JP2015222059A - Internal combustion engine control unit - Google Patents

Internal combustion engine control unit Download PDF

Info

Publication number
JP2015222059A
JP2015222059A JP2014107377A JP2014107377A JP2015222059A JP 2015222059 A JP2015222059 A JP 2015222059A JP 2014107377 A JP2014107377 A JP 2014107377A JP 2014107377 A JP2014107377 A JP 2014107377A JP 2015222059 A JP2015222059 A JP 2015222059A
Authority
JP
Japan
Prior art keywords
learning
occurrence probability
map
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014107377A
Other languages
Japanese (ja)
Inventor
坂柳 佳宏
Yoshihiro Sakayanagi
佳宏 坂柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014107377A priority Critical patent/JP2015222059A/en
Publication of JP2015222059A publication Critical patent/JP2015222059A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine control unit capable of learning an abnormal combustion occurrence probability per operating region.SOLUTION: An internal combustion engine control unit detects knocking using a cylinder internal pressure sensor. The internal combustion engine control unit includes a learning map that has ignition timing and an intake air quantity as map axes, that includes a plurality of grid points, and in which learned values of a knocking occurrence probability correspond to the respective grid points in an updatable manner. The control unit learns the knocking occurrence probability using the learning map during operation of an internal combustion engine. This learning is weighting learning for updating the learned values of learning target grid points using a weight win response to a distance between the learning target grid points and learning data on the learning map. Using a variable qindicating whether knocking occurs by 1 or 0 as the learning data, weighted averaging is performed by adding the weight wto the variable q, thereby calculating the learned values of the knocking occurrence probability.

Description

この発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

従来、例えば特許文献1には、内燃機関の制御装置が開示されている。この従来の制御装置は、燃焼速度と相関のある燃焼速度パラメータに基づいてプレイグニッションが発生し易い状態であるか否かを判断している。   Conventionally, for example, Patent Document 1 discloses a control device for an internal combustion engine. This conventional control device determines whether or not pre-ignition is likely to occur based on a combustion speed parameter correlated with the combustion speed.

特開2013−104323号公報JP 2013-104323 A 特開2005−084834号公報Japanese Patent Laying-Open No. 2005-084834 特開2004−308450号公報JP 2004-308450 A

上記のプレイグニッション、さらにはノックおよび失火等の異常燃焼の発生確率を内燃機関の運転領域(例えば、点火時期と吸入空気量とで規定される領域)毎にマップ化して学習することができれば、取得した発生確率を利用したエンジン制御(例えば、点火時期の制御)を好適に行えるようになる。しかしながら、異常燃焼の発生確率は、統計量であり、瞬時値として得られるものではない。このため、発生確率の取得中に運転領域が変化してしまうと、正しい統計が得られず、運転領域毎に適切なマップを得ることができないという問題がある。   If the above-mentioned pre-ignition, and further, the probability of occurrence of abnormal combustion such as knocking and misfire can be learned by mapping for each operating region of the internal combustion engine (for example, the region defined by the ignition timing and the intake air amount), Engine control (for example, ignition timing control) using the acquired occurrence probability can be suitably performed. However, the occurrence probability of abnormal combustion is a statistic and is not obtained as an instantaneous value. For this reason, if the driving region changes during acquisition of the occurrence probability, there is a problem that correct statistics cannot be obtained and an appropriate map cannot be obtained for each driving region.

この発明は、上述のような課題を解決するためになされたもので、異常燃焼の発生確率を運転領域毎に学習できるようにした内燃機関の制御装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control device for an internal combustion engine in which the occurrence probability of abnormal combustion can be learned for each operation region.

