JP2015218640A - Various energies conservation cycle combined machine - Google Patents

Various energies conservation cycle combined machine Download PDF

Info

Publication number
JP2015218640A
JP2015218640A JP2014101863A JP2014101863A JP2015218640A JP 2015218640 A JP2015218640 A JP 2015218640A JP 2014101863 A JP2014101863 A JP 2014101863A JP 2014101863 A JP2014101863 A JP 2014101863A JP 2015218640 A JP2015218640 A JP 2015218640A
Authority
JP
Japan
Prior art keywords
blade group
lathe
coalescence
turbine
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014101863A
Other languages
Japanese (ja)
Inventor
谷川 浩保
Hiroyasu Tanigawa
浩保 谷川
和永 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014101863A priority Critical patent/JP2015218640A/en
Publication of JP2015218640A publication Critical patent/JP2015218640A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a global warming, caused by large-scale tornado, for example, from occurring through application that a steam turbine power generation device utilizes stator blades, and a kinetic energy=mass×square of speed, i.e. a basic concept of physics.SOLUTION: This invention prevents global warming against increasing of a discharged amount 0 of CO2 and increasing 0 of sea water temperature under a world-wide scale by a technical concept in which all rotor blades are made under the best theory capable of utilizing a principle that is proportional to a formula of (mass×square of speed), opposite double-stage compressors connected liquid oxygen manufacturing machine + vertical all rotor blade steam water gravity turbines 11Z power generation is used, head drop manufacturing gravity power generation building and columnar pipes are also used as a large specific gravity substance lifter device 2F, reverse osmosis water 52D is injected by a lifting reservation large specific gravity substance accelerator machine 6W to the upper-most segment, reverse osmosis water 52D is injected and accelerated by supercritical pressure steam 5H to generate power at gravity acceleration speed in vacuum for getting magnification requiring experiment by a group of turbine blades 8F with power generation amount of 1800 multiplied by ten thousand of a final group of existing steam turbine blades with the same flow passage area, and remarkable global top-ranking permanent application profit rate by all confidential applications of all products and gloval top salary are attained.

Description

挑戦皆無の超高速運動エネルギ利用の技術分野は宝の山で、鋳造部品や工作機械全部が超大型になり既存設備で挑戦不可等、大企業でも製造困難なため放置された超高速エネルギ利用技術分野のため、日本国や米国等国家協力が必要で、先進国経済成長戦略には企業利益率最大発明に協力以外は無く、物真似改良等優位性0の経済成長戦略の政治家や企業家により日本沈没が継続と考える本発明は、運動エネルギ=質量×速度の2乗に比例するを全力利用する揚水発電類似発電で貢献とし、東日本大震災復興には被災者達の収入増大発明が最重要で、発明軽視政治により日本の労働効率を先進国最下位や財政赤字1千兆円等財政破綻を明確にして、韓国や中国に軽蔑排斥されるを改良して労働効率を上昇するには、総理以下が大変心して利益率抜群の発明に協力価値の高い仕事を製造する以外の道は無く、人類史上最大の貢献狙う本発明は、クリントン大統領時代3年3回ビッグスリーをホワイトハウスに呼んで命令し、3年3個の米国特許の説明不可部分発生は製造不可発明や利益率の大きい発明の発明方法が判明して、優位性の比較説明倍率最大のこの発明に到達したもので、米国大統領を手本に日本の財政赤字1000兆円を0にして、貿易赤字回避ハイパーインフレ回避日本破綻を回避する基礎実験をお願いします。既存最先端科学技術が、物理基礎の運動エネルギ=質量×速度の2乗に比例するを利用しないことで、蒸気タービン等実用化可能にしており、デフレ脱却には企業収益の増大による給料増大以外は無く絶好のチャンスで、給料増大には日本企業の世界一必勝戦略が必要なため、オールジャパン戦略として日本企業のみ電力料金を0にする国家戦略や企業戦略等が最重要で、先進国経済成長戦略には具体的な優位性の比較説明倍率最大を実行が最重要なため、既存火力発電や原子力発電は発電熱量全部で海水温度を上昇温暖化追加し竜巻等を巨大化して、中国経済成長速度と人口密度や地形により米国竜巻を超えて日本に住めなくなる危険が大きく、一刻も早い海水温度上昇を0にする発電が最重要で、速度の2乗に比例するを利用しない揚水発電の水速度が、マッハ1/7〜1/5のためマッハ1にすると、発電エネルギ=同一水質量×5倍速度の2乗=同一水質量25倍発電量となり、水速度マッハ30の竪型全動翼蒸気水重力タービン11Z等各種燃料費0の水重力発電にすると、25倍発電量×900=同一水質量既存揚水発電の22500倍発電量となり、実験が必要な落差無限製造の発電量無限増大や電気駆動全部の燃料費0発電とし、海水温度上昇0の地球温暖化防止として、既存世界の火力発電や原子力発電を0にし、発電による海水温度上昇0やCO2排気0にする。 The technology field of ultra-high-speed kinetic energy utilization with no challenges is a treasure mountain, and all of the cast parts and machine tools become super large, making it impossible to challenge with existing equipment. Because it is a field, national cooperation such as Japan and the United States is necessary, and the economic growth strategy of developed countries has nothing but cooperation for the maximum profit margin of the enterprise, and by politicians and entrepreneurs of economic growth strategy with zero advantage such as imitation improvement The present invention that Japan sinking is considered to be a continuation of the invention is to contribute to the pumped-storage power generation similar to kinetic energy = mass × square of speed, and the invention to increase the income of victims is the most important for the reconstruction of the Great East Japan Earthquake. In order to improve labor efficiency by improving Japan's labor efficiency by neglecting inventions, clarifying the financial failure of Japan, such as the lowest in developed countries and a budget deficit of 1,000 trillion yen, and being dismissed by Korea and China. Profit margin with the following in mind There is no way other than manufacturing work with high cooperation value to the invention of the group, and this invention aiming for the greatest contribution in human history calls the Big Three to the White House three times a year during President Clinton's era and orders three years The unexplainable part of U.S. patents was found in the invention method of inventions that could not be manufactured and inventions with large profit margins, and reached this invention with the maximum comparative explanation ratio of superiority. Please do a basic experiment to avoid a Japanese deficit by avoiding trade deficits and hyperinflation by setting the budget deficit of 1,000 trillion yen to zero. The existing state-of-the-art science and technology does not use the kinetic energy of the physical foundation = proportional to the square of mass x speed, making it possible to put it into practical use, such as steam turbines. This is a great opportunity, and Japanese companies need the best strategy in the world to increase their salaries. Therefore, the national strategy and corporate strategy to reduce the electricity rate to only Japanese companies is the most important as an all-Japan strategy. The most important factor in the growth strategy is to execute a comparative explanation of the maximal explanation of the advantages. For existing thermal power generation and nuclear power generation, the seawater temperature is increased by adding all the heat generated, and the tornadoes, etc. are enlarged, and the Chinese economy There is a great risk of being unable to live in Japan beyond the US tornado due to the growth rate, population density, and topography, and power generation that minimizes seawater temperature rise as soon as possible is the most important. Pumping water that is proportional to the square of the speed is not used. When the water speed of electricity is Mach 1/7 to 1/5, if Mach 1 is set, the power generation energy = same water mass × 5 times the square of the speed = the same water mass 25 times the power generation amount. When using hydrogravity power generation with zero fuel cost, such as type full blade steam water gravity turbine 11Z, power generation of 25 times x 900 = same water mass 2500 times power generation of existing pumped power generation To increase the infinite amount of fuel and to generate zero fuel for all electric drives, and to prevent global warming when the seawater temperature rises to 0, the thermal power generation and nuclear power generation in the existing world are set to 0, the seawater temperature rises due to power generation, and the CO2 emissions are 0.

