JP2015220639A - Optical radio transmitter, optical radio receiver and optical radio communication system - Google Patents

Optical radio transmitter, optical radio receiver and optical radio communication system Download PDF

Info

Publication number
JP2015220639A
JP2015220639A JP2014103545A JP2014103545A JP2015220639A JP 2015220639 A JP2015220639 A JP 2015220639A JP 2014103545 A JP2014103545 A JP 2014103545A JP 2014103545 A JP2014103545 A JP 2014103545A JP 2015220639 A JP2015220639 A JP 2015220639A
Authority
JP
Japan
Prior art keywords
signal
optical wireless
optical
reflected light
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014103545A
Other languages
Japanese (ja)
Other versions
JP6194277B2 (en
Inventor
稔久 藤原
Toshihisa Fujiwara
稔久 藤原
将志 田所
Masashi Tadokoro
将志 田所
鈴木 謙一
Kenichi Suzuki
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014103545A priority Critical patent/JP6194277B2/en
Publication of JP2015220639A publication Critical patent/JP2015220639A/en
Application granted granted Critical
Publication of JP6194277B2 publication Critical patent/JP6194277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical radio transmitter, an optical radio receiver and an optical radio communication system reducing the influence of multiple-reflected light and preventing the deterioration of communication quality.SOLUTION: The optical radio transmitter includes means for generating and composing a signal for canceling a multiple-reflected light component which arrives at the receiver after multiple-reflected by glass etc. in an optical space through the glass in which the glass etc. are existent on a transmission path. This enables the suppression of the influence of the glass etc. on the transmission path. Also, the optical radio transmitter includes means for feeding back information of delay, attenuation, etc. related to the multiple-reflected light component from the reception side to the transmitter.

Description

本発明は、光無線通信における送受信技術に関する。   The present invention relates to a transmission / reception technique in optical wireless communication.

近年、通信の高速化に伴い、FSO(Free Space Optics)として知られる光無線通信技術が注目されている。光無線は、空間を媒体してレーザ光を用いて通信する方式である。この光無線は、光ファイバを敷設しなくても無線のように送受信器の設置のみで通信できることと、無線と異なり免許が必要なく、広帯域の通信が可能であるという利点がある。しかし、無線よりも大気など通過する媒質による減衰や拡散の影響を受けやすいという特徴がある。   In recent years, with an increase in communication speed, an optical wireless communication technique known as FSO (Free Space Optics) has attracted attention. Optical wireless is a method of communicating using laser light through a medium. This optical radio has the advantage that communication can be performed only by installing a transmitter / receiver like a radio without laying an optical fiber, and that, unlike radio, no license is required and broadband communication is possible. However, it is characterized by being more susceptible to attenuation and diffusion due to a passing medium such as the atmosphere than radio.

光無線通信の適応先の一つとして、光無線信号が窓などに設置されたガラスなどの媒質を透過する通信(以下、ガラス越し通信)が提案されている(例えば、特許文献1や非特許文献2を参照。)ガラス越し通信は、壁などで仕切られた部屋と部屋の間の通信や、室内と室外の通信などにおいて、壁に穴を開けることなく窓などのガラス越しに光無線を用いるものである。   As one of the application destinations of optical wireless communication, communication in which an optical wireless signal passes through a medium such as glass installed in a window or the like (hereinafter referred to as communication through glass) has been proposed (for example, Patent Document 1 or non-patent). (Refer to Reference 2.) In communication through glass, communication between rooms partitioned by walls, etc., and communication between indoors and outdoors, etc., do not make a hole in the wall and make optical wireless transmission through glass such as windows. It is what is used.

特開2007−228466号公報JP 2007-228466 A

ガラス越し光空間通信システムの提案(辻村 健ら、電子情報通信学会技術研究報告. OFT, 光ファイバ応用技術 107(52), 19−24, 2007−05−17)Proposal of optical space communication system through glass (Ken Sasamura et al., IEICE Technical Report. OFT, Optical Fiber Application Technology 107 (52), 19-24, 2007-05-17)

しかしながら、ガラス越し通信では、ガラス等の媒質による損失による信号光の低下という品質劣化要因以外に、反射による符号間干渉が品質劣化要因になる。つまり、図1に示すように、光無線送信機からの信号光が光無線受信機までガラス1,2を通過して、直接届く成分がある一方で、図2に示すように光無線送信機からの信号光がガラス1で一旦反射し、逆方向に戻り、再びガラス2で反射し、光受信器で受信される成分(以下、多重反射成分)がある。なお、光受信器とガラス1間、ガラス1とガラス2間、およびガラス2と光無線送信機間は自由空間とみなせる空気、または、ガラス1、ガラス2と異なる誘電率を持つ媒質によって満さている。また、図2では、説明の都合上、反射毎の信号光が同一直線状に並んでいないが、実際には同一直線状にある信号光である。また、実際にはガラスは厚みを持っており、ガラス単体でも多重反射が発生する。   However, in communication through glass, intersymbol interference due to reflection becomes a quality deterioration factor in addition to the quality deterioration factor of signal light decrease due to loss caused by a medium such as glass. That is, as shown in FIG. 1, the signal light from the optical wireless transmitter passes through the glasses 1 and 2 to the optical wireless receiver and there are components that reach directly, whereas the optical wireless transmitter as shown in FIG. There is a component (hereinafter referred to as a multiple reflection component) that is reflected once by the glass 1 and returns in the opposite direction, reflected again by the glass 2, and received by the optical receiver. The space between the optical receiver and the glass 1, between the glass 1 and the glass 2, and between the glass 2 and the optical wireless transmitter is filled with air that can be regarded as free space, or with a medium having a different dielectric constant from the glass 1 and the glass 2. Yes. In FIG. 2, the signal light for each reflection is not arranged in the same straight line for convenience of explanation, but is actually a signal light in the same straight line. In practice, glass has a thickness, and multiple reflection occurs even with a single glass.

ここで、直接信号光Sdirect(t)と多重反射光Sreflect(t)とすると、光無線受信機にはSdirect(t)+Sreflect(t)の信号光が入射され、受光素子において直接信号光Sdirect(t)のみを分離できないため、信号識別時に誤りが発生する可能性がある。すなわち、先行技術文献には、通信品質低下の可能性という課題がある。 Here, if the direct signal light S direct (t) and the multiple reflected light S reflect (t) are taken, the signal light of S direct (t) + S reflect (t) is incident on the optical wireless receiver and directly received by the light receiving element. Since only the signal light S direct (t) cannot be separated, an error may occur during signal identification. That is, the prior art document has a problem of possibility of communication quality degradation.

本発明では、このような課題を解決するため、多重反射光の影響を低減し、通信品質低下を防止する光無線送信機、光無線受信機、及び光無線通信システムを提供することを目的とする。   In order to solve such a problem, an object of the present invention is to provide an optical wireless transmitter, an optical wireless receiver, and an optical wireless communication system that reduce the influence of multiple reflected light and prevent deterioration in communication quality. To do.

上記目的を達成するために、本発明に係る光無線送信機は、ガラス等で多重反射する多重反射光成分を打ち消す信号を送信する情報信号に予め重畳させることとした。   In order to achieve the above object, the optical wireless transmitter according to the present invention superimposes in advance an information signal for transmitting a signal that cancels a multiple reflected light component that is multiple-reflected by glass or the like.

