JP2015224379A - Mixed powder for powder metallurgy - Google Patents

Mixed powder for powder metallurgy Download PDF

Info

Publication number
JP2015224379A
JP2015224379A JP2014111418A JP2014111418A JP2015224379A JP 2015224379 A JP2015224379 A JP 2015224379A JP 2014111418 A JP2014111418 A JP 2014111418A JP 2014111418 A JP2014111418 A JP 2014111418A JP 2015224379 A JP2015224379 A JP 2015224379A
Authority
JP
Japan
Prior art keywords
powder
iron
graphite
mixed
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014111418A
Other languages
Japanese (ja)
Other versions
JP6262078B2 (en
Inventor
充洋 佐藤
Mitsuhiro Sato
充洋 佐藤
宣明 赤城
Nobuaki Akagi
宣明 赤城
浩則 鈴木
Hironori Suzuki
浩則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014111418A priority Critical patent/JP6262078B2/en
Priority to SE1651450A priority patent/SE541766C2/en
Priority to US15/309,947 priority patent/US20170266723A1/en
Priority to KR1020167036059A priority patent/KR20170010829A/en
Priority to PCT/JP2015/063889 priority patent/WO2015182398A1/en
Priority to CN201580022712.6A priority patent/CN106255563B/en
Publication of JP2015224379A publication Critical patent/JP2015224379A/en
Application granted granted Critical
Publication of JP6262078B2 publication Critical patent/JP6262078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F2003/023Lubricant mixed with the metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/01Main component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mixed powder for powder metallurgy which allows reduction of variation of the weight of a molding by improving the packing capacity of a mold.SOLUTION: A mixed powder for powder metallurgy is obtained by mixing a graphite powder of an average particle size D50 of 1.0-3.0 μm and an average particle size D90 of 10 μm or smaller with an iron-based powder under shear force, without addition of a binder. The mixed powder for powder metallurgy thus obtained contains an iron-based powder and a graphite powder present collectively in concave parts of the iron-based powder.

Description

本発明は、主原料が鉄基粉末である混合粉末を成形、焼結して焼結体を製造する粉末冶金技術に関し、特に混合粉末の金型への充填性を向上させ、得られる成形体の重量ばらつきを低減できる粉末冶金用混合粉末に関する。   The present invention relates to a powder metallurgy technique for producing a sintered body by molding and sintering a mixed powder whose main raw material is an iron-based powder, and in particular, a molded body obtained by improving the filling property of the mixed powder into a mold. The present invention relates to a powder mixture for powder metallurgy that can reduce the weight variation of the powder.

鉄粉や銅粉を主原料として用いて焼結体を製造する粉末冶金では、通常、前記主原料の粉末、焼結体の物性を向上させるための黒鉛粉末、合金成分などの副原料粉末、潤滑剤などを含む混合粉末を用いる。特に、焼結体の、強度や硬度などの機械的物性を向上させるため、黒鉛などの炭素供給成分(つまり、炭素源)を添加して成形し、続いて加熱焼結工程の間に、炭素源を鉄粉に拡散及び浸透させることが一般的である。   In powder metallurgy for producing a sintered body using iron powder or copper powder as a main raw material, usually powder of the main raw material, graphite powder for improving the physical properties of the sintered body, auxiliary raw material powder such as an alloy component, A mixed powder containing a lubricant or the like is used. In particular, in order to improve the mechanical properties of the sintered body, such as strength and hardness, a carbon supply component such as graphite (that is, a carbon source) is added and molded, followed by carbon during the heating and sintering process. It is common to diffuse and penetrate the source into the iron powder.

しかし、黒鉛は鉄粉に比べて比重が小さく、かつ粒径が小さいため、単に混合するだけでは黒鉛と鉄粉が大きく分離して黒鉛が偏析し、均一に混合できないという問題がある。粉末冶金法では、焼結体を量産するため、通常、混合粉末を予め貯蔵ホッパーに貯蔵しておく。貯蔵ホッパーでは、比重の小さな黒鉛はホッパーの上層部に偏析しやすく、混合粉末をホッパーから排出する際、ホッパー排出の最後の方で黒鉛の濃度が高くなり、焼結体中の黒鉛濃度の高い部分にはセメンタイト組織が析出して機械的特性を低下させる。黒鉛の偏析によって焼結体中のカーボンの含有量にばらつきを生じると、品質の安定した部品を製造することが困難となる。また、混合工程や成形工程において、黒鉛の偏析によって黒鉛粉の発塵が生じ、職場環境の悪化および混合粉末のハンドリング性の低下という問題が生じる。上記した偏析は、黒鉛のみならず、鉄粉と混合されるその他の様々な粉末でも同様に生じ、偏析の防止が求められていた。   However, since graphite has a smaller specific gravity and smaller particle size than iron powder, there is a problem that graphite and iron powder are separated largely by simply mixing them, and graphite is segregated and cannot be mixed uniformly. In the powder metallurgy method, in order to mass-produce sintered bodies, the mixed powder is usually stored in a storage hopper in advance. In storage hoppers, graphite with a low specific gravity tends to segregate in the upper layer of the hopper, and when the mixed powder is discharged from the hopper, the concentration of graphite increases at the end of the hopper discharge, and the graphite concentration in the sintered body is high. A cementite structure is deposited on the part, and the mechanical properties are lowered. If the carbon content in the sintered body varies due to the segregation of graphite, it becomes difficult to produce a component with stable quality. Further, in the mixing process and the molding process, graphite powder is generated due to the segregation of graphite, which causes problems such as deterioration of the workplace environment and deterioration of the handleability of the mixed powder. The above-mentioned segregation occurs not only in graphite but also in various other powders mixed with iron powder, and prevention of segregation has been demanded.

上記した偏析と発塵を防止するため、従来から大別して3つの方法が提案されてきた。第一の方法は、例えば特許文献1、2などに挙げられるように、トール油などの液体添加剤を混合粉末に添加する方法である。この方法は、簡便な設備で混合粉末を製造できるという利点はあるものの、偏析防止効果が認められるのに必要な量の液体添加剤を添加すると、鉄粉粒子間に液架橋力が働き、極端に流れ性が悪化するという問題がある。第二の方法は、特許文献3,4などのように、高分子ポリマーなどの固体バインダーを溶剤に溶解して均一混合した後、溶剤を蒸発させて鉄粉の表面に黒鉛を付着させる方法である。この方法は、黒鉛を確実に付着させることができるとともに、使用する潤滑剤の選択肢も広いという利点を有するが、その量や種類によっては混合粉末の流れ性が不十分であったり、圧縮性が低下するという問題がある。第三の方法は、特許文献5などに示されるように、脂肪酸などの比較的低分子量の潤滑剤を鉄粉との混合中に加熱して溶融させる、いわゆるホットメルト法である。この方法は、溶融させた潤滑剤を均一に鉄粉表面に固着させるため、混合中の温度管理は非常に重要であり、また使用できる潤滑剤の選択肢が制限されるという欠点がある。また第三の方法は、潤滑剤が冷えるまで待つ必要があり、生産性にも問題がある。   In order to prevent the above-mentioned segregation and dust generation, three methods have been proposed in the past. The first method is a method in which a liquid additive such as tall oil is added to the mixed powder as described in Patent Documents 1 and 2, for example. Although this method has the advantage that a mixed powder can be produced with simple equipment, if a liquid additive is added in an amount necessary for the effect of preventing segregation, the liquid crosslinking force acts between the iron powder particles, and the However, there is a problem that the flowability deteriorates. The second method is a method in which a solid binder such as a polymer is dissolved in a solvent and uniformly mixed, and then the solvent is evaporated and graphite is adhered to the surface of the iron powder, as in Patent Documents 3 and 4. is there. This method has the advantage that graphite can be reliably attached and the choice of lubricant to be used is wide, but depending on the amount and type, the flowability of the mixed powder is insufficient or the compressibility is low. There is a problem of lowering. The third method is a so-called hot melt method in which a relatively low molecular weight lubricant such as a fatty acid is heated and melted during mixing with iron powder as disclosed in Patent Document 5 and the like. In this method, since the melted lubricant is uniformly fixed on the surface of the iron powder, the temperature control during mixing is very important, and there are disadvantages that the choice of the lubricant that can be used is limited. In the third method, it is necessary to wait until the lubricant cools, and there is a problem in productivity.

