JP2004242224A - Reflected wave signal removal apparatus - Google Patents

Reflected wave signal removal apparatus Download PDF

Info

Publication number
JP2004242224A
JP2004242224A JP2003031891A JP2003031891A JP2004242224A JP 2004242224 A JP2004242224 A JP 2004242224A JP 2003031891 A JP2003031891 A JP 2003031891A JP 2003031891 A JP2003031891 A JP 2003031891A JP 2004242224 A JP2004242224 A JP 2004242224A
Authority
JP
Japan
Prior art keywords
signal
reflected wave
transmission
unit
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003031891A
Other languages
Japanese (ja)
Inventor
Masanori Arai
雅典 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2003031891A priority Critical patent/JP2004242224A/en
Publication of JP2004242224A publication Critical patent/JP2004242224A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflected wave component removal apparatus in a transmission system connected by one wire cable that removes a reflected wave component in which a transmission signal from a local station reflects and is superimposed on a reception signal from a remote station. <P>SOLUTION: The reflected wave component removal apparatus in a data transmission system that transmits data simultaneously and bidirectionally over a cable 6 using the same wavelength or same frequency comprises: a transmission unit 1 for transmitting a transmission signal to the cable 6 via a branching/coupling unit 3; a reception unit 2 for performing reception via the branching/coupling unit 3; a subtraction unit 5 for removing the reflected component of reception signal from the reception signal received by the reception unit 2; and a reflected wave estimation unit 4 for seeking an estimate of the reflected wave component entering the subtraction unit 5, based on a correlation between an output signal and an input signal of the subtraction unit 5 at a plurality of timings. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、1芯の伝送路により同一波長の光信号又は同一周波数の電気信号又はベースバンド信号を用いて同時的に送受信を行い、送信信号が途中で反射して受信側に戻る反射波信号を除去する反射波信号除去装置に関する。
【0002】
【従来の技術】
従来の伝送システムは、例えば、図9の(A)又は(B)に示す構成が知られている。同図の(A)に於いて、101,102は送信部、103,104は受信部、105,106は分岐/結合部、107は中継器やコネクタ等の反射点(X)を示す。送信部101,102の送信信号波長又は送信信号周波数を同一とした場合に、一点鎖線矢印で示すように、反射点(X)107に於いて反射した送信信号が戻って、自局の分岐/結合部105,106を介して受信部103,104に相手局からの主信号に重畳されて入力される。従って、受信信号に送信信号の反射成分が重畳されることにより、受信部103,104の受信誤り率が増加することになる。
【0003】
そこで、図9の(B)に示すように、送信部101の送信波長λ1と、送信部102の送信波長λ2とを相違させることにより、反射点(X)110に於いて反射しても、受信部103,104には相手局からの主信号のみが入力されることにより、受信誤り率を改善することができる。なお、108,109は波長分岐多重部(WDM;Wavelength Division Multiplexer)を示す。この波長分岐多重部108は、送信部101からの波長λ1の主信号を伝送路に送出し、この波長λ1の反射波信号の通過を阻止し、相手局からの波長λ2の主信号を受信部103に入力する。又波長分岐多重部109は、送信部102からの波長λ2の主信号を伝送路に送出し、この波長λ2の反射波信号は通過を阻止し、相手局からの波長λ1の主信号を受信部104に入力する構成を有するものである。
【0004】
又前述の図9の(A)に於いて、光信号を用いる場合の分岐/結合部105,106と、送信部101,102と受信部103,104との関係は、例えば、図10に示す構成を用いることができる。同図に於いて、111は送信部を構成する電気信号を光信号に変換するレーザダイオード(又は発光ダイオード)、112は受信部を構成する光信号を電気信号に変換するフォトダイオード、113は分岐/合成を行う為のハーフミラー(又はファイバ融着型分岐結合器)、114,117はレンズ、115は伝送路を構成する光ファイバ、116は支持部材を示す。
【0005】
送信信号によりレーザダイオード111(又は発光ダイオード)を駆動して変調した光信号による主信号をレンズ114とハーフミラー113とを介して光ファイバ115に送出する。又この光ファイバ115を介して受信した光信号を、ハーフミラー113とレンズ117とを介してフォトダイオード112に入射して、電気信号に変換し、受信信号として処理する。
【0006】
又電話通信に於いて、受話品質を改善する為のエコーキャンセラが知られており、受話器からの音声信号が送話器に回り込んで遠端エコーが発生する時に、エコー経路を推定し、受信信号を基にエコー成分を打ち消す為のエコー信号を形成し、送信信号からエコー信号を減算して送信するものである。この従来のエコーキャンセラは、トレーニング期間にエコー経路の推定を行う場合が一般的である(例えば、特許文献1参照)。
【0007】
【特許文献1】
特開平5−176046号公報
【0008】
【発明が解決しようとする課題】
前述の図9の(A)に於ける送信部101,102の送信信号の波長(又は周波数)を同一とすると、分岐/結合部105,106の構成は、図10に示すように、ハーフミラー113又はファイバ融着型分岐結合器による比較的簡単な構成で実現できる。しかし、光ファイバ115の接続用のコネクタや中継器等による反射点からの反射により、送信信号と同一波長(同一周波数)の反射波信号が、受信信号と共に受信部103,104を構成するフォトダイオード112に入射される。従って、受信信号に不要な信号が重畳されることにより、受信誤り率が増加する問題がある。
【0009】
そこで、図9の(B)に於ける送信信号の波長λ1,λ2のように、送信信号の波長(周波数)を相違させることにより、反射波による受信信号に及ぼす影響を緩和することができる。しかし、波長分岐多重部108,109の構成は、波長対応に分岐及び結合する為の構成が必要であり、フィルタ等による構成が複雑化してコストアップとなる問題がある。又送信部101,102としてのレーザダイオードは、異なる波長の光信号を出力する構成が必要であるから、同一波長の光信号を出力する構成に比較してコストアップとなる問題がある。
【0010】
又従来のエコーキャンセラは、受信信号が送信信号に回り込んで重畳され、受信側で不明瞭な音声信号となる時に、受信信号の回り込み成分を推定して、送信信号から除去するものであり、伝送路に於いて反射して受信信号に重畳され、それにより、受信誤り率が増加する問題を解決するものではなく、且つトレーニング期間等に於いてエコー経路の推定を行うもので、通信中に於いてエコーキャンセル値の制御ができない場合が一般的ある。