再生可能エネルギ発電の最大最良が比重大物質の真空中重力加速度発電で、スペースシャトルの噴射圧力24MPa噴射速度マッハ30を水噴射水蒸気加速重力加速にすると、マッハ30以上が非常に容易ですが全動翼二重反転翼夫々の周速度がマッハ30近傍になり、夫々の回転数が10万回転/毎分等となるため最初は周速度マッハ2等での実験として、発電原価や電気料金を太陽光発電の1/10以下1/100等にする実験にし、製造過程では既存蒸気タービンが質量×速度の利用を阻止する静翼を20段前後具備して、過熱蒸気速度を20回前後堰き止め90度反転蒸気速度を1/30等とし、製造容易な蒸気タービンにする等マッハ30等の速度利用は振動等で非常に困難を予想して、段落毎夫々のタービン翼群8Fや一体タービン翼群8Gを、1鋳造部品にすることで部品数1/100以下等共振や振動を最少に回転数最大狙いにし、二重反転機関用立型旋盤10Bやタービン翼用研削盤10F等で加工別々に仮組立して、二重反転機関用立型旋盤10Bで超高速バランス調整加工の振動0接近を追加し、反発磁石等各種磁気利用の軸受荷重0接近で振動等0接近の超高速回転記録狙いにして、タービン翼群8F角度を調整して例えば駆動水速度の1/5タービン周速度を狙い、二重反転で周速度の10倍水速度利用が可能か等の研究にし、内側軸装置60A+外側軸装置60B夫々の両端に各種軸受12Cを具備し、内側軸装置60Aと外側軸装置60B夫々を別々に仮組立てして、夫々の両端を二重反転機関用立型旋盤10B等で保持超高速回転バランス調整加工後に分解して本組立にし、前例の無い内側軸装置60A兼円筒内側動翼群60Cと、外側軸装置60B兼円筒外側動翼群60Dの二重反転にする、実験が必要な対向2段圧縮機12Y連結等、液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z等各種水重力発電として、実験が必要な優位性比較説明倍率最大の、各種エネルギ保存サイクル合体機関や各種エネルギ保存合体方法の技術に関する。 The best of renewable energy generation is gravity acceleration power generation in vacuum, which is a particularly important material, and when the space shuttle injection pressure 24MPa injection speed Mach 30 is water injection steam acceleration gravity acceleration, Mach 30 or higher is very easy but full motion Since the peripheral speed of each of the blade counter-rotating blades is close to Mach 30, and the rotation speed of each is 100,000 revolutions / minute, etc. In the manufacturing process, the existing steam turbine has about 20 stages of stationary blades that block the use of mass x speed, and the superheated steam speed is dammed about 20 times. The 90 ° reversal steam speed is 1/30, etc., making the steam turbine easy to manufacture, etc. Speed use of the Mach 30 etc. is expected to be very difficult due to vibrations, etc. By making the blade group 8G into one cast part, the resonance and vibration are minimized, such as 1/100 parts or less, and the counter rotation engine 10B, turbine blade grinding machine 10F, etc. Temporarily assembled separately for machining, and added zero vibration for ultra-high-speed balance adjustment processing with vertical lathe 10B for counter rotating engine. Aiming at rotational recording, the turbine blade group 8F angle is adjusted to aim at, for example, 1/5 turbine peripheral speed of the driving water speed, to investigate whether it is possible to use a water speed 10 times the peripheral speed by double reversal, etc. Various bearings 12C are provided at both ends of each of the shaft device 60A and the outer shaft device 60B, the inner shaft device 60A and the outer shaft device 60B are each temporarily assembled separately, and both ends of the vertical shaft lathe 10B for a counter rotating engine, etc. Holding with ultra high speed rotation balance adjustment processing The two-stage compression that requires experimentation is to be disassembled later to make this assembly, and an unprecedented inner shaft device 60A / cylindrical inner blade group 60C and outer shaft device 60B / cylindrical outer blade group 60D are double-inverted. Comparison of advantages required for experiments as various hydrogravity power generation, such as liquid oxygen production machine 89A + vertical type moving blade steam water gravity turbine 11Z, etc. Various energy conservation cycle coalescence engines and various energy conservation coalescence It relates to method technology.