本出願人によって出願された特許文献6では、上記した3つの方法とは異なり、バインダーを添加することなく、平均粒径の制御された黒鉛を、せん断力を与えながら鉄基粉末と混合することによって、黒鉛粉末の偏析を抑制する技術を開示している。当該技術では、さらに混合粉末の流動性にも優れていることが記載されている。粉末冶金法においては、混合粉末を貯蔵ホッパーから排出して金型に充填する際、混合粉末の流れ性も重要な特性の一つとなる。特許文献6では、流動性の指標としては、例えばJIS Z2502に規定される混合粉末の流動度を用いているが、このような流動度の他、混合粉末がホッパーからホースを通じて排出され、金型に良好に充填されること、つまり金型充填性も重要な特性である。金型の充填性が低下すると、成形体の重量ばらつきを招く。   In Patent Document 6 filed by the present applicant, unlike the above-described three methods, graphite having a controlled average particle diameter is mixed with iron-based powder while applying a shearing force without adding a binder. Discloses a technique for suppressing segregation of graphite powder. The technique describes that the fluidity of the mixed powder is also excellent. In the powder metallurgy method, when the mixed powder is discharged from the storage hopper and filled into the mold, the flowability of the mixed powder is one of the important characteristics. In Patent Document 6, as the fluidity index, for example, the fluidity of the mixed powder defined in JIS Z2502 is used. In addition to such fluidity, the mixed powder is discharged from the hopper through the hose, and the mold is used. Is also an important characteristic. When the filling property of the mold is lowered, the weight variation of the molded body is caused.

特開昭60−502158号公報JP-A-60-502158 特開平6−49503号公報JP-A-6-49503 特開平5−86403号公報JP-A-5-86403 特開平7−173503号公報JP-A-7-173503 特開平1−219101号公報JP-A-1-219101 特開2012−102355号公報JP 2012-102355 A

本発明は、金型の充填性を良好にし、成形体の重量ばらつきの低減を可能にする粉末冶金用混合粉末を提供することを目的とする。   An object of the present invention is to provide a powder mixture for powder metallurgy that can improve the filling property of a mold and reduce the weight variation of a molded body.

上記課題を達成した本発明に係る粉末冶金用混合粉末は、平均粒径D50が1.0μm以上、3.0μm以下であり、D90が10μm以下である黒鉛粉末を、バインダーを添加することなく、せん断力を与えながら鉄基粉末と混合することによって得られる。このようにして得られる本発明の粉末冶金用混合粉末は、すなわち、鉄基粉末と、前記鉄基粉末の凹部に集まって存在する黒鉛粉末とを含むことを特徴とする粉末冶金用混合粉末である。   The mixed powder for powder metallurgy according to the present invention that has achieved the above-mentioned problems is obtained by adding graphite powder having an average particle diameter D50 of 1.0 μm or more and 3.0 μm or less and D90 of 10 μm or less without adding a binder, It is obtained by mixing with iron-based powder while applying a shearing force. The mixed powder for powder metallurgy of the present invention thus obtained is a mixed powder for powder metallurgy characterized by including an iron-based powder and a graphite powder that is present in the recesses of the iron-based powder. is there.

本発明において、前記黒鉛粉末の平均粒径D50が、1.6μm以上、2.7μm以下であることが好ましく、また前記鉄基粉末が、アトマイズ鉄粉または還元鉄粉であることも好ましい。   In this invention, it is preferable that the average particle diameter D50 of the said graphite powder is 1.6 micrometers or more and 2.7 micrometers or less, and it is also preferable that the said iron base powder is atomized iron powder or reduced iron powder.

本発明によれば、D50及びD90が所定範囲である黒鉛粉末を、バインダーを添加することなく、せん断力を与えながら鉄基粉末と混合しているため、前記鉄基粉末の凹部に黒鉛粉末が集まって存在することとなり、良好な金型充填性を確保して、成形体の重量ばらつきを低減できる。   According to the present invention, since the graphite powder having D50 and D90 in a predetermined range is mixed with the iron-based powder while applying a shearing force without adding a binder, the graphite powder is in the recess of the iron-based powder. As a result, it is possible to ensure good mold filling properties and reduce the weight variation of the molded body.

図1は、後記する実施例で用いた金型充填性評価装置の概略図であり、図1(a)は正面図、図1(b)〜(d)は稼働中の状態を示す断面図である。FIG. 1 is a schematic view of a mold filling property evaluation apparatus used in Examples described later, FIG. 1 (a) is a front view, and FIGS. 1 (b) to 1 (d) are sectional views showing operating states. It is. 図2は、後記する実施例において本発明の混合粉末を観察した走査型電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of the mixed powder of the present invention observed in the examples described later. 図3は、後記する実施例において本発明の混合粉末を観察した走査型電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of the mixed powder of the present invention observed in the examples described later.

本発明者らは、上記特許文献6の技術を基礎に、特許文献6では着目されていなかった成形体の重量ばらつきを低減すべく、黒鉛の粒径と成形体の重量ばらつきの関係について検討することとし、以下の実験を行った。市販の天然黒鉛(日本黒鉛製、CPB、平均粒径22.6μm)を下記表1に示す平均粒径D50となるよう、乾式ジェットミルで粉砕した。粉砕して得られた黒鉛粉末と、鉄粉(神戸製鋼所製、アトメル300M、粒径:180μm以下、平均粒径:70μm)と、銅粉(福田金属製、CuAtw−250)と、潤滑剤としてステアリン酸亜鉛(ADEKA製、ZNS−730)とを混合し、混合粉末を得た。混合比率は、鉄粉97.2質量部に対して、黒鉛粉末が0.8質量部、銅粉が2質量部、潤滑剤が0.75質量部である。混合は、攪拌翼を有する高速混合機を用いて、300rpmで4分間行った。   Based on the technique of the above-mentioned Patent Document 6, the present inventors examine the relationship between the particle size of graphite and the weight variation of the molded body in order to reduce the weight variation of the molded body, which was not noted in Patent Document 6. The following experiment was conducted. Commercially available natural graphite (manufactured by Nippon Graphite, CPB, average particle size 22.6 μm) was pulverized by a dry jet mill so as to have an average particle size D50 shown in Table 1 below. Graphite powder obtained by grinding, iron powder (manufactured by Kobe Steel, Atmel 300M, particle size: 180 μm or less, average particle size: 70 μm), copper powder (manufactured by Fukuda Metal, CuAtw-250), and lubricant Zinc stearate (manufactured by ADEKA, ZNS-730) was mixed to obtain a mixed powder. The mixing ratio is 0.8 parts by mass of graphite powder, 2 parts by mass of copper powder, and 0.75 parts by mass of lubricant with respect to 97.2 parts by mass of iron powder. Mixing was performed at 300 rpm for 4 minutes using a high-speed mixer having a stirring blade.

