JP2015223535A5 - Palladium core platinum shell nanoparticles, manufacturing apparatus and manufacturing method thereof, and battery - Google Patents

Palladium core platinum shell nanoparticles, manufacturing apparatus and manufacturing method thereof, and battery Download PDF

Info

Publication number
JP2015223535A5
JP2015223535A5 JP2014108302A JP2014108302A JP2015223535A5 JP 2015223535 A5 JP2015223535 A5 JP 2015223535A5 JP 2014108302 A JP2014108302 A JP 2014108302A JP 2014108302 A JP2014108302 A JP 2014108302A JP 2015223535 A5 JP2015223535 A5 JP 2015223535A5
Authority
JP
Japan
Prior art keywords
platinum shell
palladium core
palladium
nanoparticle
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014108302A
Other languages
Japanese (ja)
Other versions
JP6500174B2 (en
JP2015223535A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014108302A priority Critical patent/JP6500174B2/en
Priority claimed from JP2014108302A external-priority patent/JP6500174B2/en
Publication of JP2015223535A publication Critical patent/JP2015223535A/en
Publication of JP2015223535A5 publication Critical patent/JP2015223535A5/en
Application granted granted Critical
Publication of JP6500174B2 publication Critical patent/JP6500174B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (9)

エチレングリコール(EG)、パラジウム塩、分散剤を含む第一の原料液を用いて連続フロー系によりマイクロ波を照射しながら合成したパラジウムコアナノ粒子分散液において、前記パラジウムコアナノ粒子の過半数が単結晶であり、かつ、白金シェル形成前はその表面がシェル形成を阻害する物質が存在しない清浄な表面であり、前記パラジウムコアナノ粒子コロイドに塩化白金酸エチレングリコール溶液と水酸化ナトリウム水溶液を加えて白金シェル形成した後はパラジウムコア表面原子層と白金シェル原子層の整合界面が存在することを特徴とするパラジウムコア白金シェルナノ粒子。In a palladium core nanoparticle dispersion liquid synthesized using a first raw material liquid containing ethylene glycol (EG), a palladium salt, and a dispersant while irradiating microwaves with a continuous flow system, a majority of the palladium core nanoparticles are single. Before the platinum shell is formed, the surface is a clean surface free of substances that inhibit the shell formation, and an ethylene glycol chloroplatinate solution and an aqueous sodium hydroxide solution are added to the palladium core nanoparticle colloid. Palladium-core platinum shell nanoparticles characterized by the presence of a matching interface between a palladium core surface atomic layer and a platinum shell atomic layer after the platinum shell is formed. 請求項1に記載のパラジウムコア白金シェルナノ粒子において、白金シェル一層による被覆も含めて、白金シェル層がパラジウムコア表面層の50%以上を覆っている粒子が過半数を占めることを特徴とするパラジウムコア白金シェルナノ粒子。2. The palladium core platinum shell nanoparticle according to claim 1, wherein a majority of the particles including the platinum shell layer covering 50% or more of the surface layer of the palladium core occupies a majority of the palladium core. Platinum shell nanoparticles. 