【0011】
本発明は、前述の従来の問題点を解決するもので、単一の伝送路を用いて、同一波長(同一周波数或いはベースバンド)の信号により、同時的にデータの送受信を行った時、自局の送信信号が自局を含む各部で反射して、相手局からの受信信号に重畳された反射波成分を推定し、その推定値を基に反射波成分を打ち消して受信誤り率を改善することを目的とする。
【0012】
【課題を解決するための手段】
本発明の反射波信号除去装置は、図1を参照して説明すると、同一のケーブル6により双方向に同時的に同一波長の光信号又は同一周波数(或いはベースバンド信号)の電気信号を伝送するデータ伝送システムに於ける反射波除去装置であって、分岐/結合部3を介してケーブル6に送信信号を送信する為の送信部1と、ケーブル6から分岐/結合部3を介して受信する受信部2と、この受信部2による受信信号から送信信号の反射波成分の推定値を減算した信号を基に送信信号との相関に従った反射波成分の推定値を求める反射波推定部4とを備えて、受信部2による受信信号から反射波成分の推定値を減算部5により減算することができる。
【0013】
又反射波推定部4は、受信部2による受信信号から反射波成分の推定値を減算した信号を基に符号間干渉極性を検出する符号間干渉極性検出部と、送信信号を遅延させる遅延回路と、この遅延回路による遅延送信信号と符号間干渉極性検出部による検出信号との相関を求める相関器と、この相関器の相関出力信号を積分する積分器と、この積分器の積分出力信号により、遅延送信信号のレベルを制御する振幅制御器と、この振幅制御器の出力信号を反射波成分の推定値として、受信部による受信信号から減算する手段とを含むものである。
【0014】
又反射波推定部4は、受信部2による受信信号から反射波成分の推定値を減算した信号を基に符号間干渉を検出する符号間干渉検出部と、送信信号を送信クロックに従って書込み且つ受信クロックにより読出すエラステックメモリと、送信信号を受信クロックに従って遅延させる遅延回路と、この遅延回路による遅延送信信号と符号間干渉検出部による検出信号との相関を求める相関器と、この相関器の相関出力信号を積分する積分器と、この積分器の積分出力信号により、遅延送信信号のレベルを制御する振幅制御器と、この振幅制御器の出力信号を反射波成分の推定値として、受信部による受信信号から減算する手段とを含むものである。
【0015】
又エラステックメモリに入力する送信信号と送信クロックとを入力して、送信クロックに従って送信信号を遅延させて送信部1に入力する遅延回路を備えることができる。又反射波推定部4は、振幅制御器の出力信号を加算して反射波成分の推定値を出力する加算器を有し、受信部2による受信信号から、加算器による射波成分の推定値を減算する減算器5を有する構成とすることができる。
【0016】
【発明の実施の形態】
図1は本発明の原理説明図であり、1は送信部、2は受信部、3は分岐/結合部、4は反射波推定部、5は減算部、6はケーブルを示す。相手局とは、ケーブル6を介して接続し、このケーブル6を用いてデータの送受信を行うもので、各種のネットワーク構成を適用することができる。又ケーブル6は、同一波長の光信号を用いてデータの送受信を行う場合は1芯の光ファイバ、同一周波数の電気信号を用いてデータの送受信を行う場合やベースバンド信号による送受信を行う場合は、同軸ケーブルやLAN(ローカル・エリア・ネットワーク)等に於いて使用されているペアケーブル等を用いることができる。
【0017】
又送信部1と受信部2とは同一波長(同一周波数,ベースバンド)の信号を処理する機能を備えている。例えば、光信号を用いてデータの送受信を行う場合、1芯の光ファイバによる単一のケーブル6により接続した対向装置に於ける送信部1は、同一波長の光信号を発生するレーザダイオード又は発光ダイオード等の発光素子により構成する。従って、各伝送装置に於ける送信部1及び受信部2は同一構成で同一波長の光信号を発生するレーザダイオード又は発光ダイオード等の発光素子を用いることができるから、コストダウンを図ることができる。
【0018】
又送信部1からの送信信号が、分岐/結合部3,コネクタ,中継器等により反射して、受信部2側に戻ることになる。単一のケーブル6により送受信を同時的に行うものであるから、送信信号の反射波成分が受信信号に重畳されて、受信部2に入力される。この受信部2は、光信号を用いてデータの送受信を行う場合は、フォトダイオード等の受光素子を含む構成を有するものである。
【0019】
前述の反射波成分を、反射波推定部4により推定し、この反射波推定部4により求めた反射波成分の推定値を受信信号から減算し、受信信号に重畳された反射波成分を除去する。それによって、受信誤り率を低減することができる。又減算部5は、反射波推定部4により求めた反射波成分の推定値をまとめて、受信部2による受信信号から減算する場合を示しているが、後述のように、反射波成分の遅延時間に対応して求めた反射波成分の推定値を、受信部2による受信信号から順次減算する構成とすることもできる。
【0020】
図2は本発明の第1の実施の形態の説明図であり、11は送信部、12は受信部、13は分岐/結合部、14は受信処理部、15は減算部を示し、図1に於ける送信部1は送信部11、受信部2は受信部12、分岐/結合部3は分岐結合部13、減算部5は減算部15にそれぞれ対応する。又受信処理部14は、受信部12による受信信号から減算部15に於いて反射波成分の推定値を減算した信号を処理して受信クロックの再生やデータの再生を行う機能を有する場合を示す。又17は加算器、18〜18は遅延回路、19〜19は相関器、20〜20は積分器、21〜21は振幅制御器、22は符号間干渉極性検出部を示し、図1の反射波推定部4の構成に対応する。
【0021】
送信部11と受信部12とは、同一波長(同一周波数又はベースバンド)の信号を同時的に送受信する構成を有し、送信部11からの送信信号は、分岐/結合部13を介してケーブルに送出し、このケーブルを介した受信信号は、分岐/結合部13により分岐して受信部12に入力する。光信号によりケーブルを介して送受信する場合は、送信部11は、レーザダイオード又は発光ダイオード等の発光素子を含み、送信信号を発光素子によって光信号に変換して、分岐/結合部13を介して光ファイバからなるケーブルに送出する。又受信部12は、フォトダイオード等の受光素子を含むもので、この受信部12の受光素子により光信号を電気信号に変換し、増幅,等化を行って減算部15に入力する。又電気信号により送受信する場合は、送信部11に於ける変調用周波数の信号と、受信部12に於ける復調用周波数の信号とは、同一周波数又はベースバンド信号とする。
【0022】
又受信処理部14は、クロックタイミング抽出やデータ識別等の機能を備えている。又遅延回路18〜18は、送信クロック又は受信クロックに従って送信信号を順次遅延させるフリップフロップや、他の遅延素子を縦続接続した構成とすることができる。この遅延回路18〜18により、送信信号を順次遅延させたそれぞれの遅延送信信号と、符号間干渉極性検出部22からの検出信号とを、遅延送信信号対応の相関器19〜19にそれぞれ入力して相関値を求め、相関器19〜19からの相関値を積分器20〜20に入力し、この積分器20〜20の出力信号を基に、遅延回路18〜18による遅延送信信号の振幅を、それぞれ振幅制御器21〜21により制御し、それぞれ加算器17により加算して、減算部15に入力する反射波成分の推定値とする。この場合、加算器17により、振幅制御器21〜21からの遅延送信信号対応の反射波成分の推定値を加算して、減算部15に於いて受信信号から一括して減算する場合を示す。なお、振幅制御器21〜21からの遅延送信信号対応の反射波成分の推定値を、受信部12による受信信号からそれぞれ個別に減算する構成とすることも可能である。
【0023】
従って、受信処理部14には、送信信号の反射波成分が重畳された受信信号から、その反射成分の推定値に従った反射波成分を除去した受信信号が入力されることにより、受信データを誤りなく復元することができる。又反射波成分が除去されることにより、符号間干渉極性検出部22は、符号間干渉の極性を判定することになるが、積分器20〜20により、符号間干渉無しとなる前の相関値が保持された状態となるから、加算器17からの反射波成分の推定値を継続して出力することができる。従って、継続して反射波成分の除去処理を行うことができる。なお、反射波成分が小さいことにより、符号間干渉が殆ど無い場合は、相関値は0に近い値となり、振幅制御器21〜21の出力信号も殆ど0に近い値となるから、加算器17からの反射成分の推定値も殆ど0となる。
【0024】
符号間干渉極性検出部22は、例えば、図3に示す構成とすることができる。同図に於いて、FF1〜FF3はフリップフロップ、G1,G2はアンド回路、G3,G4はオア回路を示す。
【0025】
フリップフロップF1〜F3のデータ端子Dに、減算部15の出力信号を入力し、クロック端子Cにデータに同期したクロックを入力する。又フリップフロップF1〜F3の「1」は出力端子Qに相当し、「0」は反転出力端子*Qに相当する。又各フリップフロップF1〜F3のセット条件のレベルは、図5のアイパターンの識別レベルH,C,Lに相当する基準電圧等(図示を省略)により設定する。
【0026】
