JP2015227803A - Secondary battery internal resistance measurement device and measurement method - Google Patents

Secondary battery internal resistance measurement device and measurement method Download PDF

Info

Publication number
JP2015227803A
JP2015227803A JP2014113156A JP2014113156A JP2015227803A JP 2015227803 A JP2015227803 A JP 2015227803A JP 2014113156 A JP2014113156 A JP 2014113156A JP 2014113156 A JP2014113156 A JP 2014113156A JP 2015227803 A JP2015227803 A JP 2015227803A
Authority
JP
Japan
Prior art keywords
secondary battery
internal resistance
secondary batteries
batteries
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014113156A
Other languages
Japanese (ja)
Other versions
JP6381298B2 (en
Inventor
隆 新保
Takashi Shinpo
隆 新保
昌利 内田
Masatoshi Uchida
昌利 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Kikusui Electronics Corp
Original Assignee
Toyota Motor Corp
Kikusui Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Kikusui Electronics Corp filed Critical Toyota Motor Corp
Priority to JP2014113156A priority Critical patent/JP6381298B2/en
Publication of JP2015227803A publication Critical patent/JP2015227803A/en
Application granted granted Critical
Publication of JP6381298B2 publication Critical patent/JP6381298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact and power saving secondary battery internal resistance measurement device and measurement method that measure internal resistance of a multi-cell unit type battery composed of a plurality of secondary batteries.SOLUTION: A contact c of switches 3-1a and 3-1b of a switcher 3-1 is connected to a contact b and a contact c of switches 3-2a and 3-2b of a switcher 3-2 is connected to a contact a, and thereby a secondary battery 4-1 is put into a discharge state, and a secondary battery 4-2 is put into a charge state. In this instance, the secondary battery 4-1 is configured to function as a DC power for charging the secondary battery 4-2, and a discharge current from the secondary battery 4-1 is utilized as a discharge current to the secondary battery 4-2. Further, the switches 3-1 and 3-2 are switched, and thereby, the secondary battery 4-2 is configured to function as a DC current for charging the secondary battery 4-1, and a discharge current from the secondary battery 4-2 is utilized as a charge current to the secondary battery 4-1.

Description

本発明は、複数の二次電池を組み合わせた多セルのユニット式電池の内部抵抗を測定する二次電池内部抵抗測定装置および測定方法に関する。   The present invention relates to a secondary battery internal resistance measuring device and a measuring method for measuring internal resistance of a multi-cell unit type battery in which a plurality of secondary batteries are combined.

ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)に搭載されるリチウム電池等の二次電池は、IEC62660−1規格が定める試験方法(性能要件)に従って二次電池の内部抵抗を測定する必要がある。図8に、IEC62660−1規格が定める二次電池の内部抵抗測定に関するテストオーダを示す。二次電池内部抵抗測定装置は、測定を行う二次電池に対して、一定の時間間隔で放電と充電を交互に繰り返しながら、充放電量を徐々に大きくしていくよう制御を行う。   Rechargeable batteries such as lithium batteries mounted on hybrid vehicles (HV), plug-in hybrid vehicles (PHV), and electric vehicles (EV) are the interior of the secondary battery according to the test method (performance requirements) defined by the IEC62660-1 standard. It is necessary to measure resistance. FIG. 8 shows a test order for measuring the internal resistance of the secondary battery defined by the IEC62660-1 standard. The secondary battery internal resistance measuring device controls the secondary battery to be measured to gradually increase the charge / discharge amount while alternately repeating discharge and charge at a constant time interval.

図9(a)に、従来技術の二次電池内部抵抗測定装置の構成を示し、図9(b)に、その概略図を示す。直流電源21の正極に定電流制御回路22の一方の端子が接続されており、直流電源21の負極と定電流制御回路22の他方の端子とが切替器23に接続され、切替器23を介して二次電池24に接続されている。切替器23は、二次電池24の正極と負極との接続を切り替える2つのスイッチ23a、23bを含む。また、二次電池24の電圧を測定可能なように電圧計25が設置されている。   FIG. 9A shows a configuration of a prior art secondary battery internal resistance measuring device, and FIG. 9B shows a schematic diagram thereof. One terminal of the constant current control circuit 22 is connected to the positive electrode of the DC power supply 21, and the negative electrode of the DC power supply 21 and the other terminal of the constant current control circuit 22 are connected to the switch 23, via the switch 23. Connected to the secondary battery 24. The switch 23 includes two switches 23 a and 23 b that switch the connection between the positive electrode and the negative electrode of the secondary battery 24. In addition, a voltmeter 25 is installed so that the voltage of the secondary battery 24 can be measured.

図9(a)、(b)は、二次電池が充電状態にあることを示しており、このとき、切替器23のスイッチ23a、23bの接点cは、それぞれ接点aに接続されている。二次電池24を放電するためには、切替器23のスイッチ23a、23bの接点cをそれぞれ接点bに接続させる。   9A and 9B show that the secondary battery is in a charged state. At this time, the contacts c of the switches 23a and 23b of the switch 23 are connected to the contact a. In order to discharge the secondary battery 24, the contacts c of the switches 23a and 23b of the switch 23 are connected to the contact b, respectively.

図10(a)に、従来技術の二次電池内部抵抗測定装置の放電状態を示し、図10(b)に、その概略図を示す。矢印は、電流の方向を示している。   FIG. 10A shows a discharge state of the prior art secondary battery internal resistance measuring device, and FIG. 10B shows a schematic diagram thereof. Arrows indicate the direction of current.

