JP2015219134A - Chemical-element-analysis sample preparation method and device - Google Patents

Chemical-element-analysis sample preparation method and device Download PDF

Info

Publication number
JP2015219134A
JP2015219134A JP2014103251A JP2014103251A JP2015219134A JP 2015219134 A JP2015219134 A JP 2015219134A JP 2014103251 A JP2014103251 A JP 2014103251A JP 2014103251 A JP2014103251 A JP 2014103251A JP 2015219134 A JP2015219134 A JP 2015219134A
Authority
JP
Japan
Prior art keywords
cooling
steel
vcr
sample preparation
steel ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014103251A
Other languages
Japanese (ja)
Other versions
JP6248801B2 (en
Inventor
荒井 正浩
Masahiro Arai
正浩 荒井
廣角 太朗
Taro Hirokado
太朗 廣角
佐々木 智之
Tomoyuki Sasaki
智之 佐々木
進 工藤
Susumu Kudo
進 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014103251A priority Critical patent/JP6248801B2/en
Publication of JP2015219134A publication Critical patent/JP2015219134A/en
Application granted granted Critical
Publication of JP6248801B2 publication Critical patent/JP6248801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for rapidly preparing a sample having no breaking or crack that is appropriate for analysis from a steel ingot that is collected from molten steel and is in a high-temperature red-heat state.SOLUTION: First, of a steel ingot collected from molten steel and supplied in a high-temperature red-heat state to a preparation device, an unnecessary part that is not analyzed is previously isolated by a cutting mechanism. Then, the remaining part of the sample is cooled to 100°C or less by a cooling mechanism, while the cooling rate is controlled in response to the steel type and chemical composition of the sample so that the hardness of the sample after the completion of the cooling is 400 or less in Vickers hardness.

Description

本発明は、製鋼操業において、精錬途中の溶鋼から凝固塊を採取し、機械加工により成分分析用試料を作製した後、試料中に含有される元素濃度を分析し、分析結果を参照して該溶鋼の成分調整操作に反映させる一連の工程に適用可能な、迅速かつ確実な元素分析試料調製方法に関する。   In the steelmaking operation, the solidified ingot is collected from molten steel in the middle of refining, and after preparing a sample for component analysis by machining, the concentration of elements contained in the sample is analyzed, and the analysis result is referred to The present invention relates to a quick and reliable elemental analysis sample preparation method applicable to a series of steps to be reflected in the component adjustment operation of molten steel.

鉄鋼材料では、所望の性能を得るために鋼中に各種元素を適量添加する合金設計を行っており、その設計に基づき同一性能を有する鋼を実製造する際は、製鋼工程での溶製時に各元素の濃度をある一定の範囲内に管理することで、製品性能の安定化を図っている。さらに、精錬中に溶鋼成分の分析を行い、目的とする元素の濃度を確認し、その結果を見て適宜成分調整を行っているため、正確な分析結果だけでなく、分析値判明まで待つことに起因した生産量低減やエネルギーロスを回避する観点から、迅速な分析が不可欠である。   In order to obtain the desired performance, steel materials are designed with alloys that add appropriate amounts of various elements to the steel. When steel with the same performance is actually manufactured based on the design, Product performance is stabilized by managing the concentration of each element within a certain range. Furthermore, analysis of molten steel components is performed during refining, the concentration of the target element is confirmed, and the results are adjusted accordingly, so that not only accurate analysis results but also analysis values must be waited for. From the viewpoint of reducing production volume and energy loss due to, rapid analysis is indispensable.

そのため、各種元素を添加して所望の性能を有する鋼を製造する製鋼工程における精錬途中に、含有する元素の濃度を迅速かつ精度よく分析ができれば、その分析結果をもとにして、適切な成分調整を行うことで、安定した性能を有する鋼を、低コストかつ低環境負荷で製造することが可能となる。   Therefore, if the concentration of the contained element can be analyzed quickly and accurately during the refining process in the steelmaking process for producing steel having the desired performance by adding various elements, appropriate components will be based on the analysis results. By performing the adjustment, it becomes possible to manufacture steel having stable performance at low cost and low environmental load.

このような工程において、分析試料を迅速に作製するために、分析試料調製装置が活用されている。元素分析試料調製装置では、鋼塊受入装置、切断装置、研磨装置、冷却装置、搬送装置等が、シーケンサにより総合的に制御され、鋼塊を投入すると、1分半程度で、発光分析用やガス分析用の試料が払い出される。   In such a process, an analysis sample preparation apparatus is used to quickly prepare an analysis sample. In the elemental analysis sample preparation device, a steel ingot receiving device, a cutting device, a polishing device, a cooling device, a transport device, etc. are comprehensively controlled by a sequencer. A sample for gas analysis is dispensed.

