JP2015226406A - Counter flow thunderbolt protection device - Google Patents

Counter flow thunderbolt protection device Download PDF

Info

Publication number
JP2015226406A
JP2015226406A JP2014110873A JP2014110873A JP2015226406A JP 2015226406 A JP2015226406 A JP 2015226406A JP 2014110873 A JP2014110873 A JP 2014110873A JP 2014110873 A JP2014110873 A JP 2014110873A JP 2015226406 A JP2015226406 A JP 2015226406A
Authority
JP
Japan
Prior art keywords
ground
equipment
lightning
facility
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014110873A
Other languages
Japanese (ja)
Other versions
JP6222738B2 (en
Inventor
佐藤 智之
Tomoyuki Sato
智之 佐藤
康弘 深山
Yasuhiro Fukayama
康弘 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Shoden Corp
Original Assignee
Tohoku Electric Power Co Inc
Shoden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Shoden Corp filed Critical Tohoku Electric Power Co Inc
Priority to JP2014110873A priority Critical patent/JP6222738B2/en
Publication of JP2015226406A publication Critical patent/JP2015226406A/en
Application granted granted Critical
Publication of JP6222738B2 publication Critical patent/JP6222738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently make a lightning surge current flow to ground at the lightning strike to a tower body and the like of user facilities to protect facility equipment and a power distribution facility in the user facilities against a counter flow thunderbolt.SOLUTION: Provided is a device that is used for a system for supplying a secondary side voltage of a pole transformer 23 to facility equipment 14 via a low-voltage lead-in line 25 as a power supply voltage, the facility equipment 14 being grounded at a user side ground 11 via an SPD 13, and that protects the facility equipment 14 and a power distribution facility 2 and the like at the lightning strike to a tower body 10. In the device, discharge gaps 31 and 32 whose operation voltage is lower than the SPD 13 are connected between a user side ground 11 connected with the tower body 10 and the facility equipment 14, and a power distribution facility side ground provided at the power distribution facility 2 (a B-type ground 26a and an overhead earth wire ground 27a). SPDs 41 and 42 are connected between a secondary side of a pole transformer 23 and a ground line 26. These discharge gaps 31 and 32 and SPDs 41 and 42 configure a counter flow thunderbolt protection device 100.

Description

本発明は、配電設備から電源が供給されている需要家施設への落雷時に雷サージ電流を効率良く大地へ流し、需要家施設及び配電設備を保護するようにした逆流雷保護装置に関する。   The present invention relates to a reverse lightning protection device that efficiently flows a lightning surge current to the ground during a lightning strike to a customer facility to which power is supplied from a power distribution facility, thereby protecting the customer facility and the power distribution facility.

電話交換所や移動体通信基地局の送受信アンテナ用鉄塔、風力発電所の風車等の高い構造物(以下、単に塔体という。)は、背が高い金属構造体であることに加え、その性質上、山頂や稜線等に建設されることが多い。従って、塔体は落雷の被害を受けやすい。   High structures (hereinafter simply referred to as towers) such as towers for transmitting and receiving antennas of telephone exchanges and mobile communication base stations and wind turbines of wind power plants are not only tall metal structures but also their properties. Often built on top, mountain peaks, ridges, etc. Therefore, the tower body is susceptible to lightning strikes.

電話交換所や移動体通信基地局その他の施設(以下、需要家施設という。)に設置される通信機器等、各種の設備機器には、隣接する配電設備の柱上変圧器から低圧引込線を介して電源が供給されている。このため、需要家施設の塔体に落雷した場合には、需要家施設の接地電位の上昇によっていわゆる逆流雷によるサージ電流が低圧引込線から配電設備側に流れ込み、配電設備側の柱上変圧器や把持碍子、接地線、配電柱等に被害が及ぶおそれがある。従って、塔体への落雷時における配電設備への波及被害を防止する対策が不可欠である。   Various equipment such as communication equipment installed in telephone exchanges, mobile communication base stations, and other facilities (hereinafter referred to as customer facilities) are connected via a low-voltage service line from the pole transformer of the adjacent power distribution equipment. Power is supplied. For this reason, when lightning strikes the tower of a customer facility, surge current due to a so-called reverse current lightning flows from the low-voltage lead-in line to the distribution equipment side due to an increase in the ground potential of the customer facility. There is a risk of damage to gripping insulators, grounding wires, distribution poles, etc. Therefore, it is essential to take measures to prevent the spillover damage to the power distribution facilities during lightning strikes on the tower.

ここで、従来技術について図を参照しつつ説明する。
図2は、従来の雷サージ保護システムの構成図である。図2では、需要家施設1が電話交換所であって塔体10が無線鉄塔の場合を示しており、配電設備2から需要家施設1に電源が供給されている。なお、図2において、Gは地表面を示す。
Here, the prior art will be described with reference to the drawings.
FIG. 2 is a configuration diagram of a conventional lightning surge protection system. FIG. 2 shows a case where the customer facility 1 is a telephone exchange and the tower 10 is a radio tower. Power is supplied from the power distribution facility 2 to the customer facility 1. In FIG. 2, G indicates the ground surface.