既存最先端科学技術か簡単に金儲け発明実施全部で、本発明が製造困難なマッハ30等の速度利用に挑戦のため、断熱圧縮の空気温度20℃が圧縮比8で13倍の260℃になるを速度利用で極限まで利用する、対向2段圧縮機12Y連結等の液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z発電等にし、太陽光加熱器21で10倍温度等に加熱した空気28aを、対向2段圧縮機12Yで空気圧縮の過程や圧縮空気熱交換器2Y夫々で熱交換超臨界圧力水蒸気5H製造して、圧縮空気熱交換器2Y圧縮比80〜800で超臨界圧力水蒸気5H製造の実験にし、超臨界圧力水蒸気5H製造量を同一燃料量既存ボイラーの130〜1300倍にする実験にして、竪型全動翼蒸気水重力タービン11Z発電等落差無限製造駆動を、研磨剤混入防止のための逆浸透水52D製造使用のマッハ30速度狙いの出発とし、逆浸透水52D噴射+超臨界圧力水蒸気5H噴射加速マッハ30製造+真空中の重力加速度で発電して、同一容積既存蒸気タービン発電最終段翼駆動蒸気質量の20000倍水質量前後のため優位性の比較可能とし、同一通路面積既存蒸気タービン最終段翼群の1/20000容積水質量の同質量として、同一質量×30倍速度の2乗=同一質量900倍発電量のタービン翼群8Fとし、落差800mにタービン翼群8Fを3000列では、900倍発電量×3000列=2700000倍発電量として、実験が必要な対向2段圧縮機12Y連結液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z発電等とし、既存最先端科学技術が質量×速度の2乗に比例するを利用0接近で実用化可能等のため、実験が必要な優位性比較説明倍率最大の、各種エネルギ保存サイクル合体機関や各種エネルギ保存合体方法の技術に関する。 In order to challenge the speed utilization of Mach 30, etc., which is difficult to manufacture, with the existing state-of-the-art science technology or simple money-making invention implementation, the adiabatic compression air temperature 20 ° C. is 13 times 260 ° C. with a compression ratio of 8. Is used as a liquid oxygen production machine 89A + vertical all-blade steam water gravity turbine 11Z power generation such as a two-stage opposed compressor 12Y connection, and is heated to 10 times the temperature by the solar heater 21. The air 28a is produced in the air compression process by the opposed two-stage compressor 12Y and the heat exchange supercritical pressure steam 5H is produced by the compressed air heat exchanger 2Y, and the supercritical pressure is produced by the compression air heat exchanger 2Y compression ratio 80 to 800. In the experiment of steam 5H production, the supercritical pressure steam 5H production volume is the same fuel amount 130-1300 times that of the existing boiler, and the infinite drop production drive such as vertical power blade steam water gravity turbine 11Z power generation is studied. Starting with the aim of Mach 30 speed for the production of reverse osmosis water 52D for the prevention of agent contamination, reverse osmosis water 52D injection + supercritical pressure water vapor 5H injection acceleration Mach 30 production + gravity acceleration in vacuum, the same volume Because it is around 20000 times as much as the mass of the steam driving the last stage blades of the existing steam turbine power generation, the superiority can be compared, and the same passage area is the same as the mass of 1/20000 capacity water of the last stage blade group of the existing steam turbines. The square of the speed = the turbine blade group 8F having the same mass 900 times the power generation amount, and the turbine blade group 8F in the 3000 rows with the head of 800 m is 900 times power generation × 3000 rows = 2700000 times power generation. Stage compressor 12Y connected liquid oxygen production machine 89A + vertical moving blade steam water gravity turbine 11Z power generation, etc. For practical possible like a proportional in use 0 approaching, experiments superiority comparison described magnification greatest need, to techniques for various energy conservation cycle combined engine and various energy conservation coalescence method.

昭和17年航空機製作所水島工場に就職エンジン発明で人類史上最大の貢献を決意し、日本は米国の物真似改良技術による高度経済成長で、背景技術が簡単に金儲け発明全部で製造困難発明は実験皆無の背景があり、経済成長戦略は中身の細部説明で実施可能や実験可能になるため、最大の実験必要部分はスペースシャトルの燃焼室圧力22〜25MPaでマッハ30前後噴射速度にして、宇宙軌道に到達し、発電用蒸気タービンは24MPa蒸気速度を静翼で20回前後堰き止め90度方向転換を繰り返して、音速に減速して実用化可能にしており、全部動翼にすると気化膨張率の大きい水が同一圧力液体水素燃焼ガス噴射速度の2倍速度水蒸気になるか、実験が必要や、80MPa水蒸気製造は可能で液体水素ロケット燃焼でも可能か等の実験や、超臨界圧力水蒸気5H噴射で宇宙到達費用を1/50万に出来るか等、既存技術全部の各種実験等経済成長戦略中身を必要とし、最大の協力は昭和38年特許願21380号サイン曲線ピストン機関を、岡山地方発明センターに請負で製造して頂き、実物を見て貴重な経験や勉強やエンジン革命困難の予想となり次の発明に移行し、最も困った部分が、利益率抜群世界一の貢献が可能な発明の定義で、国内企業などにご協力のお願いを始め、クリントン大統領3年3回米国特許3件に100%のご協力により具体的な優位性の比較説明倍率最重要が判明して、水力発電機出入力は回転数の3乗に比例するから、入力は可変速モーターが実用化され出力は超高速回転等実験皆無の背景技術があるため、超高速回転の実験から出発として、教育テレビ物理基礎の運動エネルギ=質量×速度の2乗に比例するを極限まで利用し、燃料電池自動車の水素容器圧力が70MPaにしているため、80MPa等の超臨界圧力水蒸気5Hを噴射して、逆浸透水52Dを加速地球脱出速度マッハ32〜80等真空中無限加速の実験とし、真空中の重力加速度加速で発電する優位性比較説明倍率として、既存最先端科学技術の火力発電や揚水発電が、質量×速度の2乗に比例するを利用しないことで実用化を可能にしているため比較実験が必要で、対向2段圧縮機12Y連結液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z等発電の実験にし、利益率抜群世界一が可能な発電狙いにして、実験結果が同一流路面積2倍発電量でも地球温暖化防止革命や、経済成長戦略革命や、世界全部で運用する運用利益率抜群世界一永遠狙い等により、日本の財政赤字1000兆円を比較的短期間に0にする等が狙える背景技術があり、製造困難に対応する背景技術として、周速度マッハ30回転速度10万回転/毎分等に近付ける各種技術がある。   In 1917, he decided to make the biggest contribution in human history with the invention of a job engine at Mizushima Factory of Aircraft Works. Since there is a background and the economic growth strategy can be implemented and experimented with the detailed description of the contents, the maximum necessary part of the experiment is the space shuttle combustion chamber pressure of 22 to 25 MPa, the injection speed around Mach 30 is reached, and it reaches the space orbit However, the steam turbine for power generation can be put to practical use by repeating the 90-degree direction change by damming around 20 times with a stationary blade at a 24-MPa steam speed, and decelerating to a sonic speed. Will be steam at twice the injection speed of the same-pressure liquid hydrogen combustion gas, experiment is necessary, whether 80MPa steam production is possible and liquid hydrogen rocket combustion is also possible, etc. It requires the contents of economic growth strategy such as various experiments of all existing technologies, such as experiments and whether the supercritical pressure steam 5H injection can reduce the space arrival cost to 1 / 500,000. The curved piston engine was manufactured under contract by the Okayama Regional Invention Center, and the actual thing was seen, precious experience and study and the engine revolution was difficult, and the next invention was entered. The definition of an invention that can make a single contribution, and requests for cooperation from domestic companies, etc., and a comparative explanation of specific advantages by the 100% cooperation of three US patents three times a year in President Clinton Since the output of the hydroelectric generator is proportional to the cube of the rotational speed, the variable-speed motor is put into practical use and the output is super-high-speed rotation. Start with Since the kinetic energy of education television physics = proportional to the square of mass x velocity is used to the limit and the hydrogen container pressure of the fuel cell vehicle is 70 MPa, supercritical pressure steam 5H such as 80 MPa is injected. , Reverse osmosis water 52D acceleration earth escape speed Mach 32-80, etc. Infinite acceleration in vacuum, power generation by acceleration of gravity acceleration in vacuum However, since it is possible to put it to practical use by not using the proportionality of the mass × the square of the speed, a comparative experiment is necessary, and the opposed two-stage compressor 12Y-linked liquid oxygen producing machine 89A + saddle-type all blade steam water gravity With the experiment of power generation such as turbine 11Z, aiming at the world's best power generation with the highest profit rate, even if the experimental result is the same flow path area twice the amount of power generation, the global warming prevention revolution, the economic growth strategy revolution, There is a background technology that can aim to reduce Japan's budget deficit of 1000 trillion yen to 0 in a relatively short period of time, with the world's most eternal aim, etc. There are various techniques to bring the Mach 30 rotation speed close to 100,000 rotations / minute.