例えば、特許文献1では、異なった種類の分析、例えば、発光分析とガス分析に用いられる複数の試料を、同時に作製することができると共に、テーパ状サンプルも容易かつ確実に把持してサンプルの搬送を確実に行うことができる分析試料の調製装置が開示されている。この装置において、溶鋼から採取し、高温赤熱状態で供給される鋼塊の温度は、まず、1000℃から切断により800℃に降下、次に、冷却水中に完全に浸漬する急冷却により400℃に降下、さらに砥石研磨により300℃に降下、再び急冷却30℃に降下、または水を混入した空気を吹き付けて300℃から200℃まで徐冷を行った後、急冷却により30℃に降下すると開示されている。   For example, in Patent Document 1, a plurality of samples used for different types of analysis, for example, luminescence analysis and gas analysis, can be produced simultaneously, and a tapered sample can be easily and reliably grasped and conveyed. An analytical sample preparation apparatus capable of reliably performing the above is disclosed. In this apparatus, the temperature of the steel ingot collected from the molten steel and supplied in a hot red hot state is first lowered from 1000 ° C. to 800 ° C. by cutting, and then to 400 ° C. by rapid cooling completely immersed in cooling water. It is disclosed that the temperature is lowered to 300 ° C. by descent and further grinding with a grindstone, again cooled rapidly to 30 ° C., or air mixed with water is blown and gradually cooled from 300 ° C. to 200 ° C., and then cooled to 30 ° C. by rapid cooling. Has been.

特許文献2には、マルテンサイト変態開始温度よりやや高い温度、例えば400℃まで急冷却し、その後、常温まで、低炭素鋼の場合は急冷し、高炭素鋼の場合は徐冷する鋼中成分分析用試料の加工方法が開示されている。   Patent Document 2 discloses a component in steel that is rapidly cooled to a temperature slightly higher than the martensitic transformation start temperature, for example, 400 ° C., and then rapidly cooled to room temperature, in the case of low carbon steel, and gradually cooled in the case of high carbon steel. A method for processing an analytical sample is disclosed.

また、特許文献3では、冷却装置を2つ具備し、900℃〜1000℃で受け入れた鋼塊を、まず第1冷却装置で400℃〜600℃程度に急冷したのち切断装置によって湯口部を切離すると共に、切断後に自然降温によって200℃〜300℃に放冷された試料を第2冷却装置で20℃〜50℃程度に2段階で冷却する調製方法および装置が開示されている。   Further, in Patent Document 3, a steel ingot equipped with two cooling devices and received at 900 ° C. to 1000 ° C. is first rapidly cooled to about 400 ° C. to 600 ° C. with a first cooling device, and then the gate is cut by a cutting device. A preparation method and apparatus are disclosed in which a sample that has been separated and cooled to 200 ° C. to 300 ° C. by natural temperature drop after cutting is cooled in two stages to about 20 ° C. to 50 ° C. by a second cooling device.

これらいずれの技術、装置においても、投入された鋼塊は、急冷却と自然降温による放冷の組み合わせで冷却されており、装置機構が複雑となる問題があった。さらにこれら従来技術のいずれも、鋼の化学成分に応じて冷却速度を適切に制御する方法を提供するものではない。   In any of these techniques and apparatuses, the steel ingots that have been charged are cooled by a combination of rapid cooling and natural cooling, and the mechanism of the apparatus is complicated. Furthermore, none of these prior arts provide a method for appropriately controlling the cooling rate in accordance with the chemical composition of the steel.

一方で、製鋼工程では様々な種類すなわち成分の鋼が混在して溶製されており、例えば、高炭素鋼や機械構造用合金鋼などでは、先行技術による試料調製装置を適用しても、急冷却により焼きが入り、硬くなる鋼種では、切断や打抜加工ができない、加工はできても、所望の寸法精度が得られない、焼き割れに起因して分析試料に割れや欠けが生じる等の問題が発生していた。当然ながら、このような欠陥を含む試料を分析に供しても、正確な結果は期待できない。   On the other hand, in the steelmaking process, steels of various types, that is, components, are mixed and melted. For example, in the case of high carbon steel and alloy steel for mechanical structure, even if the sample preparation device according to the prior art is applied, For steel types that are hardened and hardened by cooling, cutting and punching cannot be performed, processing can be performed, but the desired dimensional accuracy cannot be obtained, cracks and chips in the analytical sample due to burning cracks, etc. There was a problem. Of course, even if a sample containing such a defect is subjected to analysis, an accurate result cannot be expected.

実作業において、急冷却により焼きが入り、硬くなる鋼種に対しては、作業者が介在し、経験や勘に基づいて、手作業で試料調製しているが、やはり、作業が繁雑になり、時間を要する上、処理のばらつきは避けられず、不適切な冷却により再度鋼塊の採取が必要になる等、工程ロスの原因となっていた。   In the actual work, for steel types that are hardened by rapid cooling and harden, the operator intervenes and manually prepares the sample based on experience and intuition, but again the work becomes complicated, In addition to the time required, process variations were unavoidable, and it was necessary to collect steel ingots again due to improper cooling, which caused process loss.

特開平9−166530号公報JP-A-9-166530 特開平9−152391号公報JP-A-9-152391 特開平10−311782号公報JP-A-10-311782

本発明は、溶鋼から採取した高温赤熱状態の鋼塊から、割れや欠けのない分析に適した試料を迅速に調製する方法および装置を提供することを目的とする。   It is an object of the present invention to provide a method and an apparatus for quickly preparing a sample suitable for analysis free from cracks and chips from a high temperature red hot ingot collected from molten steel.

本発明者は種々検討を重ねた結果、分析試料調製において、高温赤熱状態の鋼塊を冷却する際、鋼種すなわち鋼の化学成分に応じて冷却条件を最適化することで、精錬途中の溶鋼成分分析に適用可能な迅速かつ確実な試料調製方法を見いだし、以下の本発明を完成させるに至った。   As a result of various investigations, the present inventor has optimized the cooling conditions in accordance with the steel type, that is, the chemical composition of the steel when cooling the hot ingot in the analysis sample preparation. The present inventors have found a quick and reliable sample preparation method applicable to analysis, and have completed the following present invention.

