JP2015229836A - Object detection system for construction machinery - Google Patents

Object detection system for construction machinery Download PDF

Info

Publication number
JP2015229836A
JP2015229836A JP2014115225A JP2014115225A JP2015229836A JP 2015229836 A JP2015229836 A JP 2015229836A JP 2014115225 A JP2014115225 A JP 2014115225A JP 2014115225 A JP2014115225 A JP 2014115225A JP 2015229836 A JP2015229836 A JP 2015229836A
Authority
JP
Japan
Prior art keywords
object detection
distance measuring
measuring device
scanning distance
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014115225A
Other languages
Japanese (ja)
Other versions
JP6479344B2 (en
JP2015229836A5 (en
Inventor
芳永 清田
Yoshinaga Kiyota
芳永 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2014115225A priority Critical patent/JP6479344B2/en
Publication of JP2015229836A publication Critical patent/JP2015229836A/en
Publication of JP2015229836A5 publication Critical patent/JP2015229836A5/ja
Application granted granted Critical
Publication of JP6479344B2 publication Critical patent/JP6479344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an object detection system for construction machinery, which enables a smaller number of scanning distance measuring devices to perform measurement in a wider measurement range.SOLUTION: An object detection system 100, which detects an object existing around construction machinery comprising a revolving super structure 3 mounted on a lower structure 1 via a revolving mechanism 2, includes an object detection part 31 that detects the object on the basis of output of a scanning distance measuring device 40 attached to the revolving super structure 3. Light emitted by the scanning distance measuring device 40 passes a clearance between the lower structure 1 and the revolving super structure 3.

Description

本発明は、旋回機構を備える建設機械の周囲に存在する物体を検知する建設機械用物体検知システムに関する。   The present invention relates to an object detection system for a construction machine that detects an object existing around a construction machine including a turning mechanism.

建設機械の警戒区域内に入った物体をレーザスキャナで検知した場合にカメラを回動させてその物体を撮影し、そのカメラが撮影した画像をモニタに表示するシステムが知られている(特許文献1参照。)。   A system is known in which when a laser scanner detects an object that has entered a warning area of a construction machine, the camera is rotated to photograph the object, and an image captured by the camera is displayed on a monitor (Patent Document). 1).

このシステムは、建設機械の後方の死角領域を監視するために建設機械の後部においてレーザスキャナを車体側壁から突出するように設置している。   In this system, in order to monitor a blind spot area behind the construction machine, a laser scanner is installed at the rear part of the construction machine so as to protrude from the side wall of the vehicle body.

特開平8−160127号公報JP-A-8-160127

しかしながら、上述のシステムは、車体側壁に取り付けられるレーザスキャナの計測範囲が車体側壁自体によって制限されるため、後方の死角領域全体をカバーするためにはレーザスキャナを複数台設置する必要があり効率的でない。   However, since the measurement range of the laser scanner attached to the vehicle body side wall is limited by the vehicle body side wall itself in the above-described system, it is necessary to install a plurality of laser scanners in order to cover the entire rear blind spot area. Not.

上述に鑑み、より広い計測範囲をより少ない数の走査型距離計測装置でカバーできるようにする建設機械用物体検知システムの提供が望まれる。   In view of the above, it is desired to provide an object detection system for construction machinery that can cover a wider measurement range with a smaller number of scanning distance measuring devices.

本発明の一実施形態に係る建設機械用物体検知システムは、旋回機構を介して下部走行体に搭載される上部旋回体を備える建設機械の周囲に存在する物体を検知する建設機械用物体検知システムであって、前記上部旋回体に取り付けられる走査型距離計測装置の出力に基づいて物体を検出する物体検出部を有し、前記走査型距離計測装置が発する光は、前記上部旋回体と前記下部走行体との間の隙間を通る。   An object detection system for a construction machine according to an embodiment of the present invention is an object detection system for a construction machine that detects an object existing around a construction machine including an upper swing body mounted on a lower traveling body via a swing mechanism. And an object detection unit that detects an object based on an output of a scanning distance measuring device attached to the upper revolving body, and the light emitted by the scanning distance measuring device emits light from the upper revolving body and the lower revolving body. It passes through the gap between the running body.

上述の手段により、より広い計測範囲をより少ない数の走査型距離計測装置でカバーできるようにする建設機械用物体検知システムが提供される。   By the above-described means, an object detection system for construction machinery is provided that allows a wider measurement range to be covered by a smaller number of scanning distance measurement devices.

本発明の実施例に係る物体検知システムが搭載されるショベルの側面図である。1 is a side view of an excavator on which an object detection system according to an embodiment of the present invention is mounted. 物体検知システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of an object detection system. 走査型距離計測装置の構成例を示す概略図である。It is the schematic which shows the structural example of a scanning type distance measuring device. 旋回機構が走査型距離計測装置の計測範囲に与える影響を示すショベル上面図である。It is an excavator top view which shows the influence which a turning mechanism has on the measurement range of a scanning distance measuring device. 下部走行体上の障害物が走査型距離計測装置の計測範囲に与える影響を示すショベル上面図である。It is a shovel top view which shows the influence which the obstruction on a lower traveling body has on the measurement range of a scanning type distance measuring device. レーザ光保護構造を備えたショベルの構成例を示す側面図である。It is a side view which shows the structural example of the shovel provided with the laser beam protection structure. 別のレーザ光保護構造を備えたショベルの構成例を示す側面図である。It is a side view which shows the structural example of the shovel provided with another laser beam protection structure. レーザ光保護構造が走査型距離計測装置の計測範囲に与える影響を示すショベル上面図である。It is a top view of the shovel showing the influence of the laser beam protection structure on the measurement range of the scanning distance measuring device.

図1は、本発明の実施例に係る物体検知システム100が搭載されるショベルの側面図である。ショベルの下部走行体1には、旋回機構2を介して上部旋回体3が搭載される。上部旋回体3には、ブーム4が取り付けられる。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはバケット6が取り付けられる。ブーム4、アーム5、及びバケット6は、掘削アタッチメントを構成し、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。また、上部旋回体3には、キャビン10が設けられ、且つエンジン等の動力源が搭載される。また、上部旋回体3の後端部分を構成するカウンターウエイトの下面には走査型距離計測装置40が取り付けられる。また、上部旋回体3の後端上部、左端上部、及び右端上部の3カ所には撮像装置41が取り付けられる。また、キャビン10内にはコントローラ30及び出力装置50が設置される。   FIG. 1 is a side view of an excavator on which an object detection system 100 according to an embodiment of the present invention is mounted. An upper swing body 3 is mounted on the lower traveling body 1 of the excavator via a swing mechanism 2. A boom 4 is attached to the upper swing body 3. An arm 5 is attached to the tip of the boom 4, and a bucket 6 is attached to the tip of the arm 5. The boom 4, the arm 5, and the bucket 6 constitute a digging attachment, and are hydraulically driven by the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9, respectively. Further, the upper swing body 3 is provided with a cabin 10 and is mounted with a power source such as an engine. A scanning distance measuring device 40 is attached to the lower surface of the counterweight that constitutes the rear end portion of the upper swing body 3. In addition, imaging devices 41 are attached to three locations, the rear end upper portion, the left end upper portion, and the right end upper portion of the upper swing body 3. A controller 30 and an output device 50 are installed in the cabin 10.