第1の発明は、内燃機関の制御装置であって、
異常燃焼を検出する異常燃焼検出手段と、
内燃機関の運転領域を規定する領域規定パラメータをマップ軸として含み、複数の格子点を有し、異常燃焼の発生確率の学習値が前記複数の格子点にそれぞれ更新可能に対応付けられた学習マップと、
内燃機関の運転中に前記学習マップを用いて異常燃焼の発生確率を学習する異常燃焼学習手段と、
を備え、
前記学習マップの学習は、異常燃焼の発生確率の学習データが取得されたときに、前記学習マップ上における学習対象格子点と当該学習データとの距離が近いほど、当該学習データの重みを大きく設定し、かつ、異常燃焼の発生確率の学習データが取得される毎に、学習対象格子点において前記重みが大きいほど学習データが学習値に大きく反映されるように当該学習対象格子点の学習値を更新する重み付け学習であって、
前記異常燃焼学習手段は、異常燃焼の発生の有無を1と0で示す変数を学習データとして用い、当該変数に前記重みを付けて重み付け平均を行うことによって異常燃焼の発生確率の学習値を算出することを特徴とする。
A first invention is a control device for an internal combustion engine,
Abnormal combustion detecting means for detecting abnormal combustion;
A learning map that includes a region defining parameter that defines the operating region of the internal combustion engine as a map axis, has a plurality of lattice points, and the learning value of the occurrence probability of abnormal combustion is associated with each of the plurality of lattice points so as to be updatable. When,
Abnormal combustion learning means for learning the occurrence probability of abnormal combustion using the learning map during operation of the internal combustion engine;
With
In learning of the learning map, when learning data of the occurrence probability of abnormal combustion is acquired, the weight of the learning data is set to be larger as the distance between the learning target lattice point on the learning map and the learning data is closer In addition, every time learning data of the probability of occurrence of abnormal combustion is acquired, the learning value of the learning target lattice point is set so that the learning data is more greatly reflected in the learning value as the weight is increased at the learning target lattice point. Weighted learning to update,
The abnormal combustion learning means calculates a learning value of the occurrence probability of abnormal combustion by using as a learning data a variable indicating the presence or absence of occurrence of abnormal combustion as 1 and 0 and assigning the weight to the variable and performing a weighted average. It is characterized by doing.

第1の発明によれば、異常燃焼の発生確率の取得中に運転領域が変化した場合であっても、本来的に統計量である異常燃焼の発生確率を運転領域毎に学習できるようになる。そして、運転領域毎に異常燃焼の発生確率を学習可能とした学習マップを取得できるようになる。   According to the first invention, even when the operation region changes during acquisition of the occurrence probability of abnormal combustion, the occurrence probability of abnormal combustion that is essentially a statistic can be learned for each operation region. . Then, a learning map that enables learning of the occurrence probability of abnormal combustion for each operation region can be acquired.

ノック確率マップ、ノック強度マップ、および、これらのマップを組み合わせて得られるノック限界ラインのマップを表した図である。It is a figure showing a knock probability map, a knock intensity map, and a map of a knock limit line obtained by combining these maps.

実施の形態1.
[内燃機関のシステム構成]
本実施形態の内燃機関は、火花点火式の内燃機関である。内燃機関は、各気筒に吸入空気を取り入れるための吸気通路を備えている。吸気通路には、吸入空気量を調整するために電子制御式のスロットルバルブが設けられている。また、内燃機関の各気筒には、吸気ポートに燃料を噴射するための燃料噴射弁と、混合気に点火するための点火プラグとが備えられている。
Embodiment 1 FIG.
[System configuration of internal combustion engine]
The internal combustion engine of this embodiment is a spark ignition type internal combustion engine. The internal combustion engine includes an intake passage for taking intake air into each cylinder. In the intake passage, an electronically controlled throttle valve is provided to adjust the intake air amount. Each cylinder of the internal combustion engine is provided with a fuel injection valve for injecting fuel into the intake port and an ignition plug for igniting the air-fuel mixture.

次に、内燃機関の制御系統について説明する。本実施形態のシステムは、内燃機関の運転に必要な各種のセンサ(以下に一部を例示)が含まれるセンサ系統と、内燃機関の運転状態を制御するECU(Electronic Control Unit)とを備えている。まず、センサ系統について述べると、クランク角センサは、クランク軸の回転に同期した信号を出力するもので、エアフローメータは吸入空気量を計測する。また、筒内圧センサは、筒内圧を検出する。   Next, a control system for the internal combustion engine will be described. The system according to the present embodiment includes a sensor system including various sensors (partially exemplified below) necessary for operation of the internal combustion engine, and an ECU (Electronic Control Unit) that controls the operation state of the internal combustion engine. Yes. First, the sensor system will be described. The crank angle sensor outputs a signal synchronized with the rotation of the crankshaft, and the air flow meter measures the intake air amount. The in-cylinder pressure sensor detects the in-cylinder pressure.