(1)溶鋼から採取し、700〜800℃の赤熱状態で元素分析試料調製装置に供給される鋼塊に対して、まず、分析に供しない不要な部分を切断機構により切離した後、冷却完了後の前記鋼塊の硬さがビッカース硬さで400以下になるよう、前記鋼塊の鋼種及び化学組成の関数として冷却速度の上限Vcr[℃/秒]を決定し、前記Vcr以下に冷却速度を制御しながら、冷却機構により試料を100℃以下に冷却することを特徴とする元素分析試料調製方法。 (1) For the steel ingot collected from the molten steel and supplied to the elemental analysis sample preparation device in a 700-800 ° C. red-hot state, first, unnecessary portions not subjected to analysis are separated by a cutting mechanism, and then cooling is completed. The upper limit Vcr [° C./sec] of the cooling rate is determined as a function of the steel type and chemical composition of the steel ingot so that the hardness of the steel ingot afterwards becomes 400 or less in terms of Vickers hardness. A method for preparing an elemental analysis sample, wherein the sample is cooled to 100 ° C. or less by a cooling mechanism while controlling the temperature.

(2)前記冷却速度が、(1)式で表わされるVcr[℃/秒]以下であることを特徴とする(1)に記載の元素分析試料調製方法。
Vcr = a*exp(b*Ceq.) (1式)
ここに、
Ceq.=[C]+[Si]/24+[Mn]/5+[Cr]/5+[Mo]/2.5+[Nb]/3+[V]/5+[Cu]/10+[Ni]/18 (2式)
a=420±50
b=−6.2±0.3
である。
(2) The elemental analysis sample preparation method according to (1), wherein the cooling rate is equal to or less than Vcr [° C./second] represented by the formula (1).
Vcr = a * exp (b * Ceq.) (1 expression)
here,
Ceq. = [C] + [Si] / 24 + [Mn] / 5 + [Cr] / 5 + [Mo] /2.5+ [Nb] / 3 + [V] / 5 + [Cu] / 10 + [ Ni] / 18 (2 sets)
a = 420 ± 50
b = −6.2 ± 0.3
It is.

(3)前記冷却速度が、前記冷却速度の上限Vcrに対して、0.8*Vcr以上Vcr以下であることを特徴とする(1)または(2)に記載の元素分析試料調製方法。 (3) The elemental analysis sample preparation method according to (1) or (2), wherein the cooling rate is 0.8 * Vcr or more and Vcr or less with respect to the upper limit Vcr of the cooling rate.

(4)溶鋼から採取された、700〜800℃の赤熱状態の鋼塊を受け取る受入部と、前記鋼塊の分析に供しない不要な部分を切断する切断部と、切断後の前記鋼塊を水冷及び/または空冷により冷却する冷却部と、冷却完了後の前記鋼塊の硬さがビッカース硬さで400以下となるように、前記鋼塊の鋼種及び成分予測値から、冷却速度を決定する演算部と、切断後の前記鋼塊を700℃から100℃まで、前記冷却速度で冷却するように、前記冷却部を制御する制御部と、冷却完了後の前記鋼塊を元素分析に適した性状に加工する加工部を備えたことを特徴とする元素分析用試料調製装置。 (4) A receiving part that receives a 700 to 800 ° C. red hot ingot collected from molten steel, a cutting part that cuts an unnecessary part that is not used for analysis of the steel ingot, and the steel ingot after cutting The cooling rate is determined from the steel type of the steel ingot and the predicted component value so that the cooling of the steel ingot after cooling and water cooling and / or air cooling and the hardness of the steel ingot after cooling is 400 or less in terms of Vickers hardness. The calculation unit, the control unit for controlling the cooling unit so as to cool the steel ingot after cutting from 700 ° C. to 100 ° C. at the cooling rate, and the steel ingot after completion of cooling are suitable for elemental analysis. A sample preparation device for elemental analysis, comprising a processing section for processing into properties.

(5)前記演算部が決定する前記冷却速度の上限が、(1)式で決定されることを特徴とする(4)に記載の元素分析用試料調製装置。
Vcr = a*exp(b*Ceq.) (1式)
ここに、
Ceq.=[C]+[Si]/24+[Mn]/5+[Cr]/5+[Mo]/2.5+[Nb]/3+[V]/5+[Cu]/10+[Ni]/18 (2式)a=420±50
b=−6.2±0.3
である。
(5) The sample preparation apparatus for elemental analysis according to (4), wherein the upper limit of the cooling rate determined by the calculation unit is determined by the equation (1).
Vcr = a * exp (b * Ceq.) (1 expression)
here,
Ceq. = [C] + [Si] / 24 + [Mn] / 5 + [Cr] / 5 + [Mo] /2.5+ [Nb] / 3 + [V] / 5 + [Cu] / 10 + [ Ni] / 18 (2 formulas) a = 420 ± 50
b = −6.2 ± 0.3
It is.

(6)溶鋼から採取し、700〜800℃の赤熱状態で元素分析試料調製装置に供給される鋼塊に対して、前記鋼塊の温度が700℃から100℃まで一定の冷却速度で冷却することを特徴とする(4)または(5)に記載の元素分析試料調製装置。 (6) The steel ingot is sampled from the molten steel and supplied to the elemental analysis sample preparation device in a red hot state of 700 to 800 ° C., and the steel ingot is cooled at a constant cooling rate from 700 ° C. to 100 ° C. (4) or the elemental analysis sample preparation apparatus according to (5).