具体的には、本発明に係る光無線送信機は、光信号を異なる誘電率の複数の媒質を通過させて情報信号を伝送する光無線通信の光無線送信機であって、
前記情報信号を発生する信号発生部と、
前記光信号が前記媒質を通過することで生じ、前記情報信号の宛先である光無線受信機に入射する多重反射光の成分を補償する補償信号を前記情報信号に重畳するプリディストーション部と、
を備えることを特徴とする。
Specifically, an optical wireless transmitter according to the present invention is an optical wireless transmitter for optical wireless communication that transmits an information signal by passing an optical signal through a plurality of media having different dielectric constants,
A signal generator for generating the information signal;
A predistortion unit that superimposes on the information signal a compensation signal that is generated when the optical signal passes through the medium and compensates for a component of multiple reflected light that enters the optical wireless receiver that is the destination of the information signal;
It is characterized by providing.

本光無線送信機は、プリディストーション部で多重反射光成分を打ち消す信号を送信する情報信号に予め重畳するため、光無線受信機が受信する光信号に含まれる多重反射光成分は少ない。従って、本発明は、多重反射光の影響を低減し、通信品質低下を防止する光無線送信機を提供することができる。   Since this optical wireless transmitter superimposes in advance on an information signal for transmitting a signal that cancels the multiple reflected light component in the predistortion unit, the multiple reflected light component contained in the optical signal received by the optical wireless receiver is small. Therefore, the present invention can provide an optical wireless transmitter that reduces the influence of multiple reflected light and prevents deterioration in communication quality.

本発明に係る光無線送信機の前記プリディストーション部は、前記多重反射光の成分を表すパラメータを前記光無線受信機から受け取り、前記補償信号を生成することを特徴とする。光無線受信機からパラメータを受け取ることで、多重反射光成分の変動に追従することができる。   The predistortion unit of the optical wireless transmitter according to the present invention is characterized by receiving a parameter representing the component of the multiple reflected light from the optical wireless receiver and generating the compensation signal. By receiving the parameter from the optical wireless receiver, it is possible to follow the fluctuation of the multiple reflected light component.

本発明に係る光無線送信機の前記光信号を前記光無線受信機が反射した反射光を受光し、前記多重反射光の成分を表すパラメータを判別する補償回路部をさらに備え、前記プリディストーション部は、前記多重反射光の成分を表すパラメータを前記補償回路部から受け取り、前記補償信号を生成することを特徴とする。光無線受信機で反射した光信号に基づいてパラメータを判別することで、多重反射光成分の変動に追従することができる。   The predistortion unit further includes a compensation circuit unit that receives reflected light reflected by the optical wireless receiver of the optical wireless transmitter according to the present invention and discriminates a parameter representing a component of the multiple reflected light. Receives a parameter representing the component of the multiple reflected light from the compensation circuit unit, and generates the compensation signal. By determining the parameter based on the optical signal reflected by the optical wireless receiver, it is possible to follow the variation of the multiple reflected light component.

一方、上記目的を達成するために、本発明に係る光無線受信機は、ガラス等で多重反射する多重反射光成分を打ち消す信号を受信した信号に重畳させることとした。   On the other hand, in order to achieve the above object, the optical wireless receiver according to the present invention superimposes a signal for canceling multiple reflected light components that are multiple-reflected by glass or the like on the received signal.

具体的には、本発明に係る光無線受信機は、光信号を異なる誘電率の複数の媒質を通過させて情報信号を伝送する光無線通信の光無線受信機であって、
前記光信号を受光し、電気の受信信号へ変換する受光部と、
前記受光部が出力する前記受信信号に、前記光信号が前記媒質を通過することで生じる多重反射光の多重反射光成分を補償する補償信号を重畳し、歪補償信号を出力する歪補償部と、
前記歪補償部が出力する前記歪補償信号から、前記光信号を送信した光無線送信機からの前記情報信号を識別する識別部と、
を備えることを特徴とする。
Specifically, an optical wireless receiver according to the present invention is an optical wireless receiver for optical wireless communication that transmits an information signal by passing an optical signal through a plurality of media having different dielectric constants,
A light receiving unit that receives the optical signal and converts it into an electrical reception signal;
A distortion compensation unit that outputs a distortion compensation signal by superimposing a compensation signal for compensating a multiple reflected light component of multiple reflected light generated by the optical signal passing through the medium on the reception signal output by the light receiving unit; ,
An identification unit for identifying the information signal from the optical wireless transmitter that has transmitted the optical signal, from the distortion compensation signal output by the distortion compensation unit;
It is characterized by providing.

本光無線受信機は、歪補償部で多重反射光成分を打ち消す信号を受信した受信信号に重畳するため、識別部が受け取る信号に含まれる多重反射光成分は少ない。従って、本発明は、多重反射光の影響を低減し、通信品質低下を防止する光無線受信機を提供することができる。   Since the optical wireless receiver superimposes a signal for canceling the multiple reflected light component in the distortion compensating unit on the received signal, the multiple reflected light component included in the signal received by the identifying unit is small. Therefore, the present invention can provide an optical wireless receiver that reduces the influence of multiple reflected light and prevents deterioration in communication quality.

本発明に係る光無線受信機の前記識別部は、前記歪補償信号と前記情報信号を比較して劣化量を検出し、前記歪補償部は、前記識別部から受け取った前記劣化量から前記多重反射光成分のパラメータを判別し、前記補償信号を生成することを特徴とする。識別部から劣化量を受け取りパラメータを判別することで、多重反射光成分の変動に追従することができる。   The identification unit of the optical wireless receiver according to the present invention compares the distortion compensation signal and the information signal to detect a deterioration amount, and the distortion compensation unit detects the multiplex from the deterioration amount received from the identification unit. The compensation signal is generated by discriminating the parameter of the reflected light component. By receiving the deterioration amount from the identification unit and discriminating the parameters, it is possible to follow the variation of the multiple reflected light component.

本発明に係る光無線受信機は、前記光信号を反射し、反射光を出力する反射部をさらに備えることを特徴とする。光無線受信機で受信する光信号を光無線送信機へ反射することで、光無線送信機でパラメータを判別することができ、多重反射光成分の変動に追従することができる。   The optical wireless receiver according to the present invention further includes a reflection unit that reflects the optical signal and outputs reflected light. By reflecting the optical signal received by the optical wireless receiver to the optical wireless transmitter, the optical wireless transmitter can determine the parameter, and can follow the variation of the multiple reflected light component.

さらに、本発明に係る光無線通信システムは、光無線受信機で判別した多重反射光成分のパラメータを光無線送信機が受け取り、送信する情報信号に補償信号を重畳するシステムである。   Furthermore, the optical wireless communication system according to the present invention is a system in which an optical wireless transmitter receives parameters of multiple reflected light components determined by an optical wireless receiver and superimposes a compensation signal on an information signal to be transmitted.

また、本発明に係る光無線通信システムは、光無線受信機で反射した光信号を光無線送信機で受け取り、多重反射光成分のパラメータを判別し、送信する情報信号に補償信号を重畳するシステムであってもよい。   The optical wireless communication system according to the present invention is a system in which an optical signal reflected by an optical wireless receiver is received by an optical wireless transmitter, a parameter of a multiple reflected light component is determined, and a compensation signal is superimposed on an information signal to be transmitted. It may be.

本発明は、多重反射光の影響を低減し、通信品質低下を防止する光無線送信機、光無線受信機、及び光無線通信システムを提供することができる。   The present invention can provide an optical wireless transmitter, an optical wireless receiver, and an optical wireless communication system that reduce the influence of multiple reflected light and prevent deterioration in communication quality.

