tube is forcedly air-cooled from the outside with the cooling air. In this air-cooled steam condensing device, the heat exchange performance is improved by lowering the temperature of the air introduced into the air passage by using the latent heat of vaporization of water and increasing the temperature difference from the condensate temperature. Yes.

また、特許文献2には、外気導入部から蒸気復水器室に導入された外気を送風機によって蒸気復水器に吹き付けて空冷する空冷式蒸気復水装置において、外気導入部に、複数の通気孔を均一に配した空気整流部材を配置し、遮断弁を有する水噴霧ノズルを各通気孔に設け、遮断弁を操作して水噴霧に使用する水噴霧ノズルの本数を増減させることで、蒸気復水器に吹き付ける冷却用空気の温湿度を調節する発明が開示されている。この空冷式蒸気復水装置では、特許文献1に記載されている空冷式蒸気復水装置の機能をさらに向上させるため、排気蒸気量や外気条件の変動に応じて水噴霧量を制御する。   Further, in Patent Document 2, in an air-cooled steam condensing apparatus that cools air by blowing the outside air introduced from the outside air introduction section into the steam condenser chamber onto the steam condenser by a blower, a plurality of passages are passed through the outside air introduction section. By arranging air rectifying members with uniformly arranged pores, providing water spray nozzles with shutoff valves in each vent hole, and operating the shutoff valves to increase or decrease the number of water spray nozzles used for water spraying. An invention for adjusting the temperature and humidity of the cooling air blown to the condenser is disclosed. In this air-cooled steam condensing device, in order to further improve the function of the air-cooled steam condensing device described in Patent Document 1, the amount of water spray is controlled according to fluctuations in the amount of exhaust steam and outside air conditions.

特開平11−142067号公報Japanese Patent Laid-Open No. 11-142067 特開2010−169285号公報JP 2010-169285 A

一般に、空冷式蒸気復水装置の全体寸法や送風機の容量などは、設計時に想定される外気温度によって決まる。従って、年間を通じて安定した冷却性能を得るためには、外気温度が高い夏場を想定して空冷式蒸気復水装置を設計する必要がある。その結果、復水管の伝熱面積を大きくしなければならず、必然的に空冷式蒸気復水装置の設置スペースが大きくなるという問題がある。   Generally, the overall dimensions of the air-cooled steam condensing device, the capacity of the blower, and the like are determined by the outside air temperature assumed at the time of design. Therefore, in order to obtain stable cooling performance throughout the year, it is necessary to design an air-cooled steam condensing device assuming summertime when the outside air temperature is high. As a result, it is necessary to increase the heat transfer area of the condensate pipe, which inevitably increases the installation space for the air-cooled steam condensing device.

上記問題の対策として、特許文献に見られるように、水の蒸発潜熱を利用して冷却用空気の温度を下げることが効果的である。しかし、従来の水噴霧型空冷式蒸気復水装置の場合、復水管に吹き付ける冷却用空気の温度を湿球温度以下に下げることは原理的にできない。さらに、水の飽和状態近くの温度(即ち湿球温度)まで冷却用空気の温度を下げようとすると、不完全蒸発となり易く未蒸発水が増加する。その結果、噴霧水消費が大きくなるだけでなく、未蒸発水が周辺設備を濡らして周辺設備が腐食する等の問題がある。   As a countermeasure against the above problem, as seen in the patent literature, it is effective to lower the temperature of the cooling air using the latent heat of vaporization of water. However, in the case of the conventional water spray type air-cooled steam condensing device, the temperature of the cooling air sprayed on the condensate pipe cannot be lowered in principle to the wet bulb temperature or lower. Furthermore, if the temperature of the cooling air is lowered to a temperature close to the saturation state of water (that is, the wet bulb temperature), incomplete evaporation tends to occur and the amount of non-evaporated water increases. As a result, there is a problem that not only the spray water consumption is increased, but also the non-evaporated water wets the peripheral equipment and the peripheral equipment is corroded.

本発明はかかる事情に鑑みてなされたもので、従来に比べて熱交換性能が高くコンパクト設計が可能であり、しかも未蒸発水が抑えられる空冷式蒸気復水装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an air-cooled steam condensing device that has a higher heat exchange performance than that of the prior art, can be compactly designed, and can suppress unevaporated water. .

上記目的を達成するため、本発明は、設備機器から排出される排気蒸気が流れる複数の復水管が束ねられた復水管ユニットに向けて冷却用空気を吹き付けて前記復水管を空冷することにより、該復水管内の排気蒸気を復水する空冷式蒸気復水装置において、
前記復水管ユニットが冷却用空気の流れ方向に間隔をあけて複数段配置され、冷却用空気の流れ方向に隣接する前記復水管ユニット間に、前記冷却用空気に水を噴霧する水噴霧ノズルが設けられていることを特徴としている。
In order to achieve the above-mentioned object, the present invention blows cooling air toward a condensate pipe unit in which a plurality of condensate pipes through which exhaust steam discharged from facility equipment flows flows, thereby cooling the condensate pipes by air. In an air-cooled steam condensing device that condenses exhaust steam in the condensate pipe,
A water spray nozzle that sprays water onto the cooling air between the condensate pipe units that are arranged in a plurality of stages at intervals in the flow direction of the cooling air and that is adjacent to the flow direction of the cooling air. It is characterized by being provided.