本発明により、製鋼操業において、精錬途中の溶鋼から凝固塊を採取し、機械加工により成分分析用試料を作製した後、試料中に含有される元素濃度を分析し、分析結果を参照して該溶鋼の成分調整操作に反映させる一連の工程に適用可能な、迅速かつ確実な元素分析試料調製が可能となる。これにより、様々な種類すなわち成分の鋼が混在して溶製される製鋼操業において、例えば、高炭素鋼や機械構造用合金鋼など、急冷却により焼きが入り、硬くなる鋼種でも、元素分析試料調製装置を用いて、割れや欠けのない分析に適した試料を迅速に調製でき、操業の効率化につながる。   According to the present invention, in steelmaking operation, a solidified ingot is collected from molten steel in the middle of refining, a sample for component analysis is prepared by machining, the element concentration contained in the sample is analyzed, and the analysis result is referred to Rapid and reliable elemental analysis sample preparation that can be applied to a series of processes to be reflected in the component adjustment operation of molten steel becomes possible. As a result, in steelmaking operations where steels of various types, that is, steels of various components are mixed and melted, for example, high-carbon steels and alloy steels for machine structural use, even steel types that harden and become hard due to rapid cooling are analyzed by elemental analysis. Using the preparation device, it is possible to quickly prepare a sample suitable for analysis without cracks or chips, leading to efficient operation.

本発明の元素分析試料調製装置の構成ブロック図である。It is a block diagram of the configuration of the elemental analysis sample preparation apparatus of the present invention. 試料のビッカース硬さHvが約400となる冷却速度と炭素当量の関係を示すグラフである。It is a graph which shows the relationship between the cooling rate and carbon equivalent in which the Vickers hardness Hv of a sample is set to about 400. 冷間打抜加工評価結果(試料硬さと炭素当量の関係)を示すグラフである。It is a graph which shows a cold stamping process evaluation result (a relationship between sample hardness and a carbon equivalent).

以下、本発明に係る元素分析試料調製方法の実施の形態の一例について説明する。   Hereinafter, an example of an embodiment of an elemental analysis sample preparation method according to the present invention will be described.

溶鋼から採取される鋼塊には、様々な寸法のものが用いられているが、概ね円柱体で、直径は25mm〜40mm程度、長さは50mm〜70mm程度である。製鋼現場でサンプラーから取り出された鋼塊は、高温赤熱状態のまま、気送等により、分析現場へ搬送される。   Steel ingots extracted from molten steel are of various dimensions, but are generally cylindrical bodies with a diameter of about 25 mm to 40 mm and a length of about 50 mm to 70 mm. The steel ingot taken out from the sampler at the steelmaking site is transported to the analysis site by air transportation or the like in a hot red hot state.

受入直後の鋼塊の温度は700℃〜800℃程度であるが、この鋼塊に対して、調製装置を用いて、できるだけ短い時間で、ほぼ常温の分析試料に調製するためには、まず、湯口や凝固する際に形成する空洞欠陥(いわゆる「引け巣」)を内在する部分、すなわち分析に供しない不要な部分を予め切断機構により切離し、試料体積をできるだけ小さくする。   The temperature of the steel ingot immediately after acceptance is about 700 ° C. to 800 ° C., but in order to prepare an analytical sample at about room temperature in the shortest possible time using this preparation device, A portion containing a cavity defect (so-called “shrinkage nest”) formed at the time of solidification or solidification, that is, an unnecessary portion that is not used for analysis is separated in advance by a cutting mechanism so as to make the sample volume as small as possible.

その後、分析試料調製に必要な切断、研磨、切削、打抜等の加工により、試料が割れたり、欠けたりすることのないよう、すなわち、冷却完了後の試料の硬さが加工に適した所定値以下になるよう、鋼種に応じて冷却速度を制御しながら、冷却する。冷却速度が速すぎると、硬質のマルテンサイト相分率が高まり、試料の硬さが上昇し、加工に支障をきたすことになる。加工に適した硬さは分析試料調製装置や工具の仕様にもよるが、本発明者らは市販の分析試料調製装置に備えられた高硬度試料打抜装置を用いて作製した冷却完了後の試料の硬さと加工の良否との関係について調査した。   Thereafter, the sample is not cracked or chipped by cutting, polishing, cutting, punching, or the like necessary for preparation of the analysis sample, that is, the hardness of the sample after completion of cooling is a predetermined value suitable for processing. Cooling while controlling the cooling rate according to the steel type so as to be below the value. When the cooling rate is too high, the hard martensite phase fraction increases, the hardness of the sample increases, and the processing is hindered. The hardness suitable for processing depends on the specifications of the analytical sample preparation device and the tool, but the present inventors have prepared a high hardness sample punching device provided in a commercially available analytical sample preparation device, and after completion of cooling. The relationship between the hardness of the sample and the quality of processing was investigated.

その結果、試料の硬さをビッカース硬さで400以下とすることにより、冷間加工においても割れや欠けのない分析試料が得られることを見出し、本発明に至ったものである。   As a result, the inventors have found that an analysis sample having no cracks or chipping can be obtained even in cold working by setting the hardness of the sample to 400 or less in terms of Vickers hardness, and the present invention has been achieved.