製造過程では既存火力発電蒸気タービンが静翼により20回前後堰き止め90度反転噴射し、蒸気速度を1/30以下の音速等にして実用化を可能にする等、音速駆動を大幅に超える蒸気タービン等の製造は非常に困難で長期間挑戦皆無ですが、駆動物質速度記録狙う製造困難な全動翼二重反転機関は宝の山で実験が必要で、既存ガスタービン空気圧縮機では圧縮空気を静翼で堰き止め方向転換繰り返す低圧圧縮のため、全動翼超高速二重反転圧縮にして既存ガスタービンの10倍圧縮圧力が可能か等の実験し、静翼を全廃した全動翼二重反転蒸気タービンにすると、30倍蒸気速度900倍発電量30倍周速度の90000回転/毎分等となり、連続運転不可の場合は発電量の増大や初速度低減やタービン翼群8F角度製造で最適周速度に低減して、連続運転可能にする実験等、重要実験皆無で怠慢過ぎる既存最先端科学技術の火力発電ボイラーは、大気圧での燃料噴射燃焼で過熱蒸気を製造し、蒸気タービンでの発電ですが、断熱圧縮の温度上昇は空気温度20℃が圧縮比8で13倍の260℃になるため、太陽光加熱器21で10倍以上に加熱した空気28aを、対向2段圧縮機12Y連結液体酸素製造機89Aで圧縮比800等の圧縮過程で、逆浸透水52D冷却する外側圧縮翼群53C内側圧縮翼群53Dで冷却圧縮する熱交換冷却圧縮にして、圧縮空気熱交換器2Yで熱交換して超臨界圧力水蒸気5H製造にすると、燃焼温度が1300倍×10倍=13000倍になる過程での熱交換となり、実験が必要な同一燃料量既存ボイラーの13000倍熱量製造量の超臨界圧力水蒸気5H製造量になる背景があり、超臨界圧力水蒸気5H使用量が逆浸透水52D初速度製造用で、同一発電量既存火力発電の1/100〜1/1000使用熱量狙い等、大革命を大きく超える計算の羅列となり、実験が必要な地球温暖化防止革命や、経済成長戦略革命や、世界全部で運用する運用利益率抜群世界一永遠狙い等により、日本の財政赤字1000兆円を比較的短期間に0にする等が狙える背景技術がある。   In the manufacturing process, steam that greatly exceeds sonic speed drive, such as the existing thermal power generation steam turbine reversely sprays 90 degrees back and forth with stationary blades 90 degrees, enabling the practical use with a sonic speed of 1/30 or less. Turbine etc. are very difficult to manufacture and there are no long-term challenges. Because of the low pressure compression that repeatedly changes the direction of damming with a stationary blade, we conducted an experiment to determine whether it would be possible to achieve 10 times the compression pressure of an existing gas turbine by changing all blades to ultra-high speed counter-rotating compression. If it is a heavy reversing steam turbine, 30 times steam speed 900 times power generation amount 30 times peripheral speed 90000 revolutions / minute, etc. If continuous operation is not possible, increase power generation amount, reduce initial speed, and manufacture turbine blade group 8F angle For optimum peripheral speed The existing thermal cutting-edge thermal power generation boilers that are too negligible with no significant experimentation, such as experiments that reduce continuous operation, produce superheated steam by fuel injection combustion at atmospheric pressure, and generate electricity with a steam turbine Since the temperature rise in adiabatic compression is 260 ° C., which is 13 times the air temperature 20 ° C., the air 28a heated 10 times or more by the solar heater 21 is connected to the opposed two-stage compressor 12Y connected liquid oxygen. In the compression process with a compression ratio of 800 or the like by the manufacturing machine 89A, heat exchange cooling compression is performed by cooling by the outer compression blade group 53C that cools the reverse osmosis water 52D and by the inner compression blade group 53D, and heat exchange is performed by the compressed air heat exchanger 2Y. Therefore, when supercritical pressure steam 5H is produced, heat exchange is performed in the process where the combustion temperature becomes 1300 times x 10 times = 13000 times, and the supercritical pressure of the same fuel amount that requires experimentation is 13,000 times the calorific value of the existing boiler There is a background of the production volume of 5H steam, and the supercritical pressure steam 5H usage is for the first speed production of reverse osmosis water 52D. Japan's fiscal deficit of 1,000 trillion yen is relatively high due to the global warming prevention revolution that requires experimentation, the economic growth strategy revolution, and the world's most eternal aim of operating profit margins that are managed all over the world. There is background technology that can be aimed at zero in a short time.

日本国特許1607151号、特許1609617号、特許1645350号、特許1924889号、特許1912522号、特許1959305号、特許1986119号、特許2604636号、1992年米国特許5133305号、1993年米国特許5230307号、1995年米国特許5429078号、1997年米国特許5701864号、PCT国際出願番号PCT/JP97/01814号・米国特許第6119650号、中国特許第8818号、EU英国特許902175号、PCT国際出願番号PCT/JP97/02250号・米国特許第6263664号がある。Japanese Patent No. 1607151, Patent No. 1609617, Patent No. 1645350, Patent No. 1924889, Patent No. 1912522, Patent No. 1959305, Patent No. 11986119, Patent No. 2646636, 1992 U.S. Pat. No. 5,133,305, 1993 U.S. Pat. US Pat. No. 5,429,078, 1997 US Pat. No. 5,701,864, PCT International Application No. PCT / JP97 / 01814, US Pat. No. 6,119,650, Chinese Patent No. 8818, EU British Patent No. 902175, PCT International Application No. PCT / JP97 / 02250 No. 6,263,664.

