JP2015220014A - Magnetic field generation device comprising magnetic field variation mechanism for arbitrarily changing magnetic field at magnetic field generation position, and magnetic field adjustment method - Google Patents

Magnetic field generation device comprising magnetic field variation mechanism for arbitrarily changing magnetic field at magnetic field generation position, and magnetic field adjustment method Download PDF

Info

Publication number
JP2015220014A
JP2015220014A JP2014101311A JP2014101311A JP2015220014A JP 2015220014 A JP2015220014 A JP 2015220014A JP 2014101311 A JP2014101311 A JP 2014101311A JP 2014101311 A JP2014101311 A JP 2014101311A JP 2015220014 A JP2015220014 A JP 2015220014A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
magnet
external
external magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014101311A
Other languages
Japanese (ja)
Inventor
貴宏 渡部
Takahiro Watabe
貴宏 渡部
健司 深見
Kenji Fukami
健司 深見
茂樹 佐々木
Shigeki Sasaki
茂樹 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Japan Synchrotron Radiation Research Institute
Original Assignee
Japan Atomic Energy Research Institute
Japan Synchrotron Radiation Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Japan Synchrotron Radiation Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2014101311A priority Critical patent/JP2015220014A/en
Publication of JP2015220014A publication Critical patent/JP2015220014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic field variation mechanism capable of eliminating the need for power and cooling water, of reducing maintenance costs, of resolving troubles caused by power supply and cooling water, of having a simple structure, of being applied to a compound functional magnet and the like with a magnetic field gradient, and of changing a magnetic field drastically and ununiformly.SOLUTION: A magnetic pole 1 is arranged at the center. A permanent magnet 2 is arranged on both sides of the magnetic pole 1. A magnetic body 3 is arranged outside the permanent magnet 2. An external magnetic body plate 10 is arranged on an opposite side to a magnetic field generation position. The external magnetic body plate 10 is attached to an external magnetic body drive shaft 15 provided on an upper surface of the magnetic body 3, and can be moved in a Y-direction. The generated magnetic field is arbitrarily changed by moving the external magnetic body plate 10 without moving the magnetic pole 1.

Description

本発明は、磁場を大幅かつ不均一に変化させる機構を具備する双極磁石に関し、特に外付けされた磁性体プレートを移動させることによって、永久磁石が生成する磁場を任意に変化させる機構を具備する双極磁石を含む磁場発生装置に関する。   The present invention relates to a dipole magnet having a mechanism for greatly and non-uniformly changing a magnetic field, and in particular, has a mechanism for arbitrarily changing a magnetic field generated by a permanent magnet by moving an external magnetic plate. The present invention relates to a magnetic field generator including a dipole magnet.

通常、大幅な磁場の変化が必要な双極磁石には、電磁石が用いられている。電磁石を用いる場合には、磁場を作る電流が必要であり、且つ、強磁場の場合は大電流を冷却する水も必要となる。たとえば、大型加速器施設の場合、磁石による年間消費電力が膨大となり、冷却水に起因する好ましくないジッターやドリフトが存在する。また、電源や冷却水系の故障による磁場停止の問題が避けられず、機器の信頼性及び安全性に重大な影響を与えている。   Usually, an electromagnet is used for a dipole magnet that requires a large change in magnetic field. In the case of using an electromagnet, a current for generating a magnetic field is required, and in the case of a strong magnetic field, water for cooling a large current is also required. For example, in the case of a large accelerator facility, the annual power consumption by magnets is enormous, and undesirable jitter and drift due to cooling water exist. In addition, the problem of magnetic field stop due to failure of the power supply and the cooling water system is unavoidable, which has a serious influence on the reliability and safety of the equipment.