受入、切断後の鋼塊温度700℃を冷却開始温度として、冷却過程における鋼のマルテンサイト変態を極力回避するために100℃までの試料温度を制御しながら冷却する。ここで、急冷却と徐冷却を組み合わせることは、必要な硬さを得るために、徐冷却において試料を保温、加熱する機構が必要になる場合があり、装置機構が複雑になる。したがって、本発明では、700℃から100℃まで、概ね一定の冷却速度に制御する。   The steel ingot temperature after receiving and cutting is 700 ° C., and cooling is performed while controlling the sample temperature up to 100 ° C. in order to avoid martensitic transformation of the steel in the cooling process as much as possible. Here, combining rapid cooling and gradual cooling may require a mechanism for keeping the sample warm and heating in gradual cooling in order to obtain the required hardness, which complicates the apparatus mechanism. Therefore, in this invention, it controls to a substantially constant cooling rate from 700 degreeC to 100 degreeC.

冷却後の鋼塊のビッカース硬さが約400となる臨界冷却速度Vcr[℃/秒]は、試料中に含まれるC濃度(wt%)やその他の元素濃度によって異なり、鋼種毎にこれら元素濃度の関数として与えられる。本発明では、予め、この関数すなわち元素濃度とVcrとの関係式を求める。具体的には、鋼の連続冷却変態線図(CCT線図)を作成する要領で、冷却速度を適宜変化させて、得られた試料の硬さとの関係から決定することができる。   The critical cooling rate Vcr [° C / sec] at which the Vickers hardness of the steel ingot after cooling is about 400 differs depending on the C concentration (wt%) contained in the sample and other element concentrations. Is given as a function of In the present invention, this function, that is, a relational expression between element concentration and Vcr is obtained in advance. Specifically, it can be determined from the relationship with the hardness of the obtained sample by appropriately changing the cooling rate in the manner of creating a continuous cooling transformation diagram (CCT diagram) of steel.

精錬工程において採取された鋼塊から元素分析試料を調製する際には、その成分予測値を上記関係式に代入して、Vcrを求める。成分予測値は、例えば、直前の分析結果をもとにその後の精錬アクションを加味して得られる。   When preparing an elemental analysis sample from a steel ingot collected in the refining process, Vcr is obtained by substituting the predicted component value into the above relational expression. The predicted component value is obtained, for example, by taking into account the subsequent refining action based on the immediately preceding analysis result.

本発明においては、冷却速度をVcr以下に制御するが、試料調製の迅速性の要求に鑑みて、極力Vcrに近い値に設定することが好ましく、0.8*Vcr以上に設定することが好ましい。より好ましくは、0.9*Vcr以上とする。   In the present invention, the cooling rate is controlled to Vcr or less, but in view of the requirement for rapid sample preparation, it is preferably set to a value as close to Vcr as possible, and preferably set to 0.8 * Vcr or more. . More preferably, it is 0.9 * Vcr or more.

本発明によれば、例えば、精錬中に合金の添加によって組成が変化しても、割れや欠けのない元素分析試料を確実に調整可能な最速の冷却速度を設定することを可能とする。   According to the present invention, for example, even when the composition changes due to the addition of an alloy during refining, it is possible to set the fastest cooling rate at which an elemental analysis sample free from cracks and chips can be adjusted with certainty.

次に、本発明の元素分析試料調製装置について、図1に示す構成ブロック図をもとに説明する。   Next, the elemental analysis sample preparation apparatus of the present invention will be described based on the configuration block diagram shown in FIG.

(1)受入部
溶鋼から採取された高温赤熱状態の鋼塊を、調製装置内へ受け入れ、調製を施す所定の場所へ搬送する把持機構(リニアガイド付きエアチャックなど)へ鋼塊を渡す。
(1) Receiving part The steel ingot in a high-temperature red hot state collected from molten steel is received in a preparation device, and the steel ingot is transferred to a gripping mechanism (such as an air chuck with a linear guide) that conveys it to a predetermined place where preparation is performed.

(2)切断部
受入部で受け入れた鋼塊に対して、湯口や凝固する際に形成する空洞欠陥(いわゆる「引け巣」)を内在する部分、すなわち分析に供しない不要な部分を切断する。
(2) Cutting part The steel ingot received at the receiving part is cut at a gate or a part containing a cavity defect (so-called “shrinkage nest”) formed when solidifying, that is, an unnecessary part not subjected to analysis.

(3)冷却部
切断部で切断後の前記鋼塊を水冷及び/または空冷及び/または放冷により冷却する。
(3) Cooling part The steel ingot after cutting at the cutting part is cooled by water cooling and / or air cooling and / or standing to cool.

(4)演算部
鋼塊を冷却するに際して、冷却完了後の鋼塊の硬さがビッカース硬さで400以下となるように、鋼塊の成分予測値から、冷却速度を決定する。図1のように、元素分析試料調製装置内に搭載してもよいし、分析値を管理するコンピュータなどに当該演算機能を持たせる、すなわち演算部を同装置外に独立させてもよい。
(4) Calculation part When cooling a steel ingot, a cooling rate is determined from the component prediction value of a steel ingot so that the hardness of the steel ingot after completion of cooling will be 400 or less in terms of Vickers hardness. As shown in FIG. 1, it may be installed in the elemental analysis sample preparation apparatus, or a computer or the like that manages the analysis value may have the calculation function, that is, the calculation unit may be independent from the apparatus.