図9(b)と図10(b)との比較から分かるように、二次電池への充電電流と二次電池からの放電電流の向きが逆になるため、放電状態のときと充電状態のときとでは、定電流制御回路22から見た二次電池の方向(極性)が逆になる。図11に、二次電池から観た放電電流と、充電電流の方向を示す。   As can be seen from the comparison between FIG. 9B and FIG. 10B, the direction of the charging current to the secondary battery and the direction of the discharging current from the secondary battery are reversed. Sometimes, the direction (polarity) of the secondary battery viewed from the constant current control circuit 22 is reversed. FIG. 11 shows the discharge current viewed from the secondary battery and the direction of the charge current.

現在、PHVやEVの大出力化に伴い、大電力確保のために、一般に数十個・数百個の単セル二次電池を直列・並列に組み合わせた多セルのユニット式電池が利用されている。このような利用形態において、充電と放電がダイナミックに変移する条件下でも、当該電池の現在状態を適宜把握する技術の重要性が高まっており、かかるEV分野における多セルのユニット式電池の大電流での試験が求められている。   Currently, with the increase in output of PHV and EV, in order to secure a large amount of power, multi-cell unit type batteries in which tens or hundreds of single-cell secondary batteries are generally combined in series and in parallel are used. Yes. In such a usage mode, the importance of a technique for appropriately grasping the current state of the battery is increasing even under conditions in which charging and discharging change dynamically, and the large current of a multi-cell unit battery in the EV field is increasing. Testing at is required.

図12に、従来技術での多セルのユニット式電池の内部抵抗測定装置の構成を示す。従来技術の二次電池内部抵抗測定装置は、単セル二次電池の直列接続数に依存し、その数が増えれば増えるほど試験電圧が上昇する。例えば単セルの定格電圧が50ボルトの二次電池を4個直列接続した場合は以下の数式から、200ボルトの試験電圧が必要になる。
Vt=Vc×n
(Vt:試験電圧、Vc:単セルの定格電圧、n:二次電池直列接続数)
FIG. 12 shows a configuration of an internal resistance measuring device for a multi-cell unit type battery according to the prior art. The prior art secondary battery internal resistance measuring device depends on the number of single-cell secondary batteries connected in series, and the test voltage increases as the number increases. For example, when four secondary batteries having a single cell rated voltage of 50 volts are connected in series, a test voltage of 200 volts is required from the following formula.
Vt = Vc × n
(Vt: test voltage, Vc: rated voltage of single cell, n: number of secondary batteries connected in series)

このような大容量の多セルのユニット式電池の高電圧に対応するため、二次電池内部抵抗測定装置の直流電源および定電流制御回路からなる充放電電源装置も大型化する必要がある。   In order to cope with the high voltage of such a large-capacity multi-cell unit type battery, it is also necessary to increase the size of the charge / discharge power supply device including the DC power source and the constant current control circuit of the secondary battery internal resistance measuring device.

特開2003−121516号公報JP 2003-121516 A

しかしながら、その結果、従来技術では次のような課題が生じている。
(1)直流電源21および定電流制御回路22が大型化して、消費電力および装置全体の重量が増大する。
(2)直流電源21および定電流制御回路22が高価になる。
(3)直流電源21および定電流制御回路22の重量が増大することによって、その移動が困難になる。
However, as a result, the following problems occur in the conventional technique.
(1) The DC power supply 21 and the constant current control circuit 22 are increased in size, increasing the power consumption and the weight of the entire apparatus.
(2) The DC power supply 21 and the constant current control circuit 22 are expensive.
(3) Increase in the weight of the DC power supply 21 and the constant current control circuit 22 makes it difficult to move.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、複数の二次電池からなる多セルのユニット式電池の内部抵抗を測定する小型・省電力の二次電池内部抵抗測定装置および測定方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a small and power-saving secondary battery for measuring the internal resistance of a multi-cell unit battery composed of a plurality of secondary batteries. An internal resistance measuring device and a measuring method are provided.

上記の課題を解決するために、本発明は、二次電池内部抵抗測定装置であって、直流電源装置と、前記直流電源装置に直列接続された定電流制御回路と、それぞれ二次電池を接続可能な2以上の切替器であって、前記二次電池を前記直流電源装置および前記定電流制御回路に直列接続し、前記二次電池への接続方向を個別に切り替え可能な2以上の切替器と、前記各切替器に接続された二次電池の電圧をそれぞれ測定する2以上の電圧計と、を備え、前記2以上の切替器が、前記各切替器に接続された二次電池への接続方向を切り替えて前記複数の二次電池の充放電を行い、前記定電流制御回路の電流値および前記各電圧計の電圧値から前記各二次電池の内部抵抗を測定することを特徴する。   In order to solve the above-mentioned problems, the present invention is a secondary battery internal resistance measuring device, wherein a DC power supply device, a constant current control circuit connected in series to the DC power supply device, and a secondary battery are connected to each other. Two or more possible switches, wherein the secondary battery is connected in series to the DC power supply device and the constant current control circuit, and the connection direction to the secondary battery can be switched individually. And two or more voltmeters that respectively measure the voltages of the secondary batteries connected to the respective switches, and the two or more switches are connected to the secondary batteries connected to the respective switches. The connection direction is switched to charge / discharge the plurality of secondary batteries, and the internal resistance of each secondary battery is measured from the current value of the constant current control circuit and the voltage value of each voltmeter.

請求項2に記載の発明は、請求項1に記載の二次電池内部抵抗測定装置において、前記各切替器は、個別に制御可能な2つの一回路二接点スイッチからなることを特徴とする。   According to a second aspect of the present invention, in the secondary battery internal resistance measuring device according to the first aspect of the present invention, each of the switches includes two one-circuit two-contact switches that can be individually controlled.