図2は、物体検知システム100の構成例を示すブロック図である。物体検知システム100は、主に、コントローラ30、走査型距離計測装置40、撮像装置41、及び出力装置50を含む。   FIG. 2 is a block diagram illustrating a configuration example of the object detection system 100. The object detection system 100 mainly includes a controller 30, a scanning distance measuring device 40, an imaging device 41, and an output device 50.

コントローラ30は、ショベルの駆動制御を行う制御装置である。本実施例では、コントローラ30は、CPU及び内部メモリを含む演算処理装置で構成され、内部メモリに格納された駆動制御用のプログラムをCPUに実行させて各種機能を実現する。   The controller 30 is a control device that performs drive control of the shovel. In the present embodiment, the controller 30 is configured by an arithmetic processing unit including a CPU and an internal memory, and realizes various functions by causing the CPU to execute a drive control program stored in the internal memory.

また、コントローラ30は、各種装置の出力に基づいてショベルの周辺に物体が存在するかを判定し、その判定結果に応じて各種装置を制御する。なお、本実施例では、物体として特に「人」を対象とした場合を説明する。具体的には、コントローラ30は、走査型距離計測装置40及び撮像装置41のそれぞれの出力を受け、物体検出部31、人候補抽出部32、及び人識別部33のそれぞれに対応するソフトウェアプログラムを実行する。そして、その実行結果に応じてショベルの駆動制御を実行し、或いは、出力装置50から各種情報を出力させる。   Further, the controller 30 determines whether an object exists around the shovel based on the outputs of the various devices, and controls the various devices according to the determination result. In the present embodiment, a case where “person” is particularly targeted as an object will be described. Specifically, the controller 30 receives the outputs of the scanning distance measuring device 40 and the imaging device 41, and executes software programs corresponding to the object detection unit 31, the human candidate extraction unit 32, and the human identification unit 33, respectively. Run. Then, drive control of the shovel is executed according to the execution result, or various information is output from the output device 50.

走査型距離計測装置40は、ショベルの周囲に存在する物体までの距離を計測する装置であり、計測データをコントローラ30に対して出力する。本実施例では、走査型距離計測装置40は、半導体レーザを用いた二次元走査型レーザレンジファインダである。具体的には、走査型距離計測装置40は、半導体レーザの光軸が下部走行体1と上部旋回体3との間の隙間を通るように、カウンターウエイトの下面に取り付けられる。より具体的には、走査型距離計測装置40は、カウンターウエイトの下面の後端部分において、車幅方向中央部分に取り付けられる。   The scanning distance measuring device 40 is a device that measures the distance to an object existing around the excavator, and outputs measurement data to the controller 30. In this embodiment, the scanning distance measuring device 40 is a two-dimensional scanning laser range finder using a semiconductor laser. Specifically, the scanning distance measuring device 40 is attached to the lower surface of the counterweight so that the optical axis of the semiconductor laser passes through the gap between the lower traveling body 1 and the upper swing body 3. More specifically, the scanning distance measuring device 40 is attached to the center portion in the vehicle width direction at the rear end portion of the lower surface of the counterweight.

図3は、走査型距離計測装置40の構成例を示す概略図であり、図3(A)はその側面図を示し、図3(B)は、図3(A)の一点鎖線で示す平面をIII−III方向から見た図を示す。   FIG. 3 is a schematic diagram illustrating a configuration example of the scanning distance measuring device 40, FIG. 3 (A) is a side view thereof, and FIG. 3 (B) is a plane indicated by an alternate long and short dash line in FIG. 3 (A). The figure which looked at from the III-III direction is shown.

図3に示すように、走査型距離計測装置40は、主に、本体部40a、光窓部40b、及び蓋部40cを含む。本体部40aは、半導体レーザ発生器、ミラー回転用モータ、及び受光器(何れも図示せず。)等を収容する部分である。また、光窓部40bは、ミラー回転用モータによってZ軸回りに回転駆動される回転ミラー(図示せず。)を収容する部分であり、その筐体がレーザ光を透過できる材料で形成される。そして、走査型距離計測装置40は、半導体レーザ発生器が発生させたレーザ光40Xを回転ミラーで反射させてXY平面に平行に且つZ軸に平行な計測軸回りに放射状にレーザ光40Xを照射する。また、本実施例では、走査型距離計測装置40の計測範囲は、XY平面における計測軸を中心とする所定半径(例えば30メートル)の円領域に相当する。なお、計測範囲は、中心角が360度未満の扇形領域であってもよい。   As shown in FIG. 3, the scanning distance measuring device 40 mainly includes a main body portion 40a, an optical window portion 40b, and a lid portion 40c. The main body 40a is a part that houses a semiconductor laser generator, a mirror rotation motor, a light receiver (none of which are shown), and the like. The optical window portion 40b is a portion that houses a rotating mirror (not shown) that is driven to rotate around the Z axis by a mirror rotating motor, and the casing is made of a material that can transmit laser light. . Then, the scanning distance measuring device 40 reflects the laser beam 40X generated by the semiconductor laser generator with a rotating mirror and irradiates the laser beam 40X radially around the measurement axis parallel to the XY plane and parallel to the Z axis. To do. In the present embodiment, the measurement range of the scanning distance measuring device 40 corresponds to a circular area having a predetermined radius (for example, 30 meters) around the measurement axis on the XY plane. Note that the measurement range may be a sector region having a central angle of less than 360 degrees.

この構成により、走査型距離計測装置40は、回転ミラーの回転角度からレーザ光40Xの照射方向を導き出し、且つ、レーザ光の飛行時間から反射体までの距離(以下、「反射体距離」とする。)を導き出す。   With this configuration, the scanning distance measuring device 40 derives the irradiation direction of the laser light 40X from the rotation angle of the rotating mirror, and also the distance from the flight time of the laser light to the reflector (hereinafter referred to as “reflector distance”). .) Is derived.

撮像装置41は、ショベルの周囲の画像を撮像する装置であり、撮像した画像をコントローラ30に対して出力する。本実施例では、撮像装置41は、CCD等の撮像素子を採用するワイドカメラであり、上部旋回体3の上部において光軸が斜め下方を向くように取り付けられる。   The imaging device 41 is a device that captures an image around the excavator, and outputs the captured image to the controller 30. In the present embodiment, the image pickup apparatus 41 is a wide camera that employs an image pickup device such as a CCD, and is mounted on the upper part of the upper swing body 3 such that the optical axis faces obliquely downward.

出力装置50は、各種情報を出力する装置であり、例えば、各種画像情報を表示する車載ディスプレイ、各種音声情報を音声出力する車載スピーカ等を含む。本実施例では、出力装置50は、コントローラ30からの制御指令に応じて各種情報を出力する。   The output device 50 is a device that outputs various types of information, and includes, for example, an in-vehicle display that displays various types of image information, an in-vehicle speaker that outputs various types of audio information. In the present embodiment, the output device 50 outputs various types of information in response to control commands from the controller 30.