得られた混合粉末を用い、機械式粉末成形プレスで、目標重量51gの試験片を300個連続成形し、得られた成形体の重量ばらつきを評価した。重量ばらつきは、300個の成形体のうち、最大の重量と最小の重量の差R(g)で評価した。結果を表1に示す。   Using the obtained mixed powder, 300 test pieces with a target weight of 51 g were continuously formed with a mechanical powder forming press, and the weight variation of the obtained formed body was evaluated. The weight variation was evaluated by the difference R (g) between the maximum weight and the minimum weight among the 300 molded bodies. The results are shown in Table 1.

上記混合において黒鉛粉末を添加しなかった参考例1の重量ばらつきが1.35gであるのに対し、黒鉛粉末を添加した参考例2〜11は参考例1よりも重量ばらつきが大きくなっていることがわかる。また、黒鉛粉末の平均粒径D50が微細になるほど重量ばらつきは小さくなるという、おおよその傾向があるものの、特に参考例6〜11を見ると、単に黒鉛粉末の平均粒径D50だけが重量ばらつきに影響していると結論付けることはできない。また、黒鉛粉末の平均粒径を制御したのみでは、目標重量に対するばらつきが約4%以下(すなわち、約2g以下)という目標を達成することができない。   The weight variation of Reference Example 1 in which no graphite powder was added in the above mixing was 1.35 g, whereas the weight variation of Reference Examples 2 to 11 in which graphite powder was added was larger than that of Reference Example 1. I understand. In addition, although there is an approximate tendency that the weight variation becomes smaller as the average particle diameter D50 of the graphite powder becomes finer, particularly when the Reference Examples 6 to 11 are viewed, only the average particle diameter D50 of the graphite powder becomes the weight variation. We cannot conclude that it is affecting. Moreover, the target that the variation with respect to the target weight is about 4% or less (that is, about 2 g or less) cannot be achieved only by controlling the average particle diameter of the graphite powder.

そこで本発明者らは、特許文献6で提案されていた黒鉛粉末の平均粒径D50のみならず、D90を調整することを着想した。後記する実施例で示す通り、D50及びD90を調整した黒鉛粉末を、せん断力を与えながら鉄基粉末と混合することによって、鉄基粉末の表面に存在する凹部に黒鉛粉末をすり込むことが可能となり、金型充填性を向上させ、成形体の重量ばらつきを低減できる。   Therefore, the present inventors conceived of adjusting not only the average particle diameter D50 of the graphite powder proposed in Patent Document 6, but also D90. As shown in the examples to be described later, the graphite powder adjusted for D50 and D90 is mixed with the iron-based powder while applying a shearing force, so that the graphite powder can be rubbed into the recesses existing on the surface of the iron-based powder. The mold filling property can be improved, and the weight variation of the molded product can be reduced.

上記したすり込み効果を十分に発揮するため、黒鉛粉末のD50を3.0μm以下とする。D50は、好ましくは2.7μm以下であり、より好ましくは2.5μm以下である。すり込み効果の観点からは黒鉛粉末のD50は小さい程好ましいが、D50が小さくなりすぎると、重量ばらつきは低減できるものの、プレス成形した際の成形体密度が著しく低下し、成形体を焼結して得られる部品の強度を確保できない。そこで黒鉛粉末のD50を1.0μm以上と定めた。黒鉛粉末のD50は、好ましくは1.1μm以上であり、より好ましくは1.6μm以上である。成形体の重量のばらつき低減、金型充填性の向上、及び成形体密度の向上を全てより高度に達成する観点からは、黒鉛粉末のD50は1.6μm以上、2.7μm以下であることが好ましい。なお、黒鉛粉末のD50が1.0μm未満の場合に、成形体密度が低下する原因については、過度の粉砕によって黒鉛の層状構造が壊れ、黒鉛の持つ潤滑性が損なわれるためと考えられる。   In order to sufficiently exhibit the above-mentioned rubbing effect, the D50 of the graphite powder is set to 3.0 μm or less. D50 is preferably 2.7 μm or less, and more preferably 2.5 μm or less. From the viewpoint of the rubbing effect, it is preferable that the D50 of the graphite powder is small. However, if the D50 is too small, the weight variation can be reduced, but the density of the compact at the time of press molding is significantly reduced, and the compact is sintered. The strength of the parts obtained in this way cannot be secured. Therefore, the D50 of the graphite powder is set to 1.0 μm or more. The D50 of the graphite powder is preferably 1.1 μm or more, more preferably 1.6 μm or more. From the viewpoint of achieving all of the reduction in the variation in the weight of the compact, the improvement of the mold filling property, and the improvement in the density of the compact, the D50 of the graphite powder may be 1.6 μm or more and 2.7 μm or less. preferable. In addition, when D50 of graphite powder is less than 1.0 micrometer, it is thought that the reason for the density reduction of the compact is that the layered structure of graphite is broken by excessive grinding and the lubricity of graphite is impaired.

D50が上記範囲に調整された本発明の黒鉛粉末は、市販の天然黒鉛または人造黒鉛を、粉砕して得ることができ、粉砕には通常の粉砕機を用いればよい。粉砕の雰囲気は特に限定されず、乾式で粉砕しても良いし、湿式で粉砕しても良い。粉砕機としては、通常の粉砕機を用いることができ、例えばロールクラッシャー、カッターミル、ロータリークラッシャー、ハンマクラッシャー、ジェットミル、振動ミル、ピンミル、ウイングミル、ボールミル、遊星ミルなどが挙げられる。   The graphite powder of the present invention in which D50 is adjusted to the above range can be obtained by pulverizing commercially available natural graphite or artificial graphite, and an ordinary pulverizer may be used for pulverization. The atmosphere of pulverization is not particularly limited, and the pulverization atmosphere may be dry or pulverized wet. As the pulverizer, a normal pulverizer can be used, and examples thereof include a roll crusher, a cutter mill, a rotary crusher, a hammer crusher, a jet mill, a vibration mill, a pin mill, a wing mill, a ball mill, and a planetary mill.