減算部15により受信信号から反射波成分の推定値を減算した出力信号が、識別レベルHを超えている場合、フリップフロップF1〜F3の出力端子1は総て“1”(ハイレベル)となり、オア回路G3の出力信号の符号間干渉検出信号は、符号間干渉が例えば正極性を示す“1”となり、オア回路G4の出力信号の*符号間干渉信号は、符号間干渉が例えば正極性を示す“0”(ローレベル)となる。又減算部15の出力信号が、識別レベルH以下であるが、識別レベルC,Lを超えている場合は、フリップフロップF2,F3の出力端子1は“1”となり、フリップフロップF1の出力端子1は“0”となる。従って、オア回路G3の出力信号の符号間干渉信号は“0”となり、符号間干渉が負極性であることを示し、又オア回路G4の出力信号の*符号間干渉信号は“1”となり、符号間干渉が負極性であることを示すことになる。
【0027】
又減算部15の出力信号が、識別レベルC以下で、識別レベルLを超えていると、フリップフロップF3の出力端子1は“1”、フリップフロップF1,F2の出力端子1は“0”となる。従って、オア回路G3の出力信号の符号間干渉信号は“1”となり、符号間干渉が正極性であることを示し、又オア回路G4の出力信号の*符号間干渉信号は“0”となり、符号間干渉が負極性であることを示すものとなる。従って、図4のアイパターンに於いて、受信信号レベルが識別レベルHを超えている場合と、識別レベルC,L間の場合とに於いては、符号間干渉が正極性であることを示す“1”となる。同様に、受信信号レベルが識別レベルH,C間の場合と、識別レベルL以下の場合とに於いては、符号間干渉が負極性であることを示す“0”となる。
【0028】
図5は、図2に於ける相関器19〜19と積分器20〜20との一例を示し、EX−NORは相関器19〜19を構成する排他的反転論理和回路、R1及びC1は、積分器20〜20を構成する抵抗及びコンデンサを示し、OUTは出力信号を示す。
【0029】
図2に於ける遅延回路18〜18によりそれぞれ遅延された遅延送信信号と、符号間干渉極性検出部22からの符号間干渉とを、相関器19〜19を構成する排他的反転論理和回路EX−NORに入力する。この排他的反転論理和回路EX−NORの出力信号は、遅延送信信号と符号間干渉検出信号との相関が大きい時、即ち、遅延送信信号と符号間干渉検出信号とが共に“1”又は“0”の場合は“1”、相関が小さい時は“0”となる。そして、積分器20〜20を構成する抵抗R1とコンデンサC1とにより積分する。従って、遅延送信信号と符号間干渉検出信号と相関が大きいと、積分出力信号OUTのレベルは高くなる。
【0030】
図6の(A),(B)は、図2に於ける振幅制御器21〜21の一例を示し、R4〜R12は抵抗、Q1〜Q6はトランジスタ、VREF は基準電圧を示す。同図の(A)に於いて、遅延送信信号をトランジスタQ1のベースに入力し、基準電圧VREF をトランジスタQ2のベースに印加し、図5に示す積分器の出力信号OUTをトランジスタQ3のベースに入力し、トランジスタQ2のコレクタから振幅制御された出力信号を送出する。
【0031】
又図6の(B)に於いて、遅延送信信号をトランジスタQ1,Q4のベースに印加し、基準電圧VREF をトランジスタQ2,Q5のベースに印加し、図3に於ける符号間極性検出部の例えばオア回路G3からの符号間干渉信号をOUT1としてトランジスタQ3のベースに印加し、オア回路G4からの*符号間干渉信号をOUT2としてトランジスタQ6のベースに印加し、トランジスタQ2,Q4のコレクタから振幅制御された出力信号を送出する。
【0032】
遅延送信信号と符号間干渉検出信号との相関が大きいことにより、相関器の出力信号OUTが高くなると、トランジスタQ3に流れる電流は増加し、遅延送信信号に対する出力信号振幅を大きくし、反対に、相関が小さいことにより、相関器の出力信号OUTが低くなると、トランジスタQ3に流れる電流は減少し、遅延送信信号に対する出力信号振幅は小さくなる。従って、反射波成分の推定値を、遅延送信信号と符号間干渉検出信号との相関値に従った振幅として、例えば、図2の加算器17により遅延送信信号対応の反射波成分の推定値を加算して、減算部15に於いて受信信号から減算して、受信信号に重畳された反射波成分を打ち消すことができる。
【0033】
同様にして、図6の(B)に於いては、符号間干渉の極性に対応して、振幅制御された出力信号を送出することができる。前述の図5と図7の構成を接続することにより、符号間干渉極性検出信号と遅延送信信号とを基に、反射波成分の推定値を求めることができる。
【0034】
図7は本発明の第2の実施の形態の説明図であり、図2と同一符号は同一部分を示し、31は符号間干渉検出部、32はエラステックメモリ、CK1は送信クロック、CK2は受信クロックを示す。なお、符号間干渉検出部31は、図2に於ける符号間干渉極性検出部22に対応する。又受信処理部14は、受信クロックタイミング抽出の機能によって受信クロックCK2を抽出し、この受信クロックCK2を符号間干渉検出部31と、遅延回路18〜18と、エラステックメモリ32とに入力する。エラステックメモリ32は、送信クロックCK1に従って送信データを書込み、受信クロックCLK2に従って読出して遅延回路18〜18により順次遅延させて遅延送信信号とする。
【0035】
又遅延回路18〜18と相関器19〜19と積分器20〜20と振幅制御器21〜21と加算器17とを含む反射波成分の推定値の算出処理機能については、前述の各実施の形態と同様の構成であり、又前述の各部の構成を適用することが可能であり、重複した動作の説明は省略する。
【0036】
この実施の形態に於いては、受信クロックCK2に同期した符号間干渉検出信号と、受信クロックCK2に同期した遅延送信信号との相関を、相関器18〜18に於いて求めることができる。従って、データ識別タイミングに於ける反射波成分の推定値を求めて、減算部14に於いて受信信号に重畳された反射波成分を除去することができるから、データ識別誤りを低減することができる。この実施の形態に於いても、加算器17の加算出力信号を減算部14に入力する構成の代わりに、振幅制御器21〜21からの反射波成分の推定値を、受信部12による受信出力信号から減算する構成とすることも可能である。
【0037】
図8は本発明の第3の実施の形態の説明図であり、図2及び図7と同一符号は同一部分を示し、33は遅延回路を示す。この遅延回路33は、送信クロックCK1に従って送信信号を遅延させるものである。送信信号が分岐/結合部13又は短時間で反射した場合、反射波成分の推定値は、エラスティックメモリ32による遅延分遅れて得られることになり、その反射成分を除去することが困難となる。そこで、送信部11に入力する送信信号を遅延回路33により遅延させることにより、分岐/結合部13を介して短時間で反射した反射波成分に対する推定値を求めることができる。なお、この実施の形態に於いても、前述の各部の構成を適用することができるものであり、重複した説明は省略する。
【0038】
【発明の効果】
以上説明したように、本発明は、対向する伝送装置を同一構成として1芯のケーブルで接続し、自伝送装置の送信部1からの送信信号が接続部等からの反射波信号として、相手伝送装置からの受信信号に重畳されて自伝送装置の分岐/結合部3を介して受信部2に入力される時に、反射波推定部4により、減算部5の出力信号と送信信号との相関を基に反射波成分の推定値を求め、受信部2による受信信号から反射波成分の推定値を減算する。それにより、受信信号に重畳された反射波成分を打ち消すことができる。従って、対向伝送装置に於ける送信部1及び受信部2は、それぞれ同一波長(又は同一周波数又はベースバンド)の信号を処理する構成とし、コストダウンを図ることができる。
【図面の簡単な説明】
【図1】本発明の原理説明図である。
【図2】本発明の第1の実施の形態の説明図である。
【図3】符号間干渉検出部の説明図である。
【図4】符号間干渉極性検出の説明図である。
【図5】相関器と積分器との説明図である。
【図6】振幅制御器の説明図である。
【図7】本発明の第2の実施の形態の説明図である。
【図8】本発明の第3の実施の形態の説明図である。
【図9】伝送システムの説明図である。
【図10】分岐/結合部の説明図である。
【符号の説明】
1 送信部
2 受信部
3 分岐/結合部
4 反射波推定部
5 減算器
6 ケーブル
11 送信部
12 受信部
13 分岐/結合部
14 受信処理部
15 減算部
17 加算器
18〜18 遅延回路
19〜19 相関器
20〜20 積分器
21〜21 振幅制御器
22 符号間干渉極性検出部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reflected wave signal that transmits and receives simultaneously using an optical signal of the same wavelength, an electric signal of the same frequency, or a baseband signal through a single-core transmission line, and the transmission signal is reflected halfway and returns to the receiving side. The present invention relates to a reflected wave signal elimination device that eliminates a signal.