物体検出部31は、ショベルの周囲に存在する物体を検出する機能要素である。本実施例では、物体検出部31は、走査型距離計測装置40が出力する照射方向及び反射体距離に関する情報に基づいて反射体の実在位置を導き出し、その実在位置がショベルから所定距離範囲内であればその反射体を検出対象の物体(後続の処理の対象となる物体)として検出する。   The object detection unit 31 is a functional element that detects an object existing around the excavator. In the present embodiment, the object detection unit 31 derives the actual position of the reflector based on the information on the irradiation direction and the reflector distance output by the scanning distance measuring device 40, and the actual position is within a predetermined distance range from the shovel. If there is, the reflector is detected as an object to be detected (object to be subjected to subsequent processing).

また、物体検出部31は、走査型距離計測装置40の計測範囲内に存在する所定の物体の位置を予め記憶しておき、その所定の物体を検出対象から除外する。なお、走査型距離計測装置40の計測範囲内に存在する所定の物体は、ショベルが動いた場合であっても走査型距離計測装置40との相対位置が変動しない物体であり、例えば、ショベルの旋回機構2を含む。具体的には、物体検出部31は、走査型距離計測装置40が旋回機構2に関する反射体の位置を導き出した場合であっても、その反射体を検出対象の物体として検出しない。また、物体検出部31は、走査型距離計測装置40から見た旋回機構2の存在方向において旋回機構2より走査型距離計測装置40に近い反射体の位置を導き出した場合であっても、その反射体を検出対象の物体として検出しない。旋回機構2と走査型距離計測装置40との間に検出すべき物体が存在することはないためである。そのため、下部走行体1と上部旋回体3との間に設置される配管等は、望ましくは、旋回機構2と走査型距離計測装置40との間の範囲である監視不要範囲を通るように配置される。なお、走査型距離計測装置40は、所定の物体の存在方向にはレーザ光40Xを照射しないようにしてもよい。監視の必要がないためである。   In addition, the object detection unit 31 stores in advance the position of a predetermined object existing within the measurement range of the scanning distance measuring device 40, and excludes the predetermined object from the detection target. Note that the predetermined object existing within the measurement range of the scanning distance measuring device 40 is an object whose relative position with respect to the scanning distance measuring device 40 does not change even when the excavator moves. A turning mechanism 2 is included. Specifically, even when the scanning distance measuring device 40 derives the position of the reflector with respect to the turning mechanism 2, the object detection unit 31 does not detect the reflector as an object to be detected. Further, even when the object detection unit 31 derives the position of the reflector closer to the scanning distance measuring device 40 than the turning mechanism 2 in the direction in which the turning mechanism 2 is viewed from the scanning distance measuring device 40, The reflector is not detected as an object to be detected. This is because there is no object to be detected between the turning mechanism 2 and the scanning distance measuring device 40. For this reason, the piping or the like installed between the lower traveling body 1 and the upper swing body 3 is desirably disposed so as to pass through a monitoring unnecessary range that is a range between the swing mechanism 2 and the scanning distance measuring device 40. Is done. The scanning distance measuring device 40 may not irradiate the laser beam 40X in the direction in which the predetermined object exists. This is because there is no need for monitoring.

図4は、所定の物体として検出対象から除外される旋回機構2が走査型距離計測装置40の計測範囲40Rに与える影響を示すショベル上面図である。なお、点線円で示す範囲は、走査型距離計測装置40の計測範囲40Rを表す。また、斜線ハッチングで示す範囲40Raは、旋回機構2の存在により走査型距離計測装置40のレーザ光40Xが到達できない死角範囲を表す。また、ドットハッチングで示す範囲40Rbは、旋回機構2の存在により監視の必要のない監視不要範囲を表す。なお、図4〜図7は、明瞭化のため、掘削アタッチメントの図示を省略する。   FIG. 4 is a top view of the shovel showing the influence of the turning mechanism 2 excluded from the detection target as a predetermined object on the measurement range 40R of the scanning distance measuring device 40. The range indicated by the dotted circle represents the measurement range 40R of the scanning distance measuring device 40. A range 40Ra indicated by hatching indicates a blind spot range in which the laser beam 40X of the scanning distance measuring device 40 cannot reach due to the presence of the turning mechanism 2. A range 40Rb indicated by dot hatching represents a monitoring unnecessary range that does not need to be monitored due to the presence of the turning mechanism 2. 4 to 7, the illustration of the excavation attachment is omitted for the sake of clarity.

また、図4に示すように、走査型距離計測装置40は、旋回軸からできるだけ離れた位置に取り付けられる。旋回軸から離れるほど死角範囲40Raが小さくなるためである。   Further, as shown in FIG. 4, the scanning distance measuring device 40 is attached at a position as far as possible from the pivot axis. This is because the blind spot range 40Ra decreases as the distance from the pivot axis increases.

また、物体検出部31は、検出した物体の位置に基づいて、その物体が走査型距離計測装置40による計測を妨げる障害物であるかを判定してもよい。例えば、物体検出部31は、検出した物体の実在位置が、上部旋回体3の側壁に対応する位置である場合、その物体が走査型距離計測装置40による計測を妨げる土砂等の障害物であると判定する。この場合、物体検出部31は、出力装置50に制御指令を出力し、上部旋回体3の側壁に土砂等の障害物が存在する旨を運転者に通知してもよい。   Further, the object detection unit 31 may determine whether the object is an obstacle that hinders measurement by the scanning distance measuring device 40 based on the detected position of the object. For example, when the actual position of the detected object is a position corresponding to the side wall of the upper swing body 3, the object detection unit 31 is an obstacle such as earth and sand that hinders measurement by the scanning distance measuring device 40. Is determined. In this case, the object detection unit 31 may output a control command to the output device 50 to notify the driver that there is an obstacle such as earth and sand on the side wall of the upper swing body 3.

人候補抽出部32は、物体検出部31が検出した物体から人候補を抽出する機能要素である。本実施例では、人候補抽出部32は、物体検出部31が検出した物体のうち、所定の範囲の寸法を有する物体を人候補として抽出する。例えば、物体検出部31は、連続的に照射するレーザ光40Xで計測した各計測点に、距離に応じた重み値と人の寸法(身体の厚み、幅等)の仮説に基づく人中心位置の分布を与え、その分布を重み値付きで重ね合わせて計測範囲内の確率分布を求める。次いで、求めた確率分布の極大点を検出し、この極大点における確率分布の値が所定の閾値より大きいときにその極大点を人候補の位置として特定する。   The human candidate extraction unit 32 is a functional element that extracts human candidates from the objects detected by the object detection unit 31. In the present embodiment, the person candidate extraction unit 32 extracts an object having a predetermined range of dimensions among the objects detected by the object detection unit 31 as a human candidate. For example, the object detection unit 31 determines the position of the human center based on the hypothesis of the weight value according to the distance and the human dimensions (body thickness, width, etc.) at each measurement point measured by the continuously irradiated laser beam 40X. Given distributions, superimpose the distributions with weights to find the probability distribution within the measurement range. Next, the maximum point of the obtained probability distribution is detected, and when the value of the probability distribution at the maximum point is larger than a predetermined threshold, the maximum point is specified as the position of the human candidate.