光無線通信において光無線送信機から光無線受信機へ直接到着する光成分を説明する図である。It is a figure explaining the optical component which arrives directly from an optical wireless transmitter to an optical wireless receiver in optical wireless communication. 光無線通信において光無線送信機から光無線受信機へ多重反射しながら到着する光成分を説明する図である。It is a figure explaining the optical component which arrives in an optical wireless communication, carrying out multiple reflection from an optical wireless transmitter to an optical wireless receiver. 本発明に係る光無線送信機を説明する図である。It is a figure explaining the optical wireless transmitter which concerns on this invention. 本発明に係る光無線送信機において補償信号を生成する信号発生部を説明する図である。It is a figure explaining the signal generation part which produces | generates a compensation signal in the optical wireless transmitter which concerns on this invention. 本発明に係る光無線送信機を説明する図である。It is a figure explaining the optical wireless transmitter which concerns on this invention. 本発明に係る光無線送信機において補償信号を生成する信号発生部を説明する図である。It is a figure explaining the signal generation part which produces | generates a compensation signal in the optical wireless transmitter which concerns on this invention. 本発明に係る光無線送信機を説明する図である。It is a figure explaining the optical wireless transmitter which concerns on this invention. 本発明に係る光無線送信機において補償信号を生成する信号発生部を説明する図である。It is a figure explaining the signal generation part which produces | generates a compensation signal in the optical wireless transmitter which concerns on this invention. 本発明に係る光無線送信機を説明する図である。It is a figure explaining the optical wireless transmitter which concerns on this invention. 本発明に係る光無線送信機において補償信号を生成する信号発生部を説明する図である。It is a figure explaining the signal generation part which produces | generates a compensation signal in the optical wireless transmitter which concerns on this invention. 本発明に係る光無線受信機と光無線通信システムを説明する図である。It is a figure explaining the optical wireless receiver and optical wireless communication system which concern on this invention. 本発明に係る光無線受信機と光無線通信システムを説明する図である。It is a figure explaining the optical wireless receiver and optical wireless communication system which concern on this invention. 本発明に係る光無線受信機を説明する図である。It is a figure explaining the optical wireless receiver which concerns on this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施形態であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are embodiments of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

以下に説明する本実施形態の光無線通信システムは、光送信機と光受信機から構成され、空気等の自由空間と見做せる空間(以下、自由空間等)と、1枚以上のガラス等の前記空間とはことなる誘電率をもつ媒質を経路として通信を行う(図1及び図2)。図1及び図2には、ガラスが2枚である場合を示す。光無線送信機から発信された信号光は、自由空間等3、ガラス2、自由空間等2、ガラス1、自由空間等1を経て光無線受信機に至る直接信号光Sdirect(t)と、自由空間等3、ガラス2、自由空間等2を経てガラス1で反射し、自由空間等2を経てガラス2で反射し、再び自由空間等2、ガラス1、自由空間等1を経る多重反射光Sreflect(t)に分けられる。ここで経由する自由空間等1、自由空間等2、自由空間等3、ガラス1、およびガラス2は、空気やガラスに限らず、お互いに誘電率が異なりその境界面で反射が発生する媒体でもよい。 An optical wireless communication system according to the present embodiment described below includes an optical transmitter and an optical receiver, and can be regarded as a free space such as air (hereinafter referred to as free space), one or more glasses, and the like. Communication is performed using a medium having a dielectric constant different from that of the space (FIGS. 1 and 2). 1 and 2 show a case where there are two glasses. The signal light transmitted from the optical wireless transmitter is a direct signal light S direct (t) that reaches the optical wireless receiver through the free space 3, the glass 2, the free space 2, the glass 1, the free space 1, etc. Reflected by glass 1 through free space 3, glass 2, free space 2, etc., reflected by glass 2 through free space 2, etc., and again reflected through free space 2, glass 1, free space 1, etc. It is divided into S reflect (t). The free space 1, the free space 2, the free space 3, the glass 1, and the glass 2 that are routed here are not limited to air or glass, but may be media that have different dielectric constants and reflect on their boundary surfaces. Good.

本発明に係る光無線送信機は、光信号を異なる誘電率の複数の媒質を通過させて情報信号を伝送する光無線通信の光無線送信機であって、
前記情報信号を発生する信号発生部と、
前記光信号が前記媒質を通過することで生じ、前記情報信号の宛先である光無線受信機に入射する多重反射光の成分を補償する補償信号を前記情報信号に重畳するプリディストーション部と、
を備えることを特徴とする。
本光無線送信機は実施形態1から4に説明する構成がある。
An optical wireless transmitter according to the present invention is an optical wireless transmitter for optical wireless communication that transmits an information signal by passing an optical signal through a plurality of media having different dielectric constants,
A signal generator for generating the information signal;
A predistortion unit that superimposes on the information signal a compensation signal that is generated when the optical signal passes through the medium and compensates for a component of multiple reflected light that enters the optical wireless receiver that is the destination of the information signal;
It is characterized by providing.
This optical wireless transmitter has the configuration described in the first to fourth embodiments.

(実施形態1)
図3は、本実施形態の光無線送信機101を説明する図である。光無線送信機101は、伝達すべき情報の信号光S(t)の成分を発生させる信号発生部11と、多重反射光の逆相であるの成分に相当するS(t)を発生させる信号発生部12と、その信号発生部11からの信号S(t)と信号発生部12の信号S(t)を合波する合波部13を有する。信号発生部12と合波部13でプリディストーション部14である。
(Embodiment 1)
FIG. 3 is a diagram for explaining the optical wireless transmitter 101 according to the present embodiment. The optical wireless transmitter 101 generates a signal generation unit 11 that generates a component of signal light S (t) of information to be transmitted, and S c (t) corresponding to a component that is a reverse phase of multiple reflected light. The signal generating unit 12 includes a combining unit 13 that combines the signal S (t) from the signal generating unit 11 and the signal S c (t) of the signal generating unit 12. A signal generating unit 12 and a combining unit 13 are predistortion units 14.

ここで、S(t)=−kS(t+τ)であり、kは直接光に対する反射光の強度比であり、一般にk<<1である。τは直接光に対する反射光の遅れ時間であり、τ>0である。kとτは、多重反射光の成分を表すパラメータである。 Here, S c (t) = − kS (t + τ), k is an intensity ratio of reflected light to direct light, and generally k << 1. τ is the delay time of the reflected light with respect to the direct light, and τ> 0. k and τ are parameters representing components of multiple reflected light.

したがって、光無線受信機では、直接光としSdirect(t)=S(t)+S(t)と、反射光としてSreflect(t)=kS(t+τ)+kS(t+τ)を合わせて受信することとなる。結果として光無線受信機は、Sdirect(t)+Sreflect(t)=S(t)−kSt(t+2τ)を受信することとなる。k<<1であることから、kの項は十分小さくなり、多重反射光成分の影響を大きく低減することができる。なお、S(t)として、S(t)=−kS(t+τ)+kS(t+2τ)のようにkが2次以降の成分を含む形で生成し、光無線受信機におけるkが2次以降の成分が相殺されるようにしても構わない。また、複数の多重反射経路を想定し、S(t)=−kS(t+τ)−kS(t+τ)・・・のように多重反射光に相当する成分を生成しても構わない。 Therefore, the optical wireless receiver receives S direct (t) = S (t) + S c (t) as direct light and S reflect (t) = kS (t + τ) + kS c (t + τ) as reflected light. Will be. As a result, the optical wireless receiver receives S direct (t) + S reflect (t) = S (t) −k 2 St (t + 2τ). since it is k << 1, term of k 2 becomes small enough, it is possible to greatly reduce the influence of multiple reflection light component. In addition, as S c (t), k is generated in a form including k and second order components as S c (t) = − kS (t + τ) + k 2 S (t + 2τ), and k in the optical wireless receiver is You may make it cancel the component after the secondary. In addition, assuming a plurality of multiple reflection paths, a component corresponding to multiple reflected light is generated as S c (t) = − k 1 S (t + τ 1 ) −k 2 S (t + τ 2 ). It doesn't matter.