[0002]
[Prior art]
As a conventional transmission system, for example, a configuration shown in FIG. 9A or 9B is known. In FIG. 1A, 101 and 102 are transmitting units, 103 and 104 are receiving units, 105 and 106 are branching / coupling units, and 107 is a reflection point (X) such as a repeater or a connector. When the transmission signal wavelengths or the transmission signal frequencies of the transmission units 101 and 102 are the same, the transmission signal reflected at the reflection point (X) 107 returns as indicated by the dashed-dotted arrow, and the transmission / reception of the own station is performed. The signal is superimposed on the main signal from the partner station and input to receiving sections 103 and 104 via coupling sections 105 and 106. Therefore, when the reflection component of the transmission signal is superimposed on the reception signal, the reception error rate of the reception units 103 and 104 increases.
[0003]
Therefore, as shown in FIG. 9B, by making the transmission wavelength λ1 of the transmission unit 101 different from the transmission wavelength λ2 of the transmission unit 102, even if the light is reflected at the reflection point (X) 110, The reception error rate can be improved by inputting only the main signal from the partner station to the receiving sections 103 and 104. In addition, reference numerals 108 and 109 denote wavelength division multiplexing units (WDMs: Wavelength Division Multiplexers). The wavelength division multiplexing unit 108 transmits the main signal of the wavelength λ1 from the transmission unit 101 to the transmission line, blocks the passage of the reflected wave signal of the wavelength λ1, and receives the main signal of the wavelength λ2 from the partner station. Input to 103. Further, the wavelength division multiplexing unit 109 sends the main signal of the wavelength λ2 from the transmitting unit 102 to the transmission line, blocks the reflected wave signal of the wavelength λ2 from passing, and receives the main signal of the wavelength λ1 from the partner station. 104.
[0004]
In FIG. 9A, the relationship between the branching / coupling units 105 and 106, the transmission units 101 and 102, and the reception units 103 and 104 when using an optical signal is shown in FIG. 10, for example. Configurations can be used. In the figure, reference numeral 111 denotes a laser diode (or light emitting diode) for converting an electric signal constituting a transmitting unit into an optical signal, 112 denotes a photodiode for converting an optical signal constituting a receiving unit to an electric signal, and 113 denotes a branch. / A half mirror (or fiber fusion type branch coupler) for performing synthesis, 114 and 117 are lenses, 115 is an optical fiber constituting a transmission path, and 116 is a supporting member.
[0005]
The laser diode 111 (or light emitting diode) is driven by the transmission signal, and the main signal of the modulated optical signal is transmitted to the optical fiber 115 via the lens 114 and the half mirror 113. The optical signal received via the optical fiber 115 is incident on the photodiode 112 via the half mirror 113 and the lens 117, converted into an electric signal, and processed as a received signal.
[0006]
Also, in telephone communication, an echo canceller for improving the reception quality is known. When a voice signal from a receiver goes around a transmitter and a far-end echo is generated, an echo path is estimated and received. An echo signal for canceling the echo component is formed based on the signal, and the echo signal is subtracted from the transmission signal and transmitted. This conventional echo canceller generally estimates an echo path during a training period (for example, see Patent Document 1).
[0007]
[Patent Document 1]
JP-A-5-176046 [0008]
[Problems to be solved by the invention]
If the wavelengths (or frequencies) of the transmission signals of the transmission units 101 and 102 in FIG. 9A are the same, the configuration of the branching / coupling units 105 and 106 is, as shown in FIG. It can be realized with a relatively simple configuration using the optical fiber 113 or the fiber fusion type branch coupler. However, due to reflection from a reflection point by a connector for connection of the optical fiber 115, a repeater, or the like, a reflected wave signal having the same wavelength (same frequency) as the transmission signal is combined with the reception signal to form the photodiodes constituting the reception units 103 and 104. It is incident on 112. Therefore, there is a problem in that an unnecessary signal is superimposed on the received signal, thereby increasing the reception error rate.
[0009]
Therefore, the influence of the reflected wave on the received signal can be reduced by making the wavelength (frequency) of the transmitted signal different like the wavelengths λ1 and λ2 of the transmitted signal in FIG. 9B. However, the configuration of the wavelength division multiplexing units 108 and 109 requires a configuration for branching and coupling corresponding to the wavelength, and there is a problem that the configuration by a filter or the like is complicated and the cost is increased. Further, since the laser diodes as the transmission units 101 and 102 need to be configured to output optical signals of different wavelengths, there is a problem that the cost is increased as compared with the configuration of outputting optical signals of the same wavelength.
[0010]
Further, the conventional echo canceller is to estimate the sneak component of the received signal and remove it from the transmitted signal when the received signal wraps around the transmission signal and is superimposed to become an unclear sound signal on the receiving side. It does not solve the problem that the reception error rate increases due to reflection on the transmission path and superimposition on the received signal, and also estimates the echo path during the training period and the like. In some cases, the echo cancel value cannot be controlled.