ECUは、ROM、RAM、不揮発性メモリ等からなる記憶回路と、入出力ポートとを備えた演算処理装置により構成されている。ECUの不揮発性メモリには、後述する学習マップが記憶されている。また、ECUの入力側には、センサ系統の各センサがそれぞれ接続されている。ECUの出力側には、スロットルバルブ、燃料噴射弁、および、点火プラグを有する点火装置等のアクチュエータが接続されている。そして、ECUは、センサ系統により検出した内燃機関の運転情報に基づいて各アクチュエータを駆動し、運転制御を行う。   The ECU is configured by an arithmetic processing unit that includes a storage circuit including a ROM, a RAM, a nonvolatile memory, and the like, and an input / output port. A learning map (to be described later) is stored in the nonvolatile memory of the ECU. Each sensor of the sensor system is connected to the input side of the ECU. An actuator such as an ignition device having a throttle valve, a fuel injection valve, and an ignition plug is connected to the output side of the ECU. And ECU drives each actuator based on the operation information of the internal combustion engine detected by the sensor system, and performs operation control.

[実施の形態1で行われるマップ学習]
上述した筒内圧センサによれば、内燃機関の1サイクル中の筒内圧波形を取得することができる。ノックが発生すると、筒内圧波形に高周波の振動波形が検出される。この振動波形を利用することで、ノックの発生の有無とノック強度の算出が可能となる。すなわち、この振動波形の発生の有無に基づいてノックの発生の有無を判定することができる。また、上記振動波形の振幅に基づいてノック強度を算出することができる。なお、ノックの発生の有無の判定、およびノック強度の算出は、筒内圧センサを利用した手法以外にも、例えば、異常燃焼検出手段としてノックセンサを利用した手法を用いて行われるものであってもよい。
[Map learning performed in Embodiment 1]
According to the in-cylinder pressure sensor described above, the in-cylinder pressure waveform during one cycle of the internal combustion engine can be acquired. When knocking occurs, a high-frequency vibration waveform is detected in the in-cylinder pressure waveform. By using this vibration waveform, it is possible to calculate the presence / absence of knocking and the knock intensity. That is, it is possible to determine whether or not knocking has occurred based on whether or not the vibration waveform is generated. Further, the knock intensity can be calculated based on the amplitude of the vibration waveform. It should be noted that the determination of the presence or absence of occurrence of knock and the calculation of the knock intensity are performed using, for example, a method using a knock sensor as an abnormal combustion detection means in addition to a method using an in-cylinder pressure sensor. Also good.

図1は、ノック確率マップ、ノック強度マップ、および、これらのマップを組み合わせて得られるノック限界ラインのマップを表した図である。本実施形態では、内燃機関10の運転中に(すなわち、オンボードで)図1(A)に示すノック発生確率マップと図1(B)に示すノック強度マップとが学習処理を伴って作成される。そして、これらのマップにより得られたノック発生確率とノック強度とを踏まえて、ノック発生確率とノック強度とが事前に決められた限度内に収まるノック限界ライン(太い破線)のマップが図1(C)に示すように作成される。これらのマップは、何れも、内燃機関10の運転領域を規定する領域規定パラメータ(ここでは、一例として点火時期と吸入空気量)をマップ軸として用いたものである。   FIG. 1 is a diagram showing a knock probability map, a knock intensity map, and a knock limit line map obtained by combining these maps. In the present embodiment, the knock occurrence probability map shown in FIG. 1A and the knock intensity map shown in FIG. 1B are created with a learning process during operation of the internal combustion engine 10 (that is, onboard). The Based on the knock occurrence probability and the knock intensity obtained from these maps, a map of the knock limit line (thick broken line) where the knock occurrence probability and the knock intensity fall within the predetermined limits is shown in FIG. C). Each of these maps uses region defining parameters (in this example, ignition timing and intake air amount) that define the operating region of the internal combustion engine 10 as map axes.