請求項3に記載の発明は、請求項1又は2に記載の二次電池内部抵抗測定装置において、前記2以上の切替器は、前記各二次電池の内部抵抗を測定するとき、少なくとも1つの前記切替器に接続された二次電池の接続方向が、他の前記切替器に接続された二次電池の接続方向に対して逆になるよう切り替えを行うことを特徴とする。   According to a third aspect of the present invention, in the secondary battery internal resistance measuring device according to the first or second aspect, when the two or more switches measure the internal resistance of each of the secondary batteries, at least one Switching is performed such that the connection direction of the secondary battery connected to the switch is opposite to the connection direction of the secondary battery connected to the other switch.

請求項4に記載の発明は、請求項1乃至3のいずれかに記載の二次電池内部抵抗測定装置において、前記各切替器に接続された二次電池は、定格電圧が等しく、前記直流電源装置は、前記二次電池以下の定格電圧であることを特徴とする。   According to a fourth aspect of the present invention, in the secondary battery internal resistance measuring device according to any one of the first to third aspects, the secondary batteries connected to the respective switches have the same rated voltage, and the DC power supply The apparatus is characterized in that the rated voltage is equal to or lower than the secondary battery.

請求項5に記載の発明は、請求項1乃至4のいずれかに記載の二次電池内部抵抗測定装置において、前記複数の二次電池は、前記切替器を介して直列接続されることを特徴とする。   According to a fifth aspect of the present invention, in the secondary battery internal resistance measuring device according to any one of the first to fourth aspects, the plurality of secondary batteries are connected in series via the switch. And

請求項6に記載の発明は、複数の二次電池を充放電させたときの電流値と電圧値から前記二次電池の内部抵抗を測定する二次電池内部抵抗測定方法であって、前記複数の二次電池を直列接続し、少なくとも1つの前記二次電池の接続方向が他の前記二次電池の接続方向と逆になるよう接続するステップと、前記複数の二次電池に定電流を供給するステップと、前記定電流の電流値および前記複数の二次電池の電圧値を記録するステップと、前記複数の二次電池の電流方向を逆方向に切り替えるステップと、前記定電流を供給するステップ、前記記録するステップおよび前記電流方向を逆方向に切り替えるステップを繰り返し、記録された前記電流値および前記電圧値からから前記各二次電池の内部抵抗を測定するステップと、を有することを特徴とする。   The invention according to claim 6 is a secondary battery internal resistance measuring method for measuring an internal resistance of the secondary battery from a current value and a voltage value when a plurality of secondary batteries are charged / discharged. Connecting the secondary batteries in series so that the connection direction of at least one of the secondary batteries is opposite to the connection direction of the other secondary batteries, and supplying a constant current to the plurality of secondary batteries A step of recording a current value of the constant current and a voltage value of the plurality of secondary batteries, a step of switching a current direction of the plurality of secondary batteries in a reverse direction, and a step of supplying the constant current Repeating the step of recording and the step of switching the current direction in the reverse direction, and measuring the internal resistance of each secondary battery from the recorded current value and the voltage value. And butterflies.

請求項7に記載の発明は、請求項6に記載の二次電池内部抵抗測定方法において、前記複数の二次電池は、定格電圧が等しく、前記定電流は、前記二次電池以下の定格電圧の直流電源から供給されることを特徴とする。   The invention according to claim 7 is the secondary battery internal resistance measuring method according to claim 6, wherein the plurality of secondary batteries have the same rated voltage, and the constant current is a rated voltage equal to or lower than the secondary battery. It is supplied from a direct current power source.

本発明は、複数の二次電池かなる多セルのユニット式電池の内部抵抗を測定する二次電池内部抵抗測定装置を小型化して装置の移動を容易にし、且つ省電力化する効果を奏する。   INDUSTRIAL APPLICABILITY The present invention has an effect of reducing the size of a secondary battery internal resistance measuring device that measures the internal resistance of a multi-cell unit type battery including a plurality of secondary batteries, facilitating movement of the device, and saving power.

本願発明の一実施形態に係る二次電池内部抵抗測定装置の構成を示す図である。It is a figure which shows the structure of the secondary battery internal resistance measuring apparatus which concerns on one Embodiment of this invention. (a)、(b)は、本願発明の一実施形態に係る二次電池内部抵抗測定装置の動作状況を示す図である。(A), (b) is a figure which shows the operation condition of the secondary battery internal resistance measuring apparatus which concerns on one Embodiment of this invention. (a)、(b)は、図2(a)、(b)を概略的に示す図である。(A), (b) is a figure which shows FIG. 2 (a), (b) roughly. (a)は、二次電池4−1から二次電池4−2への電荷移動を示す図であり、(b)は、二次電池4−2から二次電池4−1への電荷移動を示す図である。(A) is a figure which shows the charge transfer from the secondary battery 4-1 to the secondary battery 4-2, (b) is the charge transfer from the secondary battery 4-2 to the secondary battery 4-1. FIG. 蓄積電荷量が等しい2つの二次電池が並列接続されている場合を示す図である。It is a figure which shows the case where two secondary batteries with the same amount of stored charges are connected in parallel. 別置した直流電源1にて放電側の電池(直流電源)の電圧上昇を補償する様子を示す図である。It is a figure which shows a mode that the voltage rise of the battery (DC power supply) of a discharge side is compensated with the DC power supply 1 installed separately. (a)、(b)は、本発明の一実施形態に係る二次電池内部抵抗測定装置において従来技術と同一の測定方法で二次電池の内部抵抗を測定する場合の切替器の接続状態を示す図である。(A), (b) is the connection state of the switch in the case of measuring the internal resistance of the secondary battery in the secondary battery internal resistance measuring device according to one embodiment of the present invention by the same measurement method as the prior art. FIG. IEC62660−1規格が定める二次電池の内部抵抗測定に関するテストオーダを示す図である。It is a figure which shows the test order regarding the internal resistance measurement of the secondary battery which IEC62660-1 standard defines. (a)は、従来技術の二次電池内部抵抗測定装置の構成を示す図であり、(b)は、その概略図である。(A) is a figure which shows the structure of the secondary battery internal resistance measuring apparatus of a prior art, (b) is the schematic. (a)は、従来技術の二次電池内部抵抗測定装置の放電状態を示す図であり、(b)は、その概略図である。(A) is a figure which shows the discharge state of the secondary battery internal resistance measuring apparatus of a prior art, (b) is the schematic. 二次電池から観た放電電流と、充電電流の方向を示す図である。It is a figure which shows the discharge current seen from the secondary battery, and the direction of a charging current. 従来技術での多セルのユニット式電池の内部抵抗測定装置の構成を示す図である。It is a figure which shows the structure of the internal resistance measuring apparatus of the multi-cell unit type battery in a prior art.