(5)制御部
切断後の鋼塊を700℃から100℃まで、前記演算部(4)で決定した冷却速度で冷却するように、前記冷却部(3)を制御する。具体的には、切断部に搭載した各冷却手段から必要な手段を選択し、必要な時間だけ鋼塊を冷却する。予め、所望の冷却速度が得られる動作シーケンスパターンを組んで登録しておき、同パターンを選択する方式であれば、制御部の機能は従来の調製装置並みに単純化できる。
(5) Control unit The cooling unit (3) is controlled so that the steel ingot after cutting is cooled from 700 ° C to 100 ° C at the cooling rate determined by the calculation unit (4). Specifically, a necessary means is selected from each cooling means mounted on the cutting part, and the steel ingot is cooled for a necessary time. If the operation sequence pattern that obtains a desired cooling rate is previously registered and registered, and the system selects the same pattern, the function of the control unit can be simplified as in the conventional preparation apparatus.

(6)加工部
冷却完了後の前記鋼塊を元素分析試料に適した性状に加工する。例えば、スパーク放電発光分析用試料であれば、鋼塊の切断面を切削加工または研磨加工する。ガス分析用試料であれば、必要に応じて、まず鋼塊の切断面を切削加工または研磨加工した後、再び切断部へ搬送して、所望の厚さに切断してスライス片を作製し、これを打ち抜き加工する。打ち抜き加工機能は調製装置に搭載してもよいし、スライス片を調製装置外へ払い出して、別建ての打ち抜き加工装置で加工してもよい。加工部での加工に際して、鋼塊は100℃よりも低い温度まで冷却されているため、鋼塊自身の熱により著しく酸化することなく、清浄な分析面が得られる。したがって、特にガス分析では、従来実施されていた炭素、硫黄、窒素に加えて、酸素の分析にも好適な試料を調製することができる。
(6) Processed portion The steel ingot after cooling is processed into properties suitable for the elemental analysis sample. For example, in the case of a spark discharge emission analysis sample, the cut surface of the steel ingot is cut or polished. If it is a sample for gas analysis, if necessary, first cut or polished the cut surface of the steel ingot, then transported again to the cutting unit, cut to a desired thickness to produce a slice piece, This is punched. The punching function may be installed in the preparation device, or the slice piece may be discharged out of the preparation device and processed by a separate punching device. Since the steel ingot is cooled to a temperature lower than 100 ° C. at the time of processing in the processing section, a clean analysis surface can be obtained without being significantly oxidized by the heat of the steel ingot itself. Therefore, particularly in gas analysis, it is possible to prepare a sample suitable for analysis of oxygen in addition to carbon, sulfur, and nitrogen that have been conventionally performed.

(2)式で求めた炭素当量Ceq.が0.34〜0.96である11種類の鋼に対して、CCT線図を作成し、冷却速度と得られた試料の硬さの関係から、ビッカース硬度Hvが約400となる冷却速度を決定した。
Ceq.=[C]+[Si]/24+[Mn]/5+[Cr]/5+[Mo]/2.5+[Nb]/3+[V]/5+[Cu]/10+[Ni]/18 (2式)
ただし、(2)式右辺の[C]、[Si]等は、それぞれCやSi等元素の鋼中濃度[wt%]である。
A CCT diagram was created for 11 types of steels having a carbon equivalent Ceq. Of 0.34 to 0.96 determined by the equation (2). From the relationship between the cooling rate and the hardness of the obtained sample, The cooling rate at which the Vickers hardness Hv was about 400 was determined.
Ceq. = [C] + [Si] / 24 + [Mn] / 5 + [Cr] / 5 + [Mo] /2.5+ [Nb] / 3 + [V] / 5 + [Cu] / 10 + [ Ni] / 18 (2 sets)
However, [C], [Si], etc. on the right side of Equation (2) are the concentrations [wt%] in steel of elements such as C and Si, respectively.

このようにして得られた冷却速度と炭素当量Ceq.との関係を図2に示す。両者には良好な相関が認められたことから、任意の鋼において、その化学成分から(2)式でCeq.を決定し、図2中に破線で示した近似曲線から、冷却速度の上限Vcr[℃/秒]が求まる。この近似曲線は、次の(1)式で表された;
Vcr = a*exp(b*Ceq.) (1式)
ここで、(1)式右辺の係数a、bの値はそれぞれ、418、−6.16であった。
The relationship between the cooling rate thus obtained and the carbon equivalent Ceq. Is shown in FIG. Since a good correlation was observed between the two, Ceq. Was determined from Eq. (2) from the chemical composition of any steel, and the upper limit Vcr of the cooling rate was determined from the approximate curve indicated by the broken line in FIG. [° C / sec] is obtained. This approximate curve was expressed by the following equation (1);
Vcr = a * exp (b * Ceq.) (1 expression)
Here, the values of the coefficients a and b on the right side of the equation (1) were 418 and −6.16, respectively.

そこで、別途、炭素当量Ceq.が0.17〜1.03である26種類の溶鋼を準備して、鋼塊(ボンブサンプル)を採取し、冷却速度を適宜変化させて700℃から100℃冷却し、その後最終的に室温まで冷却した後、厚さ3mmのスライス片を作製した。このスライス片をエステック製高硬度試料打抜装置CSP型で、直径7mmに冷間打抜加工し、ガス分析用試料を作製した。結果を図3にまとめて示す。   Therefore, 26 types of molten steel having a carbon equivalent Ceq. Of 0.17 to 1.03 were separately prepared, a steel ingot (bomb sample) was collected, and the cooling rate was appropriately changed to be cooled from 700 ° C. to 100 ° C. Then, after finally cooling to room temperature, a slice piece having a thickness of 3 mm was produced. This slice piece was cold punched to a diameter of 7 mm using a high hardness sample punching device CSP type manufactured by Estec to prepare a sample for gas analysis. The results are summarized in FIG.