請求項1または2に記載のパラジウムコア白金シェルナノ粒子において、白金シェル層は水酸化ナトリウムを加えて白金原料の還元反応を促進させて形成したシェル層であり、その前記白金シェル原子層の厚みが1nm以下であることを特徴とするパラジウムコア白金シェルナノ粒子。The palladium core platinum shell nanoparticles according to claim 1 or 2, wherein the platinum shell layer is a shell layer formed by adding sodium hydroxide to promote a reduction reaction of a platinum raw material, and the thickness of the platinum shell atomic layer is The palladium core platinum shell nanoparticle characterized by being 1 nm or less. 請求項1〜3のいずれか1項に記載のパラジウムコア白金シェルナノ粒子において、パラジウム塩濃度100mM以上において合成したパラジウムコア粒子を中間体として経由する、平均粒子径10nm以下で、パラジウムコア白金シェルナノ粒子の粒子径のばらつきが±16.5%以下のパラジウムコア白金シェルナノ粒子。The palladium core platinum shell nanoparticles according to any one of claims 1 to 3, wherein the palladium core platinum shell nanoparticles have an average particle diameter of 10 nm or less and pass through the palladium core particles synthesized at a palladium salt concentration of 100 mM or more as an intermediate. Palladium core platinum shell nanoparticles having a particle size variation of ± 16.5% or less. 請求項1〜4のいずれか1項に記載のパラジウムコア白金シェルナノ粒子と担体を混合して形成する担体担持パラジウムコア白金シェルナノ粒子。The carrier carrying | support palladium core platinum shell nanoparticle formed by mixing the palladium core platinum shell nanoparticle of any one of Claims 1-4, and a support | carrier. 請求項1〜4のいずれか1項に記載のパラジウムコア白金シェルナノ粒子の少なくとも1つの形成過程に担体を共存させることで生成する担体担持パラジウムコア白金シェルナノ粒子。The carrier carrying | support palladium core platinum shell nanoparticle produced | generated by making a support | carrier coexist in the formation process of at least 1 of the palladium core platinum shell nanoparticle of any one of Claims 1-4. 請求項1〜6のいずれか1項に記載のパラジウムコア白金シェルナノ粒子の製造方法。The manufacturing method of the palladium core platinum shell nanoparticle of any one of Claims 1-6. 請求項1〜6のいずれか1項に記載のパラジウムコア白金シェルナノ粒子の製造装置。The manufacturing apparatus of the palladium core platinum shell nanoparticle of any one of Claims 1-6. 請求項1〜6のいずれか1項に記載のパラジウムコア白金シェルナノ粒子を触媒として用いる固体高分子形燃料電池。A polymer electrolyte fuel cell using the palladium core platinum shell nanoparticles according to any one of claims 1 to 6 as a catalyst.
JP2014108302A 2014-05-26 2014-05-26 Palladium core platinum shell nanoparticles, apparatus and method for producing the same, and battery Expired - Fee Related JP6500174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108302A JP6500174B2 (en) 2014-05-26 2014-05-26 Palladium core platinum shell nanoparticles, apparatus and method for producing the same, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108302A JP6500174B2 (en) 2014-05-26 2014-05-26 Palladium core platinum shell nanoparticles, apparatus and method for producing the same, and battery