以下、本発明の実施の形態について、詳細に説明する。
図1に、本願発明の一実施形態に係る二次電池内部抵抗測定装置の構成を示す。直流電源1の正極に定電流制御回路2の一方の端子が接続されており、定電流制御回路2の他方の端子が切替器3−1のスイッチ3−1aの接点cに接続され、直流電源1の負極が切替器3−2のスイッチ3−2bの接点cに接続されている。切替器3−1のスイッチ3−1bの接点cと切替器3−2のスイッチ3−2aの接点cが接続され、切替器3−1、3−2は直列接続されている。
Hereinafter, embodiments of the present invention will be described in detail.
In FIG. 1, the structure of the secondary battery internal resistance measuring apparatus which concerns on one Embodiment of this invention is shown. One terminal of the constant current control circuit 2 is connected to the positive electrode of the DC power supply 1, and the other terminal of the constant current control circuit 2 is connected to the contact c of the switch 3-1a of the switch 3-1. 1 is connected to the contact c of the switch 3-2b of the switch 3-2. The contact c of the switch 3-1b of the switch 3-1 and the contact c of the switch 3-2a of the switch 3-2 are connected, and the switches 3-1 and 3-2 are connected in series.

切替器3−1のスイッチ3−1a、3−1bの接点a、bには二次電池4−1が接続でき、接点cはスイッチ3−1a、3−1bを切り替えることにより、二次電池4−1の正極と負極との接続の切り替えが可能とされている。同様に、切替器3−2にも二次電池4−2が接続できる。また、二次電池4−1、4−2の電圧を測定可能なように電圧計5−1、5−2が設置されている。   The secondary battery 4-1 can be connected to the contacts a and b of the switches 3-1a and 3-1b of the switching device 3-1, and the contact c is switched to the secondary battery by switching the switches 3-1a and 3-1b. It is possible to switch the connection between the 4-1 positive electrode and the negative electrode. Similarly, the secondary battery 4-2 can be connected to the switch 3-2. In addition, voltmeters 5-1 and 5-2 are installed so that the voltages of the secondary batteries 4-1 and 4-2 can be measured.

尚、図1には、切替器および電圧計がそれぞれ2つの場合を示しているが、電圧計は測定する二次電池単位毎に1つ設置される。また、切替器を2以上の任意の数備えていても良い。   Although FIG. 1 shows a case where there are two switching devices and two voltmeters, one voltmeter is installed for each secondary battery unit to be measured. Moreover, you may provide the arbitrary number of two or more switches.

図2(a)、(b)に、本願発明の一実施形態に係る二次電池内部抵抗測定装置の低電圧での内部抵抗測定時における動作状況を示す。   2 (a) and 2 (b) show the operating conditions when measuring the internal resistance at a low voltage of the secondary battery internal resistance measuring device according to one embodiment of the present invention.

図2(a)は、二次電池4−1が放電状態、二次電池4−2が充電状態となっていることを示している。このように、切替器3−1のスイッチ3−1a、3−1bの接点cを接点bに接続し、且つ切替器3−2のスイッチ3−2a、3−2bの接点cを接点aに接続すると、二次電池4−1が放電状態となり、且つ二次電池4−2が充電状態になる。   FIG. 2A shows that the secondary battery 4-1 is in a discharged state and the secondary battery 4-2 is in a charged state. In this way, the contacts c of the switches 3-1a and 3-1b of the switch 3-1 are connected to the contacts b, and the contacts c of the switches 3-2a and 3-2b of the switch 3-2 are connected to the contacts a. When connected, the secondary battery 4-1 is discharged, and the secondary battery 4-2 is charged.

図2(b)は、二次電池4−2が放電状態、二次電池4−1が充電状態となっていることを示している。このように、切替器3−1、3−2を切り替えて、切替器3−1のスイッチ3−1a、3−1bの接点cを接点aに接続し、且つ切替器3−2のスイッチ3−2a、3−2bの接点cを接点bに接続すると、二次電池4−2が放電状態、二次電池4−1が充電状態になる。   FIG. 2B shows that the secondary battery 4-2 is in a discharged state and the secondary battery 4-1 is in a charged state. In this way, the switching devices 3-1 and 3-2 are switched to connect the contact c of the switches 3-1 a and 3-1 b of the switching device 3-1 to the contact a, and the switch 3 of the switching device 3-2. When the contact c of -2a and 3-2b is connected to the contact b, the secondary battery 4-2 is discharged and the secondary battery 4-1 is charged.

このように、本発明の一実施形態では、低電圧で二次電池の内部抵抗の測定を行うとき、各切替器は、接続された二次電池の接続方向が2つの切替器で常に逆になるよう制御される。すなわち、本発明では、2以上の切替器を備え、それら2以上の切替器を制御することにより、少なくとも1つの二次電池の接続方向を、他の二次電池の接続方向に対して逆にする。   As described above, in the embodiment of the present invention, when measuring the internal resistance of the secondary battery at a low voltage, each switch always reverses the connection direction of the connected secondary battery by the two switches. It is controlled to become. That is, in the present invention, two or more switchers are provided, and by controlling these two or more switchers, the connection direction of at least one secondary battery is reversed with respect to the connection direction of other secondary batteries. To do.