粉砕された黒鉛粉末は、比表面積が大きくなって、静電気などの物理的な力が作用する他、化学的な力も作用していると考えられる。すなわち、微細に粉砕された黒鉛の粉砕面には、水素基などの官能基が多く含まれていると考えられ、官能基を介して鉄粉と黒鉛粉末の間で分子間力が発生し、黒鉛粉末と鉄基粉末との付着力が増すと考えられる。官能基の有無とその含有量は、窒素雰囲気中で黒鉛粉末を加熱し、室温から950℃までの重量変化率を測定することで、ある程度把握することができる。前記した室温から950℃まで昇温する際の昇温速度はおよそ10℃/分とするのが良い。通常、加熱温度域ごとに黒鉛粉末から発生するガスの種類が異なり、発生するガスの種類からその温度域で除去されている官能基の種類を推定することができる。150〜500℃ではカルボキシル基(−COOH)やヒドロキシ基(−OH)が除去され、500〜900℃ではオキソ基(=O)が除去され、900℃以上では水素基(−H)が除去されることが一般に知られている。150〜950℃までの重量減少量を調べることによって、150℃より低い温度で除去できる水分の重量減少の影響を取り除くことができ、黒鉛粉末に含まれる官能基の種類と含有量を知ることができる。   The pulverized graphite powder has a large specific surface area, and it is considered that a physical force such as static electricity acts as well as a chemical force. That is, it is considered that the finely pulverized graphite pulverized surface contains a lot of functional groups such as hydrogen groups, and intermolecular force is generated between the iron powder and the graphite powder via the functional groups, It is thought that adhesion between graphite powder and iron-based powder increases. The presence or absence of the functional group and the content thereof can be grasped to some extent by heating the graphite powder in a nitrogen atmosphere and measuring the weight change rate from room temperature to 950 ° C. The rate of temperature increase when the temperature is raised from room temperature to 950 ° C. is preferably about 10 ° C./min. Normally, the type of gas generated from the graphite powder differs for each heating temperature range, and the type of functional group removed in that temperature range can be estimated from the type of generated gas. A carboxyl group (—COOH) and a hydroxy group (—OH) are removed at 150 to 500 ° C., an oxo group (═O) is removed at 500 to 900 ° C., and a hydrogen group (—H) is removed at 900 ° C. and above. It is generally known. By examining the weight loss from 150 to 950 ° C., it is possible to remove the influence of the weight reduction of moisture that can be removed at temperatures lower than 150 ° C., and to know the type and content of functional groups contained in the graphite powder. it can.

本発明では、黒鉛粉末のD50を所定範囲に調整するのみならず、D90を10μm以下にすることが重要である。D90を10μm以下にすることによって、鉄基粉末の凹部にすり込まれない黒鉛粉末の量を低減できる。黒鉛粉末のD90は、好ましくは9.5μm以下であり、より好ましくは9.0μm以下であり、特に8.5μm以下が好ましい。黒鉛粉末のD90は小さい程好ましいが、その下限は通常、3.5μm程度である。黒鉛粉末のD90を前記範囲とするためには、上記した粉砕機での粉砕の後に、気流分級を行えば良い。   In the present invention, it is important not only to adjust D50 of the graphite powder to a predetermined range, but also to set D90 to 10 μm or less. By setting D90 to 10 μm or less, the amount of graphite powder that is not rubbed into the recesses of the iron-based powder can be reduced. D90 of the graphite powder is preferably 9.5 μm or less, more preferably 9.0 μm or less, and particularly preferably 8.5 μm or less. The lower D90 of the graphite powder is preferable, but the lower limit is usually about 3.5 μm. In order to set the D90 of the graphite powder within the above range, airflow classification may be performed after pulverization by the above pulverizer.

なお、黒鉛粉末のD50及びD90はいずれもレーザー回折式粒度分布測定装置により測定可能であり、D50は体積基準の累積50%相当粒子径を意味し、D90は体積基準の累積90%相当粒子径を意味する。   In addition, both D50 and D90 of graphite powder can be measured by a laser diffraction particle size distribution measuring device, D50 means a volume-based cumulative particle size equivalent to 50%, and D90 means a volume-based cumulative particle size equivalent to 90%. Means.

黒鉛粉末の含有量は、鉄基粉末と、黒鉛粉末と、後記する強度向上剤の合計量100質量部に対して通常0.1〜2.5質量部である。機械構造用部品に適用する場合は0.2〜1.2質量部の配合率が多く用いられており、この範囲で好適に使用される。   The content of the graphite powder is usually 0.1 to 2.5 parts by mass with respect to 100 parts by mass of the total amount of the iron-based powder, the graphite powder, and the strength improver described later. When applied to machine structural parts, a blending ratio of 0.2 to 1.2 parts by mass is often used, and is preferably used within this range.

良好な金型充填性を達成する上で、黒鉛粉末と鉄基粉末との混合を、バインダーを添加することなく、せん断力を与えながら行うことが重要である。せん断力を与えることによって、鉄基粉末の凹部に黒鉛粉末をすり込むことができ、またバインダーを添加しないため、鉄基粉末の凹部以外(例えば凸部)に黒鉛粉末が付着するのを抑制でき、黒鉛粉末が鉄基粉末の凹部に集まって存在することとなる。黒鉛粉末が鉄基粉末の凹部以外に多く存在すると、混合粉末の流動性が悪くなって金型充填性を悪化させる。バインダーを添加する方法や、せん断力を与える混合方法と異なる方法(後述する)では、鉄基粉末の凹部以外にも黒鉛粉末が多く存在することとなり、良好な金型充填性を達成できない。   In order to achieve good mold filling properties, it is important to mix the graphite powder and the iron-based powder while applying a shearing force without adding a binder. By giving a shearing force, graphite powder can be rubbed into the recesses of the iron-based powder, and since no binder is added, it is possible to suppress the graphite powder from adhering to other than the recesses of the iron-based powder (for example, protrusions), The graphite powder gathers in the recesses of the iron-based powder and exists. When a large amount of graphite powder is present other than the recesses of the iron-based powder, the fluidity of the mixed powder is deteriorated and the mold filling property is deteriorated. In a method (described later) different from the method of adding a binder or the method of applying a shearing force (to be described later), many graphite powders exist in addition to the recesses of the iron-based powder, and good mold filling properties cannot be achieved.

また、バインダーを添加しないことは、バインダーを添加した場合と比較して、同じ成形圧力で成形した際の成形体の密度、及び該成形体を焼結した焼結体の密度が高くなり、焼結体の強度が良好になるという効果も有する。さらに、バインダーを添加しない本発明の混合粉末は、成形工程と焼結工程の間に行われる脱ロウ工程を省略または簡素化することができ、焼結部品の生産性向上と環境対策にも寄与する。   Also, the absence of a binder means that the density of the molded body when molded at the same molding pressure and the density of the sintered body obtained by sintering the molded body are higher than when the binder is added. There is also an effect that the strength of the bonded body is improved. Furthermore, the mixed powder of the present invention to which no binder is added can omit or simplify the dewaxing process performed between the molding process and the sintering process, contributing to improved productivity of sintered parts and environmental measures. To do.

せん断力を与える混合方法とは、V型混合機、ダブルコーン混合機に代表されるような対流混合方法や、バイブロミルや電磁ミルなどの振動ミル、ボールミルを用いる混合方法とは異なる方法である。せん断力を与える混合は、例えば、撹拌翼を備えた混合機を用いることによって実現できる。前記撹拌翼は、粉末を切るように動くものが好ましく、その形状はパドル、タービン、リボン、スクリュー、多段翼、アンカー型、馬蹄型、ゲート型などが挙げられる。前記撹拌翼を備える限り、混合機の容器は固定型であっても良いし、回転型であっても良い。前記撹拌翼を備えた混合機として、具体的にはハイスピードミキサ(ヘンシェル社製など)、プラウ型ミキサ、ナウターミキサなどが挙げられる。混合時間は、用いる混合機の種類や混合粉末の量などにもよるが、概ね1〜20分である。   The mixing method which gives a shearing force is a method different from a convection mixing method represented by a V-type mixer or a double cone mixer, a mixing method using a vibration mill such as a vibro mill or an electromagnetic mill, or a ball mill. Mixing that gives a shearing force can be realized, for example, by using a mixer equipped with a stirring blade. The stirring blade is preferably one that moves so as to cut powder, and examples of the shape include a paddle, a turbine, a ribbon, a screw, a multistage blade, an anchor type, a horseshoe type, and a gate type. As long as the stirring blade is provided, the container of the mixer may be a fixed type or a rotary type. Specific examples of the mixer equipped with the stirring blade include a high-speed mixer (such as Henschel), a plow-type mixer, and a nauter mixer. The mixing time is generally 1 to 20 minutes, although it depends on the type of the mixer used and the amount of the mixed powder.