PCT国際出願公開NO.WO 2010/101017 PCT/JP2010/052171の出願があり、特願2007−179204提出日:平成19年7月9日より特願2007−265115提出日:平成19年10月11日まで5個の出願があり、特願2008−006612提出日:平成20年1月16日より特願2008−327045提出日:平成20年12月24日まで45個の出願があり、特願2009−011656提出日:平成21年1月22日より特願2009−298004提出日:平成21年12月28日まで322個の出願があり、特願2010−000841提出日:平成22年1月6日より特願2010−033224提出日:平成22年2月18日まで32個の出願があり、特願2011−055078提出日:平成23年3月14日より特願2011−267508提出日平成23年12月7日まで22個の出願があり、特願2012−032245提出日:平成24年2月17日より特願2012−271035提出日:平成24年12月12日まで29個の出願があり、特願2013−7975提出日:平成25年1月21日より特願2013−250683提出日:平成25年12月4日まで30個の出願があり、特願2014−4690より特願2014−4719まで提出日平成26年1月15日が4個あります。PCT International Application Publication No. There are applications of WO 2010/101017 PCT / JP2010 / 052171, and the filing date of Japanese Patent Application 2007-179204: July 9, 2007 to the filing date of Japanese Patent Application 2007-265115: October 11, 2007 No. 2008-006612 filing date: January 16, 2008 to No. 2008-327045 filing date: There are 45 applications from December 24, 2008, filing date of Japanese Patent Application No. 2009-011656: From January 22, 2009, the filing date of the Japanese Patent Application 2009-298004: There were 322 applications until December 28, 2009, and the filing date of the Japanese Patent Application 2010-000841: the Japanese Patent Application 2010 from January 6, 2010 -0332424 Submission date: There were 32 applications until February 18, 2010, and Japanese Patent Application No. 2011-055078 submission date: 2011 There are 22 applications from March 14th to the date of submission of the Japanese Patent Application 2011-267508 to December 7, 2011. The date of the submission of the Japanese Patent Application 2012-032245: : There are 29 applications until December 12, 2012, and the filing date of Japanese Patent Application No. 2013-7975: From January 21, 2013, the filing date of Japanese Patent Application No. 2013-250683: 30 pieces until December 4, 2013 There are four applications on January 15, 2014, from Japanese Patent Application No. 2014-4690 to Japanese Patent Application No. 2014-4719.

先進国経済成長戦略には具体的な中身の優位性比較説明倍率最大が必要で、アベノミクス経済成長戦略には中身皆無で失われた20年の継続が予想され、優位性0近傍では労働コスト1/5等途上国有利で最貧国接近か経済破綻以外は無く、中身で無い成長戦略は実施も比較議論も不可能な戦略で経済成長中身の議論が必要で、政治主導の給料上昇は国際競争力低下国内空洞化加速日本沈没等致命的な欠点があり、経済成長戦略には優位性比較説明倍率最大の発明に米国以上に協力以外の戦略は無く、日本を蔑視する日韓関係や日中関係も財政赤字等日本沈没が原因のため、抜群の経済成長戦略を含む発明の実施が必要や重要で、既存最先端科学技術が簡単に金儲け出来る物真似改良発電全部で、物理基礎の運動エネルギ=質量×速度の2乗に比例するを利用0接近のため、製造困難に挑戦が必要、質量や速度が減速0で利用可能な全動翼二重反転にして、対向2段圧縮機12Y連結等の、液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z等各種の燃料費0発電にし、製造過程では工作機械が超大型になる等皆無近傍のため工作機械の製造から出発が必要ですが、発明で最も重要な優位性の比較説明倍率最大の真空の重力加速度利用とした、対向2段圧縮機12Y連結液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z発電では、発電量が質量×速度の2乗に比例するため、最も高速度高真空の既存火力発電蒸気タービン最終段翼群との比較となり、該同一流路面積駆動質量が水の1/20000近傍で容積が水の20000倍近傍のため、100%マッハ32の30倍水速度のタービン翼群8F段にすると、20000倍質量×30倍水速度の2乗=18000000倍発電量のタービン翼群8Fになるため、1/100容積水駆動にする等の設計や製造方法を確立する課題があり、既存の火力発電や原子力発電を全廃して地震津波の巨大化や竜巻豪雨等の巨大化を阻止して、運用利益率抜群世界一を永遠や給料世界一や新規雇用世界一にし、地球温暖化防止する課題がある。   Developed countries' economic growth strategy requires a maximal explanation of the comparative advantage of the contents, and the Abenomics economic growth strategy is expected to continue for 20 years without any content. There is nothing other than the poorest countries or economic failures in favor of developing countries such as the fifth, and a growth strategy that is not solid is a strategy that cannot be implemented or compared, and it is necessary to discuss the contents of economic growth. There is a fatal drawback, such as declining domestic power, accelerating hollowing out of Japan, and sinking in Japan, and the economic growth strategy has a comparative advantage of comparative explanation. Because the relationship is caused by the sinking of Japan such as the budget deficit, it is necessary and important to implement an invention that includes an outstanding economic growth strategy. Mass × square of velocity Proportional use, approaching zero, challenging manufacturing difficulties, mass rotor speed double-reversed available with zero speed reduction, liquid oxygen production machine 89A +, such as opposed two-stage compressor 12Y connection It is necessary to start from the manufacture of machine tools because there is no need to make various kinds of fuel costs 0 power generation, such as vertical all-blade steam water gravity turbine 11Z, etc. Comparison of superiority explanation In the opposed two-stage compressor 12Y-linked liquid oxygen producing machine 89A + saddle-type all blade steam water gravity turbine 11Z power generation utilizing the gravity acceleration of the vacuum with the maximum magnification, the power generation amount is the square of mass × speed. Therefore, it becomes a comparison with the last stage blade group of the highest-speed and high-vacuum existing thermal power generation steam turbine, and since the same flow area drive mass is about 1/20000 of water and the volume is about 20000 times that of water, 100% Mach 3 When the turbine blade group 8F stage of 30 times water speed is set to 20000 times mass x 30 times water speed square = 18000000 times power generation amount turbine blade group 8F, the design such as 1/100 volume water drive, etc. And the manufacturing method, and the existing thermal power generation and nuclear power generation will be completely abolished to prevent the enormous earthquake and tsunami and the tornado torrential rain. There is a challenge to prevent global warming, making it the best in the world for new employment.