[0011]
The present invention solves the above-mentioned conventional problems. When data is transmitted and received simultaneously using signals of the same wavelength (the same frequency or baseband) using a single transmission line, the present invention is applied to the case where The transmitted signal of the station is reflected by each unit including the own station, and the reflected wave component superimposed on the received signal from the partner station is estimated, and the reflected wave component is canceled based on the estimated value to improve the reception error rate. The purpose is to:
[0012]
[Means for Solving the Problems]
Referring to FIG. 1, the reflected wave signal removing apparatus of the present invention transmits an optical signal of the same wavelength or an electric signal of the same frequency (or baseband signal) simultaneously and bidirectionally through the same cable 6. A reflected wave removing device in a data transmission system, which transmits a transmission signal to a cable 6 via a branch / coupling unit 3 and receives the transmission signal from the cable 6 via the branch / coupling unit 3. A receiver 2 and a reflected wave estimator 4 for obtaining an estimated value of a reflected wave component in accordance with a correlation with the transmitted signal based on a signal obtained by subtracting an estimated value of the reflected wave component of the transmitted signal from the signal received by the receiver 2. The subtraction unit 5 can subtract the estimated value of the reflected wave component from the signal received by the reception unit 2.
[0013]
The reflected wave estimating unit 4 includes an intersymbol interference polarity detecting unit that detects an intersymbol interference polarity based on a signal obtained by subtracting an estimated value of a reflected wave component from a signal received by the receiving unit 2, and a delay circuit that delays a transmission signal. A correlator for obtaining a correlation between the delayed transmission signal by the delay circuit and the detection signal by the intersymbol interference polarity detection unit; an integrator for integrating a correlation output signal of the correlator; and an integrated output signal of the integrator. , An amplitude controller for controlling the level of the delayed transmission signal, and means for subtracting the output signal of the amplitude controller as an estimated value of the reflected wave component from the signal received by the receiver.
[0014]
The reflected wave estimating unit 4 detects an intersymbol interference based on a signal obtained by subtracting the estimated value of the reflected wave component from the signal received by the receiving unit 2, and writes and receives the transmitted signal in accordance with the transmission clock. An elastic memory for reading by a clock, a delay circuit for delaying a transmission signal according to a reception clock, a correlator for obtaining a correlation between a delayed transmission signal by the delay circuit and a detection signal by an intersymbol interference detection unit, An integrator that integrates the correlation output signal; an amplitude controller that controls the level of the delayed transmission signal based on the integrated output signal of the integrator; and a receiving unit that uses the output signal of the amplitude controller as an estimated value of the reflected wave component. Means for subtracting from the received signal of
[0015]
Further, a delay circuit that inputs a transmission signal and a transmission clock to be input to the elastic memory, delays the transmission signal according to the transmission clock, and inputs the transmission signal to the transmission unit 1 can be provided. The reflected wave estimating unit 4 has an adder for adding the output signal of the amplitude controller and outputting an estimated value of the reflected wave component. Can be configured to have a subtractor 5 for subtracting.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a view for explaining the principle of the present invention, wherein 1 is a transmitting section, 2 is a receiving section, 3 is a branching / combining section, 4 is a reflected wave estimating section, 5 is a subtracting section, and 6 is a cable. The other station is connected via a cable 6 and transmits and receives data using the cable 6, and various network configurations can be applied. The cable 6 is a single-core optical fiber when transmitting and receiving data using optical signals of the same wavelength, and when transmitting and receiving data using electric signals of the same frequency and transmitting and receiving baseband signals. For example, a coaxial cable or a pair cable used in a LAN (local area network) or the like can be used.
[0017]
The transmitting unit 1 and the receiving unit 2 have a function of processing signals of the same wavelength (same frequency, baseband). For example, when data is transmitted and received using an optical signal, the transmitting unit 1 in the opposing device connected by a single cable 6 of a single-core optical fiber uses a laser diode or a light emitting device that generates an optical signal of the same wavelength. It is composed of a light emitting element such as a diode. Therefore, since the transmission unit 1 and the reception unit 2 in each transmission device can use light emitting elements such as laser diodes or light emitting diodes that generate optical signals of the same wavelength with the same configuration, cost can be reduced. .
[0018]
Further, the transmission signal from the transmission unit 1 is reflected by the branching / coupling unit 3, the connector, the repeater, etc., and returns to the reception unit 2 side. Since transmission and reception are performed simultaneously by a single cable 6, the reflected wave component of the transmission signal is superimposed on the reception signal and input to the reception unit 2. When data is transmitted and received using an optical signal, the receiving unit 2 has a configuration including a light receiving element such as a photodiode.
[0019]
The above-mentioned reflected wave component is estimated by the reflected wave estimating unit 4, the estimated value of the reflected wave component obtained by the reflected wave estimating unit 4 is subtracted from the received signal, and the reflected wave component superimposed on the received signal is removed. . Thereby, the reception error rate can be reduced. Also, the subtraction unit 5 shows a case where the estimated values of the reflected wave components obtained by the reflected wave estimation unit 4 are combined and subtracted from the signal received by the reception unit 2. The configuration may be such that the estimated value of the reflected wave component obtained corresponding to time is sequentially subtracted from the signal received by the receiving unit 2.
[0020]
FIG. 2 is an explanatory diagram of the first embodiment of the present invention, in which 11 indicates a transmitting unit, 12 indicates a receiving unit, 13 indicates a branching / combining unit, 14 indicates a receiving processing unit, and 15 indicates a subtracting unit. The transmitting unit 1 corresponds to the transmitting unit 11, the receiving unit 2 corresponds to the receiving unit 12, the branching / combining unit 3 corresponds to the branching / coupling unit 13, and the subtracting unit 5 corresponds to the subtracting unit 15. Also, the reception processing unit 14 has a function of processing a signal obtained by subtracting the estimated value of the reflected wave component in the subtraction unit 15 from the signal received by the reception unit 12 to reproduce a reception clock and data. . The 17 adders, 18 1 ~ 18 n are delay circuits, 19 1 ~ 19 n correlator, 20 1 to 20 n integrator, 21 1 through 21 n is the amplitude controller 22 is intersymbol interference polarity detection 1 and corresponds to the configuration of the reflected wave estimation unit 4 in FIG.
[0021]
The transmitting unit 11 and the receiving unit 12 have a configuration for simultaneously transmitting and receiving signals of the same wavelength (the same frequency or baseband), and a transmission signal from the transmitting unit 11 is transmitted via a branching / coupling unit 13 via a cable. The signal received through the cable is branched by the branching / coupling unit 13 and input to the receiving unit 12. When transmitting and receiving via a cable by an optical signal, the transmission unit 11 includes a light emitting element such as a laser diode or a light emitting diode, converts the transmission signal into an optical signal by the light emitting element, and outputs the converted signal via the branching / coupling unit 13. It is sent out to a cable consisting of optical fibers. The receiving section 12 includes a light receiving element such as a photodiode. The light receiving element of the receiving section 12 converts an optical signal into an electric signal, performs amplification and equalization, and inputs the signal to the subtracting section 15. In the case of transmission and reception using electric signals, the signal of the modulation frequency in the transmission unit 11 and the signal of the demodulation frequency in the reception unit 12 are the same frequency or baseband signal.