永久磁石による双極磁石も存在するが、磁石製作や調整時にシムによって磁場を微調整するか、あるいは磁石全体を移動させてギャップを開閉して磁場強度及び磁場分布を変える手法が用いられている。永久磁石を用いる場合には、電磁石の場合に必要となる電流や冷却水が不要であるが、通常の利用時に磁場を大きく変えることができない。磁石全体を移動させてギャップを開閉する手法では、強力な磁場吸引力に抗う複雑且つ高価な構造が必要となる。また、たとえば水平方向に双極磁場の傾きを有する複合機能型磁石(Combined magnet)、あるいは、荷電粒子の進行方向(Z方向)に任意の磁場勾配を有する磁石(Longitudinal gradient bend)など、何れかの方向に向かって磁場の傾きを有する磁石を製作する場合には、従来のようにギャップの開閉によって磁場を変化させる(特許文献1)と、磁極自体が動くため、磁場分布自体が変わってしまい、上述のような任意の磁場の傾きを有する磁石には適用できない。昨今、次世代放射光源あるいは粒子線ガン治療器をはじめとする新規加速器開発において、その内部で荷電粒子の進行方向を所望のとおりに導く双極磁石、およびそれに含まれる種々の磁石の中には、旧来のような単純な構造、つまり磁極が並行、且つ磁場が一定な構造ではなく、複雑な磁場分布を有する磁石が必要とされてきている。更に、昨今、これらの装置において、その省電力化は重要な要求性能である。   There are dipole magnets using permanent magnets, but a technique is used in which the magnetic field is finely adjusted by shims during magnet manufacture and adjustment, or the entire magnet is moved to open and close the gap to change the magnetic field strength and magnetic field distribution. When a permanent magnet is used, the current and cooling water required for an electromagnet are not necessary, but the magnetic field cannot be changed greatly during normal use. The method of opening and closing the gap by moving the entire magnet requires a complicated and expensive structure that resists a strong magnetic field attractive force. In addition, for example, a composite function magnet having a gradient of a dipole magnetic field in the horizontal direction (Combined magnet), or a magnet having an arbitrary magnetic field gradient in the traveling direction (Z direction) of charged particles (Longitudinal gradient bend), etc. When manufacturing a magnet having a magnetic field gradient toward the direction, if the magnetic field is changed by opening and closing the gap as in the prior art (Patent Document 1), the magnetic pole itself moves, so the magnetic field distribution itself changes, It cannot be applied to a magnet having an arbitrary magnetic field gradient as described above. Recently, in the development of new accelerators such as next-generation radiation light sources or particle beam cancer treatment devices, bipolar magnets that guide the traveling direction of charged particles as desired inside them, and various magnets included in them, There has been a need for a magnet having a complicated magnetic field distribution rather than a simple structure as in the past, that is, a structure in which magnetic poles are parallel and a magnetic field is constant. Furthermore, recently, in these apparatuses, power saving is an important required performance.

これまでに提案されている磁場調整方法は、製作時に生じる磁場のバラツキを改善して均一な磁場を得ることを目的としている(特許文献1〜2)。複雑な磁場分布を有する磁石を用いて、任意の磁場勾配を変化させる磁場調整方法は得られていない。   The magnetic field adjustment methods that have been proposed so far are aimed at improving the variation of the magnetic field generated during production and obtaining a uniform magnetic field (Patent Documents 1 and 2). A magnetic field adjustment method for changing an arbitrary magnetic field gradient using a magnet having a complicated magnetic field distribution has not been obtained.

特開平5-152120号公報Japanese Unexamined Patent Publication No. 5-152120 特開平10-162998号公報Japanese Patent Laid-Open No. 10-162998

本発明は、電力や冷却水を不要として、維持コストを低減し、電源や冷却水に起因するトラブルを解消し、簡易な構造であり、複合機能磁石をはじめとする磁場勾配を持った双極磁石に対し、所望の磁場に変化させる機構を提供することを目的とする。   The present invention eliminates the need for electric power and cooling water, reduces maintenance costs, eliminates problems caused by power supply and cooling water, has a simple structure, and has a magnetic field gradient including a multi-function magnet. On the other hand, an object is to provide a mechanism for changing to a desired magnetic field.