各鋼塊のCeq.を(1)式に代入して求められたVcr以下の速度で冷却して得られたスライス片を打ち抜いた場合(図3中の黒塗り丸印、本発明例)では、スライス片のビッカース硬さは400以下となり、打ち抜いた試料に割れや欠けなどは認められなかった。一方、Vcrを超える速度で冷却して得られたスライス片を打ち抜いた場合(図2中の白抜き丸印、比較例)、スライス片のビッカース硬さは400を越え、打ち抜いた試料に割れや欠けが認められた。   In the case of punching a slice piece obtained by cooling at a speed equal to or less than Vcr obtained by substituting Ceq. Of each steel ingot into the equation (1) (black circle in FIG. 3, example of the present invention) The Vickers hardness of the slice piece was 400 or less, and no cracks or chips were found in the punched sample. On the other hand, when a slice piece obtained by cooling at a speed exceeding Vcr is punched out (open circle in FIG. 2, comparative example), the Vickers hardness of the slice piece exceeds 400. Chipping was observed.

Claims (6)

溶鋼から採取し、700〜800℃の赤熱状態で元素分析試料調製装置に供給される鋼塊に対して、まず、分析に供しない不要な部分を切断機構により切離した後、冷却完了後の前記鋼塊の硬さがビッカース硬さで400以下になるよう、前記鋼塊の鋼種及び化学組成の関数として冷却速度の上限Vcr[℃/秒]を決定し、前記Vcr以下に冷却速度を制御しながら、冷却機構により試料を100℃以下に冷却することを特徴とする元素分析試料調製方法。   For the steel ingot collected from the molten steel and supplied to the elemental analysis sample preparation apparatus in a red hot state of 700 to 800 ° C., first, unnecessary portions not subjected to analysis are separated by a cutting mechanism, and then the cooling after completion of cooling. The upper limit Vcr [° C./sec] of the cooling rate is determined as a function of the steel type and chemical composition of the ingot so that the hardness of the ingot is 400 or less in terms of Vickers hardness, and the cooling rate is controlled below the Vcr. However, the element analysis sample preparation method characterized by cooling a sample to 100 degrees C or less by a cooling mechanism. 前記冷却速度が、(1)式で表わされるVcr[℃/秒]以下であることを特徴とする請求項1に記載の元素分析試料調製方法。
Vcr = a*exp(b*Ceq.) (1)
ここに、
Ceq.=[C]+[Si]/24+[Mn]/5+[Cr]/5+[Mo]/2.5+[Nb]/3+[V]/5+[Cu]/10+[Ni]/18 (2)
a=420±50
b=−6.2±0.3
である。
The elemental analysis sample preparation method according to claim 1, wherein the cooling rate is equal to or less than Vcr [° C./second] represented by the formula (1).
Vcr = a * exp (b * Ceq.) (1)
here,
Ceq. = [C] + [Si] / 24 + [Mn] / 5 + [Cr] / 5 + [Mo] /2.5+ [Nb] / 3 + [V] / 5 + [Cu] / 10 + [ Ni] / 18 (2)
a = 420 ± 50
b = −6.2 ± 0.3
It is.
前記冷却速度が、前記冷却速度の上限Vcrに対して、0.8*Vcr以上Vcr以下であることを特徴とする請求項1または2に記載の元素分析試料調製方法。   The elemental analysis sample preparation method according to claim 1 or 2, wherein the cooling rate is 0.8 * Vcr or more and Vcr or less with respect to the upper limit Vcr of the cooling rate. 溶鋼から採取された、700〜800℃の赤熱状態の鋼塊を受け取る受入部と、
前記鋼塊の分析に供しない不要な部分を切断する切断部と、
切断後の前記鋼塊を水冷及び/または空冷により冷却する冷却部と、
冷却完了後の前記鋼塊の硬さがビッカース硬さで400以下となるように、前記鋼塊の鋼種及び成分予測値から、冷却速度を決定する演算部と、
切断後の前記鋼塊を700℃から100℃まで、前記冷却速度で冷却するように、前記冷却部を制御する制御部と、
冷却完了後の前記鋼塊を元素分析に適した性状に加工する加工部を備えたことを特徴とする元素分析用試料調製装置。
A receiving part for receiving a 700 to 800 ° C. red hot ingot collected from molten steel;
A cutting part for cutting an unnecessary part not subjected to the analysis of the steel ingot;
A cooling section for cooling the steel ingot after cutting by water cooling and / or air cooling;
An arithmetic unit that determines a cooling rate from the steel type and component predicted value of the steel ingot so that the hardness of the steel ingot after cooling is 400 or less in Vickers hardness,
A control unit for controlling the cooling unit so as to cool the steel ingot after cutting from 700 ° C. to 100 ° C. at the cooling rate;
A sample preparation apparatus for elemental analysis, comprising: a processing section for processing the steel ingot after completion of cooling into properties suitable for elemental analysis.
前記演算部が決定する前記冷却速度の上限が、(1)式で決定されることを特徴とする請求項4に記載の元素分析用試料調製装置。
Vcr = a*exp(b*Ceq.) (1)
ここに、
Ceq.=[C]+[Si]/24+[Mn]/5+[Cr]/5+[Mo]/2.5+[Nb]/3+[V]/5+[Cu]/10+[Ni]/18 (2) a=420±50
b=−6.2±0.3
である。
The sample preparation apparatus for elemental analysis according to claim 4, wherein the upper limit of the cooling rate determined by the calculation unit is determined by equation (1).
Vcr = a * exp (b * Ceq.) (1)
here,
Ceq. = [C] + [Si] / 24 + [Mn] / 5 + [Cr] / 5 + [Mo] /2.5+ [Nb] / 3 + [V] / 5 + [Cu] / 10 + [ Ni] / 18 (2) a = 420 ± 50
b = −6.2 ± 0.3
It is.
溶鋼から採取し、700〜800℃の赤熱状態で元素分析試料調製装置に供給される鋼塊に対して、前記鋼塊の温度が700℃から100℃まで一定の冷却速度で冷却することを特徴とする請求項4または5に記載の元素分析試料調製装置。   The steel ingot is sampled from molten steel and supplied to the elemental analysis sample preparation apparatus in a red hot state of 700 to 800 ° C., and the temperature of the steel ingot is cooled at a constant cooling rate from 700 ° C. to 100 ° C. The elemental analysis sample preparation apparatus according to claim 4 or 5.
JP2014103251A 2014-05-19 2014-05-19 Elemental analysis sample preparation method and apparatus Active JP6248801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014103251A JP6248801B2 (en) 2014-05-19 2014-05-19 Elemental analysis sample preparation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014103251A JP6248801B2 (en) 2014-05-19 2014-05-19 Elemental analysis sample preparation method and apparatus