なお、信号発生部12は、例えば、S(t)をS(t)を時間τだけ遅延させる遅延部18と逆相で且つkに減衰させる逆相・減衰部19とからなる(図4)。ただし、図4は一例であって、S(t)を発生させるために、信号発生部12は図4の構成以外でも構わない。 The signal generating section 12 is made of, for example, reversed phase and damping unit 19 for attenuating S c (t) is and the k delay unit 18 and the reverse phase delaying time τ the S c (t) (FIG. 4). However, FIG. 4 is an example, and the signal generator 12 may have a configuration other than that of FIG. 4 in order to generate S c (t).

(実施形態2)
図5は、本実施形態の光無線送信機102を説明する図である。光無線送信機102は、伝達すべき情報のs(t)の成分を発生させる信号発生部21と、多重反射光の逆相であるの成分に相当するs(t)を発生させる信号発生部22と、その信号発生部1からの信号s(t)と信号発生部2の信号s(t)を合波する合波部23と、合波部23からの電気信号を光無線信号の信号光S(t)+S(t)に変換する変調部25をする。信号発生部22と合波部23がプリディストーション部24である。なお、変調部25は、s(t)の変調信号に対して信号光S(t)を、s(t)の変調信号に対しては信号光S(t)を出力するものとする。
(Embodiment 2)
FIG. 5 is a diagram for explaining the optical wireless transmitter 102 of the present embodiment. The optical wireless transmitter 102 generates a signal generation unit 21 that generates a component of s (t) of information to be transmitted, and a signal generation that generates s c (t) corresponding to a component that is the reverse phase of the multiple reflected light. Unit 22, combining unit 23 that combines signal s (t) from signal generating unit 1 and signal s c (t) from signal generating unit 2, and an electrical signal from combining unit 23 as an optical wireless signal The modulation unit 25 converts the signal light into S (t) + S c (t). The signal generation unit 22 and the multiplexing unit 23 are the predistortion unit 24. The modulation unit 25, s signal light S with respect to the modulation signal (t) (t), for the modulated signal s c (t) and outputs the signal light S c (t) .

ここで、S(t)=−kS(t+τ)であり、kは直接光に対する反射光の強度比であり、一般にk<<1である。τは直接光に対する反射光の遅れ時間であり、τ>0である。kとτは、多重反射光の成分を表すパラメータである。 Here, S c (t) = − kS (t + τ), k is an intensity ratio of reflected light to direct light, and generally k << 1. τ is the delay time of the reflected light with respect to the direct light, and τ> 0. k and τ are parameters representing components of multiple reflected light.

したがって、光無線受信機では、直接光としSdirect(t)=S(t)+S(t)と、反射光としてSreflect(t)=kS(t+τ)+kS(t+τ)を合わせて受信することとなる。結果として光無線受信機は、Sdirect(t)+Sreflect(t)=S(t)−kSt(t+2τ)を受信することとなる。k<<1であることから、kの項は十分小さくなり、多重反射光成分の影響を大きく低減することができる。なお、s(t)として、s(t)=−ks(t+τ)+ks(t+2τ)のようにkが2次以降の成分を含む形で生成し、光無線受信機におけるkが2次以降の成分が相殺されるようにしても構わない。また、複数の多重反射経路を想定し、s(t)=−ks(t+τ)−ks(t+τ)・・・のように多重反射光に相当する成分を生成しても構わない。 Therefore, the optical wireless receiver receives S direct (t) = S (t) + S c (t) as direct light and S reflect (t) = kS (t + τ) + kS c (t + τ) as reflected light. Will be. As a result, the optical wireless receiver receives S direct (t) + S reflect (t) = S (t) −k 2 St (t + 2τ). since it is k << 1, term of k 2 becomes small enough, it is possible to greatly reduce the influence of multiple reflection light component. In addition, as s c (t), k is generated so as to include components after the second order as s c (t) = − ks (t + τ) + k 2 s (t + 2τ), and k in the optical wireless receiver is You may make it cancel the component after the secondary. Further, assuming a plurality of multiple reflection paths, a component corresponding to the multiple reflected light is generated as s c (t) = − k 1 s (t + τ 1 ) −k 2 s (t + τ 2 ). It doesn't matter.

なお、信号発生部22は、例えば、s(t)をs(t)を時間τだけ遅延させる遅延部28と逆相で且つkに減衰させる逆相・減衰部29とからなる(図6)。ただし、図6は一例であって、s(t)を発生させるために、信号発生部22は図6の構成以外でも構わない。 The signal generating section 22 is made of, for example, s c (t) and s c (t) the time τ by a delay unit 28 for delaying reverse phase and negative-phase-attenuation section 29 for attenuating the k (FIG. 6). However, FIG. 6 is an example, and in order to generate s c (t), the signal generator 22 may have a configuration other than that of FIG.

(実施形態3)
図7は、本実施形態の光無線送信機103を説明する図である。光無線送信機103は、伝達すべき情報の信号光S(t)の成分を発生させる信号発生部31と、多重反射光の成分に相当する−S(t)を発生させる信号発生部32と、その信号発生部31からの信号S(t)と信号発生部32の信号S(t)を逆相で合波する合波部33を有する。信号発生部32と合波部33がプリディストーション部34である。
(Embodiment 3)
FIG. 7 is a diagram for explaining the optical wireless transmitter 103 of the present embodiment. The optical wireless transmitter 103 generates a signal generator 31 that generates a component of signal light S (t) of information to be transmitted, and a signal generator 32 that generates -S c (t) corresponding to a component of multiple reflected light. And a multiplexing unit 33 for multiplexing the signal S (t) from the signal generation unit 31 and the signal S c (t) of the signal generation unit 32 in opposite phases. The signal generation unit 32 and the multiplexing unit 33 are the predistortion unit 34.

ここで、−S(t)=kS(t+τ)であり、kは直接光に対する反射光の強度比であり、一般にk<<1である。τは直接光に対する反射光の遅れ時間であり、τ>0である。kとτは、多重反射光の成分を表すパラメータである。 Here, −S c (t) = kS (t + τ), k is an intensity ratio of reflected light to direct light, and generally k << 1. τ is the delay time of the reflected light with respect to the direct light, and τ> 0. k and τ are parameters representing components of multiple reflected light.