需要家施設1では、塔体10の避雷針10aが接地線10bを介して需要家側接地11にて接地されている。そして、建屋12内の通信機器等の設備機器14は、バリスタ等を用いたSPD(サージ防護素子)13を介して、同じく需要家側接地11にて接地されている。   In the customer facility 1, the lightning rod 10a of the tower body 10 is grounded at the customer side ground 11 through the ground line 10b. The equipment 14 such as communication equipment in the building 12 is also grounded at the customer side ground 11 through an SPD (surge protection element) 13 using a varistor or the like.

配電設備2では、複数の配電柱20に高圧配電線21及び架空地線22が架設されている。なお、20aは配電柱20の鉄筋である。
需要家施設1に隣接した配電柱20には、単相三線式の柱上変圧器23が、把持碍子24(避雷装置)により絶縁を確保された状態で装柱されている。柱上変圧器23の一次巻線231には高圧配電線21が接続され、柱上変圧器23の二次巻線232は、低圧引込線25を介して建屋12内の設備機器14に接続されている。これにより、設備機器14には、柱上変圧器23から低圧引込線25を介して電源電圧が供給されるようになっている。
In the power distribution facility 2, high-voltage distribution lines 21 and overhead ground wires 22 are installed on a plurality of distribution poles 20. In addition, 20a is a reinforcing bar of the power distribution column 20.
A single-phase three-wire pole transformer 23 is mounted on the distribution pole 20 adjacent to the customer facility 1 in a state where insulation is secured by a gripping insulator 24 (lightning arrester). The high voltage distribution line 21 is connected to the primary winding 231 of the pole transformer 23, and the secondary winding 232 of the pole transformer 23 is connected to the equipment 14 in the building 12 via the low voltage lead-in wire 25. Yes. As a result, the power supply voltage is supplied to the equipment 14 from the pole transformer 23 via the low-voltage lead-in wire 25.

柱上変圧器23の二次側の中性線23nは、把持碍子24の一端と共に接地線26を介してB種接地26aにて接地されている。架空地線22は、各配電柱20の鉄筋20aと実質的に接続され、鉄筋20aは配電柱接地20bにて接地されている。また、架空地線22は、接地線27を介して架空地線接地27aにより接地されている。
なお、図2における鉄筋20aと架空地線22との間の破線、鉄筋20aと柱上変圧器23のケーシングとの間の破線は、何れも実質上、電気的に接続されていることを示す。また、鉄筋20aと配電柱接地20bとの間の破線は、鉄筋基礎による接地抵抗を示している。
A neutral wire 23n on the secondary side of the pole transformer 23 is grounded together with one end of the gripping insulator 24 via a ground wire 26 at a class B ground 26a. The overhead ground wire 22 is substantially connected to the reinforcing bar 20a of each distribution column 20, and the reinforcing bar 20a is grounded by the distribution column grounding 20b. Further, the overhead ground wire 22 is grounded by the overhead ground wire ground 27 a via the ground wire 27.
It should be noted that the broken line between the reinforcing bar 20a and the overhead ground wire 22 and the broken line between the reinforcing bar 20a and the casing of the pole transformer 23 in FIG. 2 indicate that they are substantially electrically connected. . A broken line between the reinforcing bar 20a and the distribution pole grounding 20b indicates a grounding resistance due to the reinforcing bar foundation.

一方、需要家施設と配電設備との間の雷被害を防止する他の先行技術が、例えば特許文献1(特開2007−312466号公報)にも開示されている。この先行技術では、配電線に雷撃を受けた場合に、雷サージ電流を通信線のシールド側へ迂回させて分電盤中継器の絶縁破壊を防止している。   On the other hand, another prior art for preventing lightning damage between a customer facility and a power distribution facility is also disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-31466. In this prior art, when a distribution line receives a lightning strike, the lightning surge current is diverted to the shield side of the communication line to prevent insulation breakdown of the distribution board relay.

また、他の先行技術が、特許文献2(特開2002−320319号公報)に開示されている。この先行技術では、風力発電所や無線中継所等の高構造物の接地と配電線の架空地線接地とを接地線により接続し、落雷時に高構造物へ流れる雷サージ電流を、接地線を介して架空地線接地に流すことにより、高構造物側の避雷器の破損を防止している。
更に、他の先行技術が、特許文献3(特開2007−300744号公報)に開示されている。この先行技術では、逆閃絡防止器を設けることにより、特定需要家から配電設備側へ雷害が波及することを防止している。
Another prior art is disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2002-320319). In this prior art, the grounding of high structures such as wind power plants and wireless relay stations and the ground of the distribution line are connected by a grounding line, and the lightning surge current flowing to the high structure during a lightning strike To prevent the damage to the lightning arrester on the high structure side.
Furthermore, another prior art is disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2007-300744). In this prior art, by providing a reverse flash prevention device, lightning damage is prevented from spreading from a specific customer to the distribution facility side.