上流側の復水管ユニットを通過した冷却用空気は、該復水管ユニットを構成する復水管と熱交換を行っているので、該復水管ユニットに導入される前の冷却用空気に比べて温度が高くなっている。本発明では、上流側の復水管ユニットを通過して温度が高くなった冷却用空気に対して水を噴霧することにより温度が低下した冷却用空気が下流側の復水管ユニットに導入されるので、従来に比べて冷却用空気と復水温度の対数平均温度差が拡大し、熱交換性能が向上する。
加えて、上流側の復水管ユニットを通過して温度が高くなった冷却用空気は、蒸気復水装置入口の外気に対して相対湿度が低下し飽和蒸気に至る噴霧水量が大きく上昇する。これにより、蒸発による冷却性能が向上し、容易に完全蒸発する。さらに、上流側の復水管ユニットを通過した冷却用空気は、空気流路を一様に流れるように整流されるので、水噴霧ノズルを均等配置することで均一な冷却を得ることができる。
The cooling air that has passed through the upstream condensate pipe unit exchanges heat with the condensate pipe constituting the condensate pipe unit, so that the temperature is higher than that of the cooling air before being introduced into the condensate pipe unit. It is high. In the present invention, the cooling air whose temperature has been lowered by spraying water onto the cooling air that has passed through the upstream condensate pipe unit and has increased in temperature is introduced into the downstream condensate pipe unit. Compared to the conventional case, the logarithmic average temperature difference between the cooling air and the condensate temperature is increased, and the heat exchange performance is improved.
In addition, the cooling air that has passed through the upstream condensate pipe unit and has a higher temperature has a lower relative humidity with respect to the outside air at the inlet of the steam condensing device, and the amount of spray water that reaches saturated steam greatly increases. Thereby, the cooling performance by evaporation is improved, and complete evaporation is easily performed. Furthermore, since the cooling air that has passed through the upstream condensing pipe unit is rectified so as to flow uniformly in the air flow path, uniform cooling can be obtained by evenly arranging the water spray nozzles.

本発明に係る空冷式蒸気復水装置では、上流側の復水管ユニットを通過して温度が高くなった冷却用空気に対して水を噴霧するので、水の噴霧量を増加して冷却用空気の温度を大きく下げることができる。温度が低下した冷却用空気が下流側の復水管ユニットに導入されるので、従来に比べて冷却用空気と復水温度との温度差が大きく取れる。その結果、熱交換性能が向上し、伝熱面積が低減されて蒸気復水装置の設置面積を大幅に縮小することが可能となると共に、蒸気復水装置を支持する架構にかかる負荷を軽減することができる。さらには、不完全蒸発による結露等の弊害を防止することができる。   In the air-cooled steam condensing device according to the present invention, water is sprayed on the cooling air that has passed through the upstream condensate pipe unit and has a high temperature. The temperature can be greatly reduced. Since the cooling air whose temperature has decreased is introduced into the condensate pipe unit on the downstream side, a larger temperature difference can be obtained between the cooling air and the condensate temperature than in the past. As a result, the heat exchange performance is improved, the heat transfer area is reduced, the installation area of the steam condensing device can be greatly reduced, and the load on the frame supporting the steam condensing device is reduced. be able to. Furthermore, adverse effects such as condensation due to incomplete evaporation can be prevented.

本発明の第1の実施の形態に係る空冷式蒸気復水装置の模式図である。1 is a schematic diagram of an air-cooled steam condensing device according to a first embodiment of the present invention. 同空冷式蒸気復水装置の斜視図である。It is a perspective view of the air-cooled steam condensing device. 復水管ユニットの軸直交方向断面図である。It is an axial orthogonal direction sectional view of a condensate pipe unit. 復水管の軸方向断面図である。It is an axial sectional view of a condensate pipe. 本発明の第2の実施の形態に係る空冷式蒸気復水装置の模式図である。It is a schematic diagram of the air-cooled steam condensing apparatus which concerns on the 2nd Embodiment of this invention. 従来型空冷式蒸気復水装置の冷却状態を示す湿り空気線図である。It is a humid air line figure which shows the cooling state of the conventional air cooling type steam condensing apparatus. 本発明の実施の形態に係る空冷式蒸気復水装置の冷却状態を示す湿り空気線図である。It is a humid air line figure which shows the cooling state of the air-cooling type steam condensing apparatus which concerns on embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。   Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