図3(a)、(b)に、図2(a)、(b)を概略的に示す。図3(a)では、二次電池4−1が二次電池4−2を充電するための直流電源として作用し、二次電池4−1からの放電電流i1は、二次電池4−2への充電電流i1として利用される。図3(b)では、図3(a)に対し電池4−1、4−2が逆向きに接続され、二次電池4−2が二次電池4−1を充電するための直流電源として作用し、二次電池4−2からの放電電流i1が二次電池4−1への充電電流i1として利用される。   3 (a) and 3 (b) schematically show FIGS. 2 (a) and 2 (b). In FIG. 3A, the secondary battery 4-1 functions as a DC power source for charging the secondary battery 4-2, and the discharge current i1 from the secondary battery 4-1 is the secondary battery 4-2. Is used as a charging current i1. In FIG. 3 (b), the batteries 4-1 and 4-2 are connected in the reverse direction with respect to FIG. 3 (a), and the secondary battery 4-2 serves as a DC power source for charging the secondary battery 4-1. The discharging current i1 from the secondary battery 4-2 is used as the charging current i1 to the secondary battery 4-1.

本発明は、EV車に搭載された状態の高電圧な多セルのユニット式二次電池の内部抵抗測定装置の小型化・省電力化を主な目的とするものであるが、EV車から取り外した二次電池の内部抵抗測定も可能とするものである。   The main object of the present invention is to reduce the size and power consumption of an internal resistance measuring device of a high-voltage multi-cell unit type secondary battery mounted on an EV vehicle. The internal resistance of the secondary battery can also be measured.

本発明では、二次電池を2つ1組にして図3(a)の向き、および図3(b)の向きになるように構成すれば、二次電池の内部抵抗を測定しても、理想的には二次電池4−1および4−2の間を電荷が移動するだけで済む、すなわち、二次電池4−1および4−2以外の直流電源装置を必要としないことになる。したがって、このような二次電池の特性を利用すれば、直流電源装置1の電力容量を従来技術よりも小さくして、低電圧でのIEC62660−1が定めるテストオーダの実行が可能になり、EV車に搭載された状態での二次電池内部の抵抗測定も可能な二次電池内部抵抗測定装置の小型化・省電力化が可能になる。以下により詳細に説明する。   In the present invention, if two secondary batteries are paired and configured to have the orientation of FIG. 3A and the orientation of FIG. 3B, even if the internal resistance of the secondary battery is measured, Ideally, only the charge needs to move between the secondary batteries 4-1 and 4-2, that is, no DC power supply device other than the secondary batteries 4-1 and 4-2 is required. Therefore, by utilizing such characteristics of the secondary battery, the power capacity of the DC power supply device 1 can be made smaller than that of the prior art, and the test order determined by IEC62660-1 at a low voltage can be executed. It is possible to reduce the size and power consumption of the secondary battery internal resistance measuring device that can also measure the resistance inside the secondary battery when mounted in a car. This will be described in more detail below.

図4(a)は、二次電池4−1から二次電池4−2への電荷移動を示す図である。本図から分かるように、電流i1は二次電池4−1(直流電源)からの放電電流であり、二次電池4−2への充電電流でもある。   FIG. 4A is a diagram illustrating charge transfer from the secondary battery 4-1 to the secondary battery 4-2. As can be seen from the figure, the current i1 is a discharge current from the secondary battery 4-1 (DC power supply), and is also a charging current to the secondary battery 4-2.

電荷Qは、次の数式で表すことができるため、電流i1の量は、二次電池4−1(直流電源)から二次電池4−2への移動電荷量に相当し、また、二次電池4−1(直流電源)から放出される電荷量は、二次電池4−2へ移動する電荷量と等しい。   Since the charge Q can be expressed by the following equation, the amount of the current i1 corresponds to the amount of charge transferred from the secondary battery 4-1 (DC power supply) to the secondary battery 4-2, and the secondary The amount of charge released from the battery 4-1 (DC power supply) is equal to the amount of charge transferred to the secondary battery 4-2.

Figure 2015227803
Figure 2015227803

図4(b)は、二次電池4−2から二次電池4−1への電荷移動を示す図である。
電流i2は二次電池4−2(直流電源)からの放電電流であり、二次電池4−1への充電電流でもある。従って、電流i1と電流i2が等しい場合、二次電池4−2(直流電源)から放出される電荷量と、二次電池4−1へ移動する電荷量は等しくなる。
FIG. 4B is a diagram illustrating charge transfer from the secondary battery 4-2 to the secondary battery 4-1.
The current i2 is a discharge current from the secondary battery 4-2 (DC power supply), and is also a charging current to the secondary battery 4-1. Therefore, when the current i1 is equal to the current i2, the amount of charge released from the secondary battery 4-2 (DC power supply) is equal to the amount of charge transferred to the secondary battery 4-1.

この一連の動作を同時に行うと、放電状態にある側の二次電池が直流電源として作用し、二次電池4−1および4−2相互間のみで電荷が移動するため、原理的には別途の直流電源装置は不要となる。IEC62660−1が定めるテストオーダでは、最初に1/3Itの電流値で10秒間放電させた後、一定時間休止させた後、再び1/3Itの電流値で10秒間充電することを要求している。本発明の構成では、二次電池4−1または二次電池4−2のいずれか一方を放電状態にすると同時に他方を充電状態にするため、かかる1/3Itの電流値での充電/放電動作が同時に実行される。   If this series of operations is performed at the same time, the secondary battery in the discharged state acts as a DC power source, and charges move only between the secondary batteries 4-1 and 4-2. This DC power supply device is not necessary. The test order defined by IEC62660-1 requires that the battery is first discharged at a current value of 1/3 It for 10 seconds, then rested for a certain period of time, and then charged again at a current value of 1/3 It for 10 seconds. . In the configuration of the present invention, either the secondary battery 4-1 or the secondary battery 4-2 is discharged, and at the same time, the other is charged. Therefore, the charging / discharging operation at the current value of 1/3 It is performed. Are executed simultaneously.