人識別部33は、人候補抽出部32が抽出した人候補が人であるかを識別する機能要素である。本実施例では、人識別部33は、撮像装置41が撮像した撮像画像における、人候補抽出部32が抽出した人候補に対応する画像部分(以下、「人候補画像部分」とする。)に画像認識処理を施してその人候補が人であるかを識別する。具体的には、人識別部33は、走査型距離計測装置40の取り付け位置及び撮像装置41の取り付け位置から導き出される三次元空間における座標と撮像画像平面における座標との対応関係を利用して撮像画像における人候補画像部分を特定する。人候補画像部分は、所定の大きさを有する画像部分である。そして、人識別部33は、HOG(Histograms of Oriented Gradients)特徴量に代表される画像特徴量記述と機械学習により生成した識別器とを用いた画像認識処理等の公知の画像認識処理により人候補が人であるかを識別する。人識別部33が人候補を人として識別する割合は、人候補抽出部32による人候補の抽出が高精度であるほど高くなる。なお、人識別部33は、夜間、悪天候時等の撮像に適さない環境下で所望の品質の撮像画像を得られない場合等においては、人候補の全てが人であると識別し、人候補抽出部32が抽出した人候補の全てを人であると識別してもよい。人の検知漏れを防止するためである。   The person identifying unit 33 is a functional element that identifies whether the person candidate extracted by the person candidate extracting unit 32 is a person. In the present embodiment, the person identification unit 33 corresponds to an image portion (hereinafter referred to as a “person candidate image portion”) corresponding to the person candidate extracted by the person candidate extraction unit 32 in the captured image captured by the imaging device 41. An image recognition process is performed to identify whether the candidate person is a person. Specifically, the person identification unit 33 captures an image using a correspondence relationship between coordinates in a three-dimensional space and coordinates in a captured image plane derived from the mounting position of the scanning distance measuring device 40 and the mounting position of the imaging device 41. The person candidate image portion in the image is specified. The human candidate image portion is an image portion having a predetermined size. Then, the human identification unit 33 uses a known image recognition process such as an image recognition process using an image feature description represented by a HOG (Histograms of Oriented Gradients) feature and a classifier generated by machine learning, as a human candidate. Identify if is a person. The rate at which the person identification unit 33 identifies a person candidate as a person increases as the person candidate extraction unit 32 extracts the person candidate with higher accuracy. Note that the person identifying unit 33 identifies that all of the human candidates are humans in a case where a captured image with a desired quality cannot be obtained in an environment that is not suitable for imaging such as at night or in bad weather. All of the human candidates extracted by the extraction unit 32 may be identified as people. This is to prevent human detection omissions.

次に、図5を参照し、下部走行体1と上部旋回体3との間に土砂等の障害物M1が存在する場合について説明する。なお、図5は、下部走行体1上の土砂等の障害物M1が走査型距離計測装置40の計測範囲40Rに与える影響を示すショベル上面図であり、図4に対応する。また、点線円で示す範囲は、走査型距離計測装置40の計測範囲40Rを表す。また、斜線ハッチングで示す範囲40Raは、旋回機構2の存在により走査型距離計測装置40のレーザ光40Xが到達できない死角範囲を表す。また、斜線ハッチングで示す範囲40Rcは、障害物M1の存在によりレーザ光40Xが到達できない死角範囲を表す。   Next, a case where an obstacle M1 such as earth and sand exists between the lower traveling body 1 and the upper swing body 3 will be described with reference to FIG. FIG. 5 is a top view of the shovel showing the influence of the obstacle M1 such as earth and sand on the lower traveling body 1 on the measurement range 40R of the scanning distance measuring device 40, and corresponds to FIG. The range indicated by the dotted circle represents the measurement range 40R of the scanning distance measuring device 40. A range 40Ra indicated by hatching indicates a blind spot range in which the laser beam 40X of the scanning distance measuring device 40 cannot reach due to the presence of the turning mechanism 2. A range 40Rc indicated by hatching indicates a blind spot range where the laser beam 40X cannot reach due to the presence of the obstacle M1.

このように、下部走行体1と上部旋回体3との間の障害物M1は、走査型距離計測装置40の計測範囲40R内に死角範囲40Rcを生じさせ、物体検知システム100の物体検知能力を低下させてしまう。   As described above, the obstacle M1 between the lower traveling body 1 and the upper swing body 3 causes the blind spot range 40Rc within the measurement range 40R of the scanning distance measuring device 40, and the object detection capability of the object detection system 100 is increased. It will decrease.

そこで、本発明の実施例に係る物体検知システム100が搭載されるショベルは、望ましくは、下部走行体1と上部旋回体3との間の隙間を通る走査型距離計測装置40のレーザ光40Xが障害物M1に遮られないようにする構造(以下、「レーザ光保護構造」とする。)を備えるようにする。   Therefore, the excavator on which the object detection system 100 according to the embodiment of the present invention is mounted desirably has the laser beam 40X of the scanning distance measuring device 40 passing through the gap between the lower traveling body 1 and the upper swing body 3. A structure that prevents the obstacle M1 from being obstructed (hereinafter referred to as “laser light protection structure”) is provided.

図6は、レーザ光保護構造60を備えたショベルの構成例を示す側面図であり、図6(A)はレーザ光保護構造60が組み立てられた後の状態を示し、図6(B)はレーザ光保護構造60が組み立てられる前の状態を示す。   FIG. 6 is a side view showing a configuration example of an excavator provided with the laser beam protection structure 60. FIG. 6A shows a state after the laser beam protection structure 60 is assembled, and FIG. The state before the laser beam protection structure 60 is assembled is shown.

レーザ光保護構造60は、主に、導光板61及び保護板62を含む。導光板61は、走査型距離計測装置40が発生させるレーザ光を透過させる板状部材であり、例えば、アクリル樹脂等の光透過性材料で形成される。また、保護板62は、走査型距離計測装置40及び導光板61を保護する板状部材であり、例えば、金属等の高剛性材料で形成される。また、導光板61及び保護板62のそれぞれは、例えば、上部旋回体3の下面全体を覆うことができる大きさを有する。但し、導光板61及び保護板62のそれぞれは、必ずしも、旋回機構2の存在によりレーザ光40Xが到達できない死角範囲に対応する部分、監視不要範囲に対応する部分等を覆う必要はない。また、上部旋回体3の下面、導光板61、及び保護板62は、接着剤、ボルト等を用いた任意の方法で互いに結合される。また、本実施例では、走査型距離計測装置40は、光窓部40bのレーザ光40Xを発する部分の位置が導光板61の位置に対応するように配置される。なお、本体部40aはカウンターウエイトの下面に埋め込まれ、蓋部40cは保護板62に埋め込まれる。そのため、レーザ光40Xは、導光板61の内部を通ってショベルの周囲に到達する。   The laser beam protection structure 60 mainly includes a light guide plate 61 and a protection plate 62. The light guide plate 61 is a plate-like member that transmits the laser light generated by the scanning distance measuring device 40, and is formed of a light transmissive material such as acrylic resin. The protection plate 62 is a plate-like member that protects the scanning distance measuring device 40 and the light guide plate 61, and is formed of a highly rigid material such as metal, for example. In addition, each of the light guide plate 61 and the protection plate 62 has a size capable of covering the entire lower surface of the upper swing body 3, for example. However, each of the light guide plate 61 and the protection plate 62 is not necessarily required to cover a portion corresponding to the blind spot range where the laser beam 40X cannot reach due to the presence of the turning mechanism 2, a portion corresponding to the monitoring unnecessary range, and the like. Further, the lower surface of the upper swing body 3, the light guide plate 61, and the protection plate 62 are coupled to each other by an arbitrary method using an adhesive, a bolt, or the like. In the present embodiment, the scanning distance measuring device 40 is arranged so that the position of the portion that emits the laser light 40 </ b> X of the optical window portion 40 b corresponds to the position of the light guide plate 61. The main body 40a is embedded in the lower surface of the counterweight, and the lid 40c is embedded in the protective plate 62. Therefore, the laser light 40X passes through the inside of the light guide plate 61 and reaches the periphery of the shovel.