[第1の実施の形態に係る空冷式蒸気復水装置]
本発明の第1の実施の形態に係る空冷式蒸気復水装置11は、蒸気タービン発電機等の設備機器から排出される排気蒸気を送給する蒸気分配管14と、蒸気分配管14によって送給される排気蒸気を復水する復水管ユニット21と、復水管ユニット21から排出される復水を集水する復水集合管15と、復水管ユニット21を通過する冷却用空気Fに水を噴霧する水噴霧ノズル24とを備えている(図1、図2参照)。また、復水管ユニット21の下方には、復水管ユニット21に冷却用空気Fを供給する送風機25が設置されている。
[Air-cooled steam condensing device according to the first embodiment]
The air-cooled steam condensing device 11 according to the first embodiment of the present invention is fed by a steam distribution pipe 14 that supplies exhaust steam discharged from equipment such as a steam turbine generator, and a steam distribution pipe 14. Water is supplied to the condensate pipe unit 21 that condenses the supplied exhaust steam, the condensate collecting pipe 15 that collects the condensate discharged from the condensate pipe unit 21, and the cooling air F that passes through the condensate pipe unit 21. And a water spray nozzle 24 for spraying (see FIGS. 1 and 2). A blower 25 that supplies cooling air F to the condensate pipe unit 21 is installed below the condensate pipe unit 21.

復水管ユニット21は、排気蒸気が流れる複数の復水管23を束ねて矩形パネル状としたものである(図3参照)。本実施の形態では、冷却用空気Fの通過方向に復水管23が2段並べられた構成とされている。冷却用空気Fは、隣接する復水管23の間に設けられたクリアランスを通過する。   The condensate pipe unit 21 is a rectangular panel formed by bundling a plurality of condensate pipes 23 through which exhaust steam flows (see FIG. 3). In the present embodiment, the condensate pipes 23 are arranged in two stages in the direction in which the cooling air F passes. The cooling air F passes through a clearance provided between adjacent condensate pipes 23.

各復水管23はフィンチューブとも呼ばれ、排気蒸気が流れる円筒状のチューブ23aと、チューブ23aの外周に形成されたリング状のフィン23bから構成されている(図4参照)。チューブ23aは炭素鋼製、フィン23bはアルミニウム製である。   Each condensate pipe 23 is also called a fin tube, and is composed of a cylindrical tube 23a through which exhaust steam flows and a ring-shaped fin 23b formed on the outer periphery of the tube 23a (see FIG. 4). The tubes 23a are made of carbon steel, and the fins 23b are made of aluminum.

蒸気分配管14は、水平方向に配置された主管14aと、主管14aから分岐し、各復水管ユニット21に排気蒸気を送給する分岐管14bとから構成されている。
復水管ユニット21は、主管14aを含む仮想鉛直面に関して対称、且つ主管14aから斜め下方に向けて排気蒸気が流れるように配置され、さらに冷却用空気Fの流れ方向(本実施の形態では鉛直方向)に間隔をあけて2段配置とされている。即ち、切妻屋根を2段重ねにしたような状態で復水管ユニット21が配置されている。復水管ユニット21から排出される復水を集水する復水集合管15は各復水管ユニット21の下流端に沿って配置されている。
また、復水管ユニット21に冷却用空気Fを供給する送風機25は、上流側(本実施の形態では下段側)に配置された復水管ユニット21の下方に設置されている。
The steam distribution pipe 14 includes a main pipe 14 a disposed in the horizontal direction and a branch pipe 14 b that branches from the main pipe 14 a and supplies exhaust steam to each condensate pipe unit 21.
The condensate pipe unit 21 is arranged so that the exhaust steam flows symmetrically with respect to a virtual vertical plane including the main pipe 14a and obliquely downward from the main pipe 14a. Further, the flow direction of the cooling air F (in this embodiment, the vertical direction) ) Are arranged in two steps with a gap. That is, the condensate pipe unit 21 is arranged in a state where the gable roofs are stacked in two stages. A condensate collecting pipe 15 that collects condensate discharged from the condensate pipe unit 21 is disposed along the downstream end of each condensate pipe unit 21.
Further, the blower 25 that supplies the cooling air F to the condensate pipe unit 21 is installed below the condensate pipe unit 21 arranged on the upstream side (lower stage side in the present embodiment).

水噴霧ノズル24は、冷却用空気Fの流れ方向(本実施の形態では鉛直方向)に隣接する復水管ユニット21の間、且つ下段側に配置された復水管ユニット21に近接して設置されている。水噴霧ノズル24の噴射孔(図示省略)は水平面より上方に向けられている。即ち、上流側の復水管ユニット21から下流側(本実施の形態では上段側)の復水管ユニット21に向けて水が噴霧される。   The water spray nozzle 24 is installed between the condensing pipe units 21 adjacent to each other in the flow direction of the cooling air F (vertical direction in the present embodiment) and close to the condensing pipe unit 21 arranged on the lower side. Yes. An injection hole (not shown) of the water spray nozzle 24 is directed upward from the horizontal plane. That is, water is sprayed from the upstream condensate pipe unit 21 toward the downstream (upper stage in the present embodiment) condensate pipe unit 21.