図1(A)に示すノック発生確率マップでは、ノック発生確率のレベルに応じて運転領域が4つに分けられている。すなわち、図1(A)中の「ノック無し」領域は、ノック発生確率がゼロとなる運転領域を示し、「ノック確率小」領域は、ノック発生確率がゼロよりも大きく、第1所定値よりも小さい運転領域を示し、「ノック確率中」領域は、ノック発生確率が第1所定値以上、かつ第2所定値よりも小さい領域を示し、「ノック確率大」領域は、ノック発生確率が第2所定値以上となる領域を示している。同様に、図1(B)に示すノック強度マップも、ノック強度のレベルに応じて運転領域が4つに分けられている。   In the knock occurrence probability map shown in FIG. 1 (A), the driving region is divided into four according to the level of the knock occurrence probability. That is, the “no knock” region in FIG. 1A indicates an operation region in which the knock occurrence probability is zero, and the “knock probability low” region has a knock occurrence probability greater than zero and is greater than the first predetermined value. Is a region where the knock occurrence probability is greater than the first predetermined value and smaller than the second predetermined value, and the “high knock probability” region is the first knock occurrence probability. 2 shows an area that is a predetermined value or more. Similarly, in the knock intensity map shown in FIG. 1B, the operation region is divided into four according to the level of the knock intensity.

図1(C)に示すノック限界ラインのマップによれば、現在の吸入空気量の下でノック限界ラインを超えないノック限界点火時期を求めることができる。したがって、このマップを利用して、ノック限界点火時期を超えて進角しないように現在の吸入空気量の下での点火時期を制御することで、ノック発生確率およびノック強度が所定レベル以上となるノックの発生を抑制できるようになる。   According to the map of the knock limit line shown in FIG. 1C, it is possible to obtain the knock limit ignition timing that does not exceed the knock limit line under the current intake air amount. Therefore, by using this map and controlling the ignition timing under the current intake air amount so as not to advance beyond the knock limit ignition timing, the knock occurrence probability and the knock intensity become a predetermined level or more. Knock generation can be suppressed.

(ノック発生確率マップの学習)
本実施形態のシステムは、ノック発生確率マップの学習手法に主たる特徴を有している。ここで、一般的には、ノック発生確率Pは、次の(1)式にしたがってすることができる。

Figure 2015222059
ただし、上記(1)式において、nはノックの発生回数であり、nはノック発生確率Pの算出のためのデータの取得回数(言い換えれば、ノック発生確率の算出対象となるエンジンサイクル数)である。 (Learning of knock occurrence probability map)
The system of the present embodiment has a main feature in the learning method of the knock occurrence probability map. Here, generally, the knock occurrence probability P can be determined according to the following equation (1).
Figure 2015222059
However, in the above equation (1), n p is the number of occurrences of knock, and n is the number of data acquisitions for calculating the knock occurrence probability P (in other words, the number of engine cycles for which the knock occurrence probability is to be calculated). It is.

上記のように一般的に用いられるノック発生確率Pは、統計量であり、瞬時値として得られるものではない。このため、ノック発生確率の取得中に運転領域が変化してしまうと、正しい統計が得られなくなるので、運転領域毎に適切なマップを得ることができないという問題がある。そこで、本実施形態では、ノック発生確率マップの学習のために、重み付きでノック発生確率P(n)を算出することとした。なお、ノック強度は、ノック発生確率とは異なり、1サイクル中の筒内圧データで算出可能な値である。このため、もう一方のノック強度マップについては、公知の重み付け学習手法(例えば、国際特許出願の国際公開第2014/002189号に記載されている手法)を用いて学習することができる。   The knock occurrence probability P generally used as described above is a statistic, and is not obtained as an instantaneous value. For this reason, if the operating region changes during acquisition of the knock occurrence probability, correct statistics cannot be obtained, and there is a problem that an appropriate map cannot be obtained for each operating region. Therefore, in the present embodiment, the knock occurrence probability P (n) is calculated with weight for learning the knock occurrence probability map. Unlike the knock occurrence probability, the knock strength is a value that can be calculated from the in-cylinder pressure data during one cycle. Therefore, the other knock intensity map can be learned by using a known weighting learning method (for example, the method described in International Patent Application No. 2014/002189).