対向2段圧縮機12Y連結等の、液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z等の各種燃料費0発電として、対向2段圧縮機12Yにより太陽光加熱器21で加熱10倍温度以上にした空気28aを超高速全動翼二重反転圧縮し、圧縮比800狙い逆浸透水52D冷却翼熱交換圧縮として圧縮空気熱交換器2Yで熱交換して、同一燃料量既存ボイラーの1300倍熱量×10倍熱量=13000倍熱量を狙う、超臨界圧力水蒸気5H製造量にし、重力発電建物12の最上部に逆浸透水52Dと共に上昇保存して、逆浸透水52D噴射+超臨界圧力水蒸気5H80MPa噴射で水52Dマッハ32製造+真空中の重力加速度加速で発電し、例えば同一流路面積既存火力発電蒸気タービン最終翼群の、1/200容積100倍水質量×マッハ1〜マッハ32速度の2乗=100倍〜102400倍発電量のタービン翼群8Fとし、落差800mに3000段タービン翼群8Fとして、実験が必要な設計や製造過程では、全動翼二重反転により2倍水速度対応とし、タービン翼群8F角度の設計追加で10倍水速度対応として、タービン翼群8F数1/3の翼面積3倍等の1部品にして部品数1/100等で30倍水速度対応や共振等最少狙いにし、対向2段圧縮機12Yや反発磁石等各種磁気利用で軸受荷重0接近にして、共振や振動等の0接近追加により30倍水速度以上での駆動や0振動接近狙いにし、段落毎夫々のタービン翼群8Fを1鋳造部品として、二重反転機関用立型旋盤10Bにより嵌合組立部9M加工等とし、タービン翼用研削盤10Fによりタービン翼群8F加工にして、タービン翼群8F兼外側軸装置等夫々の両端には各種軸受12Cを具備し、内側軸装置60Aや外側軸装置60B夫々を別々に仮組立して、夫々の両端を二重反転機関用立型旋盤10Bで保持超高速回転バランス調整加工とし、バランス加工夫々が良好な回転数での使用として分解本組立てにして、発明品全部の極秘製造極秘で全世界運用の海水温度上昇0追加の地球温暖化防止発電とし、運用利益率抜群の世界一永遠や給料世界一や新規雇用世界一にして、性能の悪い発電原価が高価な既存火力発電や原子力発電等自然淘汰し、地震津波の巨大化や竜巻豪雨等の巨大化を阻止し最も効率良く地球温暖化防止する。 Heating with solar heater 21 by opposed two-stage compressor 12Y is 10 times as various fuel cost generation of liquid oxygen production machine 89A + vertical type moving blade steam water gravity turbine 11Z etc., such as opposed two-stage compressor 12Y connection The air 28a that has reached the temperature or higher is subjected to double reverse compression at a very high speed, and the heat is exchanged in the compressed air heat exchanger 2Y as a reverse osmosis water 52D cooling blade heat exchange compression aiming at a compression ratio of 800. 1300 times calorific value x 10 times calorific value = 13000 times calorific value, supercritical pressure water vapor 5H production amount, rise and store with reverse osmosis water 52D at the top of gravity power generation building 12, reverse osmosis water 52D injection + supercritical pressure Water 52D Mach 32 production with steam 5H80MPa injection + gravity acceleration acceleration in vacuum, for example, 1/200 volume 100 times water of the same flow path area existing thermal power generation steam turbine final blade group Quantity × Mach 1 to Mach 32 speed square = 100 times to 102,400 times the turbine blade group 8F with a power generation amount, 3000m turbine blade group 8F with a drop of 800m, in the design and manufacturing process that requires experiments, By double reversal, it corresponds to twice the water speed, and by adding the design of the turbine blade group 8F angle, it corresponds to 10 times the water speed, and the turbine blade group 8F number is 1/3, and the number of parts is reduced to 1 part. 100 etc., 30 times water speed and resonance, aiming at minimum such as resonance, etc. By using various magnets such as opposed two-stage compressor 12Y and repulsive magnet, bearing load close to 0, and by adding 0 approach such as resonance and vibration, 30 times water speed or more The turbine blade group 8F of each stage is made as one cast part, and the fitting assembly portion 9M is processed by the vertical reversing engine 10B, and the turbine blade grinding machine 10F is used. Turbine In the group 8F processing, each end of each of the turbine blade group 8F and the outer shaft device is provided with various bearings 12C, and each of the inner shaft device 60A and the outer shaft device 60B is temporarily assembled separately, and both ends of each of the two ends are connected. Super-high speed rotation balance adjustment processing held by the vertical lathe 10B for heavy reversing engine, the balance processing is disassembled for use at a good rotation speed, and the seawater temperature of the global operation is secretly secret for all invention products. With zero rise in global warming prevention power generation, the world's most eternal operating profit rate, the world's best salary, and the world's newest employment, natural thermal power generation such as existing thermal power generation and nuclear power generation, which have poor power generation costs, The most effective prevention of global warming by preventing the earthquake tsunami and the tornado heavy rain.

本発明は利益率等で人類史上最大の貢献に挑戦の過程で、日本政府が世界規模100%永遠独占に挑戦の場合は、財政赤字1000兆円を比較的短期間に0以下にする効果があり、米国政府が世界規模100%永遠独占を主導の場合は、利益率世界一として米国国債全部を0同等にする大きな効果があり、利益率の大きい発明に協力しない国家戦略や企業戦略で沈没20年等継続の過程で、経済の好循環を狙うアベノミクスの給料増大や消費税の10%増税は、給料漸減等により日本崩壊を阻止していた必然現象に逆行する最悪政策のため、労働効率先進国最下位からの企業収益の低減により日本沈没が加速する危険があり、一刻も早い日本政府等の本発明に協力が必要で協力により、韓国や中国による日本蔑視攻撃を鎮静化して日本沈没を阻止する効果があり、国家戦略特区にも優位性比較説明倍率最大等中身が無いと利益率の実験が不可能に加えて、利益率の大きい独占権で無いと安価労働コスト途上国実施が常識で日本沈没継続になるため、特区等に換えて利益率抜群世界一等の発明に協力する国家戦略にすると、限りある資源を子孫に残す大きな効果があり、対向2段圧縮機12Y連結等軸受荷重0接近容易とした、液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z等各種の燃料費0発電にして、同一流路面積発電量を既存蒸気タービン最終段翼群の900倍発電量のタービン翼群8F等とし、発電原価1/100狙い等として、運用利益率抜群の世界一永遠や給料世界一や新規雇用世界一にする効果があり、性能の悪い発電原価か高価な既存火力発電や原子力発電等が自然淘汰する効果も大きく、最も効率良く地球温暖化防止する効果がある。 The present invention is in the process of challenging the greatest contribution in human history in terms of profit rate, etc. If the Japanese government is trying to achieve a 100% eternal monopoly on a global scale, the effect of reducing the fiscal deficit of 1,000 trillion yen to less than 0 in a relatively short time Yes, if the US government leads the world-wide 100% eternal monopoly, it has the greatest effect of making all US government bonds equal to zero as the world's most profitable, and sinks in national and corporate strategies that do not cooperate with inventions with high profitability Abenomics salary increase and a 10% increase in consumption tax aiming for a virtuous cycle of the economy over the last 20 years, etc., are the worst policy against the inevitable phenomenon that prevented Japan from collapsing due to a gradual decrease in salary. There is a danger that the sinking of Japan will accelerate due to the reduction of corporate profits from the lowest level in the developed countries, and cooperation with the present invention of the Japanese government etc. is necessary as soon as possible. The If there is no content such as maximum advantage comparison explanation magnification in the national strategic special zone, the profit rate experiment is impossible, and if the profit rate is not a monopoly with a large profit rate, low labor cost implementation in developing countries is common sense Japan will continue to sink in Japan, so the national strategy of cooperating with the world's best invention in exchange for special zones, etc. has the great effect of leaving limited resources to the descendants, bearings such as opposed two-stage compressor 12Y coupling Various fuel costs such as liquid oxygen production machine 89A + vertical type moving blade steam water gravity turbine 11Z, which makes load 0 easy to approach, and power generation of the same flow path area is 900 times that of the existing steam turbine last stage blade group. Turbine blade group 8F, etc., aiming at generation cost 1/100, etc., has the effect of making the world's most eternal operating profit rate, the world's highest salary, and the world's newest employment, with poor performance or expensive existing thermal power generation And atoms Effect power generation and the like to natural selection is large, the effect of preventing most efficiently global warming.