特開2007−312466号公報(段落[0044]、図4等)JP 2007-31466 A (paragraph [0044], FIG. 4 etc.) 特開2002−320319号公報(段落[0024]、図4等)JP 2002-320319 A (paragraph [0024], FIG. 4 etc.) 特開2007−300744号公報(段落[0017]、図1等)JP 2007-300744 A (paragraph [0017], FIG. 1 etc.)

前述した図2において、塔体10の避雷針10aに落雷すると、雷サージ電流は、接地線10bを介して需要家側接地11に流れる。しかしながら、山頂等に建設された需要家施設1の接地抵抗が比較的高い場合には、落雷による需要家側接地11の接地電位の上昇により、低圧配電線25との間に大きな電位差が生じる。このため、いわゆる逆流雷により低圧のSPD13が動作し、低圧配電線25を介して配電設備2側に雷サージ電流が流入するおそれがあった。   In FIG. 2 described above, when lightning strikes the lightning rod 10a of the tower body 10, a lightning surge current flows to the customer side ground 11 via the ground line 10b. However, when the ground resistance of the customer facility 1 constructed at the summit or the like is relatively high, a large potential difference is generated between the low-voltage distribution line 25 and the ground potential of the customer-side ground 11 due to lightning. For this reason, the low-pressure SPD 13 is operated by so-called backflow lightning, and a lightning surge current may flow into the distribution facility 2 via the low-voltage distribution line 25.

逆流雷に伴う雷サージ電流は極めて大きく、特に電荷量の大きい(エネルギーの大きい)冬季雷の場合には、その傾向が顕著になるので、最大容量の低圧SPD13であっても、冬季雷による雷サージ電流が流れ込んだ場合には損傷を防止できないことがある。
また、逆流雷による雷サージ電流が需要家施設1の設備機器14を損傷させ、更に、配電設備2側の柱上変圧器23や把持碍子24、架空地線22、接地線26,27、鉄筋20a等に流入することで被害が波及するおそれもあった。あるいは、雷サージ電流が配電設備2側の接地に流れて接地電位を上昇させる等の問題を生じていた。
The lightning surge current associated with backflow lightning is extremely large, and this tendency is particularly noticeable in the case of winter lightning with a large amount of charge (high energy). Damage may not be prevented if surge current flows.
In addition, the lightning surge current caused by backflow lightning damages the equipment 14 of the customer facility 1, and further, the pole transformer 23, the grip insulator 24, the overhead ground wire 22, the ground wires 26 and 27, the reinforcing bars on the power distribution equipment 2 side. There was also a risk of damage spreading due to inflow into 20a and the like. Or the lightning surge current flowed to the ground on the power distribution equipment 2 side, causing problems such as raising the ground potential.

上記のような逆流雷に起因した機器の損傷、事故波及を防止するには、需要家側接地11の接地抵抗をできるだけ低減させることが有効であるが、塔体10を含む需要家施設1は、山頂や稜線のように低接地抵抗を得るには不向きな場所に建設されることが多い。このような立地条件において、接地抵抗を所望のレベルにまで低減させることは工事費等の関係から必ずしも容易ではない。   It is effective to reduce the ground resistance of the customer-side ground 11 as much as possible in order to prevent damage to equipment and accidents caused by backflow lightning as described above, but the customer facility 1 including the tower body 10 is It is often built in places that are not suitable for obtaining low ground resistance, such as mountain peaks and ridges. Under such location conditions, it is not always easy to reduce the ground resistance to a desired level because of construction costs and the like.

また、特許文献1に記載された先行技術は、雷サージの迂回路として通信線を経由させるものであるが、通信機器が雷サージにより損傷するおそれがあるため、改善の余地がある。
更に、特許文献2に記載された先行技術は、高構造物の接地と配電設備の接地との間の接地線により、接地抵抗値が変化するという問題があり、特許文献3に記載された先行技術は、冬季雷のようにエネルギーの大きい落雷まで考慮したものではない。
Moreover, although the prior art described in patent document 1 makes a communication line pass as a detour of a lightning surge, since there exists a possibility that a communication apparatus may be damaged by a lightning surge, there exists room for improvement.
Furthermore, the prior art described in Patent Document 2 has a problem that the ground resistance value changes due to the ground wire between the ground of the high structure and the ground of the power distribution facility. The technology does not take into account lightning strikes, such as winter lightning.

そこで、本発明の解決課題は、需要家施設の塔体等に落雷があった場合に、雷サージ電流を効率良く大地へ流すことにより、需要家施設内の設備機器や配電設備の損傷を防止するようにした逆流雷保護装置を提供することにある。   Therefore, the problem to be solved by the present invention is to prevent damage to equipment and power distribution equipment in the customer facility by efficiently flowing a lightning surge current to the ground when there is a lightning strike on the tower of the customer facility. An object of the present invention is to provide a reverse lightning protection device.