たとえば二次電池4−1が放電状態、二次電池4−2が充電状態の場合、かかる1/3Itの電流値にて二次電池4−1から二次電池4−2へ当該電流値に相当する電荷が移動し、一定時間経過後、今度は二次電池4−2が放電状態、二次電池4−1が充電状態となるように切替器3−1および3−2が制御される。そして再び1/3Itの電流値に相当する電荷が二次電池4−2から二次電池4−1へ移動する。   For example, when the secondary battery 4-1 is in a discharged state and the secondary battery 4-2 is in a charged state, the current value is changed from the secondary battery 4-1 to the secondary battery 4-2 at the current value of 1/3 It. The switches 3-1 and 3-2 are controlled such that the secondary battery 4-2 is in a discharged state and the secondary battery 4-1 is in a charged state after a certain period of time has elapsed since the corresponding charge has moved. . The charge corresponding to the current value of 1/3 It again moves from the secondary battery 4-2 to the secondary battery 4-1.

以上説明したように、本案では、原理的には別途直流電源を設ける必要がないのだが、一連の充放電動作によって二次電池4−1および二次電池4−2の内部に蓄えられた電荷量が等しくなると、IEC62660−1が定めるテストオーダを実行中であっても瞬時に充放電動作が停止するおそれがある。   As described above, in the present plan, it is not necessary to provide a separate DC power supply in principle, but the charge stored in the secondary battery 4-1 and the secondary battery 4-2 by a series of charge / discharge operations. If the amounts are equal, the charge / discharge operation may be instantaneously stopped even when the test order determined by IEC62660-1 is being executed.

図5に、蓄積電荷量が等しい2つの二次電池が並列接続されている場合を示す。電荷Qは、以下の数式で表わされる。そのため、キヤパシタCが等しいとすると、双方の蓄積電荷量が等しくなったときの各々の電圧値は、ほぼ等しくなる。
Q=C×V
FIG. 5 shows a case where two secondary batteries having the same accumulated charge amount are connected in parallel. The charge Q is expressed by the following formula. Therefore, assuming that the capacitors C are equal, the voltage values when the amounts of accumulated charges are equal are approximately equal.
Q = C × V

ただし、二次電池の充電時の電圧上昇カーブと放電時の電圧下降カーブは、ともに非直線的であるため、必ずしも双方の蓄積電荷量が等しくなったときの電圧は同一とは限らない。かかる問題を解決するため、本発明では満充電時の電圧値すなわちその二次電池の定格電圧を上限とする直流電源装置1を別途設けることとしている。   However, since the voltage rising curve at the time of charging the secondary battery and the voltage falling curve at the time of discharging are both non-linear, the voltage when the accumulated charge amount of both is not necessarily the same. In order to solve such a problem, in the present invention, a DC power supply 1 having an upper limit of the voltage value at the time of full charge, that is, the rated voltage of the secondary battery is separately provided.

図6に、別置した直流電源1にて放電側の電池(直流電源)の電圧上昇を補償する様子を示す。従来技術の直流電源装置の電圧値(試験電圧値)は、単セル二次電池の直列・並列接続数に依存し、その数が増えれば増えるほど試験電圧が上昇する。そのため、例えば単セルの定格電圧が50ボルトの二次電池を4個直列接続した場合は200ボルトの試験電圧が必要になるうえ、試験電流も単セルの定格電流に依存するため、単セル数が増えれば増えるほど大電力が必要になる。   FIG. 6 shows how the voltage increase of the battery (DC power supply) on the discharge side is compensated by the separately installed DC power supply 1. The voltage value (test voltage value) of the DC power supply of the prior art depends on the number of single-cell secondary batteries connected in series and in parallel, and the test voltage increases as the number increases. Therefore, for example, when four secondary batteries having a single cell rated voltage of 50 volts are connected in series, a test voltage of 200 volts is required and the test current also depends on the rated current of the single cell. The more you increase, the more power you need.

一方、本発明の場合、二次電池を2つ1組にして放電側の一方の二次電池が充電用の他方の二次電池に対して直流電源として作用し、組み合わされた2つの二次電池の間で放電と充電を交互に行うようにしてIEC62660−1が定めるテストオーダを実施するため、内部抵抗測定による電荷の移動は二次電池4−1および4−2の間でのみ行われ、従来技術よりも格段に小容量の直流電源装置を別置すれば良い。   On the other hand, in the case of the present invention, two secondary batteries are made into one set, and one secondary battery on the discharge side acts as a DC power source for the other secondary battery for charging, and the combined two secondary batteries In order to carry out the test order defined by IEC62660-1 by alternately discharging and charging between batteries, the charge transfer by the internal resistance measurement is performed only between the secondary batteries 4-1 and 4-2. A DC power supply device having a much smaller capacity than that of the prior art may be provided separately.

また、当該直流電源装置の試験電圧値も例えば単セルの定格電圧が50ボルトの場合は、最大でも50ボルトで済む。すなわち本発明の直流電源1は、従来技術の直流電源21とは異なり、放電側の二次電池の補助電源として働いている。   Further, the test voltage value of the DC power supply device may be 50 volts at the maximum when the rated voltage of the single cell is 50 volts, for example. That is, the DC power source 1 of the present invention works as an auxiliary power source for the secondary battery on the discharge side, unlike the DC power source 21 of the prior art.