したがって、光無線受信機では、直接光としSdirect(t)=S(t)+S(t)と、反射光としてSreflect(t)=kS(t+τ)+kS(t+τ)を合わせて受信することとなる。結果として光無線受信機は、Sdirect(t)+Sreflect(t)=S(t)−kSt(t+2τ)を受信することとなる。k<<1であることから、kの項は十分小さくなり、多重反射光成分の影響を大きく低減することができる。なお、S(t)として、S(t)=−kS(t+τ)+kS(t+2τ)のようにkが2次以降の成分を含む形で生成し、光無線受信機におけるkが2次以降の成分が相殺されるようにしても構わない。また、複数の多重反射経路を想定し、−S(t)=kS(t+τ)+kS(t+τ)・・・のように多重反射光に相当する成分を生成しても構わない。 Therefore, the optical wireless receiver receives S direct (t) = S (t) + S c (t) as direct light and S reflect (t) = kS (t + τ) + kS c (t + τ) as reflected light. Will be. As a result, the optical wireless receiver receives S direct (t) + S reflect (t) = S (t) −k 2 St (t + 2τ). since it is k << 1, term of k 2 becomes small enough, it is possible to greatly reduce the influence of multiple reflection light component. In addition, as S c (t), k is generated in a form including k and second order components as S c (t) = − kS (t + τ) + k 2 S (t + 2τ), and k in the optical wireless receiver is You may make it cancel the component after the secondary. Further, assuming a plurality of multiple reflection paths, a component corresponding to multiple reflected light such as -S c (t) = k 1 S (t + τ 1 ) + k 2 S (t + τ 2 ). I do not care.

なお、信号発生部32は、例えば、S(t)をS(t)を時間τだけ遅延させる遅延部38とkに減衰させる減衰部39とからなる(図8)。ただし、図8は一例であって、S(t)を発生させるために、信号発生部32は図8の構成以外でも構わない。 The signal generating unit 32 is made of, for example, S c (t) and S c (t) the time τ by the attenuation section 39. attenuate the delay unit 38 and k delaying (Figure 8). However, FIG. 8 is an example, and the signal generator 32 may have a configuration other than that of FIG. 8 in order to generate S c (t).

(実施形態4)
図9は、本実施形態の光無線送信機104を説明する図である。光無線送信機104は、伝達すべき情報のs(t)の成分を発生させる信号発生部41と、多重反射光の成分に相当する−s(t)を発生させる信号発生部42と、その信号発生部41からの信号s(t)と信号発生部42の信号−s(t)を逆相で合波する合波部43と、合波部43からの電気信号を光無線信号の信号光S(t)+S(t)に変換する変調部45をする。信号発生部42と合波部43がプリディストーション部44である。なお、変調部45は、s(t)の変調信号に対して信号光S(t)を、s(t)の変調信号に対しては信号光S(t)を出力するものとする。
(Embodiment 4)
FIG. 9 is a diagram for explaining the optical wireless transmitter 104 of the present embodiment. The optical wireless transmitter 104 includes a signal generator 41 that generates a component of s (t) of information to be transmitted, a signal generator 42 that generates -s c (t) corresponding to a component of multiple reflected light, The signal s (t) from the signal generator 41 and the signal −s c (t) of the signal generator 42 are combined in reverse phase, and the electrical signal from the combiner 43 is an optical wireless signal. The modulation unit 45 converts the signal light into S (t) + S c (t). The signal generation unit 42 and the multiplexing unit 43 are the predistortion unit 44. The modulation unit 45, s signal light S with respect to the modulation signal (t) (t), for the modulated signal s c (t) and outputs the signal light S c (t) .

ここで、−S(t)=kS(t+τ)であり、kは直接光に対する反射光の強度比であり、一般にk<<1である。τは直接光に対する反射光の遅れ時間であり、τ>0である。kとτは、多重反射光の成分を表すパラメータである。 Here, −S c (t) = kS (t + τ), k is an intensity ratio of reflected light to direct light, and generally k << 1. τ is the delay time of the reflected light with respect to the direct light, and τ> 0. k and τ are parameters representing components of multiple reflected light.

したがって、光無線受信機では、直接光としSdirect(t)=S(t)+S(t)と、反射光としてSreflect(t)=kS(t+τ)+kS(t+τ)を合わせて受信することとなる。結果として光無線受信機は、Sdirect(t)+Sreflect(t)=S(t)−kSt(t+2τ)を受信することとなる。k<<1であることから、kの項は十分小さくなり、多重反射光成分の影響を大きく低減することができる。なお、s(t)として、s(t)=−ks(t+τ)+ks(t+2τ)のようにkが2次以降の成分を含む形で生成し、光無線受信機におけるkが2次以降の成分が相殺されるようにしても構わない。また、複数の多重反射経路を想定し、−s(t)=ks(t+τ)+ks(t+τ)・・・のように多重反射光に相当する成分を生成しても構わない。 Therefore, the optical wireless receiver receives S direct (t) = S (t) + S c (t) as direct light and S reflect (t) = kS (t + τ) + kS c (t + τ) as reflected light. Will be. As a result, the optical wireless receiver receives S direct (t) + S reflect (t) = S (t) −k 2 St (t + 2τ). since it is k << 1, term of k 2 becomes small enough, it is possible to greatly reduce the influence of multiple reflection light component. In addition, as s c (t), k is generated so as to include components after the second order as s c (t) = − ks (t + τ) + k 2 s (t + 2τ), and k in the optical wireless receiver is You may make it cancel the component after the secondary. Further, assuming a plurality of multiple reflection paths, a component corresponding to multiple reflected light is generated as in -s c (t) = k 1 s (t + τ 1 ) + k 2 s (t + τ 2 ). I do not care.

なお、信号発生部42は、例えば、s(t)をs(t)を時間τだけ遅延させる遅延部48とkに減衰させる逆相・減衰部49とからなる(図10)。ただし、図10は一例であって、s(t)を発生させるために、信号発生部42は図10の構成以外でも構わない。 The signal generator 42 is made of, for example, s c (t) and s c (t) the time τ delayed delaying portion 48 and the negative-phase-attenuation section 49. attenuate the k (Figure 10). However, FIG. 10 is an example, and the signal generator 42 may have a configuration other than that of FIG. 10 in order to generate s c (t).

(実施形態5)
本発明に係る光無線受信機は、光信号を異なる誘電率の複数の媒質を通過させて情報信号を伝送する光無線通信の光無線受信機であって、
前記光信号を受光し、電気の受信信号へ変換する受光部と、
前記受光部が出力する前記受信信号に、前記光信号が前記媒質を通過することで生じる多重反射光の多重反射光成分を補償する補償信号を重畳し、歪補償信号を出力する歪補償部と、
前記歪補償部が出力する前記歪補償信号から、前記光信号を送信した光無線送信機からの前記情報信号を識別する識別部と、
を備えることを特徴とする。
(Embodiment 5)
An optical wireless receiver according to the present invention is an optical wireless receiver for optical wireless communication that transmits an information signal by passing an optical signal through a plurality of media having different dielectric constants,
A light receiving unit that receives the optical signal and converts it into an electrical reception signal;
A distortion compensation unit that outputs a distortion compensation signal by superimposing a compensation signal for compensating a multiple reflected light component of multiple reflected light generated by the optical signal passing through the medium on the reception signal output by the light receiving unit; ,
An identification unit for identifying the information signal from the optical wireless transmitter that has transmitted the optical signal, from the distortion compensation signal output by the distortion compensation unit;
It is characterized by providing.