[0022]
The reception processing unit 14 has functions such as clock timing extraction and data identification. The delay circuit 18 1 ~ 18 n may be or flip flops for sequentially delaying transmission signals in accordance with a transmission clock or receive clock, a configuration in which cascaded other delay elements. The delay circuits 18 1 to 18 n sequentially convert the delayed transmission signals obtained by sequentially delaying the transmission signals and the detection signals from the intersymbol interference polarity detection unit 22 into correlators 19 1 to 19 n corresponding to the delayed transmission signals. to enter the correlation values, respectively, the correlation value from the correlator 19 1 ~ 19 n is input to the integrator 20 1 to 20 n, based on an output signal from the integrator 20 1 to 20 n, the delay circuit the amplitude of 18 1 delayed transmission signal by ~ 18 n, respectively controlled by the amplitude controller 21 1 through 21 n, are added by adders 17, the estimated value of the reflected wave component to be input to the subtraction unit 15. In this case, the adder 17 adds the estimated value of the reflected wave component of the delayed transmission signal corresponding from the amplitude controller 21 1 through 21 n, the case of subtraction collectively from the received signal at the subtraction unit 15 Show. It is also possible to adopt a configuration where the estimated value of the reflected wave component of the delayed transmission signal corresponding from the amplitude controller 21 1 through 21 n, respectively subtracted separately from the received signal by the receiver 12.
[0023]
Therefore, the reception processing unit 14 receives the reception signal in which the reflection wave component according to the estimated value of the reflection component is removed from the reception signal on which the reflection wave component of the transmission signal is superimposed, and receives the reception data. It can be restored without errors. By reflected wave components are removed also, intersymbol interference polarity detection unit 22 is comprised to determine the polarity of the inter-symbol interference, an integrator 20 1 to 20 n, before the no intersymbol interference Since the correlation value is maintained, the estimated value of the reflected wave component from the adder 17 can be continuously output. Therefore, the reflected wave component can be continuously removed. Note that by the reflected wave component is small, if the intersymbol interference is almost no correlation value becomes a value close to 0, from a value close to the amplitude controller 21 1 through 21 n output signal almost zero, summing The estimated value of the reflection component from the detector 17 is almost zero.
[0024]
The intersymbol interference polarity detection unit 22 may have, for example, the configuration shown in FIG. In the figure, FF1 to FF3 indicate flip-flops, G1 and G2 indicate AND circuits, and G3 and G4 indicate OR circuits.
[0025]
The output signal of the subtraction unit 15 is input to the data terminals D of the flip-flops F1 to F3, and a clock synchronized with the data is input to the clock terminal C. "1" of the flip-flops F1 to F3 corresponds to the output terminal Q, and "0" corresponds to the inverted output terminal * Q. The level of the set condition of each of the flip-flops F1 to F3 is set by a reference voltage or the like (not shown) corresponding to the identification levels H, C, and L of the eye pattern in FIG.
[0026]
When the output signal obtained by subtracting the estimated value of the reflected wave component from the received signal by the subtractor 15 exceeds the identification level H, the output terminals 1 of the flip-flops F1 to F3 all become “1” (high level), The intersymbol interference detection signal of the output signal of the OR circuit G3 becomes “1” indicating that the intersymbol interference is positive, for example, and the * intersymbol interference signal of the output signal of the OR circuit G4 is that the intersymbol interference is positive, for example. "0" (low level). When the output signal of the subtraction unit 15 is equal to or lower than the discrimination level H but exceeds the discrimination levels C and L, the output terminals 1 of the flip-flops F2 and F3 become "1", and the output terminal of the flip-flop F1. 1 becomes "0". Therefore, the inter-symbol interference signal of the output signal of the OR circuit G3 is "0", indicating that the intersymbol interference is negative, and the * intersymbol interference signal of the output signal of the OR circuit G4 is "1". This indicates that the intersymbol interference is negative.
[0027]
If the output signal of the subtraction unit 15 is equal to or lower than the discrimination level C and exceeds the discrimination level L, the output terminal 1 of the flip-flop F3 becomes "1", and the output terminals 1 of the flip-flops F1 and F2 become "0". Become. Therefore, the inter-symbol interference signal of the output signal of the OR circuit G3 is “1”, indicating that the intersymbol interference is positive, and the * intersymbol interference signal of the output signal of the OR circuit G4 is “0”, This indicates that the intersymbol interference is negative. Therefore, in the eye pattern shown in FIG. 4, when the received signal level exceeds the discrimination level H and when the reception signal level is between the discrimination levels C and L, the intersymbol interference indicates a positive polarity. It becomes “1”. Similarly, when the received signal level is between the discrimination levels H and C and when the received signal level is equal to or lower than the discrimination level L, the value becomes “0” indicating that the intersymbol interference has a negative polarity.
[0028]
Figure 5 shows an example of in-correlator 19 1 ~ 19 n and the integrator 20 1 to 20 n in FIG. 2, EX-NOR constitutes the correlator 19 1 ~ 19 n exclusive NOR circuit , R1 and C1 denotes a resistor and a capacitor constituting the integrator 20 1 to 20 n, OUT denotes an output signal.
[0029]
Exclusive inversion forming the correlators 19 1 to 19 n by using the delayed transmission signals delayed by the delay circuits 18 1 to 18 n in FIG. 2 and the intersymbol interference from the intersymbol interference polarity detection unit 22, respectively. Input to the OR circuit EX-NOR. The output signal of the exclusive-OR circuit EX-NOR is output when the correlation between the delayed transmission signal and the intersymbol interference detection signal is large, that is, when both the delayed transmission signal and the intersymbol interference detection signal are “1” or “ In the case of "0", it becomes "1", and when the correlation is small, it becomes "0". Then, integrated by a resistor R1 and the capacitor C1 constituting the integrator 20 1 to 20 n. Therefore, when the correlation between the delayed transmission signal and the intersymbol interference detection signal is large, the level of the integrated output signal OUT increases.
[0030]
In FIG. 6 (A), (B) shows an example of a in the amplitude controller 21 1 through 21 n in FIG. 2, R4~R12 resistance, Q1 to Q6 are transistors, V REF denotes a reference voltage. 5A, a delayed transmission signal is input to the base of a transistor Q1, a reference voltage V REF is applied to the base of a transistor Q2, and the output signal OUT of the integrator shown in FIG. And an output signal whose amplitude is controlled is transmitted from the collector of the transistor Q2.
[0031]
In FIG. 6B, a delayed transmission signal is applied to the bases of transistors Q1 and Q4, and a reference voltage V REF is applied to the bases of transistors Q2 and Q5. For example, the intersymbol interference signal from the OR circuit G3 is applied as OUT1 to the base of the transistor Q3, the * intersymbol interference signal from the OR circuit G4 is applied as OUT2 to the base of the transistor Q6, and the collectors of the transistors Q2 and Q4 An output signal whose amplitude is controlled is transmitted.
[0032]
When the output signal OUT of the correlator increases due to the large correlation between the delayed transmission signal and the intersymbol interference detection signal, the current flowing through the transistor Q3 increases, and the output signal amplitude for the delayed transmission signal increases. When the output signal OUT of the correlator becomes low due to the small correlation, the current flowing through the transistor Q3 decreases, and the output signal amplitude with respect to the delayed transmission signal decreases. Therefore, assuming that the estimated value of the reflected wave component is an amplitude according to the correlation value between the delayed transmission signal and the intersymbol interference detection signal, for example, the adder 17 of FIG. The reflected wave component superimposed on the received signal can be canceled by the addition and subtraction from the received signal in the subtracting section 15.
[0033]
Similarly, in FIG. 6B, an output signal whose amplitude is controlled can be transmitted in accordance with the polarity of the intersymbol interference. By connecting the configurations of FIGS. 5 and 7 described above, an estimated value of the reflected wave component can be obtained based on the intersymbol interference polarity detection signal and the delayed transmission signal.