以上説明したように、本発明によれば、EV車に搭載された状態の高電圧な多セルのユニット式二次電池の内部抵抗測定も可能な、消費電力が小さく、軽量小型で可搬性に優れた二次電池内部抵抗測定装置が実現できる。   As described above, according to the present invention, it is possible to measure the internal resistance of a high-voltage multi-cell unit type secondary battery mounted on an EV car, and the power consumption is small, light weight, small size, and portability. An excellent secondary battery internal resistance measuring device can be realized.

尚、本発明の二次電池内部抵抗測定装置では、二次電池の内部抵抗を測定していないときは、二次電池の接続方向を統一するよう切替器を制御することにより高電圧で充放電が可能であり、従来技術と同一の測定方法で二次電池の内部抵抗を測定することも可能である。   In the secondary battery internal resistance measuring device of the present invention, when the internal resistance of the secondary battery is not measured, charging / discharging at a high voltage is performed by controlling the switch so as to unify the connection direction of the secondary battery. It is also possible to measure the internal resistance of the secondary battery by the same measurement method as in the prior art.

図7に、本発明の一実施形態に係る二次電池内部抵抗測定装置において従来技術と同一の測定方法で二次電池の内部抵抗を測定する場合の切替器の接続状態を示す。この場合、切替器3−1、3−2の接点cを共に接点bに接続することにより、二次電池4−1および4−2を共に放電状態にすることができる。また、切替器3−1、3−2の接点cを共に接点aに接続することにより、二次電池4−1および4−2を共に充電状態にすることができる。   FIG. 7 shows a connection state of the switch when the internal resistance of the secondary battery is measured by the same measurement method as that of the conventional technique in the secondary battery internal resistance measurement apparatus according to the embodiment of the present invention. In this case, the secondary batteries 4-1 and 4-2 can be both discharged by connecting the contacts c of the switching devices 3-1, 3-2 to the contact b. Further, by connecting both the contacts c of the switching devices 3-1 and 3-2 to the contact a, both the secondary batteries 4-1 and 4-2 can be charged.

このように、本案では、切替器3−1および切替器3−2の切替動作を制御することによって、簡単に従来技術での二次電池の内部抵抗測定へ切替ることができる。   As described above, in the present plan, the switching operation of the switching device 3-1 and the switching device 3-2 can be controlled to easily switch to the measurement of the internal resistance of the secondary battery in the prior art.

1、21 直流電源装置
2、22 定電流制御回路
3−1、3−2、23 切替器
3−1a、3−1b、3−2a、3−2b、23a、23b、 スイッチ
4−1、4−2、24、24a、24b 二次電池
5−1、5−2、25、25a、25b 電圧計
1, 2 1 DC power supply device 2, 22 Constant current control circuit 3-1, 3-2, 23 switch 3-1a, 3-1b, 3-2a, 3-2b, 23a, 23b, switch 4-1, 4 -2, 24, 24a, 24b Secondary battery 5-1, 5-2, 25, 25a, 25b Voltmeter

Claims (7)

直流電源装置と、
前記直流電源装置に直列接続された定電流制御回路と、
それぞれ二次電池を接続可能な2以上の切替器であって、前記二次電池を前記直流電源装置および前記定電流制御回路に直列接続し、前記二次電池への接続方向を個別に切り替え可能な2以上の切替器と、
前記各切替器に接続された二次電池の電圧をそれぞれ測定する2以上の電圧計と、
を備え、前記2以上の切替器が、前記各切替器に接続された二次電池への接続方向を切り替えて前記複数の二次電池の充放電を行い、前記定電流制御回路の電流値および前記各電圧計の電圧値から前記各二次電池の内部抵抗を測定することを特徴する二次電池内部抵抗測定装置。
A DC power supply,
A constant current control circuit connected in series to the DC power supply device;
Two or more switchers each capable of connecting a secondary battery, wherein the secondary battery is connected in series to the DC power supply device and the constant current control circuit, and the connection direction to the secondary battery can be individually switched Two or more switchers,
Two or more voltmeters each measuring the voltage of the secondary battery connected to each switch;
And the two or more switches switch the connection direction to the secondary battery connected to each switch to charge / discharge the plurality of secondary batteries, and the current value of the constant current control circuit and A secondary battery internal resistance measuring device that measures the internal resistance of each secondary battery from the voltage value of each voltmeter.
前記各切替器は、個別に制御可能な2つの一回路二接点スイッチからなることを特徴とする請求項1に記載の二次電池内部抵抗測定装置。   The secondary battery internal resistance measuring device according to claim 1, wherein each switching unit includes two one-circuit two-contact switches that can be individually controlled. 前記2以上の切替器は、前記各二次電池の内部抵抗を測定するとき、少なくとも1つの前記切替器に接続された二次電池の接続方向が、他の前記切替器に接続された二次電池の接続方向に対して逆になるよう切り替えを行うことを特徴とする請求項1又は2に記載の二次電池内部抵抗測定装置。   When the two or more switching devices measure the internal resistance of each of the secondary batteries, the connection direction of the secondary battery connected to at least one of the switching devices is the secondary connected to the other switching device. The secondary battery internal resistance measuring device according to claim 1 or 2, wherein switching is performed so as to be reversed with respect to a connection direction of the battery. 前記各切替器に接続された二次電池は、定格電圧が等しく、前記直流電源装置は、前記二次電池以下の定格電圧であることを特徴とする請求項1乃至3のいずれかに記載の二次電池内部抵抗測定装置。   4. The secondary battery connected to each of the switchers has the same rated voltage, and the DC power supply device has a rated voltage equal to or lower than the secondary battery. 5. Secondary battery internal resistance measurement device. 前記複数の二次電池は、前記切替器を介して直列接続されることを特徴とする請求項1乃至4のいずれかに記載の二次電池内部抵抗測定装置。   The secondary battery internal resistance measuring apparatus according to claim 1, wherein the plurality of secondary batteries are connected in series via the switch. 複数の二次電池を充放電させたときの電流値と電圧値から前記二次電池の内部抵抗を測定する二次電池内部抵抗測定方法であって、
前記複数の二次電池を直列接続し、少なくとも1つの前記二次電池の接続方向が他の前記二次電池の接続方向と逆になるよう接続するステップと、
前記複数の二次電池に定電流を供給するステップと、
前記定電流の電流値および前記複数の二次電池の電圧値を記録するステップと、
前記複数の二次電池の電流方向を逆方向に切り替えるステップと、
前記定電流を供給するステップ、前記記録するステップおよび前記電流方向を逆方向に切り替えるステップを繰り返し、記録された前記電流値および前記電圧値からから前記各二次電池の内部抵抗を測定するステップと、
を有することを特徴とする二次電池内部抵抗測定方法。
A secondary battery internal resistance measurement method for measuring the internal resistance of the secondary battery from a current value and a voltage value when charging and discharging a plurality of secondary batteries,
Connecting the plurality of secondary batteries in series, and connecting the connection direction of at least one of the secondary batteries to be opposite to the connection direction of the other secondary batteries;
Supplying a constant current to the plurality of secondary batteries;
Recording a current value of the constant current and a voltage value of the plurality of secondary batteries;
Switching the current direction of the plurality of secondary batteries to a reverse direction;
Supplying the constant current, repeating the recording step, and switching the current direction in the reverse direction, and measuring the internal resistance of each secondary battery from the recorded current value and the voltage value; ,
A method for measuring the internal resistance of a secondary battery, comprising:
前記複数の二次電池は、定格電圧が等しく、前記定電流は、前記二次電池以下の定格電圧の直流電源から供給されることを特徴とする請求項6に記載の二次電池内部抵抗測定方法。   The secondary battery internal resistance measurement according to claim 6, wherein the plurality of secondary batteries have the same rated voltage, and the constant current is supplied from a DC power source having a rated voltage equal to or lower than the secondary battery. Method.
JP2014113156A 2014-05-30 2014-05-30 Secondary battery internal resistance measuring device and measuring method Active JP6381298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014113156A JP6381298B2 (en) 2014-05-30 2014-05-30 Secondary battery internal resistance measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014113156A JP6381298B2 (en) 2014-05-30 2014-05-30 Secondary battery internal resistance measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2015227803A true JP2015227803A (en) 2015-12-17
JP6381298B2 JP6381298B2 (en) 2018-08-29