図13は、本実施形態の光無線受信機201を説明する図である。光無線受信機201は、信号の識別を行う識別部51と、識別部51で識別した信号に時間遅れと強度の調整と位相を反転させて合波する遅延・強度調整・位相反転合成部52と、光無線送信機からの光信号を受信する受光部53と、を備える。遅延・強度調整・位相反転合成部52を歪補償部と記載することがある。   FIG. 13 is a diagram for explaining the optical wireless receiver 201 of this embodiment. The optical wireless receiver 201 includes an identification unit 51 that performs signal identification, and a delay / intensity adjustment / phase inversion combination unit 52 that combines the signal identified by the identification unit 51 with time delay, intensity adjustment, and phase inversion. And a light receiving unit 53 that receives an optical signal from the optical wireless transmitter. The delay / intensity adjustment / phase inversion combining unit 52 may be referred to as a distortion compensation unit.

受光部53は、Sdirect(t)+Sreflect(t)の信号光を受信しs’(t)+ ks’(t+τ)を生成する。遅延・強度調整・位相反転合成部52は、s(t)を基に−ks(t+τ)を生成し、s’(t)+ks’(t+τ)に合波する。ks’(t+τ)≒ks(t+τ)であることから、遅延・強度調整・位相反転合成部52からはs’(t)成分が出力される。識別部51は、s’(t)成分からs(t)を識別する。このとき識別部51では入力されたs’(t)成分から一旦情報元の符号を識別して、s(t)を再生成してもよい。 The light receiving unit 53 receives the signal light of S direct (t) + S reflect (t) and generates s ′ (t) + ks c ′ (t + τ). The delay / intensity adjustment / phase inversion synthesizer 52 generates −ks (t + τ) based on s (t) and multiplexes it with s ′ (t) + ks c ′ (t + τ). Since ks c ′ (t + τ) ≈ks (t + τ), the delay / intensity adjustment / phase inversion combining unit 52 outputs the s ′ (t) component. The identification unit 51 identifies s (t) from the s ′ (t) component. At this time, the identification unit 51 may once identify the code of the information source from the input s ′ (t) component and regenerate s (t).

遅延・強度調整・位相反転合成部52は、kおよびτを、識別部51から信号劣化量などの情報を得て、自動的に調整しても構わない。具体的に説明する。前記識別部は、前記歪補償信号と前記情報信号を比較して劣化量を検出し、前記歪補償部は、前記識別部から受け取った前記劣化量から前記多重反射光成分のパラメータを判別し、前記補償信号を生成することを特徴とする。光無線送信機は、既知の情報信号s(A)を光変換した光既知信号Sdirect(A)を光無線受信機201へ向けて出力する。受光部53は、光既知信号Sdirect(A)で生じた多重反射光Sreflect(A)を受光し、s’(A)+ks’(A+τ)を生成する。遅延・強度調整・位相反転合成部52は、まず、無補償のまま識別部51へ出力する。この信号は既知の情報信号に多重反射光成分が重畳したものであるので、識別部51は、信号の劣化量を認識できる。そして、遅延・強度調整・位相反転合成部52は、信号の劣化量とs’(A)+ks’(A+τ)からパラメータのkとτを判別する。実際の判別手法としては、遅延・強度調整・位相反転合成部52は、kとτをその劣化量が少なくなるよう変化させることで最適なkとτを見出す。遅延・強度調整・位相反転合成部52は、このようにして見出したパラメータを用いてs(A)から−ks(A+τ)を生成し、s’(A)+ks’(t+τ)に合波し、識別部51へ出力する。この作業を数回繰り返すことでパラメータを最適化してもよい。 The delay / intensity adjustment / phase inversion combining unit 52 may automatically adjust k and τ by obtaining information such as the signal deterioration amount from the identification unit 51. This will be specifically described. The identification unit detects the amount of deterioration by comparing the distortion compensation signal and the information signal, the distortion compensation unit determines the parameter of the multiple reflected light component from the amount of deterioration received from the identification unit, The compensation signal is generated. The optical wireless transmitter outputs an optical known signal S direct (A) obtained by optically converting the known information signal s (A) to the optical wireless receiver 201. The light receiving unit 53 receives the multiple reflected light S reflect (A) generated by the known light signal S direct (A), and generates s ′ (A) + ks c ′ (A + τ). The delay / intensity adjustment / phase inversion synthesizer 52 first outputs to the discriminator 51 without compensation. Since this signal is obtained by superimposing multiple reflected light components on a known information signal, the identification unit 51 can recognize the amount of signal degradation. Then, the delay / intensity adjustment / phase inversion combining unit 52 determines the parameters k and τ from the signal degradation amount and s ′ (A) + ks c ′ (A + τ). As an actual discrimination method, the delay / intensity adjustment / phase inversion synthesizer 52 finds the optimum k and τ by changing k and τ so that the deterioration amount is reduced. The delay / intensity adjustment / phase inversion synthesizer 52 generates −ks (A + τ) from s (A) using the parameters found in this way, and s ′ (A) + ks c ′ (t + τ) is multiplexed. And output to the identification unit 51. The parameter may be optimized by repeating this operation several times.

遅延・強度調整・位相反転合成部52は、決定したパラメータを使用して通常の受信信号の補償を行う。また、定期的または恒常的に上記パラメータの見直しを行ってもよい。   The delay / strength adjustment / phase inversion synthesizer 52 compensates for a normal received signal using the determined parameters. Further, the above parameters may be reviewed periodically or constantly.

(実施形態6)
本実施形態の光無線通信システムは、光無線送信機101〜104のいずれかと光無線受信機201を備える。本光無線通信システムでは、光無線送信機101〜104の前記プリディストーション部は、前記多重反射光の成分を表すパラメータを前記光無線受信機から受け取り、前記補償信号を生成することを特徴とする。
(Embodiment 6)
The optical wireless communication system of this embodiment includes any one of optical wireless transmitters 101 to 104 and an optical wireless receiver 201. In the present optical wireless communication system, the predistortion unit of the optical wireless transmitters 101 to 104 receives a parameter representing the component of the multiple reflected light from the optical wireless receiver, and generates the compensation signal. .

図11は、本実施形態の光無線システム301を説明する図である。図11の光無線受信機201は、多重反射光の遅延時間τと減衰定数kを判別する判別部61を持ち、その判別情報を光無線送信機(101〜104)に送る。なお、判別部61は図13で説明した識別部51と遅延・強度調整・位相反転合成部52であってもよい。光無線送信機(101〜104)は、光無線受信機201から通知されたτとkに基づき、信号発生部(12、22、32、42)において遅延部(18、28、38、48)の遅延量及び逆相・減衰部(19、29、49)又は減衰部39の減衰量を調整および決定する。   FIG. 11 is a diagram illustrating the optical wireless system 301 of the present embodiment. The optical wireless receiver 201 in FIG. 11 has a determination unit 61 that determines the delay time τ and the attenuation constant k of the multiple reflected light, and sends the determination information to the optical wireless transmitters (101 to 104). The discriminating unit 61 may be the discriminating unit 51 and the delay / intensity adjustment / phase inversion combining unit 52 described with reference to FIG. The optical wireless transmitters (101 to 104) use the delay units (18, 28, 38, 48) in the signal generators (12, 22, 32, 42) based on τ and k notified from the optical wireless receiver 201. The delay amount and the attenuation amount of the negative phase / attenuation unit (19, 29, 49) or the attenuation unit 39 are adjusted and determined.