[0034]
FIG. 7 is an explanatory diagram of the second embodiment of the present invention. The same reference numerals as in FIG. 2 indicate the same parts, 31 is an intersymbol interference detection unit, 32 is an elastic memory, CK1 is a transmission clock, and CK2 is Indicates the receiving clock. Note that the intersymbol interference detection unit 31 corresponds to the intersymbol interference polarity detection unit 22 in FIG. The reception processing unit 14, a reception clock CK2 is extracted by the function of the receive clock timing extraction, inputs the receive clock CK2 and ISI 31, a delay circuit 18 1 ~ 18 n, to the Elastic Tech memory 32 I do. Elastic Tech memory 32 writes transmission data in accordance with a transmission clock CK1, is sequentially delayed by the delay circuit 18 1 ~ 18 n is read according to the received clock CLK2 and delayed transmission signal.
[0035]
The calculation processing function of the estimated value of the reflected wave component includes a delay circuit 18 1 ~ 18 n correlator 19 1 ~ 19 n integrators 20 1 to 20 n and the amplitude controller 21 1 through 21 n and an adder 17 Is the same as that of each of the above-described embodiments, and the configuration of each of the above-described units can be applied.
[0036]
In this embodiment, the correlation between the intersymbol interference detection signal synchronized with the reception clock CK2 and the delayed transmission signal synchronized with the reception clock CK2 can be obtained by the correlators 18 1 to 18 n. . Therefore, the estimated value of the reflected wave component at the data identification timing can be obtained, and the reflected wave component superimposed on the received signal can be removed by the subtraction unit 14, so that the data identification error can be reduced. . Also in this embodiment, instead of the configuration for inputting the added output signal of the adder 17 to the subtraction unit 14, the estimated value of the reflected wave component from the amplitude controller 21 1 through 21 n, by the receiver 12 It is also possible to adopt a configuration for subtracting from the received output signal.
[0037]
FIG. 8 is an explanatory view of the third embodiment of the present invention. The same reference numerals as those in FIGS. 2 and 7 denote the same parts, and 33 denotes a delay circuit. The delay circuit 33 delays a transmission signal according to the transmission clock CK1. When the transmission signal is reflected in the branching / coupling unit 13 or in a short time, the estimated value of the reflected wave component is obtained with a delay by the delay by the elastic memory 32, and it becomes difficult to remove the reflected component. . Therefore, by delaying the transmission signal input to the transmission unit 11 by the delay circuit 33, it is possible to obtain an estimated value for the reflected wave component reflected in a short time via the branching / coupling unit 13. Note that, in this embodiment as well, the configuration of each unit described above can be applied, and redundant description will be omitted.
[0038]
【The invention's effect】
As described above, according to the present invention, the transmission devices facing each other have the same configuration and are connected by a single-core cable, and the transmission signal from the transmission unit 1 of the transmission device itself is transmitted as the reflected wave signal from the connection unit or the like. When the signal is superimposed on the received signal from the device and input to the receiving unit 2 via the branching / combining unit 3 of the own transmission device, the reflected wave estimating unit 4 determines the correlation between the output signal of the subtracting unit 5 and the transmission signal. The estimated value of the reflected wave component is obtained based on the signal, and the estimated value of the reflected wave component is subtracted from the signal received by the receiving unit 2. Thereby, the reflected wave component superimposed on the received signal can be canceled. Therefore, the transmission unit 1 and the reception unit 2 in the opposite transmission device are configured to process signals of the same wavelength (or the same frequency or baseband), and cost reduction can be achieved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the present invention.
FIG. 2 is an explanatory diagram of the first embodiment of the present invention.
FIG. 3 is an explanatory diagram of an intersymbol interference detection unit.
FIG. 4 is an explanatory diagram of intersymbol interference polarity detection.
FIG. 5 is an explanatory diagram of a correlator and an integrator.
FIG. 6 is an explanatory diagram of an amplitude controller.
FIG. 7 is an explanatory diagram of a second embodiment of the present invention.
FIG. 8 is an explanatory diagram of a third embodiment of the present invention.
FIG. 9 is an explanatory diagram of a transmission system.
FIG. 10 is an explanatory diagram of a branch / coupling unit.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 transmission unit 2 reception unit 3 branching / combining unit 4 reflected wave estimating unit 5 subtractor 6 cable 11 transmission unit 12 receiving unit 13 branching / combining unit 14 reception processing unit 15 subtraction unit 17 adders 18 1 to 18 n delay circuit 19 1 ~ 19 n correlators 20 1 to 20 n integrators 21 1 through 21 n amplitude controller 22 intersymbol interference polarity detection unit

Claims (5)

同一のケーブルにより双方向に同時的に同一波長又は同一周波数によりデータを伝送するデータ伝送システムに於ける反射波除去装置に於いて、
分岐/結合部を介して前記ケーブルに送信信号を送信する為の送信部と、
前記分岐/結合部を介して受信する受信部と、
該受信部による受信信号から前記送信信号の反射波成分の推定値を減算した信号を基に前記送信信号との相関に従った前記反射波成分の推定値を求める反射波推定部と
を備えたことを特徴とする反射波信号除去装置。
In a reflected wave eliminator in a data transmission system for transmitting data at the same wavelength or the same frequency in both directions simultaneously by the same cable,
A transmission unit for transmitting a transmission signal to the cable via a branch / coupling unit;
A receiving unit for receiving via the branching / coupling unit;
A reflected wave estimating unit for obtaining an estimated value of the reflected wave component according to a correlation with the transmission signal based on a signal obtained by subtracting an estimated value of the reflected wave component of the transmission signal from a signal received by the receiving unit. A reflected wave signal removing apparatus characterized by the above-mentioned.