本発明によれば、永久磁石による双極磁石において下記態様の磁場変化機構を具備する磁場発生装置が提供される。
[1]永久磁石を用いた双極磁石において、一対あるいは複数対から構成される外部磁性体プレートの位置を変化させることで、磁場発生箇所の磁場を任意に変化させる磁場変化機構を具備することを特徴とする、磁場発生装置。
[2]前記磁場変化機構は、前記外部磁性体プレートと、外部磁性体プレートを移動可能に取り付ける外部磁性体プレート駆動用軸と、を具備することを特徴とする、[1]に記載の磁場発生装置。
[3]前記双極磁石は、磁極が並行に向き合う双極磁石、水平方向に双極磁場の傾きを有する複合機能磁石(Combined magnet)、又は荷電粒子の進行方向に任意に磁場分布を変化させることができる任意の磁極形状を有する磁石(Longitudinal gradient bend)である、[1]又は[2]に記載の磁場発生装置。
[4]上記[1]〜[3]のいずれかに記載の磁場発生装置を用いて、磁束経路を漏洩させて、磁極を移動させずに、漏れ磁場に外部磁性体プレートを近接させ又は離隔させて磁場発生位置の磁場強度を任意に変化させることを特徴とする、磁場調整方法。
ADVANTAGE OF THE INVENTION According to this invention, the magnetic field generator which comprises the magnetic field change mechanism of the following aspect in the dipole magnet by a permanent magnet is provided.
[1] A dipole magnet using a permanent magnet is provided with a magnetic field changing mechanism that arbitrarily changes the magnetic field of the magnetic field generation location by changing the position of the pair of external magnetic plates composed of one or more pairs. A magnetic field generator characterized by this.
[2] The magnetic field according to [1], wherein the magnetic field changing mechanism includes the external magnetic plate and an external magnetic plate driving shaft for movably attaching the external magnetic plate. Generator.
[3] The dipole magnet can change the magnetic field distribution arbitrarily in the traveling direction of the charged particles, the dipole magnet with the magnetic poles facing in parallel, the combined function magnet having the gradient of the dipole magnetic field in the horizontal direction, or the charged particle traveling direction. The magnetic field generator according to [1] or [2], which is a magnet (Longitudinal gradient bend) having an arbitrary magnetic pole shape.
[4] Using the magnetic field generation device according to any one of [1] to [3], the external magnetic plate is brought close to or separated from the leakage magnetic field without leaking the magnetic flux path and moving the magnetic pole. And a magnetic field adjustment method, wherein the magnetic field intensity at the magnetic field generation position is arbitrarily changed.

前記磁場変化機構は、複数の外部磁性体プレート駆動用軸と、各外部磁性体プレート駆動用軸にそれぞれ移動可能に取り付けられている複数の外部磁性体プレートであって、隣接する外部磁性体プレート同士が可動的に連結している外部磁性体プレートと、を具備するものでもよい。   The magnetic field change mechanism includes a plurality of external magnetic plate driving shafts and a plurality of external magnetic plates that are movably attached to the respective external magnetic plate driving shafts, and are adjacent to each other. And an external magnetic plate that is movably connected to each other.

本発明によれば、永久磁石を用いているため、電流や冷却水が不要であり、維持コストを低減でき、電源や冷却水に起因するトラブルを解消することができる。   According to the present invention, since a permanent magnet is used, no current or cooling water is required, maintenance costs can be reduced, and troubles caused by the power source and cooling water can be eliminated.

本発明の磁場調整方法によれば、外部磁性体プレートに大半の磁場を流して磁場発生位置に流さない状態から、外部磁性体プレートに磁場を流さず磁場発生位置に大半の磁場を流す状態まで、広範囲にわたり、磁場を大幅かつ不均一に任意に変化させることが可能である。   According to the magnetic field adjustment method of the present invention, from the state in which most of the magnetic field flows through the external magnetic plate and does not flow to the magnetic field generation position, to the state in which the majority of the magnetic field flows to the magnetic field generation position without flowing the magnetic field through the external magnetic plate. It is possible to vary the magnetic field arbitrarily over a wide range, significantly and non-uniformly.

本発明の磁場調整方法は、磁極を移動させないため、複合機能磁石に代表される磁場勾配を持った双極磁石にも適用可能である。   Since the magnetic field adjustment method of the present invention does not move the magnetic pole, it can be applied to a dipole magnet having a magnetic field gradient represented by a composite function magnet.

本発明の磁場調整方法は、ギャップ間の磁場よりも非常に小さい漏れ磁場を利用するため、外部磁性体プレートの駆動が容易であり、簡易且つ安価な構造とすることができる。   Since the magnetic field adjustment method of the present invention uses a leakage magnetic field that is much smaller than the magnetic field between the gaps, the external magnetic plate can be easily driven, and a simple and inexpensive structure can be achieved.