ノック発生確率マップは、点火時期および吸入空気量(領域規定パラメータ)をマップ軸として含み、複数の格子点を有し、異常燃焼の発生確率の学習値が各格子点にそれぞれ更新可能に対応付けられた学習マップである。そして、この学習マップの学習は、異常燃焼の発生確率の学習データが取得されたときに、学習マップ上(運転領域上)における学習対象格子点と学習データとの距離が近いほど、当該学習データの重みwを大きく設定し、かつ、異常燃焼の発生確率の学習データが取得される毎に、学習対象格子点において重みwが大きいほど学習データが学習値に大きく反映されるように当該学習対象格子点の学習値を更新する重み付け学習である。そのうえで、本実施形態では、ノック発生の有無を1と0で示す変数qを学習データとして用いられる。そして、当該変数qに重みwを付けて重み付け平均を行うことで、異常燃焼の発生確率P(n)が学習対象格子点の学習値として算出される。 The knock occurrence probability map includes the ignition timing and intake air amount (region defining parameter) as map axes, has a plurality of lattice points, and the learning value of the occurrence probability of abnormal combustion is associated with each lattice point so that it can be updated. Learning map. Then, learning of this learning map is performed when the learning data of the occurrence probability of abnormal combustion is acquired, the closer the distance between the learning target lattice point and the learning data on the learning map (on the operation region), the more the learning data Each time the weight w k is set to be large and the learning data of the occurrence probability of abnormal combustion is acquired, the learning data is more greatly reflected in the learning value as the weight w k is larger at the learning target lattice point. This is weighted learning for updating the learning value of the learning target lattice point. In addition, in this embodiment, a variable q k that indicates the presence or absence of occurrence of knock as 1 and 0 is used as learning data. Then, the weighting average is performed by assigning the weight w k to the variable q k , whereby the occurrence probability P (n) of abnormal combustion is calculated as the learning value of the learning target lattice point.

具体的には、異常燃焼の発生確率P(n)は、変数qと重みwとを用いて、次の(2)式のように表すことができる。(2)式の分子は、n回分の変数qと重みwの積の和であり、(2)式の分母は、データ取得回数n回分の重みwの和である。(2)式の分子と分母を漸化式にて表すと、データ取得回数がk回目である時の分子N(n)および分母M(n)は、それぞれ次の(3)および(4)式のようになる。また、N(1)およびM(1)の式は、初期値(k=1のときの値)を定義するためのものである。格子点と学習データとの距離に応じた重みwの設定は、例えば、上記文献(国際公開第2014/002189号)に開示されているように、ガウス関数を用いて行うことが好適であり、また、ガウス関数に限らず、一次関数または三角関数等を用いることもできる。

Figure 2015222059
Specifically, the occurrence probability P (n) of abnormal combustion can be expressed as the following equation (2) using the variable q k and the weight w k . The numerator of equation (2) is the sum of products of n variables q k and weights w k , and the denominator of equation (2) is the sum of weights w k for n times of data acquisition. When the numerator and denominator of the formula (2) are expressed by a recurrence formula, the numerator N (n) and the denominator M (n) when the number of data acquisition times is the kth are respectively the following (3) and (4). It becomes like the formula. The expressions N (1) and M (1) are for defining an initial value (value when k = 1). The setting of the weight w k according to the distance between the lattice point and the learning data is preferably performed using a Gaussian function as disclosed in the above-mentioned document (International Publication No. 2014/002189), for example. Further, not only a Gaussian function but also a linear function or a trigonometric function can be used.
Figure 2015222059

ノック発生確率マップの学習のためには、学習データ(変数q)が取得される毎に(すなわち、ノック発生確率Pの算出対象となるエンジンサイクル毎に)当該マップの各格子点の異常燃焼の発生確率P(n)の学習値を、上記の(2)〜(4)式を用いて算出すればよい。 For learning of the knock occurrence probability map, every time learning data (variable q k ) is acquired (that is, every engine cycle for which the knock occurrence probability P is calculated), abnormal combustion of each lattice point of the map is performed. The learning value of the occurrence probability P (n) may be calculated using the above equations (2) to (4).