前記反射波推定部は、前記受信部による受信信号から送信信号の反射波成分の推定値を減算した信号を基に前記送信信号の反射波による符号間干渉の極性を検出する符号間干渉極性検出部と、前記送信信号を遅延させる遅延回路と、該遅延回路による前記遅延送信信号と前記符号間干渉極性検出部による検出信号との相関を求める相関器と、該相関器の相関出力信号を積分する積分器と、該積分器の積分出力信号により前記遅延送信信号のレベルを制御する振幅制御器と、該振幅制御器の出力信号を反射波成分の推定値として前記受信部による受信信号から減算する手段とを含む構成を有することを特徴とする請求項1記載の反射波信号除去装置。The reflected wave estimating unit detects intersymbol interference polarity detection based on a signal obtained by subtracting an estimated value of a reflected wave component of a transmission signal from a reception signal of the reception unit, based on a signal obtained by subtracting an estimated value of a reflected wave of the transmission signal. , A delay circuit for delaying the transmission signal, a correlator for calculating a correlation between the delayed transmission signal by the delay circuit and a detection signal by the intersymbol interference polarity detection unit, and integrating a correlation output signal of the correlator. An amplitude controller for controlling the level of the delayed transmission signal based on the integrated output signal of the integrator; and subtracting the output signal of the amplitude controller from the signal received by the receiver as an estimated value of the reflected wave component. 2. The reflected wave signal removing apparatus according to claim 1, further comprising: 前記反射波推定部は、前記受信部による受信信号から送信信号の反射波成分の推定値を減算した信号から抽出した受信クロックのタイミングで前記送信信号の反射波による符号間干渉を検出する符号間干渉検出部と、前記送信信号を送信クロックに従って書込み且つ前記受信クロックにより読出すエラステックメモリと、前記送信信号を前記受信クロックに従って遅延させる遅延回路と、該遅延回路による遅延送信信号と前記符号間干渉検出部による検出信号との相関を求める相関器と、該相関器の相関出力信号を積分する積分器と、該積分器の積分出力信号により前記遅延送信信号のレベルを制御する振幅制御器と、該振幅制御器の出力信号を反射波成分の推定値として前記受信部による受信信号から減算する手段とを含む構成を有することを特徴とする請求項1記載の反射波信号除去装置。The reflected wave estimating unit detects an intersymbol interference caused by a reflected wave of the transmission signal at a timing of a reception clock extracted from a signal obtained by subtracting an estimated value of a reflected wave component of the transmission signal from a reception signal of the reception unit. An interference detection unit, an elastic memory that writes the transmission signal according to a transmission clock and reads the transmission signal according to the reception clock, a delay circuit that delays the transmission signal according to the reception clock, a delay circuit between the delay transmission signal and the code A correlator for obtaining a correlation with a signal detected by the interference detector, an integrator for integrating a correlation output signal of the correlator, and an amplitude controller for controlling a level of the delayed transmission signal by an integrated output signal of the integrator. Means for subtracting the output signal of the amplitude controller as an estimated value of the reflected wave component from the signal received by the receiving section. Reflected wave signal removing apparatus according to claim 1, wherein. 前記エラステックメモリに入力する前記送信信号と前記送信クロックとを入力して、該送信クロックに従って前記送信信号を遅延させて前記送信部に入力する遅延回路を備えたことを特徴とする請求項4記載の反射波信号除去装置。5. A delay circuit that receives the transmission signal and the transmission clock input to the elastic memory, delays the transmission signal according to the transmission clock, and inputs the delayed signal to the transmission unit. The reflected wave signal removing device according to claim 1. 前記反射波推定部は、前記振幅制御器の出力信号を加算して反射波成分の推定値を出力する加算器を有し、前記受信部による受信信号から前記加算器による射波成分の推定値を減算する減算器を有することを特徴とする請求項1乃至5の何れか1項記載の反射波信号除去装置。The reflected wave estimating unit includes an adder that adds an output signal of the amplitude controller and outputs an estimated value of a reflected wave component, and estimates an emission component of the reflected wave component by the adder from a signal received by the receiving unit. The reflected wave signal removing apparatus according to any one of claims 1 to 5, further comprising a subtractor for subtracting the signal.
JP2003031891A 2003-02-10 2003-02-10 Reflected wave signal removal apparatus Pending JP2004242224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031891A JP2004242224A (en) 2003-02-10 2003-02-10 Reflected wave signal removal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031891A JP2004242224A (en) 2003-02-10 2003-02-10 Reflected wave signal removal apparatus

Publications (1)

Publication Number Publication Date
JP2004242224A true JP2004242224A (en) 2004-08-26

Family

ID=32958308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031891A Pending JP2004242224A (en) 2003-02-10 2003-02-10 Reflected wave signal removal apparatus

Country Status (1)

Country Link
JP (1) JP2004242224A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221267A (en) * 2006-02-14 2007-08-30 Fujitsu Ltd Backboard transmission method, backboard transmission apparatus, and substrate unit
JP2010103703A (en) * 2008-10-22 2010-05-06 Hitachi Ltd Railroad communication device
JP2015220639A (en) * 2014-05-19 2015-12-07 日本電信電話株式会社 Optical radio transmitter, optical radio receiver and optical radio communication system
JP2017060020A (en) * 2015-09-17 2017-03-23 日本電気株式会社 Device and method for interference elimination
JP2019506767A (en) * 2016-01-08 2019-03-07 グーグル エルエルシー In-band optical interference mitigation for direct detection optical communication systems
JP2019153945A (en) * 2018-03-05 2019-09-12 日本電信電話株式会社 Optical radio converter, wraparound signal remover, communication network, and wraparound signal removing method
WO2020255815A1 (en) * 2019-06-21 2020-12-24 日本電信電話株式会社 Communication network system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221267A (en) * 2006-02-14 2007-08-30 Fujitsu Ltd Backboard transmission method, backboard transmission apparatus, and substrate unit
JP2010103703A (en) * 2008-10-22 2010-05-06 Hitachi Ltd Railroad communication device
JP2015220639A (en) * 2014-05-19 2015-12-07 日本電信電話株式会社 Optical radio transmitter, optical radio receiver and optical radio communication system
JP2017060020A (en) * 2015-09-17 2017-03-23 日本電気株式会社 Device and method for interference elimination
US9819415B2 (en) 2015-09-17 2017-11-14 Nec Corporation Interference cancellation device and interference cancellation method
JP2019506767A (en) * 2016-01-08 2019-03-07 グーグル エルエルシー In-band optical interference mitigation for direct detection optical communication systems
JP2019134468A (en) * 2016-01-08 2019-08-08 グーグル エルエルシー In-band optical interference mitigation for direct detection optical communication system
JP2019153945A (en) * 2018-03-05 2019-09-12 日本電信電話株式会社 Optical radio converter, wraparound signal remover, communication network, and wraparound signal removing method
WO2020255815A1 (en) * 2019-06-21 2020-12-24 日本電信電話株式会社 Communication network system
JP2021002757A (en) * 2019-06-21 2021-01-07 日本電信電話株式会社 Communication network system
JP7318349B2 (en) 2019-06-21 2023-08-01 日本電信電話株式会社 communication network system
US11804900B2 (en) 2019-06-21 2023-10-31 Nippon Telegraph And Telephone Corporation Communication network system

Similar Documents

Publication Publication Date Title
US8078065B2 (en) Polarization tracking and signal equalization for optical receivers configured for on-off keying or pulse amplitude modulation signaling
US11855702B2 (en) Circuit for multi-path interference mitigation in an optical communication system
KR20030087537A (en) Noise elimination method and apparatus
JP2004242224A (en) Reflected wave signal removal apparatus
JP2009218837A (en) Optical receiving apparatus and optical receiving method
FR2503496A1 (en) NOISE DETECTOR CIRCUIT AND SIGNAL RECEIVER FOR FREQUENCY MODULATION RECEIVER
JP2846212B2 (en) Monitoring signal receiving method and apparatus
JP4641274B2 (en) Optical receiver and optical interferometer control method
EP1117199A1 (en) 3R-regeneration of an optical signal
JPH0580855B2 (en)
EP0702468B1 (en) Apparatus for the identification of a synchronisation sequence
JP4247784B2 (en) Optical communication method, optical transmitter, and optical communication system
JP2006287695A (en) Optical receiver
CN106209243B (en) relay optical module
JPS58171138A (en) Optical transmission and reception system
US20070127634A1 (en) Call recording device
US20240137130A1 (en) Circuit for multi-path interference mitigation in an optical communication system
JP2669235B2 (en) Cross polarization interference compensator
JP2007129567A (en) Telephone conversation recording processor
FR2670970A1 (en) A RECEIVER SYSTEM FOR PROCESSING SIGNALS RECEIVED ON DIVERSITY PATHS.
JP3838087B2 (en) Optical communication system and optical communication apparatus
KR20020030574A (en) All optical signal processor for clock extractor by using winc
Berg et al. Performance evaluation of coherent CPFSK lightwave systems
FR2821218A1 (en) RECEIVING DEVICE FOR A MOBILE RADIO COMMUNICATION TERMINAL
JPS62271528A (en) Subscriber line transmission equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108