本発明の双極磁石を含む磁場発生装置の基本構成を示す正面図である。It is a front view which shows the basic composition of the magnetic field generator containing the dipole magnet of this invention. 図1に示す双極磁石における磁場を変化させる状態を示す説明図である。It is explanatory drawing which shows the state which changes the magnetic field in the dipole magnet shown in FIG. 図2に示す磁場変化において、外部磁性体プレートの移動距離と磁場との関係を示すグラフである。3 is a graph showing a relationship between a moving distance of an external magnetic plate and a magnetic field in the magnetic field change shown in FIG. 2. 磁極を複合機能磁石とし、1対の外部磁性体プレートで磁場を変化させる場合の基本構成を示す正面図である。It is a front view which shows the basic composition in case a magnetic pole is made into a composite function magnet and a magnetic field is changed with a pair of external magnetic material plate. 複数の外部磁性体プレートが複数の外部磁性体駆動用軸に取り付けられている態様を示す側面図である。It is a side view which shows the aspect by which the some external magnetic body plate is attached to the some shaft for external magnetic body drive.

好ましい実施形態Preferred embodiment

以下、添付図面を参照しながら、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings, but the present invention is not limited thereto.

図1に、本発明の磁場変化機構を具備する双極磁石を含む磁場発生装置の基本構成を示す。なお、当業者には周知のように、双極磁石は対称線を中心として線対称の構造を有するため、半分のみを示す。   FIG. 1 shows a basic configuration of a magnetic field generator including a dipole magnet having a magnetic field change mechanism of the present invention. As is well known to those skilled in the art, since the dipole magnet has a line-symmetric structure with the symmetry line as the center, only a half is shown.

図1の双極磁石は、中央に磁極1、磁極1の両側に永久磁石(PM)2、永久磁石2の外側に磁束漏洩遮蔽体としての磁性体3、磁場発生箇所とは反対側に外部磁性体プレート10がそれぞれ配置されてなる。図1において、外部磁性体プレート10は、磁性体3の上面に設けられた外部磁性体駆動軸15(図4及び図5参照)に取り付けられており、図中Y方向に移動可能である。   The dipole magnet of FIG. 1 has a magnetic pole 1 at the center, a permanent magnet (PM) 2 on both sides of the magnetic pole 1, a magnetic body 3 as a magnetic flux leakage shield on the outside of the permanent magnet 2, and an external magnetism on the opposite side of the magnetic field generation location. Each body plate 10 is arranged. In FIG. 1, the external magnetic plate 10 is attached to an external magnetic drive shaft 15 (see FIGS. 4 and 5) provided on the upper surface of the magnetic body 3 and is movable in the Y direction in the figure.

図4は、磁極1Aとして、X方向に傾斜する表面を有する複合機能磁石を用いた点を除き、図1と同じ構成である。   FIG. 4 has the same configuration as FIG. 1 except that a composite functional magnet having a surface inclined in the X direction is used as the magnetic pole 1A.

磁極1としては、鉄、コバルト、ニッケル、ガドリニウム、及びこれらを単独又は組み合わせで含む合金(パーメンジュール等)による磁性体を制限なく用いることができる。ただし、単体の磁石内において、上記磁性体が複数種類で構成されても、単一種類で構成されても良い。   As the magnetic pole 1, a magnetic body made of iron, cobalt, nickel, gadolinium, and an alloy (permendule or the like) containing these alone or in combination can be used without limitation. However, in the single magnet, the magnetic body may be composed of a plurality of types or a single type.

磁極1の形状は、上面と底面とが平行な形状に限定されず、図中X方向又はZ方向に傾斜する磁石(複合機能磁石等)でも良い。   The shape of the magnetic pole 1 is not limited to a shape in which the top surface and the bottom surface are parallel to each other, and may be a magnet (such as a composite function magnet) that is inclined in the X direction or the Z direction in the drawing.

永久磁石2としては、ネオジウム磁石、フェライト磁石、アルニコ磁石等の永久磁石を制限なく用いることができる。   As the permanent magnet 2, a permanent magnet such as a neodymium magnet, a ferrite magnet, or an alnico magnet can be used without limitation.