黒鉛粉末と鉄基粉末の混合は乾式で行っても良いし、湿式で行っても良い。また、黒鉛粉末と鉄基粉末の混合手順は特に限定されず、これら粉末を混合機に同時に入れて混合しても良いし、一方の粉末を先に混合機に投入しておき、他方の粉末を後で投入しても良い。黒鉛粉末と鉄基粉末の混合は、いわゆるホットメルト法のように潤滑剤等が溶融するような温度以上に加熱して行われるのではなく、例えば常温で行えば良い。また混合の雰囲気は特に限定されず、例えば大気中である。   Mixing of the graphite powder and the iron-based powder may be performed dry or wet. The mixing procedure of the graphite powder and the iron-based powder is not particularly limited, and these powders may be simultaneously mixed in a mixer, or one of the powders may be first charged in the mixer and the other powder. May be added later. The mixing of the graphite powder and the iron-based powder is not performed by heating to a temperature at which the lubricant or the like melts as in the so-called hot melt method, but may be performed at room temperature, for example. Moreover, the atmosphere of mixing is not specifically limited, For example, it is in air | atmosphere.

本発明の粉末冶金用粉末は、黒鉛粉末及び鉄基粉末の他に、潤滑剤、物性改善剤(例えば、強度向上剤、耐摩耗性改善剤、被削性改善剤など)の少なくとも1種を含有していても良い。これらは、黒鉛粉末と鉄基粉末との混合の際に添加すれば良く、その添加順序は特に限定されず、例えば黒鉛粉末と鉄基粉末と同時に混合機に添加して混合しても良いし、黒鉛粉末と鉄基粉末を先に混合しておき、その後に混合しながら(例えば撹拌翼を作動させながら)、上記潤滑剤及び物性改善剤を1種ずつまたは2種以上混合機に添加しても良い。   The powder for powder metallurgy according to the present invention contains at least one of a lubricant and a physical property improver (for example, a strength improver, an abrasion resistance improver, a machinability improver, etc.) in addition to the graphite powder and the iron-based powder. You may contain. These may be added at the time of mixing the graphite powder and the iron-base powder, and the order of addition is not particularly limited. For example, the graphite powder and the iron-base powder may be added to the mixer at the same time and mixed. In addition, the graphite powder and the iron-based powder are mixed first, and then the above-mentioned lubricant and physical property improver are added to the mixer one by one or two or more while mixing (for example, while operating the stirring blade). May be.

潤滑剤としては、金属石鹸、アルキレンビス脂肪酸アミド、脂肪酸などが挙げられ、これらは単独で用いても良いし、2種以上を併用しても良い。前記金属石鹸には、脂肪酸塩を用いることができ、例えば炭素数が12以上の脂肪酸塩、特にステアリン酸亜鉛が好ましく用いられる。前記アルキレンビス脂肪酸アミドとして具体的には、C2-6アルキレンビスC12-24カルボン酸アミドが挙げられ、エチレンビスステアリルアミドが好ましく用いられる。前記脂肪酸としては、例えばR1COOH(R1は炭化水素基)として例示される化合物が使用でき、好ましくは炭素数が16〜22程度のカルボン酸であり、特にステアリン酸、オレイン酸が好ましく用いられる。潤滑剤の含有量は、鉄基粉末と、黒鉛粉末と、強度向上剤の合計量100質量部に対して例えば0.3質量部以上、1.5質量部以下であり、より好ましくは0.5質量部以上、1.0質量部以下である。 Examples of the lubricant include metal soap, alkylene bis fatty acid amide, fatty acid and the like, and these may be used alone or in combination of two or more. For the metal soap, a fatty acid salt can be used. For example, a fatty acid salt having 12 or more carbon atoms, particularly zinc stearate is preferably used. Specific examples of the alkylene bis fatty acid amide include C 2-6 alkylene bis C 12-24 carboxylic acid amide, and ethylene bisstearyl amide is preferably used. As the fatty acid, for example, a compound exemplified as R 1 COOH (R 1 is a hydrocarbon group) can be used, preferably a carboxylic acid having about 16 to 22 carbon atoms, and stearic acid and oleic acid are particularly preferably used. It is done. The content of the lubricant is, for example, 0.3 parts by mass or more and 1.5 parts by mass or less, more preferably 0.1 parts by mass or less with respect to 100 parts by mass of the total amount of iron-based powder, graphite powder, and strength improver. 5 parts by mass or more and 1.0 part by mass or less.

強度向上剤としては、例えば銅、ニッケル、クロム、モリブデン、マンガン、シリコンの少なくとも1種を含有する粉末が挙げられ、具体的には銅粉、ニッケル粉、クロム含有粉、モリブデン粉、マンガン含有粉、シリコン含有粉などである。強度向上剤は単独で用いても良いし、2種以上を併用しても良い。強度向上剤の添加量は、鉄基粉末と、黒鉛粉末と、強度向上剤の合計量100質量部に対して、例えば0.2質量部以上、5質量部以下であり、より好ましくは0.3質量部以上、3質量部以下である。   Examples of the strength improver include powders containing at least one of copper, nickel, chromium, molybdenum, manganese, and silicon. Specifically, copper powder, nickel powder, chromium-containing powder, molybdenum powder, manganese-containing powder And silicon-containing powder. A strength improver may be used independently and may use 2 or more types together. The addition amount of the strength improver is, for example, 0.2 parts by mass or more and 5 parts by mass or less, more preferably 0. 3 parts by mass or more and 3 parts by mass or less.

耐摩耗性改善剤としては、炭化物、珪化物、窒化物などの硬質粒子が挙げられ、これらは単独で用いても良いし、2種以上を併用しても良い。   Examples of the wear resistance improver include hard particles such as carbide, silicide, and nitride, and these may be used alone or in combination of two or more.

被削性改善剤としては、硫化マンガン、タルク、フッ化カルシウムなどが挙げられ、これらは単独で用いても良いし、2種以上を併用しても良い。   Examples of the machinability improver include manganese sulfide, talc, calcium fluoride, and the like. These may be used alone or in combination of two or more.

本発明で用いられる鉄基粉末は、純鉄粉、鉄合金粉のいずれであっても良い。鉄合金粉は、鉄基粉末の表面に合金粉(例えば、銅、ニッケル、クロム、モリブデンなど)が拡散付着した部分合金粉であっても良いし、合金成分(上記合金粉と同様の成分)を含有する溶融鉄(または溶鋼)から得られるプレアロイ粉であっても良い。鉄基粉末は、溶融した鉄または鋼をアトマイズ処理して得られるアトマイズ鉄粉であっても良いし、鉄鉱石やミルスケールを還元して得られる還元鉄粉であっても良い。鉄基粉末は、機械部品用に通常用いられている鉄粉を使用することができ、具体的には、平均粒径D50が70〜100μmであり、最大粒径が250μm以下(好ましくは180μm以下)である鉄基粉末が好ましい。鉄基粉末の平均粒径は、日本粉末冶金工業会規格JPMA P 02−1992(金属粉のふるい分析試験方法)に準じて粒度分布を測定したときの、累積篩下量50%の粒径を意味する。   The iron-based powder used in the present invention may be either pure iron powder or iron alloy powder. The iron alloy powder may be a partial alloy powder in which an alloy powder (for example, copper, nickel, chromium, molybdenum, etc.) is diffusely adhered to the surface of the iron-based powder, or an alloy component (the same component as the above alloy powder). It may be a pre-alloy powder obtained from molten iron (or molten steel). The iron-based powder may be atomized iron powder obtained by atomizing molten iron or steel, or reduced iron powder obtained by reducing iron ore or mill scale. As the iron-based powder, an iron powder usually used for machine parts can be used. Specifically, the average particle diameter D50 is 70 to 100 μm, and the maximum particle diameter is 250 μm or less (preferably 180 μm or less). ) Is preferred. The average particle size of the iron-based powder is the particle size of 50% of the cumulative sieving amount when the particle size distribution is measured according to Japan Powder Metallurgy Industry Association Standard JPMA P 02-1992. means.