重力発電建物12の説明図(実施例1)Illustration of gravity power building 12 (Example 1) 竪型全動翼蒸気水重力タービン11Zの軸受12Cの説明図(実施例2)Explanatory drawing (Example 2) of the bearing 12C of a vertical all blade steam water gravity turbine 11Z 内側軸装置60A外側軸装置60Bのタービン翼群8Fの説明図(実施例3)Explanatory drawing of the turbine blade group 8F of the inner shaft device 60A and the outer shaft device 60B (Example 3) 竪型全動翼蒸気比重大物質重力タービン11Yの軸受12Cの説明図(実施例4)Explanatory drawing of bearing 12C of vertical type moving blade steam ratio critical material gravity turbine 11Y (Example 4) 横型全動翼蒸気水重力タービン11X直列同回転歯車4Dの説明図(実施例5)Explanatory drawing of horizontal type full-rotor blade steam water gravity turbine 11X series same rotation gear 4D (Example 5) 横型全動翼蒸気水重力タービン11X一体タービン翼群8Gの説明図(実施例6)Explanatory drawing of the horizontal type moving blade steam water gravity turbine 11X integrated turbine blade group 8G (Example 6) 横型全動翼蒸気比重大物質重力タービン11W直列同回転歯車4Dの説明図(実施例7)Explanatory drawing of the horizontal full-rotor blade steam ratio critical substance gravity turbine 11W series same rotation gear 4D (Example 7) 横型全動翼蒸気比重大物質重力タービン11W一体タービン翼群8Gの説明図(実施例8)Explanatory drawing of the horizontal type moving blade steam ratio significant substance gravity turbine 11W integrated turbine blade group 8G (Example 8) 液体酸素製造機89Aの説明図(実施例9)Explanatory drawing of liquid oxygen production machine 89A (Example 9) 太陽光加熱器21の説明図(実施例10)Explanatory drawing of the solar heater 21 (Example 10) 対向2段圧縮機12Yの説明図(実施例11)Explanatory drawing of opposed two-stage compressor 12Y (Example 11)

既存蒸気タービンの静翼を全廃し全動翼にすると蒸気速度が30倍等になるため、既存最先端科学技術が挑戦困難として放置している、超高速度エネルギ利用技術分野で最大速度や最適速度のエネルギ利用に挑戦するタービン翼群8Fは、円筒内側動翼群60Cタービン翼群8F1段具備+円筒外側動翼群60Dタービン翼群8F2段具備して、部品数最少の強大や振動共振0接近や軸受荷重0接近として最大速度エネルギ利用に対応し、夫々の両端を二重反転機関用立型旋盤10Bで保持超高速回転バランス調整加工して、夫々がバランス回転良好な回転数や周速度の確認で、例えばマッハ30等最大速度水駆動が可能か等タービン翼群8Fをバランス実験で確認し、最大速度エネルギ利用の、竪型全動翼蒸気水重力タービン11Zや竪型全動翼蒸気比重大物質重力タービン11Yの設計製造に使用して、夫々の段数を最適段数に増大して最適速度エネルギ利用の実験結果を、竪型全動翼蒸気水重力タービン11Zや竪型全動翼蒸気比重大物質重力タービン11Yの設計製造に使用し、同様に最大周速度駆動記録に挑戦する一体タービン翼群8Gは、回転部部品数2個の長さ最少や強大や振動共振0接近や軸受荷重0接近とし、両端を二重反転機関用旋盤10Cで保持超高速回転バランス調整加工して、夫々がバランス回転良好な回転数や周速度の実験確認し、例えばマッハ30等最大周速度駆動記録に挑戦して、長さを複数回増大して最適使用周速度に複数回減速する各種速度の実験結果を確認し、横型全動翼蒸気比重大物質重力タービン11Wや横型全動翼蒸気水重力タービン11Xの設計製造にして、本組立て実験として対向2段圧縮機12Yで圧縮比800等にする液体酸素製造機89Aとし、圧縮空気熱交換器2Yで燃料噴射燃焼して80MPa超臨界圧力水蒸気5H製造して、竪型全動翼蒸気水重力タービン11Z等の初速度製造部6aで逆浸透水52Dをマッハ2等で噴射し、80MPa等超臨界圧力水蒸気5H噴射してマッハ30等に加速して真空中の重力加速度で加速して、マッハ32前後水速度で駆動して周速度マッハ3前後に出来るか等の実験にし、同様にして横型全動翼蒸気水重力タービン11Xでは、マッハ32前後水速度で駆動して周速度マッハ32前後に出来るか等の実験にして、発電量が水速度や比重大物質速度の2乗に比例するか、発電量が回転速度の3乗に比例するか等の実験にし、実験結果に基づいた発明の実施形態にする。 If the vanes of existing steam turbines are completely abolished and changed to full blades, the steam speed will increase by 30 times, etc., so the existing state-of-the-art science and technology has left it difficult to challenge. The turbine blade group 8F that challenges the use of velocity energy has a cylindrical inner rotor blade group 60C turbine blade group 8F1 stage + a cylindrical outer rotor blade group 60D turbine blade group 8F2 stages, and has the smallest number of parts and vibration resonance 0 Corresponding to maximum speed energy utilization as approaching and bearing load approaching 0, each end is held by a vertical lathe 10B for counter rotating engine, and ultra high speed rotation balance adjustment processing is performed, and each has a rotation speed and peripheral speed with good balance rotation In the confirmation, for example, the turbine blade group 8F is checked by a balance experiment, such as whether the maximum speed water drive such as the Mach 30 is possible, and the vertical type moving blade steam water gravity turbine 11Z or the vertical type using the maximum speed energy is confirmed. It is used for the design and manufacture of the moving blade steam ratio critical material gravity turbine 11Y, and the experiment result of utilizing the optimum speed energy by increasing the number of stages to the optimum number of stages, and the vertical all-rotor steam water gravity turbine 11Z and vertical all The integrated turbine blade group 8G, which is used for the design and manufacture of the moving blade steam ratio critical material gravity turbine 11Y and similarly challenges the maximum peripheral speed drive recording, is the minimum length, the size of the two rotating parts, the strength, and the vibration resonance approaching zero The bearing load is close to 0, both ends are held by a counter rotating engine lathe 10C, and ultra-high speed rotation balance adjustment processing is performed. We challenged the drive record, confirmed the experimental results of various speeds that increased the length several times and decelerated to the optimum use peripheral speed several times, and confirmed that the horizontal all blade steam ratio critical material gravity turbine 11W and the horizontal all blade steam Water gravity turbi 11X was designed and manufactured, and in this assembly experiment, a liquid oxygen production machine 89A having a compression ratio of 800 or the like with an opposed two-stage compressor 12Y was produced, and 80 MPa supercritical pressure steam 5H was produced by fuel injection combustion with the compressed air heat exchanger 2Y. Then, the reverse osmosis water 52D is injected by Mach 2 or the like at the initial speed production unit 6a such as the vertical all blade steam water gravity turbine 11Z, and is accelerated to Mach 30 by injecting supercritical pressure steam 5H such as 80 MPa. The experiment was carried out by accelerating by gravity acceleration in a vacuum and driving at a water speed around Mach 32 to reach a circumferential speed around Mach 3. Similarly, in the horizontal type full-blade steam water gravity turbine 11X, water around Mach 32 Experiments on whether or not it can be driven at a speed around the peripheral speed Mach 32, etc., whether the amount of power generation is proportional to the square of the water speed or specific material speed, or whether the amount of power generation is proportional to the cube of the rotational speed, etc. In the experiment An embodiment of the invention based on the experimental results is made.