鉛直方向に隣接する復水管ユニット21の間隔は、水噴霧ノズル24から噴霧される水が蒸発するのに十分な間隔であればよく、大凡2m以上あればよい。また、復水管ユニット21の傾斜角度は特に限定されるものではなく、ほぼ水平でも良い。
なお、空冷式蒸気復水装置11の側方には、冷却用空気Fが逸散しないように遮蔽壁(図示省略)が設置されている。
The interval between the condensing pipe units 21 adjacent to each other in the vertical direction may be an interval sufficient for the water sprayed from the water spray nozzle 24 to evaporate, and may be approximately 2 m or more. The inclination angle of the condensate pipe unit 21 is not particularly limited, and may be substantially horizontal.
A shielding wall (not shown) is provided on the side of the air-cooled steam condensing device 11 so that the cooling air F does not escape.

本実施の形態に係る空冷式蒸気復水装置11の動作は以下のようになる。
復水管ユニット21の下方に設置された送風機25が駆動することにより、冷却用空気Fが復水管ユニット21に吹き付けられる。下段側に配置された復水管ユニット21を冷却用空気Fが通過することにより、下段側に配置された復水管ユニット21を構成する復水管23と冷却用空気Fとの間で熱交換が行われる。これにより、蒸気分配管14から復水管23に送給された排気蒸気が復水管23内で凝結して復水となり、復水集合管15を介して復水タンク(図示省略)に貯留される。
The operation of the air-cooled steam condensing device 11 according to the present embodiment is as follows.
When the blower 25 installed below the condensate pipe unit 21 is driven, the cooling air F is blown to the condensate pipe unit 21. As the cooling air F passes through the condensate pipe unit 21 arranged on the lower side, heat exchange is performed between the condensate pipe 23 and the cooling air F constituting the condensate pipe unit 21 arranged on the lower side. Is called. As a result, the exhaust steam fed from the steam distribution pipe 14 to the condensate pipe 23 condenses in the condensate pipe 23 to become condensate, and is stored in a condensate tank (not shown) via the condensate collecting pipe 15. .

一方、下段側に配置された復水管ユニット21を通過した冷却用空気Fに対して水噴霧ノズル24から水が噴霧される。水噴霧により温度が低下した冷却用空気Fは、上段側に配置された復水管ユニット21を通過し、上段側に配置された復水管ユニット21を構成する復水管23と熱交換を行う。これにより、蒸気分配管14から復水管23に送給された排気蒸気が復水管23内で凝結して復水となり、復水集合管15を介して復水タンクに貯留される。
なお、上段側に配置された復水管ユニット21を通過した冷却用空気Fは大気中へ放出される。
On the other hand, water is sprayed from the water spray nozzle 24 to the cooling air F that has passed through the condensate pipe unit 21 disposed on the lower side. The cooling air F whose temperature has been lowered by the water spray passes through the condensate pipe unit 21 disposed on the upper stage side, and exchanges heat with the condensate pipe 23 constituting the condensate pipe unit 21 disposed on the upper stage side. Thus, the exhaust steam fed from the steam distribution pipe 14 to the condensate pipe 23 condenses in the condensate pipe 23 to become condensate, and is stored in the condensate tank via the condensate collecting pipe 15.
The cooling air F that has passed through the condensate pipe unit 21 disposed on the upper side is released into the atmosphere.

次に、本実施の形態に係る空冷式蒸気復水装置の熱交換性能について、蒸気復水装置入口の冷却空気導入部に水噴霧装置を設置した従来型空冷式蒸気復水装置(復水管ユニットが1段配置とされた空冷式蒸気復水装置)を比較対象として検討する。   Next, regarding the heat exchange performance of the air-cooled steam condensing device according to the present embodiment, a conventional air-cooled steam condensing device (condensate pipe unit) in which a water spraying device is installed at the cooling air introduction portion at the inlet of the steam condensing device. Is considered as a comparison target.

従来型空冷式蒸気復水装置の熱交換量Qsを熱量バランス式で表すと次式となる。
Qs=(h2−h1)・G0
ここで、
h1:復水管ユニット通過直前の冷却用空気の比エンタルピ
h2:復水管ユニット通過直後の冷却用空気の比エンタルピ
G0:冷却用空気量
When the heat exchange amount Qs of the conventional air-cooled steam condensing device is expressed by a heat balance equation, the following equation is obtained.
Qs = (h2-h1) · G0
here,
h1: Specific enthalpy of cooling air immediately before passing through the condensate pipe unit h2: Specific enthalpy of cooling air immediately after passing through the condensate pipe unit G0: Amount of cooling air

また、従来型空冷式蒸気復水装置の熱交換量Qsを伝熱計算式で表すと次式となる。
Qs=K・Δtm・A0
ここで、
K:熱伝達係数
Δtm:対数平均温度差
A0:復水管ユニットの総伝熱面積
Further, the heat exchange amount Qs of the conventional air-cooled steam condensing device is represented by the following equation when expressed by a heat transfer calculation formula.
Qs = K · Δtm · A0
here,
K: Heat transfer coefficient Δtm: Logarithmic average temperature difference A0: Total heat transfer area of the condenser unit