Publications (3)

Publication Number Publication Date
JP2015223535A JP2015223535A (en) 2015-12-14
JP2015223535A5 true JP2015223535A5 (en) 2017-06-29
JP6500174B2 JP6500174B2 (en) 2019-04-17

Family

ID=54840734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108302A Expired - Fee Related JP6500174B2 (en) 2014-05-26 2014-05-26 Palladium core platinum shell nanoparticles, apparatus and method for producing the same, and battery

Country Status (1)

Country Link
JP (1) JP6500174B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101971260B1 (en) * 2016-09-26 2019-04-22 충남대학교산학협력단 Preparation Method for Cdot-Pt-Pd Composite, Cdot-Pt-Pd Catalyst thereby and Fuel Cell using the Catalyst
JP6859731B2 (en) * 2017-02-07 2021-04-14 株式会社豊田中央研究所 Fuel cell cathode catalyst
JP6573333B2 (en) * 2017-11-07 2019-09-11 株式会社新光化学工業所 Carrier-supported palladium fine particle colloid, carrier-supported palladium core platinum shell fine particle colloid, carrier-supported palladium core platinum shell fine particle catalyst, method for producing them, and battery.
JP6840314B2 (en) * 2019-08-06 2021-03-10 株式会社新光化学工業所 Carrier-supported palladium core platinum shell fine particle colloid, carrier-supported palladium core platinum shell fine particle catalyst, their manufacturing method, and battery
KR102398409B1 (en) 2020-09-07 2022-05-17 한국에너지기술연구원 Manufacturing method for core-shell particle using carbon monoxide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833019B1 (en) * 2003-01-31 2004-12-21 The United States Of America As Represented By The Secretary Of The Navy Microwave assisted continuous synthesis of nanocrystalline powders and coatings using the polyol process
WO2008025751A1 (en) * 2006-08-30 2008-03-06 Umicore Ag & Co. Kg Core/shell-type catalyst particles comprising metal or ceramic core materials and methods for their preparation
JP5672752B2 (en) * 2010-04-07 2015-02-18 トヨタ自動車株式会社 Method for producing carbon-supported core-shell type catalyst fine particles, and method for producing catalyst ink using core-shell type catalyst fine particles obtained by the production method
JPWO2011125195A1 (en) * 2010-04-07 2013-07-08 トヨタ自動車株式会社 Core-shell type metal nanoparticles and method for producing core-shell type metal nanoparticles
WO2012105978A1 (en) * 2011-02-03 2012-08-09 Utc Power Corporation Method to prepare full monolayer of platinum on palladium based core nanoparticles
WO2013039117A1 (en) * 2011-09-12 2013-03-21 独立行政法人産業技術総合研究所 Continuous synthesis method for metal core and oxide shell core-shell structure nanoparticles, continuous synthesis apparatus for same, and core-shell structure nanoparticles
JP5708524B2 (en) * 2012-02-13 2015-04-30 トヨタ自動車株式会社 Method for calculating coverage of catalyst fine particles and method for evaluating catalyst fine particles

Similar Documents

Publication Publication Date Title
He et al. Controllable morphology CoFe2O4/g-C3N4 pn heterojunction photocatalysts with built-in electric field enhance photocatalytic performance
JP2015223535A5 (en) Palladium core platinum shell nanoparticles, manufacturing apparatus and manufacturing method thereof, and battery
Zhang et al. Synthesis of a thin-layer MnO2 nanosheet-coated Fe3O4 nanocomposite as a magnetically separable photocatalyst
Wang et al. Sulfurized graphene as efficient metal-free catalysts for reduction of 4-nitrophenol to 4-aminophenol
Zhou et al. Hollow ZnSnO3 cubes with controllable shells enabling highly efficient chemical sensing detection of formaldehyde vapors
Zou et al. Highly efficient gas sensor using a hollow SnO2 microfiber for triethylamine detection
Pal et al. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis
Song et al. Developing graphene‐based nanohybrids for electrochemical sensing
Veerakumar et al. Biomass derived sheet-like carbon/palladium nanocomposite: an excellent opportunity for reduction of toxic hexavalent chromium
Chen et al. Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions
Han et al. Reductant-free synthesis of silver nanoparticles-doped cellulose microgels for catalyzing and product separation
Huang et al. Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities
Wu et al. Synthesis of core− shell Au@ TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties
Yang et al. Synthesis of uniform Bi2WO6-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity
Martins et al. Improving photocatalytic performance and recyclability by development of Er-doped and Er/Pr-codoped TiO2/poly (vinylidene difluoride)–trifluoroethylene composite membranes
Wen et al. Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose
Sun et al. Plasmonic Ag@ AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst
Wang et al. Controlled synthesis of ordered mesoporous carbon-cobalt oxide nanocomposites with large mesopores and graphitic walls
Zhang et al. Noble metal-free reduced graphene oxide-Zn x Cd1–x S nanocomposite with enhanced solar photocatalytic H2-production performance
Titirici et al. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach
Lim et al. Biotemplated aqueous-phase palladium crystallization in the absence of external reducing agents
Chen et al. Controlled encapsulation of flower-like Rh–Ni alloys with MOFs via tunable template Dealloying for enhanced selective hydrogenation of alkyne
Preeyanghaa et al. Revealing the charge transfer mechanism in magnetically recyclable ternary g-C3N4/BiOBr/Fe3O4 nanocomposite for efficient photocatalytic degradation of tetracycline antibiotics
Zou et al. Synthesis and deposition of ultrafine noble metallic nanoparticles on amino-functionalized halloysite nanotubes and their catalytic application
Wang et al. Preparation and catalytic property of PVDF composite membrane with polymeric spheres decorated by Pd nanoparticles in membrane pores