磁性体3としては、鉄、コバルト、ニッケル、ガドリニウム、及びこれらを単独又は組み合わせで含む合金(パーメンジュール、軟鉄等)による磁性体を制限なく用いることができる。   As the magnetic body 3, a magnetic body made of iron, cobalt, nickel, gadolinium, and an alloy (permendur, soft iron, etc.) containing these alone or in combination can be used without limitation.

外部磁性体プレート10は、鉄、コバルト、ニッケル、ガドリニウム、及びこれらを単独又は組み合わせで含む合金(パーメンジュール、軟鉄等)による磁性体を制限なく用いることができる。外部磁性体プレート10は1枚(上下で1対)の大面積の板でもよいし、あるいは図5に示すように複数の磁性板を並べた形状でもよい。外部磁性体プレート10の厚みは、十分に磁場を変化できる程度(数センチメートル以上)であることが望ましいが、これに限定されない。   The external magnetic material plate 10 can use a magnetic material made of iron, cobalt, nickel, gadolinium, and an alloy (permendur, soft iron, etc.) containing these alone or in combination without limitation. The external magnetic plate 10 may be a single plate (a pair of upper and lower) having a large area, or may have a shape in which a plurality of magnetic plates are arranged as shown in FIG. Although it is desirable that the thickness of the external magnetic material plate 10 be sufficient to change the magnetic field (several centimeters or more), it is not limited to this.

外部磁性体駆動軸15は、外部磁性体プレート10を所定高さ位置に保持できるものであれば特に制限されない。たとえば、外部磁性体駆動軸15の外周面にネジ溝を設け、外部磁性体プレート10を所望の方向(図5中、通常は上下方向)に駆動させる機能を有していてもよい。   The external magnetic body driving shaft 15 is not particularly limited as long as it can hold the external magnetic body plate 10 at a predetermined height position. For example, a screw groove may be provided on the outer peripheral surface of the external magnetic body drive shaft 15 to have a function of driving the external magnetic body plate 10 in a desired direction (usually in the vertical direction in FIG. 5).

外部磁性体プレート10の位置調整は、上述の通り外部磁性体駆動軸15の回転等を用いるか、あるいは、別途設置されたネジ機構などの位置調整用機構(図示せず)を用いて行うことができる。外部磁性体プレート10の位置調整は、人力で行うか、あるいはモーター等の機械を用いて行うことができる。現場で位置調整を行うか、あるいはGPIB(General Purpose Interface Bus)等の遠隔制御装置を用いて遠隔に行うこともできる。位置調整後は、調整機構を固定する、あるいは外部磁性体プレート10を固定して動かないようにする固定器具を用いることで、外部磁性体プレート10の位置を保持する。   The position adjustment of the external magnetic plate 10 is performed by using the rotation of the external magnetic drive shaft 15 as described above, or by using a position adjusting mechanism (not shown) such as a screw mechanism installed separately. Can do. The position adjustment of the external magnetic plate 10 can be performed manually or using a machine such as a motor. Position adjustment can be performed on site or remotely using a remote control device such as GPIB (General Purpose Interface Bus). After the position adjustment, the position of the external magnetic plate 10 is held by fixing the adjustment mechanism or using a fixing device that fixes the external magnetic plate 10 so as not to move.

図5は、双極磁石を含む磁場発生装置の側面図であり、磁性体3の上面に複数の外部磁性体駆動用軸15が取り付けられている態様を示す。各外部磁性駆動用軸15a〜15eには、それぞれ外部磁性体プレート10a〜10eが取り付けられている。各外部磁性体プレート10a〜10eは、それぞれが独立に位置を変化させることができ、特定の方向に対し、磁性体3からの距離を徐々に大きく、あるいは小さく変化させることができる。あるいは、各外部磁性体プレート10a〜10eを異なる高さ位置に配置することで、特定の方向に対し、磁性体3からの距離を任意に変化させることができ、任意の磁場分布を形成することができる。図5では、Z方向に傾斜した距離とすることで、Z方向に磁場勾配を有する磁場分布を生成している(図5下グラフ参照)。また、磁性体3を、比透磁率の低い磁性体、あるいは、磁性体3を複数のパーツに分割し、各パーツ間に空気層など強磁性を持たない材質を介在させることで、より効果的に磁場勾配をつくることができる。   FIG. 5 is a side view of a magnetic field generation apparatus including a dipole magnet, and shows a mode in which a plurality of external magnetic body driving shafts 15 are attached to the upper surface of the magnetic body 3. External magnetic plates 10a to 10e are attached to the external magnetic drive shafts 15a to 15e, respectively. The positions of the external magnetic plates 10a to 10e can be changed independently, and the distance from the magnetic body 3 can be gradually increased or decreased in a specific direction. Or by arrange | positioning each external magnetic body plate 10a-10e in a different height position, the distance from the magnetic body 3 can be changed arbitrarily with respect to a specific direction, and arbitrary magnetic field distribution is formed. Can do. In FIG. 5, a magnetic field distribution having a magnetic field gradient in the Z direction is generated by setting the distance inclined in the Z direction (see the lower graph in FIG. 5). In addition, the magnetic body 3 is more effective by dividing the magnetic body 3 with a low relative permeability or by dividing the magnetic body 3 into a plurality of parts and interposing a non-ferromagnetic material such as an air layer between the parts. A magnetic field gradient can be created.