上記課題を解決するため、請求項1に係る発明は、塔体及び設備機器を含む需要家施設と、高圧配電線、架空地線及び前記高圧配電線が一次側に接続された柱上変圧器を含む配電設備と、を備え、前記柱上変圧器の二次側の電圧を、低圧引込線を介して前記設備機器に電源電圧として供給すると共に、前記設備機器が第1のサージ防護素子を介して需要家側接地にて接地されているシステムを対象とし、前記塔体への落雷により前記需要家施設の接地電位が上昇した時に、少なくとも前記設備機器及び前記配電設備を保護するための逆流雷保護装置において、
前記塔体及び前記第1のサージ防護素子に接続された需要家側接地と前記配電設備に設けられた配電設備側接地との間に接続されて前記第1のサージ防護素子よりも低い動作電圧を有する放電ギャップと、
前記柱上変圧器の二次巻線の中性線を除く両端と前記配電設備側接地との間にそれぞれ接続された第2,第3のサージ防護素子と、
を備えたことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 includes a customer facility including a tower and equipment, a high-voltage distribution line, an overhead ground line, and a pole transformer in which the high-voltage distribution line is connected to a primary side. A secondary side voltage of the pole transformer is supplied as a power supply voltage to the equipment via a low-voltage lead-in line, and the equipment is provided via the first surge protection element. Back grounding lightning for protecting at least the equipment and the power distribution equipment when the ground potential of the customer facility rises due to a lightning strike to the tower body. In the protective device,
Operating voltage lower than that of the first surge protection element connected between the customer side ground connected to the tower body and the first surge protection element and the distribution equipment side ground provided in the power distribution equipment A discharge gap having
Second and third surge protection elements respectively connected between both ends excluding the neutral line of the secondary winding of the pole transformer and the distribution equipment side ground;
It is provided with.

請求項2に係る発明は、請求項1に記載した逆流雷保護装置において、前記配電設備側接地は、前記柱上変圧器の二次巻線の中性線に接続されたB種接地と、前記架空地線に接続された架空地線接地と、を含むことを特徴とする。   The invention according to claim 2 is the reverse current lightning protection device according to claim 1, wherein the distribution facility side ground is a class B ground connected to a neutral wire of the secondary winding of the pole transformer, An aerial ground wire connected to the aerial ground wire.

本発明によれば、需要家施設の塔体等への落雷時に、雷サージを効率良く大地へ流すことにより、需要家施設の設備機器や配電設備の各種配電機器等が逆流雷により損傷するのを防止することができる。
また、本発明では既存設備の大部分をそのまま利用できるため、低コストにて実現可能である。
According to the present invention, when lightning strikes to the tower of a customer facility, etc., the lightning surge is efficiently flowed to the ground, so that the equipment equipment of the customer facility and the various power distribution equipment of the power distribution equipment are damaged by backflow lightning. Can be prevented.
In the present invention, since most of the existing equipment can be used as it is, it can be realized at low cost.

本発明の実施形態を示す全体構成図である。1 is an overall configuration diagram showing an embodiment of the present invention. 従来技術を示す全体構成図である。It is a whole block diagram which shows a prior art.

以下、図1を参照しつつ本発明の実施形態を説明する。なお、前述した図2の従来技術と共通する事項もあるが、明確化のために改めて説明する。
図1において、塔体10は、例えば、需要家施設1が電話交換所であれば無線鉄塔が、需要家施設1が移動体通信基地局であれば送受信アンテナ用鉄塔が、また、需要家施設1が風力発電所であれば風車が該当し、これら以外にも、各種の需要家施設における高構造物の塔体を対象とする。この実施形態では、需要家施設1が山頂に建設された電話交換所であり、塔体10が無線鉄塔である場合について例示する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. Although there are matters in common with the prior art of FIG. 2 described above, they will be described again for clarity.
In FIG. 1, for example, a tower 10 is a radio tower if the customer facility 1 is a telephone exchange, a tower for a transmission / reception antenna if the customer facility 1 is a mobile communication base station, and a customer facility. If 1 is a wind power plant, it corresponds to a windmill, and besides these, high-structure towers in various customer facilities are targeted. In this embodiment, the case where the customer facility 1 is a telephone exchange constructed at the summit and the tower body 10 is a radio tower is illustrated.

塔体10の頂上には避雷針10aが設置されており、この避雷針10aは接地線10bを介して需要家側接地11にて接地されている。
ここで、需要家施設1では、接地抵抗の低減工事等を実施した上で需要家側接地11を施工することが望ましい。需要家側接地11の接地抵抗をできるだけ小さくすることにより、避雷針10aへの落雷時に接地電位の極端な上昇を防止することができる。
A lightning rod 10a is installed on the top of the tower body 10, and this lightning rod 10a is grounded at the customer side ground 11 through a grounding wire 10b.
Here, in the customer facility 1, it is desirable to construct the customer-side ground 11 after performing a ground resistance reduction construction or the like. By making the ground resistance of the customer-side ground 11 as small as possible, it is possible to prevent an extreme increase in ground potential during a lightning strike to the lightning rod 10a.