対数平均温度差Δtmは次式で表される。
Δtm={(tw−ta1)−(tw−ta2)}
/ln{(tw−ta1)/(tw−ta2)}
ここで、
tw:排気蒸気の温度
ta1:復水管ユニット通過直前の冷却用空気の温度
ta2:復水管ユニット通過直後の冷却用空気の温度
The logarithmic average temperature difference Δtm is expressed by the following equation.
Δtm = {(tw−ta1) − (tw−ta2)}
/ Ln {(tw-ta1) / (tw-ta2)}
here,
tw: temperature of exhaust steam ta1: temperature of cooling air immediately before passing through the condensate pipe unit ta2: temperature of cooling air immediately after passing through the condensate pipe unit

一般的な実運転条件として、排気蒸気の温度を65℃、大気条件として気温30℃、相対湿度50%とし、蒸気復水装置出入口の空気側温度差20℃分の熱交換を行う場合の熱交換量を基本条件とする。また水噴霧は完全蒸発を考慮すると噴霧後で相対湿度80〜90%程度が限界と考えられるので、本実施例では80%を上限とする。   As a general actual operating condition, the temperature of the exhaust steam is 65 ° C., the atmospheric condition is an air temperature of 30 ° C. and the relative humidity is 50%. The exchange amount is a basic condition. In addition, the water spray is considered to have a relative humidity of about 80 to 90% after spraying in consideration of complete evaporation. Therefore, in this embodiment, the upper limit is set to 80%.

上記条件下において蒸気復水装置を通過する冷却空気の状態を湿り空気線図上に表したものを図6に示す。状態(1)の大気の初期状態(相対湿度50%)から入口側の状態(2)の相対湿度80%までの範囲において水噴霧を行うと、復水管ユニット通過直前の冷却用空気の温度ta1は24.5℃、比エンタルピh1は64.2kJ/kg(DA)となる。ここから復水管ユニットを通過して20℃分の熱交換が行われ、出口側の状態(3)における復水管ユニット通過直後の冷却用空気の温度ta2は44.5℃、比エンタルピh2は85.0kJ/kg(DA)となる。
この条件における前述の熱量バランス式及び伝熱計算式は以下のようになる。
Qs=20.8×G0
Qs=29.4×K・A0
FIG. 6 shows a state of the cooling air passing through the steam condensing device on the wet air diagram under the above conditions. When water spraying is performed in the range from the initial state (relative humidity 50%) of the atmosphere in the state (1) to the relative humidity 80% in the state (2) on the inlet side, the temperature ta1 of the cooling air immediately before passing through the condenser unit Is 24.5 ° C. and the specific enthalpy h1 is 64.2 kJ / kg (DA). Heat exchange for 20 ° C. is performed from here through the condensate pipe unit, the temperature ta2 of the cooling air immediately after passing through the condensate pipe unit in the outlet side state (3) is 44.5 ° C., and the specific enthalpy h2 is 85. 0.0 kJ / kg (DA).
The above-described heat balance equation and heat transfer calculation formula under this condition are as follows.
Qs = 20.8 × G0
Qs = 29.4 × K · A0

一方、本発明の実施の形態に係る空冷式蒸気復水装置において、上述の従来型と同一性能すなわち熱交換量が同じものを考える。本実施の形態では、上下段の復水管ユニット21にて熱交換量を半分ずつ受け持つとすると、上段側及び下段側復水管ユニットの熱交換量は、Qu=Qd=Qs/2=10.4×G0となる。   On the other hand, in the air-cooled steam condensing apparatus according to the embodiment of the present invention, the same performance as that of the above-described conventional type, that is, the same heat exchange amount is considered. In the present embodiment, assuming that the upper and lower condensate pipe units 21 are responsible for half the heat exchange amount, the heat exchange amounts of the upper and lower condensate pipe units are Qu = Qd = Qs / 2 = 10.4. XG0.

上記条件に基づき本実施の形態に係る空冷式蒸気復水装置の冷却空気の状態を湿り空気線図上に表したものを図7に示す。状態(1)として蒸気復水装置に取り込まれた外気はそのまま下段側復水管ユニットに導入され熱交換して40℃まで温度上昇すると共に相対湿度が28.7%まで低下した状態(2)となる。ここで相対湿度の上限である80%まで水噴霧を行うことができる。水噴霧によって温度27.4℃まで温度低下した状態(3)の冷却用空気は、上段側復水管ユニットを通過する間に熱交換して状態(4)の温度37.2℃まで昇温する。   FIG. 7 shows a state of the cooling air of the air-cooled steam condensing device according to the present embodiment on the wet air diagram based on the above conditions. The outside air taken into the steam condensing unit as the state (1) is directly introduced into the lower condenser unit and heat-exchanged to increase the temperature to 40 ° C. and the relative humidity to 28.7%. Become. Here, water spraying can be performed up to 80% which is the upper limit of the relative humidity. The cooling air in the state (3) whose temperature has been lowered to 27.4 ° C. by water spraying is heated up to 37.2 ° C. in the state (4) through heat exchange while passing through the upper condenser tube unit. .