Publications (2)

Publication Number Publication Date
JP2015219134A true JP2015219134A (en) 2015-12-07
JP6248801B2 JP6248801B2 (en) 2017-12-20

Family

ID=54778616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014103251A Active JP6248801B2 (en) 2014-05-19 2014-05-19 Elemental analysis sample preparation method and apparatus

Country Status (1)

Country Link
JP (1) JP6248801B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743274A (en) * 1993-07-29 1995-02-14 Nippon Steel Corp Cooling control method of red heat sample for analysis of steel
US5537206A (en) * 1993-11-02 1996-07-16 Nkk Corporation Method for analyzing steel and apparatus therefor
JPH09152391A (en) * 1995-11-29 1997-06-10 Nippon Steel Corp Method for working specimen for analyzing component in steel
WO1998039629A1 (en) * 1997-03-07 1998-09-11 Midwest Instrument Co., Inc. Direct dip thermal analysis of molten metals
JPH10311782A (en) * 1997-05-12 1998-11-24 Stec Kk Method and device for regulating analyzed sample

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743274A (en) * 1993-07-29 1995-02-14 Nippon Steel Corp Cooling control method of red heat sample for analysis of steel
US5537206A (en) * 1993-11-02 1996-07-16 Nkk Corporation Method for analyzing steel and apparatus therefor
JPH09152391A (en) * 1995-11-29 1997-06-10 Nippon Steel Corp Method for working specimen for analyzing component in steel
WO1998039629A1 (en) * 1997-03-07 1998-09-11 Midwest Instrument Co., Inc. Direct dip thermal analysis of molten metals
JPH10311782A (en) * 1997-05-12 1998-11-24 Stec Kk Method and device for regulating analyzed sample

Also Published As

Publication number Publication date
JP6248801B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6432807B2 (en) Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product
JP6918238B2 (en) Martensitic S Free-cutting stainless steel
AU2008265699B2 (en) Process of drill bit manufacture
CN101268208B (en) Low-carbon sulfur-containing free-cutting steel with excellent cuttability
KR102626122B1 (en) High-alloy stainless steel forgings manufactured without solution annealing
JPWO2018117157A1 (en) wire
TWI465575B (en) Method for producing high speed tool steel material with excellent hot workability
US10724129B2 (en) Precipitation hardened high Ni heat-resistant alloy
JP6248801B2 (en) Elemental analysis sample preparation method and apparatus
CN109371330A (en) A kind of high tenacity high-speed steel and its preparation process
JP6828248B2 (en) Oxygen analysis method in steel and oxygen analyzer in steel
EA034378B1 (en) Titanium cast product for hot rolling and method for producing the same
TWI510640B (en) Lead - free steel
JP6652021B2 (en) Hot forging steel and hot forged products
CN109182835A (en) One kind being exclusively used in ledrite except the agent of aluminium compound smelting and its preparation and application
RU2599926C2 (en) Method of making articles from alloys of iron-cobalt-molybdenum/tungsten-nitrogen
JP2014070229A (en) Manufacturing method of band steel for blade
JP6176209B2 (en) Method for refining carbon-containing steel
CN108456830A (en) A kind of rock core cutter production method
JP5733377B2 (en) Continuous casting method for molten steel
JP2022142163A (en) Processing method of aluminum alloy, and processed article of aluminum alloy
Pietrowski et al. Manufacturing technology of high-quality pressure castings
Nilsson Hultén Nitrogen Without Oxygen: The effect of ferroalloys added after vacuum treatment on cleanliness of nitrogen-alloyed tool steel
Aleksandrov et al. A method for improving the structure and properties of the material of cast preforms from waste high-speed steel R6M5.
Lakshmanan et al. Wear Study Of Stir Cast Aa7075 Metal Matrix Composites And Optimization Of Wear Using Grey Relational Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6248801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350