この構成により、レーザ光保護構造60は、土砂等の障害物M1(図5参照。)によってレーザ光40Xが下部走行体1のところで遮られてしまうのを防止できる。そのため、土砂等の障害物M1が走査型距離計測装置40の計測範囲40Rにおける死角範囲を広げてしまうのを防止できる。また、レーザ光保護構造60は、走査型距離計測装置40が外部の物体との接触により破壊されてしまうのを防止できる。   With this configuration, the laser beam protection structure 60 can prevent the laser beam 40X from being blocked at the lower traveling body 1 by an obstacle M1 such as earth and sand (see FIG. 5). Therefore, it is possible to prevent the obstacle M1 such as earth and sand from expanding the blind spot range in the measurement range 40R of the scanning distance measuring device 40. Further, the laser beam protection structure 60 can prevent the scanning distance measuring device 40 from being destroyed by contact with an external object.

次に、図7及び図8を参照して別のレーザ光保護構造70について説明する。なお、図7は、別のレーザ光保護構造70を備えたショベルの構成例を示す側面図であり、図7(A)はレーザ光保護構造70が組み立てられた後の状態を示し、図7(B)はレーザ光保護構造70が組み立てられる前の状態を示す。また、図8は、レーザ光保護構造70が走査型距離計測装置40の計測範囲40Rに与える影響を示すショベル上面図であり、図4及び図5に対応する。   Next, another laser light protection structure 70 will be described with reference to FIGS. FIG. 7 is a side view showing a configuration example of an excavator provided with another laser light protection structure 70, and FIG. 7A shows a state after the laser light protection structure 70 is assembled. (B) shows a state before the laser beam protection structure 70 is assembled. FIG. 8 is a top view of the shovel showing the influence of the laser beam protection structure 70 on the measurement range 40R of the scanning distance measuring device 40, and corresponds to FIGS.

レーザ光保護構造70は、主に、窓材71及び保護板72を含む。窓材71は、走査型距離計測装置40が発生させるレーザ光を透過させる枠部材であり、例えば、アクリル樹脂等の光透過性材料で形成される。また、窓材71は、図8のドットハッチングで示すように、上部旋回体3の下面の縁に沿う枠を形成する。なお、窓材71は、1部材で構成されていてもよく、複数の部材で構成されていてもよい。   The laser beam protection structure 70 mainly includes a window material 71 and a protection plate 72. The window member 71 is a frame member that transmits laser light generated by the scanning distance measuring device 40, and is formed of a light-transmitting material such as acrylic resin. Moreover, the window material 71 forms a frame along the edge of the lower surface of the upper swing body 3 as shown by dot hatching in FIG. 8. Note that the window member 71 may be composed of one member or may be composed of a plurality of members.

保護板72は、走査型距離計測装置40及び窓材71を保護する板状部材であり、例えば、金属等の高剛性材料で形成される。また、保護板72は、ポスト部72a〜72f(図7ではポスト部72d〜72gは不可視。)を介して上部旋回体3の下面に結合され、上部旋回体3の下面と保護板72との間に窓材71を挟むように固定される。また、保護板72は、上部旋回体3の下面全体を覆うことができる大きさを有する。但し、窓材71及び保護板72のそれぞれは、必ずしも、旋回機構2の存在によりレーザ光40Xが到達できない死角範囲に対応する部分、監視不要範囲に対応する部分等を囲む或いは覆う必要はない。   The protection plate 72 is a plate-like member that protects the scanning distance measuring device 40 and the window material 71, and is formed of, for example, a highly rigid material such as metal. Further, the protection plate 72 is coupled to the lower surface of the upper swing body 3 via post portions 72 a to 72 f (the post portions 72 d to 72 g are not visible in FIG. 7). It fixes so that the window material 71 may be pinched | interposed between them. The protective plate 72 has a size that can cover the entire lower surface of the upper swing body 3. However, each of the window member 71 and the protection plate 72 does not necessarily need to surround or cover a portion corresponding to a blind spot range where the laser beam 40X cannot reach due to the presence of the turning mechanism 2, a portion corresponding to a monitoring unnecessary range, and the like.

また、本実施例では、走査型距離計測装置40は、光窓部40bのレーザ光40Xを発する部分の位置が、上部旋回体3の下面と保護板72との間で窓材71に囲まれる導光空間の位置に対応するように配置される。なお、本体部40aはカウンターウエイトの下面に埋め込まれ、蓋部40cは保護板72に埋め込まれる。そのため、レーザ光40Xは、導光空間を通ってショベルの周囲に到達する。   Further, in the present embodiment, in the scanning distance measuring device 40, the position of the portion that emits the laser light 40 </ b> X of the optical window portion 40 b is surrounded by the window material 71 between the lower surface of the upper swing body 3 and the protection plate 72. It arrange | positions so that it may correspond to the position of the light guide space. The main body 40a is embedded in the lower surface of the counterweight, and the lid 40c is embedded in the protective plate 72. Therefore, the laser light 40X reaches the periphery of the shovel through the light guide space.

この構成により、レーザ光保護構造70は、土砂等の障害物M1(図5参照。)によってレーザ光40Xが下部走行体1のところで遮られてしまうのを防止できる。そのため、土砂等の障害物M1が走査型距離計測装置40の計測範囲40Rにおける死角範囲を広げてしまうのを防止できる。また、レーザ光保護構造70は、走査型距離計測装置40が外部の物体との接触により破壊されてしまうのを防止できる。   With this configuration, the laser beam protection structure 70 can prevent the laser beam 40X from being blocked at the lower traveling body 1 by an obstacle M1 (see FIG. 5) such as earth and sand. Therefore, it is possible to prevent the obstacle M1 such as earth and sand from expanding the blind spot range in the measurement range 40R of the scanning distance measuring device 40. Further, the laser beam protection structure 70 can prevent the scanning distance measuring device 40 from being destroyed by contact with an external object.

なお、レーザ光保護構造70を備えるショベルに搭載される物体検知システム100では、図8に示すように、物体検出部31は、走査型距離計測装置40の計測範囲内にあるポスト部72a〜72gの位置を予め記憶しておき、ポスト部72a〜72gを検出対象から除外する。なお、図8の斜線ハッチングで示す範囲40Raは、旋回機構2の存在によりレーザ光40Xが到達できない死角範囲を表す。また、斜線ハッチングで示す5つの範囲40Rdは、ポスト部72b〜72fの存在によりレーザ光40Xが到達できない死角範囲を表す。なお、斜線ハッチングで示す範囲40Reは、作業者Pの存在によりレーザ光40Xが到達できなくなった領域を表す。   In the object detection system 100 mounted on an excavator provided with the laser beam protection structure 70, the object detection unit 31 includes post units 72a to 72g that are within the measurement range of the scanning distance measurement device 40, as shown in FIG. Are previously stored, and the post portions 72a to 72g are excluded from detection targets. A range 40Ra indicated by hatching in FIG. 8 represents a blind spot range where the laser beam 40X cannot reach due to the presence of the turning mechanism 2. Further, the five ranges 40Rd indicated by hatching indicate blind spots that the laser beam 40X cannot reach due to the presence of the post portions 72b to 72f. Note that a range 40Re indicated by hatching indicates a region where the laser beam 40X cannot reach due to the presence of the worker P.