本発明によれば、金型充填性を向上させ、成形体の重量ばらつきを低減できる。本発明の混合粉末を用いて、成形体を複数個成形した際の成形体重量の最大値と最小値で評価される重量ばらつきは、目標重量に対して4%以下とできる。   According to the present invention, the mold filling property can be improved and the weight variation of the molded body can be reduced. The weight variation evaluated by the maximum value and the minimum value of the molded body weight when a plurality of molded bodies are molded using the mixed powder of the present invention can be 4% or less with respect to the target weight.

また、本発明では黒鉛粉末の微細化によって寸法変化を最小限にできるなど、品質を安定化でき、焼結温度の低減や焼結時間の短縮など焼結部品の製造において省エネ、省コストも実現できる。本発明の混合粉末は、機械構造用焼結部品などに適用でき、特に複雑、薄肉形状の部品にも適用できる。そして軽量化ができるため、高強度材にも好適である。   In addition, the present invention can stabilize quality by minimizing dimensional change by miniaturizing graphite powder, and realizes energy saving and cost saving in the production of sintered parts such as reduction of sintering temperature and shortening of sintering time. it can. The mixed powder of the present invention can be applied to sintered parts for machine structures and the like, and particularly applicable to complicated and thin-walled parts. And since it can be reduced in weight, it is suitable also for a high-strength material.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.

市販の天然黒鉛(日本黒鉛社製、CPB、平均粒径22.6μm)を下記表4〜6に示す平均粒径D50となるよう、乾式ジェットミルで粉砕し、D90は粉砕まま又は気流分級によって調整した。粉砕して得られた黒鉛粉末と、鉄粉(神戸製鋼所製、アトメル300M、300NH、又は250M)と、銅粉(福田金属製、CuAtw−250)と、潤滑剤としてステアリン酸亜鉛(ADEKA製、ZNS−730)とを混合し、混合粉末を得た。混合比率は、鉄粉97.2質量部に対して、黒鉛粉末が0.8質量部、銅粉が2質量部、潤滑剤が0.75質量部である。混合は、攪拌翼を有する高速混合機を用いて、300rpmで4分間行った。得られた混合粉末を用い、以下の(1)〜(3)の評価を行った。   Commercially available natural graphite (manufactured by Nippon Graphite Co., Ltd., CPB, average particle size 22.6 μm) was pulverized by a dry jet mill so as to have an average particle size D50 shown in Tables 4 to 6 below, and D90 was pulverized or by air classification. It was adjusted. Graphite powder obtained by pulverization, iron powder (manufactured by Kobe Steel, Atmel 300M, 300NH, or 250M), copper powder (made by Fukuda Metal, CuAtw-250), and zinc stearate (manufactured by ADEKA) as a lubricant. , ZNS-730) to obtain a mixed powder. The mixing ratio is 0.8 parts by mass of graphite powder, 2 parts by mass of copper powder, and 0.75 parts by mass of lubricant with respect to 97.2 parts by mass of iron powder. Mixing was performed at 300 rpm for 4 minutes using a high-speed mixer having a stirring blade. The following (1) to (3) were evaluated using the obtained mixed powder.

(1)成形体の重量ばらつきの測定
得られた混合粉末を用い、機械式粉末成形プレスで、目標重量51g、外径30mm、内径10mmのリング状試験片を300個連続成形し、得られた成形体の重量ばらつきを評価した。重量ばらつきは、300個の成形体のうち、最大の重量と最小の重量の差R(g)で評価した。
(1) Measurement of weight variation of molded body Using the obtained mixed powder, 300 ring-shaped test pieces having a target weight of 51 g, an outer diameter of 30 mm, and an inner diameter of 10 mm were continuously molded using a mechanical powder molding press. The weight variation of the molded body was evaluated. The weight variation was evaluated by the difference R (g) between the maximum weight and the minimum weight among the 300 molded bodies.

(2)金型充填性の測定
金型充填性は図1に示す評価装置を用いて評価した。図1は、キャビティ容器3を収容する基台1と、キャビティ容器3とは他方側の基台上に固定して設けられたエアシリンダ5と、エアシリンダ5のロッド4の先端に取り付けられた粉末供給箱2から構成される、粉末の金型充填性評価装置である。粉末供給箱2は、無底の箱であり、基台1の上面をほぼ気密状態で、上記エアシリンダ5の作動により、上記キャビティ容器3上を往復運動する。また、キャビティ容器3は、粉末供給箱2の往復移動方向と直交する方向に細長く形成された幅数mmのスリット状キャビティを有する。図1(a)は該評価装置の正面図であり、(b)〜(d)は粉末供給箱の移動中の状態を表す断面図である。
(2) Measurement of mold filling property The mold filling property was evaluated using the evaluation apparatus shown in FIG. FIG. 1 shows a base 1 that accommodates a cavity container 3, an air cylinder 5 that is fixed on the base on the other side of the cavity container 3, and a tip of a rod 4 of the air cylinder 5. This is a powder mold filling property evaluation apparatus composed of a powder supply box 2. The powder supply box 2 is a bottomless box, and reciprocates on the cavity container 3 by the operation of the air cylinder 5 with the upper surface of the base 1 being almost airtight. Further, the cavity container 3 has a slit-like cavity having a width of several mm that is elongated in a direction perpendicular to the reciprocating direction of the powder supply box 2. Fig.1 (a) is a front view of this evaluation apparatus, (b)-(d) is sectional drawing showing the state during the movement of the powder supply box.

測定手順は次の通りである。まず、エアシリンダ5のロッド4を伸張させた状態で粉末供給箱2に所定量の粉末を投入する(図1(b))。次いで、エアシリンダ5のロッド4を短縮させ、粉末供給箱2をキャビティ容器3のスリット状キャビティの上を所定速度で通過させる。この通過により、粉末供給箱2内の粉末がキャビティ容器3内に落下する(図1(c))。そして、粉末供給箱2の通過後にはキャビティ容器3内に粉末が充填される(図1(d))。粉末供給箱2のサイズは80×80×70mm、キャビティ容器3のサイズは80×60×55mm、スリットサイズは2×60mm、シュー速度(粉末供給箱2の通過速度)は100mm/sである。各実験No.について3回試験を行い、各試験について充填された粉末量(mg)を、スリット状キャビティの面積(120mm2)で除した値を求め、それら値の平均値を各No.の金型充填性(mg/mm2)とした。 The measurement procedure is as follows. First, a predetermined amount of powder is charged into the powder supply box 2 with the rod 4 of the air cylinder 5 extended (FIG. 1B). Next, the rod 4 of the air cylinder 5 is shortened, and the powder supply box 2 is passed over the slit-shaped cavity of the cavity container 3 at a predetermined speed. By this passage, the powder in the powder supply box 2 falls into the cavity container 3 (FIG. 1C). Then, after passing through the powder supply box 2, the cavity container 3 is filled with powder (FIG. 1 (d)). The size of the powder supply box 2 is 80 × 80 × 70 mm, the size of the cavity container 3 is 80 × 60 × 55 mm, the slit size is 2 × 60 mm, and the shoe speed (passing speed of the powder supply box 2) is 100 mm / s. Each experiment No. The amount of powder (mg) filled for each test was divided by the area of the slit-shaped cavity (120 mm 2 ), and the average of these values was determined for each No. 1 test. Mold filling property (mg / mm 2 ).