以上説明したように、重みwを用いた重み付きでノック発生確率Pを算出するようにしたことで、ノック発生確率マップの運転領域上での格子点に対する学習データ(変数q)の距離の違いをノック発生確率Pの計算に反映させることが可能となる。言い換えると、本手法によれば、ある格子点でのノック発生確率Pを計算する場合には、ノックが発生した時に単にノック発生回数nを1だけ増やすのではなく、当該格子点とノック発生の有無を示す変数qとの距離に応じて(すなわち、重みwの大きさに応じて)、当該変数qがノック発生確率Pに反映される度合いが変更される。 As described above, by calculating the knock occurrence probability P with the weight using the weight w k , the distance of the learning data (variable q k ) to the lattice point on the operation region of the knock occurrence probability map It is possible to reflect the difference in the calculation of the knock occurrence probability P. In other words, according to this method, when calculating a knock generation probability P in some grid points, rather than simply increasing by one the knock occurrence count n P when knocking occurs, the grid point and knock The degree to which the variable q k is reflected in the knock occurrence probability P is changed according to the distance from the variable q k indicating the presence or absence of the variable (that is, according to the magnitude of the weight w k ).

以上のように、本手法によれば、発生したノックの運転領域上の位置を考慮した重み付きでノック発生確率Pを算出するようにしたことで、各運転領域にある格子点の学習を行えるようになる。このため、ノック発生確率の取得中に運転領域が変化した場合であっても、本来的に統計量であるノック発生確率を運転領域毎に学習できるようになる。そして、図1(A)に表したように運転領域毎にノック発生確率Pを学習可能としたノック発生確率マップを取得できるようになる。   As described above, according to the present method, the calculation of the knock occurrence probability P with the weight in consideration of the position of the generated knock on the operation region enables learning of the grid points in each operation region. It becomes like this. For this reason, even when the driving region changes during acquisition of the knock occurrence probability, the knock occurrence probability, which is essentially a statistic, can be learned for each driving region. Then, as shown in FIG. 1A, a knock occurrence probability map that enables learning of the knock occurrence probability P for each operation region can be acquired.

ところで、上述した実施の形態1においては、異常燃焼の一態様であるノックを例に挙げてノック発生確率マップの学習のためのノック発生確率を重み付きで計算する手法について説明した。しかしながら、上記の手法は、ノック以外のプレイグニッションまたは失火といった他の態様の異常燃焼の発生確率を学習する学習マップのために用いられるようになっていてもよい。具体的には、プレイグニッションの発生の有無についても、例えば筒内圧センサを利用して検出することができる。このため、プレイグニッションの場合にも、上記手法を適用することができる。また、失火が発生すると、筒内の燃焼による発熱量がゼロになることから、サイクル毎の失火発生の有無についても、例えば筒内圧センサを利用して検出することができる。さらに、失火の場合には、点火時期、吸入空気量および燃料噴射量をマップ軸とする失火発生確率マップに対して、上記手法を適用することが好適である。そして、失火発生確率マップを利用して失火発生確率が所定の閾値以下になるように点火時期と燃料噴射量とを制御することが好適である。   By the way, in the above-described first embodiment, the knock generation probability for learning of the knock occurrence probability map is described with weighting as an example of knock that is one aspect of abnormal combustion. However, the above method may be used for a learning map that learns the occurrence probability of other forms of abnormal combustion such as pre-ignition other than knock or misfire. Specifically, the presence / absence of pre-ignition can also be detected using, for example, an in-cylinder pressure sensor. For this reason, the said method is applicable also in the case of pre-ignition. In addition, when misfire occurs, the amount of heat generated by combustion in the cylinder becomes zero, and therefore whether or not misfire occurs for each cycle can be detected using, for example, an in-cylinder pressure sensor. Further, in the case of misfire, it is preferable to apply the above method to a misfire occurrence probability map having the ignition timing, the intake air amount, and the fuel injection amount as map axes. Then, it is preferable to control the ignition timing and the fuel injection amount using the misfire occurrence probability map so that the misfire occurrence probability is equal to or less than a predetermined threshold.