需要家施設1の建屋12内には、電話交換所の機能を果たすための各種の通信機器等の設備機器14と第1のSPD13とが設置されている。このSPD13の一端は、需要家側接地11にて接地されている。   In the building 12 of the customer facility 1, equipment devices 14 such as various communication devices and a first SPD 13 for performing the function of a telephone exchange are installed. One end of the SPD 13 is grounded at the customer side ground 11.

一方、配電設備2では、配電柱20に高圧配電線21及び架空地線22が架設されている。配電柱20は、コンクリート電柱であって所定の間隔(例えば30m間隔)で複数、建てられており、高圧配電線21及び架空地線22を支持している。配電柱20の内部には鉄筋20aが設けられており、地中の鉄筋基礎と連結固定されている。この鉄筋基礎は、電気的には配電柱接地20bとして機能する。   On the other hand, in the power distribution facility 2, a high voltage distribution line 21 and an overhead ground wire 22 are installed on the distribution pole 20. The power distribution poles 20 are concrete power poles, and a plurality of power distribution poles 20 are built at predetermined intervals (for example, 30 m intervals), and support the high-voltage distribution lines 21 and the overhead ground wires 22. A reinforcing bar 20a is provided inside the power distribution column 20, and is connected and fixed to the underground reinforcing bar foundation. This reinforcing bar foundation functions electrically as a distribution pole ground 20b.

高圧配電線21は、図示しない碍子によって配電柱20に架設され、電力供給の幹線として利用されている。
架空地線22は、配電柱20の頂部に架設され、例えば亜鉛めっき鋼より線または銅単線等の裸線が使用される。架空地線22は、配電柱20の頂上の図示しないピン碍子に引き通されている。
The high-voltage distribution line 21 is installed on the distribution column 20 with a lever (not shown) and is used as a main line for power supply.
The overhead ground wire 22 is installed on the top of the power distribution column 20 and, for example, a galvanized steel stranded wire or a bare wire such as a copper single wire is used. The overhead ground wire 22 is led to a pin insulator (not shown) on the top of the distribution pole 20.

需要家施設1に隣接する配電柱20には、単相三線式の柱上変圧器23が装柱されている。柱上変圧器23の一次巻線231(高圧側)には高圧配電線21が接続されており、その二次巻線232(低圧側)の電圧が、低圧引込線25を介して需要家施設1の建屋12内の設備機器14に電源電圧として供給されている。
なお、二次巻線232の中性線23nを除く両端は、逆流雷保護装置100内において、動作電圧が例えば1000Vである第2,第3のSPD41,42の各一端に接続され、これらのSPD41,42の各他端は一括して接地線26に接続されている。また、この接地線26はB種接地26aにて接地されている。
A distribution pole 20 adjacent to the customer facility 1 is provided with a single-phase three-wire pole transformer 23. The primary winding 231 (high voltage side) of the pole transformer 23 is connected to the high voltage distribution line 21, and the voltage of the secondary winding 232 (low voltage side) is supplied to the customer facility 1 via the low voltage lead-in wire 25. Is supplied to the equipment 14 in the building 12 as a power supply voltage.
Both ends of the secondary winding 232 except for the neutral wire 23n are connected to one end of each of the second and third SPDs 41 and 42 whose operating voltage is 1000 V, for example, in the reverse lightning protection device 100. The other ends of the SPDs 41 and 42 are collectively connected to the ground line 26. The ground line 26 is grounded by a B-type ground 26a.

柱上変圧器23の一次側と接地線26との間には把持碍子(避雷装置)24が接続されており、把持碍子24と接地線26との接続点は柱上変圧器23のケーシングに接続されている。また、前記中性線23nはバイパス線28を介して接地線26に接続されている。   A gripping insulator (lightning arrester) 24 is connected between the primary side of the pole transformer 23 and the ground wire 26, and the connection point between the grip insulator 24 and the ground wire 26 is connected to the casing of the pole transformer 23. It is connected. The neutral line 23n is connected to the ground line 26 through the bypass line 28.

更に、建屋12内のSPD13の接地端と前記接地線26との間には、逆流雷保護装置100内において、第1の放電ギャップ31及び第2の放電ギャップ32が互いに並列に接続されている。また、接地線26側の放電ギャップ31,32同士の接続点は、架空地線22を接地するための接地線27に接続され、この接地線27は架空地線接地27aにて接地されている。
第1,第2の放電ギャップ31,32において、不活性ガス中で対向する電極のギャップ長は例えば数百μm〜数mmであり、動作電圧は例えば1000Vであって、建屋12内の第1のSPD13の動作電圧よりも低い値に設定されている。
Further, a first discharge gap 31 and a second discharge gap 32 are connected in parallel in the backflow lightning protection device 100 between the grounding end of the SPD 13 in the building 12 and the grounding line 26. . Further, the connection point between the discharge gaps 31 and 32 on the ground wire 26 side is connected to a ground wire 27 for grounding the overhead ground wire 22, and this ground wire 27 is grounded by an overhead ground wire ground 27a. .
In the first and second discharge gaps 31 and 32, the gap length of the electrodes facing each other in the inert gas is, for example, several hundred μm to several mm, the operating voltage is, for example, 1000 V, and the first in the building 12. The SPD 13 is set to a value lower than the operating voltage.