具体的には、物体検出部31は、走査型距離計測装置40がポスト部72b〜72fのそれぞれに関する反射体の位置を導き出した場合であっても、その反射体を検出対象の物体として検出しない。また、物体検出部31は、走査型距離計測装置40から見たポスト部72b〜72fのそれぞれの存在方向においてポスト部72b〜72fのそれぞれより走査型距離計測装置40に近い反射体の位置を導き出した場合であっても、その反射体を検出対象の物体として検出しない。ポスト部72b〜72fのそれぞれと走査型距離計測装置40との間に検出すべき物体が存在することはないためである。なお、ポスト部72a、72gは、死角範囲40Raに含まれるため、その反射体が検出対象の物体として検出されることはない。   Specifically, the object detection unit 31 does not detect the reflector as the detection target object even when the scanning distance measuring device 40 derives the position of the reflector with respect to each of the post units 72b to 72f. . Further, the object detection unit 31 derives the position of the reflector closer to the scanning distance measuring device 40 from each of the post portions 72b to 72f in the respective existence directions of the post portions 72b to 72f as viewed from the scanning distance measuring device 40. Even if it is a case, the reflector is not detected as an object to be detected. This is because there is no object to be detected between each of the post portions 72b to 72f and the scanning distance measuring device 40. Since the post portions 72a and 72g are included in the blind spot range 40Ra, the reflector is not detected as an object to be detected.

また、ポスト部はできるだけ少ない数であることが望ましく、走査型距離計測装置40からできるだけ離れた位置に設置されるのが望ましい。数が少ないほど、また、走査型距離計測装置40から離れるほど死角範囲40Rdが小さくなるためである。   Further, it is desirable that the number of post portions is as small as possible, and it is desirable to install the post portions at a position as far as possible from the scanning distance measuring device 40. This is because the blind spot range 40Rd decreases as the number decreases and the distance from the scanning distance measuring device 40 increases.

また、物体検出部31は、走査型距離計測装置40が作業者Pに関する反射体の位置を導き出した場合には、その反射体を検出対象の物体として検出する。作業者Pの存在位置は、予め記憶された位置に含まれていないためである。   Further, when the scanning distance measuring device 40 derives the position of the reflector with respect to the worker P, the object detection unit 31 detects the reflector as an object to be detected. This is because the presence position of the worker P is not included in the position stored in advance.

また、物体検出部31は、図8に示すように、右側の下部走行体1の真上で且つ窓材71に隣接した位置で何らかの物体M2を検出した場合には、物体M2が走査型距離計測装置40による計測を妨げる障害物であると判定する。物体M2の存在位置から、物体M2が検出すべき物体ではなく窓材71に付着した土砂等であると判断できるためである。この場合、物体検出部31は、出力装置50に制御指令を出力し、土砂等の障害物が窓材71に付着しているおそれがある旨を車載ディスプレイに表示し、或いは、車載スピーカから音声出力してその旨をショベルの運転者に通知してもよい。   Further, as shown in FIG. 8, when the object detection unit 31 detects any object M2 at a position directly above the right lower traveling body 1 and adjacent to the window member 71, the object M2 is detected as a scanning distance. It is determined that the obstacle is obstructing measurement by the measurement device 40. This is because it can be determined from the position where the object M2 is present that the object M2 is not an object to be detected but earth or sand attached to the window member 71. In this case, the object detection unit 31 outputs a control command to the output device 50, displays on the in-vehicle display that there is a possibility that an obstacle such as earth and sand is attached to the window material 71, or makes a sound from the in-vehicle speaker. It may be output to notify the driver of the excavator to that effect.

以上の構成により、物体検知システム100は、走査型距離計測装置40のレーザ光が下部走行体1と上部旋回体3との間の隙間を通るように下部走行体1と上部旋回体3との間の隙間に走査型距離計測装置40を備える。そのため、ショベルの後方及び側方の死角領域全体を単一の走査型距離計測装置40で監視できる。   With the above configuration, the object detection system 100 is configured such that the laser beam of the scanning distance measuring device 40 passes between the lower traveling body 1 and the upper swinging body 3 so as to pass through the gap between the lower traveling body 1 and the upper swinging body 3. A scanning distance measuring device 40 is provided in the gap therebetween. Therefore, the entire blind spot area on the rear and side of the excavator can be monitored by the single scanning distance measuring device 40.

また、物体検知システム100は、走査型距離計測装置40のレーザ光が上部旋回体3の下面に取り付けられる導光板61を通り、或いは、上部旋回体3の下面に取り付けられる窓材71と保護板72によって形成される導光空間を通るように走査型距離計測装置40を備える。そのため、下部走行体1の上にかき上げられて堆積した土砂等によってレーザ光が遮られるのを防止できる。   Further, the object detection system 100 passes through the light guide plate 61 attached to the lower surface of the upper swing body 3 by the laser light of the scanning distance measuring device 40 or the window material 71 and the protection plate attached to the lower surface of the upper swing body 3. The scanning distance measuring device 40 is provided so as to pass through the light guide space formed by 72. Therefore, it is possible to prevent the laser light from being blocked by the earth and sand which are scraped up and accumulated on the lower traveling body 1.

また、物体検出部31は、走査型距離計測装置40の計測範囲内に存在する旋回機構2、ポスト部72a〜72g等の所定の物体を検出対象から除外する。そのため、無駄な検出処理を省略でき、検出処理の負荷低減、検出処理の高速化等を実現できる。   In addition, the object detection unit 31 excludes predetermined objects such as the turning mechanism 2 and the post units 72a to 72g existing within the measurement range of the scanning distance measuring device 40 from detection targets. Therefore, useless detection processing can be omitted, and the detection processing load can be reduced and the detection processing speeded up.

また、人候補抽出部32は、物体検出部31が検出した物体のうち、所定の範囲の寸法を有する物体を人候補として抽出する。そのため、人候補として適切でない物体を人候補から効率的に除外できる。   Moreover, the person candidate extraction unit 32 extracts an object having a predetermined range of dimensions among the objects detected by the object detection unit 31 as a human candidate. Therefore, an object that is not suitable as a human candidate can be efficiently excluded from the human candidate.

また、人識別部33は、撮像装置41が撮像した画像における人候補に対応する画像部分に画像認識処理を施してその人候補が人であるかを識別する。そのため、物体検出部31が検出した物体の数よりも少ない数の人候補に対応する画像部分のみに画像認識処理を施すことができ、識別処理に関する負荷の低減、識別処理の高速化等を実現できる。また、限られた数の人候補画像部分に詳細な画像認識処理を施すことで、人候補が人であるか否かを高精度に識別できる。   In addition, the person identifying unit 33 performs image recognition processing on an image portion corresponding to a person candidate in an image captured by the imaging device 41 to identify whether the person candidate is a person. Therefore, it is possible to perform image recognition processing only on image portions corresponding to a smaller number of human candidates than the number of objects detected by the object detection unit 31, thereby realizing a reduction in load related to identification processing, speeding up of identification processing, and the like. it can. Further, by performing detailed image recognition processing on a limited number of person candidate image portions, it is possible to identify with high accuracy whether or not the person candidate is a person.