(3)成形体密度の測定
得られた混合粉末を、所定の金型に投入して490MPa及び686MPaのプレス圧で成形して、φ11.28mmのタブレット状試験片を作製し、得られた成形体密度を測定した。
(3) Measurement of molded body density The obtained mixed powder was put into a predetermined mold and molded at a press pressure of 490 MPa and 686 MPa to produce a tablet-shaped test piece of φ11.28 mm, and the obtained molding Body density was measured.

使用した鉄基粉末(アトメル300M、300NH、又は250M)の特性は表2、3に示す通りである。表2、3に記載の見掛密度はJIS Z2504(金属粉−見掛密度試験方法)に規定される方法により、また流動度はJIS Z2502(金属粉の流動度試験法)に規定される方法により測定した結果である。アトメル300Mを基準とすると、300NHは見掛密度が大きく、250Mは見掛密度が小さい。すなわち、アトメル300Mを基準として、300NHは鉄粉表面の凹凸が少なく異形状度が低く、250Mは凹凸が多く異形状度が高いと言える。なお、250Mの見掛密度は還元鉄粉の見掛密度とほぼ同等である。   The characteristics of the iron-based powder used (Atmel 300M, 300NH, or 250M) are as shown in Tables 2 and 3. The apparent density described in Tables 2 and 3 is a method specified by JIS Z2504 (metal powder-apparent density test method), and the fluidity is a method specified by JIS Z2502 (metal powder flow rate test method). It is the result measured by. Based on Atmel 300M, 300NH has a large apparent density and 250M has a small apparent density. That is, based on the Atmel 300M, 300NH has less irregularities on the surface of the iron powder and has a lower irregularity, and 250M has more irregularities and a higher irregularity. In addition, the apparent density of 250M is substantially equivalent to the apparent density of the reduced iron powder.

上記(1)〜(3)の結果を、表4〜6に示す。なお、表4では鉄基粉末としてアトメル300M(平均粒径:約70μm)を、表5ではアトメル300NH(見掛密度は3.10g/cm3、平均粒径:約90μm)を、表6ではアトメル250M(見掛密度は2.42g/cm3、平均粒径:約85μm)を用いた。 The results of the above (1) to (3) are shown in Tables 4 to 6. In Table 4, Atmel 300M (average particle size: about 70 μm) is used as the iron-based powder. In Table 5, Atmel 300NH (apparent density is 3.10 g / cm 3 , average particle size: about 90 μm). Atmel 250M (apparent density was 2.42 g / cm 3 , average particle size: about 85 μm) was used.

表4〜6より、黒鉛粉末のD50を3.0μm以下、D90を10μm以下とした本発明の実験No.1−9、1−11、1−12、1−14〜1−16、2−3、2−4、3−3、3−4では、重量ばらつきRを2.0g以下(すなわち、目標重量の4%以下)にすることができるとともに、成形体密度も良好であった。図2は、実験No.2−3を観察した走査型電子顕微鏡写真である。図2より鉄粉の凹部に黒鉛粉末が集まって存在していることが分かる。また図3は、実験No.3−3を観察した走査型電子顕微鏡写真であり、図3でも凹部に黒鉛粉末が集まって存在している様子が観察できた。   From Tables 4 to 6, it is shown in Experiment No. of the present invention that D50 of graphite powder is 3.0 μm or less and D90 is 10 μm or less. 1-9, 1-11, 1-12, 1-14 to 1-16, 2-3, 2-4, 3-3, 3-4, the weight variation R is 2.0 g or less (that is, the target weight) 4% or less), and the compact density was also good. FIG. It is the scanning electron micrograph which observed 2-3. It can be seen from FIG. 2 that the graphite powder is gathered in the recesses of the iron powder. Also, FIG. FIG. 3 is a scanning electron micrograph of 3-3, and in FIG. 3, it can be observed that graphite powder is gathered and present in the recesses.

また、アトメル300Mを使用した表4の発明例(No.1−9、1−11、1−12、1−14〜1−16)と、アトメル300NHを使用した表5の発明例(2−3、2−4)を対比すると、表5の発明例の方が重量ばらつきRがより低減されている。上述した通り、アトメル300NHはアトメル300Mと比較して、鉄粉表面の凹凸が少なく異形状度が低いが、粒子径の大きなものの割合が高く、また凹部の幅が大きいため、黒鉛粉末が十分に入り込むことが可能であったと考えられる。   Moreover, the invention example of Table 4 (No. 1-9, 1-11, 1-12, 1-14 to 1-16) using Atmel 300M, and the invention example of Table 5 using Atmel 300NH (2- When comparing 3 and 2-4), the weight variation R is further reduced in the invention example of Table 5. As described above, Atmel 300NH has less irregularities on the surface of the iron powder and lower irregularity than Atmel 300M, but the ratio of large particles is high and the width of the recesses is large. It is thought that it was possible to enter.

一方、黒鉛粉末のD50が3.0μm超、またはD90が10μm超であった実験No.1−1〜1−8、1−10、1−13、実験No.2−1、2−2、実験No.3−1、3−2では重量ばらつきRが大きくなった。また、実験No.1−17、2−5、3−5は、D50が1.0μm未満であったために、重量ばらつきRは2.0g以下にできたものの、成形体密度が本発明の各実験例と比較して小さくなった。なお、成形体密度は、鉄基粉末の形状にも影響を受けるため、成形体密度は鉄基粉末の種類ごとに評価するのが適切である。すなわち、No.1−17は、No.1−9、1−11、1−12、1−14〜1−16と比較して成形体密度が小さく、No.2−5は、No.2−3、2−4と比較して成形体密度が小さく、No.3−5は、No.3−3、3−4と比較して成形体密度が小さいと評価できる。   On the other hand, D50 of graphite powder was over 3.0 μm, or D90 was over 10 μm. 1-1 to 1-8, 1-10, 1-13, Experiment No. 2-1, 2-2, Experiment No. In 3-1, 3-2, the weight variation R became large. In addition, Experiment No. In Nos. 1-17, 2-5, and 3-5, since D50 was less than 1.0 μm, the weight variation R was 2.0 g or less, but the molded body density was compared with each experimental example of the present invention. Became smaller. In addition, since a molded object density is influenced also by the shape of an iron-based powder, it is appropriate to evaluate a molded object density for every kind of iron-based powder. That is, no. No. 1-17 is No.1. Compared to 1-9, 1-11, 1-12, and 1-14 to 1-16, the molded body density is small. 2-5 is No.2. Compared with 2-3 and 2-4, the compact density is small. 3-5 is No.3. It can be evaluated that the density of the molded body is small as compared with 3-3 and 3-4.