Family

ID=54885353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014113156A Active JP6381298B2 (en) 2014-05-30 2014-05-30 Secondary battery internal resistance measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP6381298B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111751A1 (en) * 2015-12-21 2017-06-29 Okan Universitesi Internal resistance measurement method for power supplies like batteries or supercapacitors
US10746804B2 (en) 2017-01-18 2020-08-18 Samsung Electronics Co., Ltd. Battery management method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032936A (en) * 1996-07-12 1998-02-03 Tokyo R & D:Kk Control system and method for power supply
JP2006067683A (en) * 2004-08-26 2006-03-09 Railway Technical Res Inst Storage device
JP2011097766A (en) * 2009-10-30 2011-05-12 Makita Corp Power-supply device
WO2011132311A1 (en) * 2010-04-23 2011-10-27 株式会社 日立製作所 Battery assembly and method for controlling battery assembly
WO2013002120A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Power supply apparatus and power supply method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032936A (en) * 1996-07-12 1998-02-03 Tokyo R & D:Kk Control system and method for power supply
JP2006067683A (en) * 2004-08-26 2006-03-09 Railway Technical Res Inst Storage device
JP2011097766A (en) * 2009-10-30 2011-05-12 Makita Corp Power-supply device
WO2011132311A1 (en) * 2010-04-23 2011-10-27 株式会社 日立製作所 Battery assembly and method for controlling battery assembly
WO2013002120A1 (en) * 2011-06-30 2013-01-03 古河電気工業株式会社 Power supply apparatus and power supply method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111751A1 (en) * 2015-12-21 2017-06-29 Okan Universitesi Internal resistance measurement method for power supplies like batteries or supercapacitors
US10746804B2 (en) 2017-01-18 2020-08-18 Samsung Electronics Co., Ltd. Battery management method and apparatus

Also Published As

Publication number Publication date
JP6381298B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP5715694B2 (en) Battery control device, battery system
JP6725201B2 (en) Charge leveling device and power supply system
CN108292854B (en) Battery control device
US10559860B2 (en) Power storage device, power storage control device, and power storage control method
EP1388921A2 (en) Cell equalizing circuit
JP7043944B2 (en) Power storage device
EP3081425A1 (en) Vehicle power management device
JPWO2014192134A1 (en) Battery monitoring device
JP2013121242A (en) Soc estimation device and battery pack
JP5187407B2 (en) Auxiliary battery charger
JP2013116006A (en) Battery equalization device and method
JP2012034446A (en) Power storage device and energy balance adjusting method
JP2013121302A (en) Battery charging amount control device and related method
JP6381298B2 (en) Secondary battery internal resistance measuring device and measuring method
JP2014176152A (en) Power storage system
JP2017053657A (en) Battery testing device
JP2013116008A (en) Cell balance device
JP2012234696A (en) Battery system
JP2020046332A (en) Battery monitoring device
JP2011045183A (en) Charging/discharging device
KR20160071929A (en) Battery management system
TWI548179B (en) Range extension from active discharging balance device and controlling method thereof
RU176470U1 (en) Control and balancing device for lithium-ion battery
KR20180020931A (en) Apparatus for balancing battery and balancing method using the same
TWI535145B (en) Battery balancer and charge device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180731

R150 Certificate of patent or registration of utility model

Ref document number: 6381298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350