また、物体検出部31は、検出した物体の位置に基づいて、その物体が走査型距離計測装置40による計測を妨げる障害物であるかを判定する。そのため、土砂等の障害物が導光板61又は窓材71に付着した旨をショベルの運転者に速やかに通知できる。   The object detection unit 31 determines whether the object is an obstacle that hinders measurement by the scanning distance measuring device 40 based on the detected position of the object. Therefore, it is possible to promptly notify the driver of the excavator that an obstacle such as earth and sand has adhered to the light guide plate 61 or the window material 71.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。   Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

例えば、上述の実施例では、単一の走査型距離計測装置40を用いてショベルの死角領域をカバーするが、2つ以上の走査型距離計測装置40を用いてショベルの死角領域をカバーしてもよい。   For example, in the above-mentioned embodiment, the blind spot area of the excavator is covered using a single scanning distance measuring device 40, but the blind spot area of the shovel is covered using two or more scanning distance measuring apparatuses 40. Also good.

また、上述の実施例では、3つのカメラを用いてショベルの死角領域を撮像するが、1つ、2つ、又は4つ以上のカメラを用いてショベルの死角領域を撮像してもよい。   In the above-described embodiment, the excavator blind spot area is imaged using three cameras, but the excavator blind spot area may be imaged using one, two, or four or more cameras.

1・・・下部走行体 1A、1B・・・油圧モータ 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 30・・・コントローラ 31・・・物体検出部 32・・・人候補抽出部 33・・・人識別部 40・・・走査型距離計測装置 40a・・・本体部 40b・・・光窓部 40c・・・蓋部 40R・・・計測範囲 40Ra、40Rc、40Rd・・・死角範囲 40Rb・・・監視不要範囲 40X・・・レーザ光 41・・・撮像装置 50・・・出力装置 60・・・レーザ光保護構造 61・・・導光板 62・・・保護板 70・・・レーザ光保護構造 71・・・窓材 72・・・保護板 72a〜72g・・・ポスト部 100・・・物体検知システム M1・・・障害物 M2・・・物体 P・・・作業者   DESCRIPTION OF SYMBOLS 1 ... Lower traveling body 1A, 1B ... Hydraulic motor 2 ... Turning mechanism 3 ... Upper turning body 4 ... Boom 5 ... Arm 6 ... Bucket 7 ... Boom cylinder 8 ... arm cylinder 9 ... bucket cylinder 10 ... cabin 30 ... controller 31 ... object detection part 32 ... person candidate extraction part 33 ... person identification part 40 ... scanning distance Measuring device 40a ... Main body 40b ... Optical window 40c ... Lid 40R ... Measurement range 40Ra, 40Rc, 40Rd ... Blind spot range 40Rb ... Monitoring unnecessary range 40X ... Laser light DESCRIPTION OF SYMBOLS 41 ... Imaging device 50 ... Output device 60 ... Laser beam protection structure 61 ... Light guide plate 62 ... Protection plate 70 ... Laser beam protection structure 71 ... Window material 72 ... protection 72a to 72g ... post portion 100 ... object detection system M1 ... obstacle M2 ... object P ... worker

Claims (7)

旋回機構を介して下部走行体に搭載される上部旋回体を備える建設機械の周囲に存在する物体を検知する建設機械用物体検知システムであって、
前記上部旋回体に取り付けられる走査型距離計測装置の出力に基づいて物体を検出する物体検出部を有し、
前記走査型距離計測装置が発する光は、前記上部旋回体と前記下部走行体との間の隙間を通る、
建設機械用物体検知システム。
An object detection system for a construction machine that detects an object existing around a construction machine including an upper turning body mounted on a lower traveling body via a turning mechanism,
An object detection unit for detecting an object based on an output of a scanning distance measuring device attached to the upper swing body;
The light emitted by the scanning distance measuring device passes through a gap between the upper swing body and the lower traveling body,
Object detection system for construction machinery.
前記走査型距離計測装置が発する光は、前記上部旋回体の下面に取り付けられる導光板を通り、或いは、前記上部旋回体の下面に取り付けられる保護板と窓材によって形成される導光空間を通る、
請求項1に記載の建設機械用物体検知システム。
The light emitted by the scanning distance measuring device passes through a light guide plate attached to the lower surface of the upper swing body, or passes through a light guide space formed by a protective plate and a window member attached to the lower surface of the upper swing body. ,
The construction machine object detection system according to claim 1.
前記物体検出部は、前記走査型距離計測装置の計測範囲内に存在する所定の物体を検出対象から除外する、
請求項1又は2に記載の建設機械用物体検知システム。
The object detection unit excludes a predetermined object existing within a measurement range of the scanning distance measuring device from a detection target;
The construction machine object detection system according to claim 1 or 2.
前記物体検出部が検出した物体から人候補を抽出する人候補抽出部と、
前記人候補抽出部が抽出した人候補が人であるかを識別する人識別部と、をさらに有する、
請求項1乃至3の何れか一項に記載の建設機械用物体検知システム。
A human candidate extraction unit that extracts human candidates from the objects detected by the object detection unit;
A human identification unit that identifies whether the human candidate extracted by the human candidate extraction unit is a person,
The construction machine object detection system according to any one of claims 1 to 3.
前記人候補抽出部は、前記物体検出部が検出した物体のうち、所定の範囲の寸法を有する物体を人候補として抽出する、
請求項4に記載の建設機械用物体検知システム。
The human candidate extraction unit extracts an object having a predetermined range of dimensions as a human candidate among the objects detected by the object detection unit.
The construction machine object detection system according to claim 4.
前記人識別部は、撮像装置が撮像した画像における、前記人候補抽出部が抽出した人候補に対応する画像部分に画像認識処理を施して該人候補が人であるかを識別する、
請求項4又は5に記載の建設機械用物体検知システム。
The person identifying unit performs image recognition processing on an image portion corresponding to the human candidate extracted by the human candidate extracting unit in an image captured by the imaging device to identify whether the human candidate is a person,
The construction machine object detection system according to claim 4 or 5.
前記物体検出部は、検出した物体の位置に基づいて、該物体が前記走査型距離計測装置による計測を妨げる障害物であるかを判定する、
請求項1乃至6の何れか一項に記載の建設機械用物体検知システム。
The object detection unit determines whether the object is an obstacle that hinders measurement by the scanning distance measuring device based on the position of the detected object.
The construction machine object detection system according to any one of claims 1 to 6.
JP2014115225A 2014-06-03 2014-06-03 Object detection system for construction machinery Active JP6479344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115225A JP6479344B2 (en) 2014-06-03 2014-06-03 Object detection system for construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115225A JP6479344B2 (en) 2014-06-03 2014-06-03 Object detection system for construction machinery

Publications (3)

Publication Number Publication Date
JP2015229836A true JP2015229836A (en) 2015-12-21
JP2015229836A5 JP2015229836A5 (en) 2017-06-29
JP6479344B2 JP6479344B2 (en) 2019-03-06