1:基台
2:粉末供給箱
3:キャビティ容器
4:ロッド
5:エアシリンダ
1: Base 2: Powder supply box 3: Cavity container 4: Rod 5: Air cylinder

Claims (4)

平均粒径D50が1.0μm以上、3.0μm以下であり、D90が10μm以下である黒鉛粉末を、
バインダーを添加することなく、
せん断力を与えながら鉄基粉末と混合することによって得られることを特徴とする粉末冶金用混合粉末。
A graphite powder having an average particle diameter D50 of 1.0 μm or more and 3.0 μm or less and D90 of 10 μm or less,
Without adding binder
A mixed powder for powder metallurgy obtained by mixing with an iron-based powder while applying a shearing force.
鉄基粉末と、
前記鉄基粉末の凹部に集まって存在する黒鉛粉末とを含むことを特徴とする粉末冶金用混合粉末。
Iron-based powder,
A mixed powder for powder metallurgy, characterized by comprising graphite powder that collects and exists in the recesses of the iron-based powder.
前記黒鉛粉末の平均粒径D50が、1.6μm以上、2.7μm以下である請求項1に記載の粉末冶金用混合粉末。   The mixed powder for powder metallurgy according to claim 1, wherein an average particle diameter D50 of the graphite powder is 1.6 µm or more and 2.7 µm or less. 前記鉄基粉末が、アトマイズ鉄粉または還元鉄粉である請求項1〜3のいずれかに記載の粉末冶金用混合粉末。
The mixed powder for powder metallurgy according to any one of claims 1 to 3, wherein the iron-based powder is atomized iron powder or reduced iron powder.
JP2014111418A 2014-05-29 2014-05-29 Mixed powder for powder metallurgy Active JP6262078B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014111418A JP6262078B2 (en) 2014-05-29 2014-05-29 Mixed powder for powder metallurgy
SE1651450A SE541766C2 (en) 2014-05-29 2015-05-14 Mixed powder for powder metallurgy
US15/309,947 US20170266723A1 (en) 2014-05-29 2015-05-14 Mixed powder for powder metallurgy
KR1020167036059A KR20170010829A (en) 2014-05-29 2015-05-14 Mixed powder for powder metallurgy
PCT/JP2015/063889 WO2015182398A1 (en) 2014-05-29 2015-05-14 Mixed powder for powder metallurgy
CN201580022712.6A CN106255563B (en) 2014-05-29 2015-05-14 Mixed powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111418A JP6262078B2 (en) 2014-05-29 2014-05-29 Mixed powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JP2015224379A true JP2015224379A (en) 2015-12-14
JP6262078B2 JP6262078B2 (en) 2018-01-17

Family

ID=54698735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111418A Active JP6262078B2 (en) 2014-05-29 2014-05-29 Mixed powder for powder metallurgy

Country Status (6)

Country Link
US (1) US20170266723A1 (en)
JP (1) JP6262078B2 (en)
KR (1) KR20170010829A (en)
CN (1) CN106255563B (en)
SE (1) SE541766C2 (en)
WO (1) WO2015182398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709191A (en) * 2017-06-16 2020-01-17 杰富意钢铁株式会社 Powder mixture for powder metallurgy and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102660345B1 (en) * 2018-12-28 2024-04-23 현대자동차주식회사 Iron-based powder for powder metallurgy and method for producing same
US11992880B1 (en) * 2019-07-22 2024-05-28 Keystone Powdered Metal Company Acoustical dampening powder metal parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256060A (en) * 1975-11-04 1977-05-09 Nippon Kokuen Kogyo Kk Method to manufacture ferroussgraphite composite powder for powder metallurgy
JP2004190051A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Iron based powdery mixture for power metallurgy, and production method therefor
JP2012102355A (en) * 2010-11-09 2012-05-31 Kobe Steel Ltd Mixed powder for powder metallurgy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE438275B (en) 1983-09-09 1985-04-15 Hoeganaes Ab MIX-FREE IRON-BASED POWDER MIX
JPH01219101A (en) 1988-02-25 1989-09-01 Kobe Steel Ltd Iron powder for powder metallurgy and production thereof
JP2898461B2 (en) 1991-04-22 1999-06-02 株式会社神戸製鋼所 Mixed powder and binder for powder metallurgy
JP2778410B2 (en) 1992-06-04 1998-07-23 株式会社神戸製鋼所 Anti-segregation mixed powder for powder metallurgy
JPH07173503A (en) 1993-11-04 1995-07-11 Kobe Steel Ltd Binder for powder metallurgy and powdery mixture for powder metallurgy
US20030219617A1 (en) * 2002-05-21 2003-11-27 Jfe Steel Corporation, A Corporation Of Japan Powder additive for powder metallurgy, iron-based powder mixture for powder metallurgy, and method for manufacturing the same
JP2004218041A (en) * 2003-01-17 2004-08-05 Jfe Steel Kk Sintered member, and production method therefor
US20090041608A1 (en) * 2006-02-15 2009-02-12 Jfe Steel Corporation A Corporation Of Japan Iron-based powder mixture, and method of manufacturing iron-based compacted body and iron-based sintered body
US8589732B2 (en) * 2010-10-25 2013-11-19 Microsoft Corporation Consistent messaging with replication
JP5617529B2 (en) * 2010-10-28 2014-11-05 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256060A (en) * 1975-11-04 1977-05-09 Nippon Kokuen Kogyo Kk Method to manufacture ferroussgraphite composite powder for powder metallurgy
JP2004190051A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Iron based powdery mixture for power metallurgy, and production method therefor
JP2012102355A (en) * 2010-11-09 2012-05-31 Kobe Steel Ltd Mixed powder for powder metallurgy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709191A (en) * 2017-06-16 2020-01-17 杰富意钢铁株式会社 Powder mixture for powder metallurgy and method for producing same

Also Published As

Publication number Publication date
CN106255563B (en) 2018-12-21
WO2015182398A1 (en) 2015-12-03
JP6262078B2 (en) 2018-01-17
US20170266723A1 (en) 2017-09-21
SE541766C2 (en) 2019-12-10
SE1651450A1 (en) 2016-11-03
CN106255563A (en) 2016-12-21
KR20170010829A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5552031B2 (en) Mixed powder for powder metallurgy
JP5381262B2 (en) Iron-base powder for powder metallurgy and method for improving fluidity thereof
US8992659B2 (en) Metal powder composition
US7993429B2 (en) Lubricant for powder metallurgical compositions
WO2009075042A1 (en) Iron based powder for powder metallurgy
JP5552032B2 (en) Mixed powder for powder metallurgy and method for producing the same
JP6262078B2 (en) Mixed powder for powder metallurgy
WO2007119346A1 (en) Mixed powder for powder metallurgy, green compact thereof and sintered compact
CN107835864A (en) The manufacture method of iron-based powder for powder metallurgy and iron-based powder for powder metallurgy
KR20170010825A (en) New product
JP2012052167A (en) Iron-based mixed powder for sintering and iron-based sintered alloy
JP2008127640A (en) Iron-based powder for powder metallurgy
WO2022260009A1 (en) Lubricant, combination of lubricants, powder mixture, combination of raw materials for powder mixture and production method for sintered body
JP2020132973A (en) Iron-based powder metallurgy mixed powder, iron-based sintered alloy, and sintered machine component
WO2022259548A1 (en) Combination of lubricants, powder mixture, combination of raw materials for powder mixture and production method for sintered body
JP2024017984A (en) Iron-based powder mix for powder metallurgy, iron-based sintered body, and sintered mechanical component
JPH08325604A (en) Additive for powder metallurgy and mixed powder for powder metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R150 Certificate of patent or registration of utility model

Ref document number: 6262078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150