良く知られているように、電気設備技術基準では、需要家側接地11とB種接地26aとを接続することが規制されている。このため、図1の実施形態において、需要家側接地11とB種接地26aとの間は、通常時は放電ギャップ31,32により絶縁されており、この点は需要家側接地11と架空地線接地27aとの間の経路についても同様である。
しかし、避雷針10aへの落雷により需要家施設1の接地電位が上昇して放電ギャップ31,32の両端電圧が動作電圧を超えると、放電ギャップ31,32が放電し、雷サージ電流がB種接地26aまたは架空地線接地27aに流入するようなバイパス回路が形成されるものである。
As is well known, the electrical equipment technical standards regulate the connection between the customer-side ground 11 and the B-type ground 26a. For this reason, in the embodiment of FIG. 1, the customer side ground 11 and the B-type ground 26a are normally insulated by the discharge gaps 31 and 32. This point is the same as the customer side ground 11 and the aerial ground. The same applies to the path to the line ground 27a.
However, when the ground potential of the customer facility 1 rises due to a lightning strike to the lightning rod 10a and the voltage across the discharge gaps 31 and 32 exceeds the operating voltage, the discharge gaps 31 and 32 are discharged, and the lightning surge current is B-type grounding. 26a or an overhead ground wire ground 27a is formed.

ここで、接地線26,27には、雷サージ電流による溶損防止のため、通常より太い線、例えば断面積が38mm以上の銅線が用いられている。
なお、配電柱接地20b,B種接地26a及び架空地線接地27aは、請求項における配電設備側接地に相当する。
Here, in order to prevent melting damage due to lightning surge current, ground wires 26 and 27 are thicker than usual, for example, copper wires having a cross-sectional area of 38 mm 2 or more.
The distribution pole grounding 20b, the B type grounding 26a, and the overhead ground wire grounding 27a correspond to the distribution facility side grounding in the claims.

この実施形態では、第1,第2の放電ギャップ31,32及び第2,第3のSPD41,42を有する逆流雷保護装置100を設けたことにより、以下のような作用効果を得ることができる。
すなわち、塔体10への落雷時に、仮に需要家施設1の接地電位(SPD13の接地端の電位)が大幅に上昇したとしても、雷サージ電流は第1,第2の放電ギャップ31,32を介してB種接地26a側または架空地線接地27a側に流れる。このため、建屋12内のSPD13や設備機器14、柱上変圧器23の二次側、把持碍子24等に流れる雷サージ電流を抑制し、これらの損傷を防止することができる。
In this embodiment, by providing the reverse lightning protection device 100 having the first and second discharge gaps 31 and 32 and the second and third SPDs 41 and 42, the following operational effects can be obtained. .
That is, even if the ground potential of the customer facility 1 (the potential at the grounding end of the SPD 13) is significantly increased during a lightning strike on the tower body 10, the lightning surge current is generated in the first and second discharge gaps 31 and 32. To the B-type grounding 26a side or the overhead ground wire grounding 27a side. For this reason, the lightning surge current which flows into SPD13 in the building 12, equipment 14, the secondary side of the pole transformer 23, the holding insulator 24, etc. can be suppressed, and these damages can be prevented.

また、接地線26,27同士が接続されていることにより、雷サージ電流の接地側への電流経路が複数になり、柱上変圧器23の二次側や把持碍子24側に流入する雷サージ電流を一層減少させることが可能である。同時に、配電柱20の欠損頻度を低減させることもできる。
更に、柱上変圧器23の二次巻線232の両端と接地線26との間に第2,第3のSPD41,42を接続したことにより、二次巻線232を流れる雷サージ電流を減少させることができると共に、線間に生じる雷過電圧を抑制することが可能である。
Further, since the ground lines 26 and 27 are connected to each other, a plurality of current paths to the ground side of the lightning surge current are provided, and the lightning surge flowing into the secondary side of the pole transformer 23 and the gripping insulator 24 side. It is possible to further reduce the current. At the same time, the frequency of loss of the distribution poles 20 can be reduced.
Furthermore, the lightning surge current flowing through the secondary winding 232 is reduced by connecting the second and third SPDs 41 and 42 between both ends of the secondary winding 232 of the pole transformer 23 and the ground wire 26. It is possible to suppress the lightning overvoltage generated between the lines.