なお、光無線受信機から光無線送信機へτとkを伝達する手段は問わない。また、信号発生部での遅延量及び減衰量の調整タイミングは任意である。また、光無線受信機から光無線送信機へ伝達する情報が直接的にτとkでなく、光無線受信機が受信する光信号の劣化量や、その劣化量から判断される多重反射に関するパラメータでも構わない。この場合、信号発生部は、劣化量が少なくなるようにkとτを変化させ、値を決定する。   There is no limitation on the means for transmitting τ and k from the optical wireless receiver to the optical wireless transmitter. In addition, the adjustment timing of the delay amount and the attenuation amount in the signal generation unit is arbitrary. In addition, the information transmitted from the optical wireless receiver to the optical wireless transmitter is not directly τ and k, but the degradation amount of the optical signal received by the optical wireless receiver, and the parameter regarding the multiple reflection determined from the degradation amount It doesn't matter. In this case, the signal generator changes k and τ so as to reduce the deterioration amount, and determines a value.

(実施形態7)
本実施形態の光無線通信システムは、光無線送信機101〜104のいずれかと光無線受信機201を備える。本光無線通信システムでは、光無線受信機が前記光信号を反射し、反射光を出力する反射部をさらに備えることを特徴とする、光無線送信機101〜104が前記光信号を前記光無線受信機が反射した反射光を受光し、前記多重反射光の成分を表すパラメータを判別する補償回路部をさらに備え、前記プリディストーション部は、前記多重反射光の成分を表すパラメータを前記補償回路部から受け取り、前記補償信号を生成することを特徴とする。
(Embodiment 7)
The optical wireless communication system of this embodiment includes any one of optical wireless transmitters 101 to 104 and an optical wireless receiver 201. In the optical wireless communication system, the optical wireless receiver further includes a reflection unit that reflects the optical signal and outputs reflected light, and the optical wireless transmitters 101 to 104 transmit the optical signal to the optical wireless A compensation circuit unit that receives reflected light reflected by the receiver and discriminates a parameter that represents the component of the multiple reflected light, and the predistortion unit includes a parameter that represents the component of the multiple reflected light as the compensation circuit unit. And generating the compensation signal.

図12は、本実施形態の光無線システム302を説明する図である。図11の光無線受信機201は、受光部53からの光を反射する反射部62を持ち、これにより受信した信号光を光無線送信機(101〜104)に送り返す。光無線送信機(101〜104)は、送り返された反射光Sreverse(t)を受信する受光部63とその反射光から多重反射光の遅延時間τと減衰定数kを判別する判別部64を持つ補償回路65をさらに備える。判別部64は、判別したτとkに基づき、信号発生部(12、22、32、42)において遅延部(18、28、38、48)の遅延量及び逆相・減衰部(19、29、49)又は減衰部39の減衰量を調整および決定する。 FIG. 12 is a diagram illustrating the optical wireless system 302 according to the present embodiment. The optical wireless receiver 201 in FIG. 11 has a reflection unit 62 that reflects light from the light receiving unit 53, and sends the received signal light back to the optical wireless transmitters (101 to 104). The optical wireless transmitters (101 to 104) include a light receiving unit 63 that receives the reflected light S reverse (t) sent back, and a determination unit 64 that determines the delay time τ and the attenuation constant k of the multiple reflected light from the reflected light. A compensation circuit 65 is further provided. Based on the determined τ and k, the determination unit 64 uses the delay amount of the delay unit (18, 28, 38, 48) and the reverse phase / attenuation unit (19, 29) in the signal generation unit (12, 22, 32, 42). 49) or the attenuation amount of the attenuation unit 39 is adjusted and determined.

例えば、補償回路65は、光無線送信機(101〜104)が送信する光信号Sdirect(t)+Sreflect(t)又はSdirect(t)を認識できるので反射光Sreverse(t)の劣化量を判断することができる。このため、判別部64は、反射光の劣化量が少なくなるようにkとτを決定する。なお、反射光の劣化量は光無線送信機と光無線受信機との間の往復によるものであるため、反射光の劣化量を最小にするではなく、例えば、現在の劣化量と最小劣化量との間になるようにkとτを決定してもよい。
なお、τとkの調整タイミングは任意である。
For example, since the compensation circuit 65 can recognize the optical signal S direct (t) + S reflect (t) or S direct (t) transmitted by the optical wireless transmitters (101 to 104), the reflected light S reverse (t) is deteriorated. The amount can be judged. For this reason, the determination unit 64 determines k and τ so that the deterioration amount of the reflected light is reduced. Note that the amount of deterioration of the reflected light is due to the round trip between the optical wireless transmitter and the optical wireless receiver, so the deterioration amount of the reflected light is not minimized, for example, the current deterioration amount and the minimum deterioration amount. K and τ may be determined to be between.
The adjustment timing of τ and k is arbitrary.

(実施形態の効果)
実施形態1〜7の光無線送信機、光無線受信機、及び光無線通信システムは、ガラス等の多重反射が発生する光無線の通信経路において、その多重反射による信号劣化を、その多重反射光の影響を小さくすることによって改善し、より高速で、安定した通信が可能となる。
(Effect of embodiment)
In the optical wireless transmitter, the optical wireless receiver, and the optical wireless communication system according to the first to seventh embodiments, in the optical wireless communication path in which multiple reflections such as glass occur, the signal degradation due to the multiple reflections is reduced. This can be improved by reducing the influence of, and higher speed and stable communication becomes possible.

11、12、21、22、31、32、41、42:信号発生部
13、23、33、43:合波部
14、24、34、44:プリディストーション部
25、45:変調部
18、28、38、48:遅延部
19、29、49:逆相・減衰部
39:減衰部
51:識別部
52:遅延・強度調整・位相反転合成部
53:受光部
61:判別部
62:反射部
63:受光部
64:判別部
65:補償回路部
101〜104:光無線送信機
201:光無線受信機
301、302:光無線通信システム
11, 12, 21, 22, 31, 32, 41, 42: signal generators 13, 23, 33, 43: multiplexers 14, 24, 34, 44: predistortion units 25, 45: modulation units 18, 28 , 38, 48: delay units 19, 29, 49: reverse phase / attenuation unit 39: attenuation unit 51: identification unit 52: delay / intensity adjustment / phase inversion synthesis unit 53: light receiving unit 61: determination unit 62: reflection unit 63 : Light receiving unit 64: discrimination unit 65: compensation circuit units 101 to 104: optical wireless transmitter 201: optical wireless receiver 301, 302: optical wireless communication system

Claims (8)