Claims (1)

異常燃焼を検出する異常燃焼検出手段と、
内燃機関の運転領域を規定する領域規定パラメータをマップ軸として含み、複数の格子点を有し、異常燃焼の発生確率の学習値が前記複数の格子点にそれぞれ更新可能に対応付けられた学習マップと、
内燃機関の運転中に前記学習マップを用いて異常燃焼の発生確率を学習する異常燃焼学習手段と、
を備え、
前記学習マップの学習は、異常燃焼の発生確率の学習データが取得されたときに、前記学習マップ上における学習対象格子点と当該学習データとの距離が近いほど、当該学習データの重みを大きく設定し、かつ、異常燃焼の発生確率の学習データが取得される毎に、学習対象格子点において前記重みが大きいほど学習データが学習値に大きく反映されるように当該学習対象格子点の学習値を更新する重み付け学習であって、
前記異常燃焼学習手段は、異常燃焼の発生の有無を1と0で示す変数を学習データとして用い、当該変数に前記重みを付けて重み付け平均を行うことによって異常燃焼の発生確率の学習値を算出することを特徴とする内燃機関の制御装置。
Abnormal combustion detecting means for detecting abnormal combustion;
A learning map that includes a region defining parameter that defines the operating region of the internal combustion engine as a map axis, has a plurality of lattice points, and the learning value of the occurrence probability of abnormal combustion is associated with each of the plurality of lattice points so as to be updatable. When,
Abnormal combustion learning means for learning the occurrence probability of abnormal combustion using the learning map during operation of the internal combustion engine;
With
In learning of the learning map, when learning data of the occurrence probability of abnormal combustion is acquired, the weight of the learning data is set to be larger as the distance between the learning target lattice point on the learning map and the learning data is closer In addition, every time learning data of the probability of occurrence of abnormal combustion is acquired, the learning value of the learning target lattice point is set so that the learning data is more greatly reflected in the learning value as the weight is increased at the learning target lattice point. Weighted learning to update,
The abnormal combustion learning means calculates a learning value of the occurrence probability of abnormal combustion by using as a learning data a variable indicating the presence or absence of occurrence of abnormal combustion as 1 and 0 and assigning the weight to the variable and performing a weighted average. A control device for an internal combustion engine.
JP2014107377A 2014-05-23 2014-05-23 Internal combustion engine control unit Pending JP2015222059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014107377A JP2015222059A (en) 2014-05-23 2014-05-23 Internal combustion engine control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107377A JP2015222059A (en) 2014-05-23 2014-05-23 Internal combustion engine control unit

Publications (1)

Publication Number Publication Date
JP2015222059A true JP2015222059A (en) 2015-12-10

Family

ID=54785203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014107377A Pending JP2015222059A (en) 2014-05-23 2014-05-23 Internal combustion engine control unit

Country Status (1)

Country Link
JP (1) JP2015222059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190106633A (en) * 2018-03-07 2019-09-18 도요타 지도샤(주) Control device of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190106633A (en) * 2018-03-07 2019-09-18 도요타 지도샤(주) Control device of internal combustion engine
KR102066644B1 (en) 2018-03-07 2020-01-15 도요타 지도샤(주) Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
CN105571774B (en) The knock determination of internal combustion engine
JP6350432B2 (en) Control device for internal combustion engine
JP5397570B2 (en) Control device for internal combustion engine
JP6362713B2 (en) Knock detection device
JP2021025438A (en) State detection system for internal combustion engine, data analysis device and vehicle
JP6020690B2 (en) Control device for internal combustion engine
JP2005291182A (en) Misfire detection device
US20170226981A1 (en) Control device and control method for internal combustion engine
JP6295978B2 (en) Control device for internal combustion engine
JP2017008750A (en) Control device of internal combustion engine
JP2017025777A (en) Control device of internal combustion engine
US8924134B2 (en) Knock control device of internal combustion engine
JP2016125363A (en) Internal combustion engine control device
JP2014206163A (en) Method and device of determining ignition angle in engine control device
US9303615B2 (en) Ignition timing control device for an internal combustion engine
US20130192343A1 (en) Knock detection device of internal combustion engine
JP2016133011A (en) Control device of internal combustion engine
JP2015222059A (en) Internal combustion engine control unit
JP2011157852A (en) Control device of internal combustion engine
JP2015098838A (en) Control device for internal combustion engine
JP5742787B2 (en) Abnormal combustion detection device for internal combustion engine
JP5998904B2 (en) Misfire detection device for internal combustion engine
JP2009046988A (en) Control device of internal combustion engine
JP2016098772A (en) Control device of internal combustion engine
JP6187397B2 (en) Internal combustion engine system