本実施の形態に係る空冷式蒸気復水装置の熱交換量Qsは次式で表される。
Qs=Qd+Qu=K・Δtmd・Ad+K・Δtmu・Au
ここで、
Qd=下段側復水管ユニットの熱交換量
Qu=上段側復水管ユニットの熱交換量
Δtmd:下段側復水管ユニットの対数平均温度差
Δtmu:上段側復水管ユニットの対数平均温度差
Ad:下段側復水管ユニットの伝熱面積
Au:上段側復水管ユニットの伝熱面積
The heat exchange amount Qs of the air-cooled steam condensing device according to the present embodiment is expressed by the following equation.
Qs = Qd + Qu = K · Δtmd · Ad + K · Δtmu · Au
here,
Qd = heat exchange amount of the lower condenser tube unit Qu = heat exchange amount of the upper condenser tube unit Δtmd: logarithmic mean temperature difference of the lower condenser unit Δtmu: logarithmic mean temperature difference of the upper condenser unit Ad: lower part Heat transfer area of the condenser tube unit Au: Heat transfer area of the upper condenser tube unit

対数平均温度差Δtmd及びΔtmuは次式で表される。
Δtmd={(tw−ta1d)−(tw−ta2d)}
/ln{(tw−ta1d)/(tw−ta2d)}
Δtmu={(tw−ta1u)−(tw−ta2u)}
/ln{(tw−ta1u)/(tw−ta2u)}
ここで、
ta1d:下段側復水管ユニット通過直前の冷却用空気の温度=30℃
ta2d:下段側復水管ユニット通過直後の冷却用空気の温度(水噴霧前)=40℃
ta1u:上段側復水管ユニット通過直前の冷却用空気の温度(水噴霧後)=27.4℃
ta2u:上段側復水管ユニット通過直後の冷却用空気の温度=37.2℃
因って、
Qs=K×29.7×Ad+K×32.5×Au=62.2×K・(Ad+Au)
Logarithmic average temperature differences Δtmd and Δtmu are expressed by the following equations.
Δtmd = {(tw−ta1d) − (tw−ta2d)}
/ Ln {(tw−ta1d) / (tw−ta2d)}
Δtmu = {(tw−ta1u) − (tw−ta2u)}
/ Ln {(tw-ta1u) / (tw-ta2u)}
here,
ta1d: Temperature of the cooling air immediately before passing through the lower side condenser tube unit = 30 ° C.
ta2d: temperature of the cooling air immediately after passing through the lower condenser tube unit (before water spraying) = 40 ° C.
ta1u: Temperature of cooling air immediately after passing through the upper condenser tube unit (after water spraying) = 27.4 ° C.
ta2u: Temperature of the cooling air immediately after passing through the upper condenser tube unit = 37.2 ° C
Therefore,
Qs = K × 29.7 × Ad + K × 32.5 × Au = 62.2 × K · (Ad + Au)

伝熱面積について従来型空冷式蒸気復水装置と本実施の形態に係る空冷式蒸気復水装置を比較すると、
(Ad+Au)/A0=29.4/62.2=0.47
となる。因って、本実施の形態に係る空冷式蒸気復水装置は、従来型空冷式蒸気復水装置の47%の伝熱面積で同じ熱交換性能を発揮することができる。
When comparing the conventional air-cooled steam condensing device and the air-cooled steam condensing device according to the present embodiment with respect to the heat transfer area,
(Ad + Au) /A0=29.4/62.2=0.47
It becomes. Therefore, the air-cooled steam condensing device according to the present embodiment can exhibit the same heat exchange performance with a heat transfer area of 47% of the conventional air-cooled steam condensing device.

また、現在、最も汎用的に使用されている水噴霧装置が設置されていない空冷式蒸気復水装置(復水管ユニットの総伝熱面積はA00である。)と比較すると、冷却用空気は復水管ユニットを通じて30℃から50℃まで昇温することになるので、熱交換量は伝熱計算式にてQs=23.6×K・A00となる。本実施の形態との伝熱面積の比較では(Ad+Au)/A00=23.6/62.2=0.38となり、38%の伝熱面積で同一性能を達成できることになる。   In addition, compared with an air-cooled steam condensing device (the total heat transfer area of the condensing pipe unit is A00) that does not have the most widely used water spraying device at present, the cooling air is recovered. Since the temperature is raised from 30 ° C. to 50 ° C. through the water pipe unit, the heat exchange amount is Qs = 23.6 × K · A00 in the heat transfer calculation formula. In comparison of the heat transfer area with this embodiment, (Ad + Au) /A00=23.6/62.2=0.38, and the same performance can be achieved with a heat transfer area of 38%.