図1を参照しながら、本発明の磁場調整方法を説明する。永久磁石(PM)2によって励磁された磁場は、磁極1を介して磁場発生箇所に磁場を形成し、再び磁極(図示せず。磁石の下半分にある磁極)を通り、リターンヨークとして機能する磁性体3を介して永久磁石(PM)2に戻る。磁場の流れ(磁束)は、必ず閉軌道(ループ)を形成する。この際、磁場発生箇所とは反対側の外部磁性体プレート10側に、磁場を閉じ込める遮蔽体(磁性体)を設けないことで、外部磁性体プレート10側に磁場を漏洩させることができる。次いで、外部磁性体駆動用軸15によって外部磁性体プレート10の位置を変化させることで、磁場発生箇所の磁場を連続して広範囲にわたって変化させることができる(図3)。なお、本発明においては、従来のギャップ開閉方式とは異なり、磁極を一切動かさない。   The magnetic field adjustment method of the present invention will be described with reference to FIG. The magnetic field excited by the permanent magnet (PM) 2 forms a magnetic field at the magnetic field generation location via the magnetic pole 1 and again passes through the magnetic pole (not shown, the magnetic pole in the lower half of the magnet) to function as a return yoke. It returns to the permanent magnet (PM) 2 through the magnetic body 3. The magnetic field flow (magnetic flux) always forms a closed orbit (loop). At this time, the magnetic field can be leaked to the external magnetic material plate 10 side by not providing a shielding body (magnetic material) for confining the magnetic field on the external magnetic material plate 10 side opposite to the magnetic field generation location. Next, by changing the position of the external magnetic material plate 10 by the external magnetic material driving shaft 15, the magnetic field of the magnetic field generation location can be continuously changed over a wide range (FIG. 3). In the present invention, unlike the conventional gap opening / closing method, the magnetic pole is not moved at all.

数値計算結果の一例を図2及び3に示す。この図では、磁極1、磁性体3、および外部磁性体プレート10に軟鉄を用い、永久磁石(PM)2にネオジウム磁石を用いている。磁性体3の厚み(図2の上下方向の高さ)を15センチメートルとし、外部磁性体プレート10の厚みを5センチメートルとしている。図3の「5cm thickness」は、この外部磁性体プレートの厚みを意味している。つまり、図3は、5cm厚の外部磁性体プレートの位置を変化させた場合の磁場の変化を示す。図3では、外部磁性体プレート10の位置(Outer plate position (y) [mm])(図2中、上下方向の位置)を横軸とし、磁場発生箇所における磁場(Magnetic field By [T])を縦軸に示している。横軸の値は、磁性体3の厚みが15センチメートルのため、外部磁性体プレート10を磁性体3に最も近づけた時を15センチメートルとしている。図3より、外部磁性体プレート10の位置変化に応じて、磁場発生箇所における磁場は大きく且つ連続的に変化することが明かである。   An example of the numerical calculation results is shown in FIGS. In this figure, soft iron is used for the magnetic pole 1, the magnetic body 3, and the external magnetic body plate 10, and a neodymium magnet is used for the permanent magnet (PM) 2. The thickness of the magnetic body 3 (vertical height in FIG. 2) is 15 centimeters, and the thickness of the external magnetic body plate 10 is 5 centimeters. “5 cm thickness” in FIG. 3 means the thickness of the external magnetic plate. That is, FIG. 3 shows the change of the magnetic field when the position of the external magnetic plate having a thickness of 5 cm is changed. In FIG. 3, the position of the outer magnetic plate 10 (Outer plate position (y) [mm]) (the vertical position in FIG. 2) is taken as the horizontal axis, and the magnetic field at the location where the magnetic field is generated (Magnetic field By [T]). Is shown on the vertical axis. Since the thickness of the magnetic body 3 is 15 centimeters, the value on the horizontal axis is 15 centimeters when the external magnetic body plate 10 is closest to the magnetic body 3. From FIG. 3, it is clear that the magnetic field at the magnetic field generation point is large and continuously changes in accordance with the change in position of the external magnetic material plate 10.