以上のように、この実施形態によれば、特に冬季雷のように継続時間が長くエネルギーが大きい場合であっても、雷サージ電流が低圧引込線25を介して配電設備2側に流入するのを防ぎ、各種設備や配電柱等の損傷を防止することができる。
また、この実施形態に係る逆流雷保護装置は、図2に示した既存設備をそのまま利用可能であり、低コストにて設置することができる。
As described above, according to this embodiment, even when the duration is long and the energy is large, especially in winter lightning, the lightning surge current flows into the distribution facility 2 side via the low-voltage lead-in wire 25. It is possible to prevent damage to various facilities and distribution poles.
Further, the backflow lightning protection device according to this embodiment can use the existing equipment shown in FIG. 2 as it is, and can be installed at low cost.

本発明に係る逆流雷保護装置は、例えば山頂や稜線に建設される電話交換所や移動体通信基地局、風力発電所等における逆流雷からの保護に適用可能である。   The backflow lightning protection device according to the present invention can be applied to protection from backflow lightning at, for example, a telephone exchange, a mobile communication base station, a wind power plant, or the like that is constructed on the summit or ridgeline.

1:需要家施設
10:塔体
10a:避雷針
10b:接地線
11:需要家側接地
12:建屋
13:第1のSPD
14:設備機器
2:配電設備
20:配電柱
20a:鉄筋
20b:配電柱接地
21:高圧配電線
22:架空地線
23:柱上変圧器
23n:中性線
231:一次巻線
232:二次巻線
24:把持碍子
25:低圧引込線
26,27:接地線
26a:B種接地
27a:架空地線接地
28,33,34:バイパス線
31:第1の放電ギャップ
32:第2の放電ギャップ
41:第2のSPD
42:第3のSPD
100:逆流雷保護装置
G:地表面
1: Customer facility 10: Tower 10a: Lightning rod 10b: Ground wire 11: Customer side ground 12: Building 13: First SPD
14: Facility equipment 2: Distribution facility 20: Distribution pole 20a: Reinforcing bar 20b: Distribution pole ground 21: High-voltage distribution line 22: Overhead ground wire 23: Overhead transformer 23n: Neutral wire 231: Primary winding 232: Secondary Winding 24: Grasping insulator 25: Low-voltage lead-in wire 26, 27: Grounding wire 26a: Class B grounding 27a: Aerial ground wire grounding 28, 33, 34: Bypass wire
31: First discharge gap 32: Second discharge gap 41: Second SPD
42: Third SPD
100: Backflow lightning protection device G: Ground surface

Claims (2)

塔体及び設備機器を含む需要家施設と、高圧配電線、架空地線及び前記高圧配電線が一次側に接続された柱上変圧器を含む配電設備と、を備え、前記柱上変圧器の二次側の電圧を、低圧引込線を介して前記設備機器に電源電圧として供給すると共に、前記設備機器が第1のサージ防護素子を介して需要家側接地にて接地されているシステムを対象とし、前記塔体への落雷により前記需要家施設の接地電位が上昇した時に、少なくとも前記設備機器及び前記配電設備を保護するための逆流雷保護装置において、
前記塔体及び前記第1のサージ防護素子に接続された需要家側接地と前記配電設備に設けられた配電設備側接地との間に接続されて前記第1のサージ防護素子よりも低い動作電圧を有する放電ギャップと、
前記柱上変圧器の二次巻線の中性線を除く両端と前記配電設備側接地との間にそれぞれ接続された第2,第3のサージ防護素子と、
を備えたことを特徴とする逆流雷保護装置。
A customer facility including a tower and equipment, and a power distribution facility including a high-voltage distribution line, an overhead ground line, and a pole transformer connected to the primary side of the high-voltage distribution line, and the pole transformer Targeting a system in which a secondary-side voltage is supplied as a power supply voltage to the equipment via a low-voltage lead-in line, and the equipment is grounded at a customer-side ground via a first surge protection element In the backflow lightning protection device for protecting at least the equipment and the power distribution equipment when the ground potential of the customer facility is increased by a lightning strike to the tower body,
Operating voltage lower than that of the first surge protection element connected between the customer side ground connected to the tower body and the first surge protection element and the distribution equipment side ground provided in the power distribution equipment A discharge gap having
Second and third surge protection elements respectively connected between both ends excluding the neutral line of the secondary winding of the pole transformer and the distribution equipment side ground;
A reverse lightning protection device comprising:
請求項1に記載した逆流雷保護装置において、
前記配電設備側接地は、前記柱上変圧器の二次巻線の中性線に接続されたB種接地と、前記架空地線に接続された架空地線接地と、を含むことを特徴とする逆流雷保護装置。
In the backflow lightning protection device according to claim 1,
The distribution facility side ground includes a B-type ground connected to a neutral wire of the secondary winding of the pole transformer, and an overhead ground wire ground connected to the overhead ground wire. Backflow lightning protection device.
JP2014110873A 2014-05-29 2014-05-29 Backflow lightning protection device Active JP6222738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014110873A JP6222738B2 (en) 2014-05-29 2014-05-29 Backflow lightning protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014110873A JP6222738B2 (en) 2014-05-29 2014-05-29 Backflow lightning protection device

Publications (2)