Family

ID=54886781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115225A Active JP6479344B2 (en) 2014-06-03 2014-06-03 Object detection system for construction machinery

Country Status (1)

Country Link
JP (1) JP6479344B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021374A (en) * 2016-08-03 2018-02-08 コベルコ建機株式会社 Obstacle detection device
JP6360583B1 (en) * 2017-03-29 2018-07-18 大成建設株式会社 Machine learning device for construction machine, construction machine and machine learning method for construction machine
CN108608980A (en) * 2018-06-05 2018-10-02 徐工集团工程机械有限公司 Engineering truck and its control method
JP2018168679A (en) * 2017-03-30 2018-11-01 住友建機株式会社 Shovel, and shovel management server
WO2019093103A1 (en) * 2017-11-10 2019-05-16 住友建機株式会社 Excavator
JP2020056169A (en) * 2018-09-28 2020-04-09 東起業株式会社 Construction machine equipped with approach notification function on ground and underground and capable of acquiring construction data for new buried objects
WO2020218308A1 (en) 2019-04-26 2020-10-29 日立建機株式会社 Work machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142485U (en) * 1984-08-24 1986-03-19 日立建機株式会社 Obstacle detection device for construction machinery
JPH09158258A (en) * 1995-12-05 1997-06-17 Shin Caterpillar Mitsubishi Ltd Monitoring device of construction equipment
JPH1072851A (en) * 1996-08-30 1998-03-17 Shin Caterpillar Mitsubishi Ltd Invading moving body detection device
JP2002371595A (en) * 2001-06-15 2002-12-26 Komatsu Ltd Construction equipment
JP2004353281A (en) * 2003-05-29 2004-12-16 Hitachi Constr Mach Co Ltd Visual field expansion device for construction machine
JP2006144349A (en) * 2004-11-18 2006-06-08 Hitachi Constr Mach Co Ltd Safety device for construction equipment
JP2007184780A (en) * 2006-01-06 2007-07-19 Ihi Aerospace Co Ltd Remote monitoring device
JP2008163719A (en) * 2007-01-05 2008-07-17 Hitachi Constr Mach Co Ltd Circumference monitor of working machine
JP2013253402A (en) * 2012-06-06 2013-12-19 Hitachi Constr Mach Co Ltd Surrounding monitoring device for work machine
JP2014097867A (en) * 2012-11-14 2014-05-29 Sumitomo Heavy Industries Material Handling Systems Co Ltd Gib crane

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142485U (en) * 1984-08-24 1986-03-19 日立建機株式会社 Obstacle detection device for construction machinery
JPH09158258A (en) * 1995-12-05 1997-06-17 Shin Caterpillar Mitsubishi Ltd Monitoring device of construction equipment
JPH1072851A (en) * 1996-08-30 1998-03-17 Shin Caterpillar Mitsubishi Ltd Invading moving body detection device
JP2002371595A (en) * 2001-06-15 2002-12-26 Komatsu Ltd Construction equipment
JP2004353281A (en) * 2003-05-29 2004-12-16 Hitachi Constr Mach Co Ltd Visual field expansion device for construction machine
JP2006144349A (en) * 2004-11-18 2006-06-08 Hitachi Constr Mach Co Ltd Safety device for construction equipment
JP2007184780A (en) * 2006-01-06 2007-07-19 Ihi Aerospace Co Ltd Remote monitoring device
JP2008163719A (en) * 2007-01-05 2008-07-17 Hitachi Constr Mach Co Ltd Circumference monitor of working machine
JP2013253402A (en) * 2012-06-06 2013-12-19 Hitachi Constr Mach Co Ltd Surrounding monitoring device for work machine
JP2014097867A (en) * 2012-11-14 2014-05-29 Sumitomo Heavy Industries Material Handling Systems Co Ltd Gib crane

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021374A (en) * 2016-08-03 2018-02-08 コベルコ建機株式会社 Obstacle detection device
JP6360583B1 (en) * 2017-03-29 2018-07-18 大成建設株式会社 Machine learning device for construction machine, construction machine and machine learning method for construction machine
JP2018168588A (en) * 2017-03-29 2018-11-01 大成建設株式会社 Machine learning device for construction machinery, construction machinery, and machine learning method for construction machinery
JP2018168679A (en) * 2017-03-30 2018-11-01 住友建機株式会社 Shovel, and shovel management server
JPWO2019093103A1 (en) * 2017-11-10 2020-11-12 住友建機株式会社 Excavator
WO2019093103A1 (en) * 2017-11-10 2019-05-16 住友建機株式会社 Excavator
KR20200081376A (en) * 2017-11-10 2020-07-07 스미토모 겐키 가부시키가이샤 Shovel
US11634882B2 (en) 2017-11-10 2023-04-25 Sumitomo Construction Machinery Co., Ltd. Excavator
KR102532283B1 (en) 2017-11-10 2023-05-11 스미토모 겐키 가부시키가이샤 shovel
CN108608980A (en) * 2018-06-05 2018-10-02 徐工集团工程机械有限公司 Engineering truck and its control method
JP2020056169A (en) * 2018-09-28 2020-04-09 東起業株式会社 Construction machine equipped with approach notification function on ground and underground and capable of acquiring construction data for new buried objects
WO2020218308A1 (en) 2019-04-26 2020-10-29 日立建機株式会社 Work machine
KR20210114483A (en) 2019-04-26 2021-09-23 히다치 겡키 가부시키 가이샤 working machine

Also Published As

Publication number Publication date
JP6479344B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6479344B2 (en) Object detection system for construction machinery
KR102065975B1 (en) Safety Management System Using a Lidar for Heavy Machine
US10558897B2 (en) Context-based digital signal processing
US8420998B2 (en) Target detecting and determining method for detecting and determining target based on height information and storage medium for storing program executing target detecting and determining method
US10099609B2 (en) Machine safety dome
JP7119442B2 (en) Monitoring system, monitoring method and monitoring program
JP6587898B2 (en) Construction equipment interference prevention device
JP6838040B2 (en) Obstacle detector for construction machinery
CN104917957A (en) Apparatus for controlling imaging of camera and system provided with the apparatus
JP2017203352A (en) Shovel
JP2023181369A (en) Obstacle detection device of construction machine
US10565690B2 (en) External interference removal device
JP2018159640A (en) System and method for monitoring tunnel face surface
JP2017090380A (en) Laser radar device, window member for laser radar device, and control program for laser radar device
JP6595284B2 (en) Autonomous mobile robot
JP5631834B2 (en) Mobile object equipped with object detection device
JP2005092727A (en) Vehicle surroundings monitoring system
KR102332616B1 (en) Display device for construction equipment using LiDAR and AR
CN114368693A (en) Anti-collision method and device for boom, processor and crane
EP3916223A1 (en) Object detection in an interior of a turbine hub
JP7157763B2 (en) Line array detection and imaging system
KR102269098B1 (en) INTRUSION DETECTION DEVICE THAT DETECTS INTRUSIONS THROUGH MULTIPLE LiDAR SENSORS INSTALLED IN A SECURE AREA AND OPERATING METHOD THEREOF
WO2023220977A1 (en) Method and device for detecting data
KR102591601B1 (en) A method for operating a security device using sensor
KR102595365B1 (en) System and method for analyzing slope condition based on internet on things technique

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6479344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150