図4に示すX方向に傾斜した磁極1Aの場合の磁場の変化方法を説明する。本方法では、磁極の形状、傾きによらず磁場を変化させることができる。図4に示す場合も、外部磁性体プレート10の位置を上下させるだけで、磁場発生箇所の磁場を変化させることができる。この際、X方向に傾斜した磁極1Aでは、磁場発生箇所に磁場の傾き(図4の場合、磁場発生箇所である黒丸の左側は磁場が強く、右側は磁場が弱い)が存在する。本発明の方法では、この磁場の傾きは一切変えずに、磁場の値だけを変えることができる。この点、従来のギャップ駆動方法による磁場調整方法では、黒丸の位置の磁場を変化させると、磁場の傾き(黒丸の周辺の磁場分布)も自動的に変わってしまうことと大きく異なる。   A method of changing the magnetic field in the case of the magnetic pole 1A tilted in the X direction shown in FIG. 4 will be described. In this method, the magnetic field can be changed regardless of the shape and inclination of the magnetic pole. Also in the case shown in FIG. 4, the magnetic field at the magnetic field generation location can be changed simply by moving the position of the external magnetic plate 10 up and down. At this time, in the magnetic pole 1A inclined in the X direction, there is a magnetic field gradient at the magnetic field generation location (in FIG. 4, the magnetic field is strong on the left side of the black circle, which is the magnetic field generation location, and the magnetic field is weak on the right side). In the method of the present invention, only the value of the magnetic field can be changed without changing the gradient of the magnetic field at all. In this regard, the conventional magnetic field adjustment method using the gap driving method is greatly different from the fact that when the magnetic field at the position of the black circle is changed, the gradient of the magnetic field (the magnetic field distribution around the black circle) automatically changes.

Claims (4)

永久磁石を用いた双極磁石において、磁極を移動させずに、一対あるいは複数対から構成される外部磁性体プレートの位置を変化させることで、磁場発生箇所の磁場を任意に変化させる磁場変化機構を具備することを特徴とする、磁場発生装置。 In a dipole magnet using a permanent magnet, a magnetic field changing mechanism that arbitrarily changes the magnetic field of the magnetic field generation location by changing the position of one or more pairs of external magnetic plates without moving the magnetic poles. A magnetic field generator characterized by comprising. 前記磁場変化機構は、前記外部磁性体プレートと、外部磁性体プレートを移動可能に取り付ける外部磁性体プレート駆動用軸と、を具備することを特徴とする、請求項1に記載の磁場発生装置。 2. The magnetic field generation apparatus according to claim 1, wherein the magnetic field changing mechanism includes the external magnetic material plate and an external magnetic material plate driving shaft on which the external magnetic material plate is movably attached. 前記双極磁石は、磁極が並行に向き合う双極磁石、水平方向に双極磁場の傾きを有する複合機能磁石(Combined magnet)、又は荷電粒子の進行方向に任意に磁場分布を変化させることができる任意の磁極形状を有する磁石(Longitudinal gradient bend)である、請求項1又は2に記載の磁場発生装置。 The dipole magnet is a dipole magnet in which the magnetic poles face in parallel, a combined function magnet having a dipole magnetic field gradient in the horizontal direction, or an arbitrary magnetic pole that can arbitrarily change the magnetic field distribution in the traveling direction of the charged particles. The magnetic field generator of Claim 1 or 2 which is a magnet (Longitudinal gradient bend) which has a shape. 請求項1〜3のいずれかに記載の磁場発生装置を用いて、磁束経路を漏洩させて、磁極を移動させずに、漏れ磁場に外部磁性体プレートを近接させ又は離隔させて磁場発生位置の磁場強度を任意に変化させることを特徴とする、磁場調整方法。 Using the magnetic field generator according to any one of claims 1 to 3, the magnetic flux path is leaked, and the external magnetic plate is brought close to or separated from the leakage magnetic field without moving the magnetic pole, thereby A magnetic field adjustment method, wherein the magnetic field strength is arbitrarily changed.
JP2014101311A 2014-05-15 2014-05-15 Magnetic field generation device comprising magnetic field variation mechanism for arbitrarily changing magnetic field at magnetic field generation position, and magnetic field adjustment method Pending JP2015220014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014101311A JP2015220014A (en) 2014-05-15 2014-05-15 Magnetic field generation device comprising magnetic field variation mechanism for arbitrarily changing magnetic field at magnetic field generation position, and magnetic field adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014101311A JP2015220014A (en) 2014-05-15 2014-05-15 Magnetic field generation device comprising magnetic field variation mechanism for arbitrarily changing magnetic field at magnetic field generation position, and magnetic field adjustment method