上記結果が示すように、復水管での熱交換によって昇温し且つ相対湿度が低下した冷却用空気に対して水噴霧を行うことにより、水噴霧による冷却用空気の温度の下げ幅を従来型に比べて大きく確保することができる。その結果、対数平均温度差が増加し、蒸気復水装置の伝熱面積を低減することができる。   As shown in the above results, by performing water spraying on the cooling air that has been heated by heat exchange in the condensate pipe and the relative humidity has been reduced, the range of reduction in the temperature of the cooling air by water spraying can be reduced. It can be secured larger than As a result, the logarithmic average temperature difference increases, and the heat transfer area of the steam condensing device can be reduced.

[第2の実施の形態に係る空冷式蒸気復水装置]
本発明の第2の実施の形態に係る空冷式蒸気復水装置13は、主管14aを含む仮想鉛直面に関して対称に復水管ユニット21が配置されているのではなく、仮想鉛直面の一方のサイドのみに復水管ユニット21が配置されている点が、第1の実施の形態に係る空冷式蒸気復水装置11と異なっている(図5参照)。
[Air-cooled steam condensing device according to the second embodiment]
In the air-cooled steam condensing device 13 according to the second embodiment of the present invention, the condensate pipe unit 21 is not arranged symmetrically with respect to the virtual vertical plane including the main pipe 14a, but one side of the virtual vertical plane. Only the point where the condensate pipe unit 21 is arranged is different from the air-cooled steam condensing device 11 according to the first embodiment (see FIG. 5).

以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、冷却用空気の流れ方向を下方から上方としたが、左右方向や斜め方向としても良い。
また、復水管ユニットを冷却用空気の流れ方向に2段配置したが、3段以上配置しても良いし、復水管ユニットを構成する復水管も2段に限定されるものではなく何段でも良い。さらにまた、蒸気復水装置の入口に水噴霧装置を設置して、さらなる伝熱面積の低減を図ることも可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the above-described embodiments, and is considered within the scope of the matters described in the claims. Other embodiments and modifications are also included. For example, in the above-described embodiment, the flow direction of the cooling air is set from the lower side to the upper side, but may be a left-right direction or an oblique direction.
Further, although the condensate pipe unit is arranged in two stages in the cooling air flow direction, three or more stages may be arranged, and the number of condensate pipes constituting the condensate pipe unit is not limited to two stages, and may be any number of stages. good. Furthermore, it is possible to further reduce the heat transfer area by installing a water spray device at the inlet of the steam condensing device.

11、13:空冷式蒸気復水装置、14:蒸気分配管、14a:主管、14b:分岐管、15:復水集合管、21:復水管ユニット、23:復水管、23a:チューブ、23b:フィン、24:水噴霧ノズル、25:送風機、F:冷却用空気 11, 13: Air-cooled steam condensing device, 14: Steam distribution pipe, 14a: Main pipe, 14b: Branch pipe, 15: Condensate collecting pipe, 21: Condensate pipe unit, 23: Condensate pipe, 23a: Tube, 23b: Fin, 24: Water spray nozzle, 25: Blower, F: Air for cooling

Claims (1)

設備機器から排出される排気蒸気が流れる複数の復水管が束ねられた復水管ユニットに向けて冷却用空気を吹き付けて前記復水管を空冷することにより、該復水管内の排気蒸気を復水する空冷式蒸気復水装置において、
前記復水管ユニットが冷却用空気の流れ方向に間隔をあけて複数段配置され、冷却用空気の流れ方向に隣接する前記復水管ユニット間に、前記冷却用空気に水を噴霧する水噴霧ノズルが設けられていることを特徴とする空冷式蒸気復水装置。
The exhaust steam in the condensate pipe is condensed by blowing cooling air toward the condensate pipe unit in which a plurality of condensate pipes through which exhaust steam discharged from the facility equipment is bundled is bundled. In air-cooled steam condensing equipment,
A water spray nozzle that sprays water onto the cooling air between the condensate pipe units that are arranged in a plurality of stages at intervals in the flow direction of the cooling air and that is adjacent to the flow direction of the cooling air. An air-cooled steam condensing device, which is provided.
JP2014115985A 2014-06-04 2014-06-04 Air-cooled steam condensing device Active JP6309351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115985A JP6309351B2 (en) 2014-06-04 2014-06-04 Air-cooled steam condensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115985A JP6309351B2 (en) 2014-06-04 2014-06-04 Air-cooled steam condensing device

Publications (2)

Publication Number Publication Date
JP2015230117A true JP2015230117A (en) 2015-12-21
JP6309351B2 JP6309351B2 (en) 2018-04-11

Family

ID=54886986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115985A Active JP6309351B2 (en) 2014-06-04 2014-06-04 Air-cooled steam condensing device

Country Status (1)