光信号を異なる誘電率の複数の媒質を通過させて情報信号を伝送する光無線通信の光無線送信機であって、
前記情報信号を発生する信号発生部と、
前記光信号が前記媒質を通過することで生じ、前記情報信号の宛先である光無線受信機に入射する多重反射光の成分を補償する補償信号を前記情報信号に重畳するプリディストーション部と、
を備えることを特徴とする光無線送信機。
An optical wireless transmitter for optical wireless communication that transmits an information signal by passing an optical signal through a plurality of media having different dielectric constants,
A signal generator for generating the information signal;
A predistortion unit that superimposes on the information signal a compensation signal that is generated when the optical signal passes through the medium and compensates for a component of multiple reflected light that enters the optical wireless receiver that is the destination of the information signal;
An optical wireless transmitter comprising:
前記プリディストーション部は、前記多重反射光の成分を表すパラメータを前記光無線受信機から受け取り、前記補償信号を生成することを特徴とする請求項1に記載の光無線送信機。   The optical wireless transmitter according to claim 1, wherein the predistortion unit receives a parameter representing the component of the multiple reflected light from the optical wireless receiver and generates the compensation signal. 前記光信号を前記光無線受信機が反射した反射光を受光し、前記多重反射光の成分を表すパラメータを判別する補償回路部をさらに備え、
前記プリディストーション部は、前記多重反射光の成分を表すパラメータを前記補償回路部から受け取り、前記補償信号を生成することを特徴とする請求項1に記載の光無線送信機。
The optical signal further includes a compensation circuit unit that receives reflected light reflected by the optical wireless receiver and discriminates a parameter representing a component of the multiple reflected light.
The optical wireless transmitter according to claim 1, wherein the predistortion unit receives a parameter representing the component of the multiple reflected light from the compensation circuit unit and generates the compensation signal.
光信号を異なる誘電率の複数の媒質を通過させて情報信号を伝送する光無線通信の光無線受信機であって、
前記光信号を受光し、電気の受信信号へ変換する受光部と、
前記受光部が出力する前記受信信号に、前記光信号が前記媒質を通過することで生じる多重反射光の多重反射光成分を補償する補償信号を重畳し、歪補償信号を出力する歪補償部と、
前記歪補償部が出力する前記歪補償信号から、前記光信号を送信した光無線送信機からの前記情報信号を識別する識別部と、
を備えることを特徴とする光無線受信機。
An optical wireless receiver for optical wireless communication that transmits an information signal by passing an optical signal through a plurality of media having different dielectric constants,
A light receiving unit that receives the optical signal and converts it into an electrical reception signal;
A distortion compensation unit that outputs a distortion compensation signal by superimposing a compensation signal for compensating a multiple reflected light component of multiple reflected light generated by the optical signal passing through the medium on the reception signal output by the light receiving unit; ,
An identification unit for identifying the information signal from the optical wireless transmitter that has transmitted the optical signal, from the distortion compensation signal output by the distortion compensation unit;
An optical wireless receiver comprising:
前記識別部は、前記歪補償信号と前記情報信号を比較して劣化量を検出し、
前記歪補償部は、前記識別部から受け取った前記劣化量から前記多重反射光成分のパラメータを判別し、前記補償信号を生成することを特徴とする請求項4に記載の光無線受信機。
The identification unit detects the amount of deterioration by comparing the distortion compensation signal and the information signal,
The optical wireless receiver according to claim 4, wherein the distortion compensator determines a parameter of the multiple reflected light component from the deterioration amount received from the identification unit, and generates the compensation signal.
前記光信号を反射し、反射光を出力する反射部をさらに備えることを特徴とする請求項4に記載の光無線受信機。   The optical wireless receiver according to claim 4, further comprising a reflection unit configured to reflect the optical signal and output reflected light. 請求項2に記載の光無線送信機と、
請求項5に記載の光無線受信機と、
を備える光無線通信システム。
An optical wireless transmitter according to claim 2,
An optical wireless receiver according to claim 5;
An optical wireless communication system comprising:
請求項3に記載の光無線送信機と、
請求項6に記載の光無線受信機と、
を備える光無線通信システム。
An optical wireless transmitter according to claim 3,
An optical wireless receiver according to claim 6;
An optical wireless communication system comprising:
JP2014103545A 2014-05-19 2014-05-19 Optical wireless transmitter, optical wireless receiver, and optical wireless communication system Active JP6194277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103545A JP6194277B2 (en) 2014-05-19 2014-05-19 Optical wireless transmitter, optical wireless receiver, and optical wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103545A JP6194277B2 (en) 2014-05-19 2014-05-19 Optical wireless transmitter, optical wireless receiver, and optical wireless communication system

Publications (2)

Publication Number Publication Date
JP2015220639A true JP2015220639A (en) 2015-12-07
JP6194277B2 JP6194277B2 (en) 2017-09-06

Family

ID=54779691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103545A Active JP6194277B2 (en) 2014-05-19 2014-05-19 Optical wireless transmitter, optical wireless receiver, and optical wireless communication system

Country Status (1)

Country Link
JP (1) JP6194277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927459B1 (en) * 2020-11-19 2021-09-01 三菱電機株式会社 Optical semiconductor device, optical control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205392A (en) * 1996-01-24 1997-08-05 Atr Kodenpa Tsushin Kenkyusho:Kk Radio communication system and radio receiver
JP2004166231A (en) * 2002-08-19 2004-06-10 Mitsubishi Electric Research Laboratories Inc Method and system for equalizing received signal in optical communications system
JP2004242224A (en) * 2003-02-10 2004-08-26 Fujitsu Access Ltd Reflected wave signal removal apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205392A (en) * 1996-01-24 1997-08-05 Atr Kodenpa Tsushin Kenkyusho:Kk Radio communication system and radio receiver
JP2004166231A (en) * 2002-08-19 2004-06-10 Mitsubishi Electric Research Laboratories Inc Method and system for equalizing received signal in optical communications system
JP2004242224A (en) * 2003-02-10 2004-08-26 Fujitsu Access Ltd Reflected wave signal removal apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927459B1 (en) * 2020-11-19 2021-09-01 三菱電機株式会社 Optical semiconductor device, optical control device
WO2022107289A1 (en) * 2020-11-19 2022-05-27 三菱電機株式会社 Optical semiconductor element and optical control device

Also Published As

Publication number Publication date
JP6194277B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
EP2245776B1 (en) Path computation element protocol (pcep) operations to support wavelength switched optical network routing, wavelength assignment, and impairment validation
US9515763B2 (en) Digital coherent receiver and receiving method of optical signal
Safari et al. Multi-hop relaying over the atmospheric Poisson channel: Outage analysis and optimization
AU2007211963A1 (en) Station-side optical network terminal apparatus, subscriber-side optical network terminal apparatus, and optical communication system
JP4491268B2 (en) Dispersion compensation setting method, receiving terminal station and wavelength division multiplexing optical transmission system
JP4757215B2 (en) Optical transmission system and optical transmission method
US8649678B2 (en) Frame processing apparatus, optical receiving apparatus, optical transceiving apparatus, optical transmission system, and frame processing controlling method
US20120281979A1 (en) Optical network with light-path aggregation
JP2017152773A (en) Optical communication system, communication device, and waveform equalization method
US10205551B2 (en) Systems and methods for power leveling in passive optical networks
JP6387965B2 (en) Transmission apparatus, transmission system, transmission method, and storage medium storing program
Arikawa et al. Mitigation of fading caused by atmospheric turbulence with FMF coupling and maximum ratio combining used in 320-m free-space optical transmission of
JP6194277B2 (en) Optical wireless transmitter, optical wireless receiver, and optical wireless communication system
JP7311806B2 (en) Optical receiver, optical transmission system, optical transmission method and computer program
KR20200054164A (en) Mitigating scintillation in geographically dispersed satellite access nodes
KR20160050687A (en) Apparatus and Method for Optical Receiving based on Multi-Mode Fiber
CN108781113A (en) Method and apparatus for providing pilot tone
US10236992B2 (en) Apparatus and methods for mitigating wavelength drift in an optical communication network
JP2009213039A (en) Optical access system, method of determining phase modulation frequency in the optical access system
Shao et al. Extensible optical access network enabling multistage protections and data aggregation based on tangent rings
KR101338822B1 (en) Optical network
US11722223B2 (en) Optical communication system and optical communication method
JP4916387B2 (en) Center side optical communication device and optical communication system
JP4915873B2 (en) Optical communication system and transmitter
US7623798B1 (en) Polarization mode dispersion mitigation of multiple optical communication channels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6194277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150