Publications (1)

Publication Number Publication Date
JP2015220014A true JP2015220014A (en) 2015-12-07

Family

ID=54779240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101311A Pending JP2015220014A (en) 2014-05-15 2014-05-15 Magnetic field generation device comprising magnetic field variation mechanism for arbitrarily changing magnetic field at magnetic field generation position, and magnetic field adjustment method

Country Status (1)

Country Link
JP (1) JP2015220014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373700A (en) * 2016-08-18 2017-02-01 上海交通大学 Gradient magnetic field generation device for loading of geomechanical model test
CN111462975A (en) * 2020-03-31 2020-07-28 清华大学 Magnetic field generation method, synchrotron, storage medium and equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373700A (en) * 2016-08-18 2017-02-01 上海交通大学 Gradient magnetic field generation device for loading of geomechanical model test
CN111462975A (en) * 2020-03-31 2020-07-28 清华大学 Magnetic field generation method, synchrotron, storage medium and equipment
CN111462975B (en) * 2020-03-31 2021-05-18 清华大学 Magnetic field generation method, synchrotron, storage medium and equipment

Similar Documents

Publication Publication Date Title
JP2003007500A (en) Variable strength type multi pole beam line magnet
US20130207760A1 (en) Multipole magnet
KR20130138171A (en) Cyclotron comprising a means for modifying the magnetic field profile and associated method
CN207802493U (en) Petal-shaped accelerator and its c-type connector motor magnet
JP2015220014A (en) Magnetic field generation device comprising magnetic field variation mechanism for arbitrarily changing magnetic field at magnetic field generation position, and magnetic field adjustment method
CN207638964U (en) The petal-shaped accelerator repeatedly accelerated using permanent magnet guiding electronics
WO2021115050A1 (en) Gradient magnetic field generation device, and space servo motion system
US20160071702A1 (en) Arc-plasma film formation device
KR20140126297A (en) Magnetic field generator for magnetron sputtering
SG11201906706UA (en) Shutter device and control method therefor, mask aligner and exposure dose control method therefor
CN204897971U (en) Thermomagnetic treatment device
US20110226950A1 (en) Linear motor pair, moving stage and electron microscope
CN110379697A (en) The method of operation of ion source, ion beam irradiation apparatus and ion source
CN115426762A (en) Permanent magnet quadrupole magnet based on motor control is adjusted
Schmidt et al. Magnetic design of an APPLE III undulator for SwissFEL
KR20150116353A (en) Electromagnetic actuator
CN210982706U (en) Magnet structure for open MRI imaging system
Shepherd et al. Design and measurement of a low-energy tunable permanent magnet quadrupole prototype
CN206674289U (en) A kind of new magnet for line homogenization
JP2015017304A (en) Magnetic field generation apparatus and sputtering apparatus
CN112447355A (en) Permanent magnet device
US8884256B2 (en) Septum magnet and particle beam therapy system
CN203415402U (en) Heat treatment magnetic field device based on permanent magnetic structure
JP6832711B2 (en) Magnetic field correction method in superconducting electromagnet device and superconducting electromagnet device
Modena The ZEPTO dipole: zero power tuneable optics for CLIC