Publication Number Publication Date
JP2015226406A true JP2015226406A (en) 2015-12-14
JP6222738B2 JP6222738B2 (en) 2017-11-01

Family

ID=54842844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014110873A Active JP6222738B2 (en) 2014-05-29 2014-05-29 Backflow lightning protection device

Country Status (1)

Country Link
JP (1) JP6222738B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720602A (en) * 2016-01-21 2016-06-29 易事特集团股份有限公司 Photovoltaic grid-connected power generating energy storage inverter grid-connected-off-grid system and operation device thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146943U (en) * 1989-05-11 1990-12-13
JPH0831668A (en) * 1994-07-14 1996-02-02 Otowa Denki Kogyo Kk Method for withstanding lightning using transformer
JP2002320319A (en) * 2001-04-18 2002-10-31 Hokuriku Electric Power Co Inc:The Protection method against thunder damage
JP2003143752A (en) * 2001-10-30 2003-05-16 Sony Corp Ac adaptor
JP2007068262A (en) * 2005-08-29 2007-03-15 Koreyuki Takeya Excessive voltage prevention device
JP2007280775A (en) * 2006-04-07 2007-10-25 Shoden Corp Grounding system
JP2007300744A (en) * 2006-05-01 2007-11-15 Shoden Corp Flashover protective arrester
JP2008206263A (en) * 2007-02-19 2008-09-04 Sankosha Corp Surge protection device and surge protector using same
JP2009284580A (en) * 2008-05-20 2009-12-03 Ntt Facilities Inc Surge protection device
JP2010115074A (en) * 2008-11-10 2010-05-20 Ntt Facilities Inc Device for protecting surge

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146943U (en) * 1989-05-11 1990-12-13
JPH0831668A (en) * 1994-07-14 1996-02-02 Otowa Denki Kogyo Kk Method for withstanding lightning using transformer
JP2002320319A (en) * 2001-04-18 2002-10-31 Hokuriku Electric Power Co Inc:The Protection method against thunder damage
JP2003143752A (en) * 2001-10-30 2003-05-16 Sony Corp Ac adaptor
JP2007068262A (en) * 2005-08-29 2007-03-15 Koreyuki Takeya Excessive voltage prevention device
JP2007280775A (en) * 2006-04-07 2007-10-25 Shoden Corp Grounding system
JP2007300744A (en) * 2006-05-01 2007-11-15 Shoden Corp Flashover protective arrester
JP2008206263A (en) * 2007-02-19 2008-09-04 Sankosha Corp Surge protection device and surge protector using same
JP2009284580A (en) * 2008-05-20 2009-12-03 Ntt Facilities Inc Surge protection device
JP2010115074A (en) * 2008-11-10 2010-05-20 Ntt Facilities Inc Device for protecting surge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720602A (en) * 2016-01-21 2016-06-29 易事特集团股份有限公司 Photovoltaic grid-connected power generating energy storage inverter grid-connected-off-grid system and operation device thereof

Also Published As

Publication number Publication date
JP6222738B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
CN203278165U (en) 10kV overhead distribution line arrester arrangement structure
CN105102090A (en) Method for constructing power distribution line by using combined overhead ground wire and extra high voltage neutral line having separated installation structure for extra high voltage neutral line and low voltage neutral line
ES2387257T3 (en) Lightning protection for inverters
US8044297B2 (en) Ground electrode
CN102916421A (en) Transformer protection mechanism
CN102290775A (en) Lightning-caused breaking prevention method for 10kV overhead insulating line
JP6222738B2 (en) Backflow lightning protection device
CN103997014B (en) Transmitter room equipment light current potential difference connects lightening arresting method
CN105529617B (en) A kind of leakage conductor
CN207910458U (en) The virtual positive induction type lightning conducter lightning protection device in high voltage direct current overhead transmission line road
Yokoyama Designing concept on lightning protection of overhead power distribution line
CN106098275B (en) cable protective layer protector and its adjusting method
CN206210482U (en) A kind of lightning protection line insulator with pressure and discharging gap function
CN106298106A (en) A kind of with all pressures and the lightning protection line insulator of discharging gap function
KR20100088481A (en) A 3-phase cable network system
KR100571152B1 (en) Sheath Current Suppressor for Underground Cables
CN102623937A (en) Lightning protection method of 10kv power distribution circuit
JP4748673B2 (en) Grounding system
Trainba et al. Lightning performance of a HV/MV substation
JP2007300744A (en) Flashover protective arrester
CN105826892B (en) For reducing the shielding line system of mountain area 750kV common-tower double-circuit lines shielding exposure arc
CN206625640U (en) Lightning protection electric pole
CN203760885U (en) Pole-mounted distribution transformation system
CN114336179B (en) Lightning-proof broken line protection device for shielding, insulating and isolating 10kV overhead insulated line
Narayan Method for the design of lightning protection, noise control and grounding system at a telecom facility intelec® 2014

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170928

R150 Certificate of patent or registration of utility model

Ref document number: 6222738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250