Country Link
JP (1) JP6309351B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044578A (en) * 2014-08-21 2016-04-04 株式会社Ihi Waste heat generating device and cooling device
KR101925804B1 (en) 2017-07-06 2018-12-06 주식회사 제이디앤티 Air cooled condenser
CN110375561A (en) * 2019-07-02 2019-10-25 赵耀华 White air cooling system is removed in a kind of flue gas or steam exhaust dehydration
CN112648028A (en) * 2020-11-26 2021-04-13 中国大唐集团科学技术研究院有限公司西北电力试验研究院 Direct air cooling combined type spraying backpressure-reducing device
CN113154894A (en) * 2021-05-11 2021-07-23 西安热工研究院有限公司 Slightly-inclined condenser tube bundle arrangement method capable of reducing thermal resistance
CN115288809A (en) * 2022-07-11 2022-11-04 华能济南黄台发电有限公司 Steam turbine water spray atomization temperature adjusting device of thermal power plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981971U (en) * 1982-11-24 1984-06-02 石川島播磨重工業株式会社 Air-cooled steam condenser
JPH11142067A (en) * 1997-11-07 1999-05-28 Nkk Corp Air-cooled steam condensing apparatus and method for operating it
US6378605B1 (en) * 1999-12-02 2002-04-30 Midwest Research Institute Heat exchanger with transpired, highly porous fins
JP2003194482A (en) * 2001-12-25 2003-07-09 Jfe Engineering Kk Air-cooled steam condenser
JP2010169285A (en) * 2009-01-20 2010-08-05 Nippon Steel Engineering Co Ltd Air cooling-type steam condensing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981971U (en) * 1982-11-24 1984-06-02 石川島播磨重工業株式会社 Air-cooled steam condenser
JPH11142067A (en) * 1997-11-07 1999-05-28 Nkk Corp Air-cooled steam condensing apparatus and method for operating it
US6378605B1 (en) * 1999-12-02 2002-04-30 Midwest Research Institute Heat exchanger with transpired, highly porous fins
JP2003194482A (en) * 2001-12-25 2003-07-09 Jfe Engineering Kk Air-cooled steam condenser
JP2010169285A (en) * 2009-01-20 2010-08-05 Nippon Steel Engineering Co Ltd Air cooling-type steam condensing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016044578A (en) * 2014-08-21 2016-04-04 株式会社Ihi Waste heat generating device and cooling device
KR101925804B1 (en) 2017-07-06 2018-12-06 주식회사 제이디앤티 Air cooled condenser
CN110375561A (en) * 2019-07-02 2019-10-25 赵耀华 White air cooling system is removed in a kind of flue gas or steam exhaust dehydration
CN112648028A (en) * 2020-11-26 2021-04-13 中国大唐集团科学技术研究院有限公司西北电力试验研究院 Direct air cooling combined type spraying backpressure-reducing device
CN113154894A (en) * 2021-05-11 2021-07-23 西安热工研究院有限公司 Slightly-inclined condenser tube bundle arrangement method capable of reducing thermal resistance
CN115288809A (en) * 2022-07-11 2022-11-04 华能济南黄台发电有限公司 Steam turbine water spray atomization temperature adjusting device of thermal power plant

Also Published As

Publication number Publication date
JP6309351B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6309351B2 (en) Air-cooled steam condensing device
US10315128B2 (en) Dephlegmator
US11662146B2 (en) Modular air cooled condenser apparatus and method
US9057288B2 (en) Process utilizing high performance air-cooled combined cycle power plant with dual working fluid bottoming cycle and integrated capacity control
RU2515324C2 (en) Condenser of steam with air cooling and natural circulation, and also method
JP5354726B2 (en) Air-cooled steam condensing device
US9316394B2 (en) Heat recovery system
Baweja et al. A review on performance analysis of air-cooled condenser under various atmospheric conditions
US6233941B1 (en) Condensation system
JP2001193417A (en) Directly contacting type condenser for axial-flow exhaust turbine
US20120096864A1 (en) Air cooled condenser fogging control system
JP2002122387A (en) Air-cooling type heat exchanger
JP2003194482A (en) Air-cooled steam condenser
JP7096021B2 (en) Evaporation concentrator
JP2015101965A (en) Water recovery device and gas turbine plant
JP2015101966A (en) Gas facility, gas turbine plant, and combined cycle plant
JP6038588B2 (en) Humidifier, gas turbine equipped with humidifier, and method for remodeling the same
JPH11159973A (en) Cooling tower and method for preventing white smoke from it
JP7002420B2 (en) Direct contact condenser and power plant
JP2017067377A (en) Condenser
CN213873286U (en) Evaporative cooler with fog dispersal function
KR100922120B1 (en) Moisture separation heater
JP4851879B2 (en) Gas cooling chamber built-in boiler
JP6589719B2 (en) Air-cooled condenser
JP6192408B2 (en) Water recovery equipment for gas turbine using high humidity air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180314

R150 Certificate of patent or registration of utility model

Ref document number: 6309351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250