図1の図2等を設ける重力発電建物12による、図11対向2段圧縮機12Y連結等の、図9液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z発電等は、教育テレビ物理基礎で運動エネルギ=質量×速度の2乗に比例するや、水力発電機出入力は回転数の3乗に比例するを最重要として、優位性の比較説明倍率として既存最先端科学技術と比較計算説明し、例えば優位性比較説明倍率最大が同一流路面積同一水質量発電量で、既存火力発電蒸気タービン最終翼群蒸気容積の、1/20000容積同一水質量×30倍速度の2乗=900倍発電量のタービン翼群8Fとし、落差800mに3000段タービン翼群8F=900倍×3000段=2700000倍発電量として、蒸気タービン最終翼群の270万倍発電量の、液体酸素89A+竪型全動翼蒸気水重力タービン11Z発電等類似発電とし、各種実験結果で確認を必要とする重力発電建物12として、該柱を柱管12B兼比重大物質上昇装置2Fとし、逆浸透水52Dを最上部上昇保存する過程で柱管12Bの管径を拡大して、頑丈な柱にすると共に実用化中の低速上昇速度で揚水電力僅少にし、継手に角フランジ12Dを鉄骨骨組12Aに合せて具備して、鉄骨骨組12Aの上下を角フランジ12Dにボルト締め組立てにし、横軸1h駆動の発電機1具備で階数を構成する、重力発電建物12を構成柱管12Bの内部を比重大物質上昇装置2Fとして使用して、水3Eの逆浸透水52Dや各種比重大物質2Eを最上部に上昇保存し、比重大物質加速器6W開放で逆浸透水52D噴射して、比重大物質加速器6W解放80MPa超臨界圧力水蒸気5H噴射でマッハ30等に加速して、真空度上昇中の重力加速度で発電する、竪型全動翼蒸気水重力タービン11Z等各種燃料費0発電にし、実験が必要な各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 FIG. 9 liquid oxygen producing machine 89A + saddle-type full-blade steam water gravity turbine 11Z power generation, etc., such as the two-stage compressor 12Y connection shown in FIG. Basically, the kinetic energy is proportional to the square of mass × speed, and the input / output of the hydroelectric generator is proportional to the cube of the number of revolutions. Explain, for example, the advantage comparison explanation magnification is the same flow path area and the same water mass power generation amount, and the existing thermal power generation steam turbine final blade group steam volume is 1/20000 volume of the same water mass x 30 times the speed squared = 900 The turbine blade group 8F has a double power generation amount, a 3000-stage turbine blade group 8F = 900 times × 3000 stages = 2700000 times the power generation amount with a drop of 800 m, and a liquid oxygen generation amount of 2.7 million times that of the steam turbine final blade group. 9A + vertical type moving blade steam water gravity turbine 11Z power generation such as 11Z power generation, and as a gravity power generation building 12 that needs to be confirmed by various experimental results, the column is a column pipe 12B and a significant substance rising device 2F, and reverse osmosis water In the process of ascending and storing 52D at the top, the diameter of the column pipe 12B is enlarged to make it a sturdy column, and the pumping power is reduced at a low speed rising speed during practical use, and the square flange 12D is fitted to the steel frame 12A in the joint. The gravitational power generation building 12 is composed of the steel pipe 12A and the upper and lower ends of the steel frame 12A are bolted and assembled to the square flange 12D. Used as ascending device 2F, reverse osmosis water 52D of water 3E and various specific critical substances 2E are stored at the top, sprayed with reverse osmosis water 52D when specific critical substance accelerator 6W is opened, and specific critical substance accelerator 6W Accelerate to Mach 30 etc. by releasing 80MPa supercritical pressure steam 5H, and generate electricity with gravitational acceleration while raising the degree of vacuum. Various energy storage cycle coalescence engine power generation and coalescence method power generation.

図2の竪型全動翼蒸気水重力タービン11Z発電の設計製造は、発電量の運動エネルギ=質量×速度の2乗に比例するため、静翼で堰き止めると発電量が0側に接近する等、全動翼以外の構成は無く工作機械皆無等製造困難と挑戦皆無に挑戦し、大重量直線超高速噴射対応の全動翼二重反転により2倍水速度対応として、タービン翼群8F角度の設計追加で2倍×10倍水速度対応とし、タービン翼群8F数1/3以下の翼面積3倍以上等の1鋳造部品にして、部品数1/100以下最少狙いで30〜40倍水速度対応や共振等0接近狙いや、反発磁石等各種磁気利用で軸受荷重0接近にし、共振や振動等の0接近追加により30倍水速度以上での駆動や0振動狙いにして、段落毎夫々のタービン翼群8Fを1鋳造部品とし、段落毎1鋳造部品にすることで加工可能兼共振や振動0接近の超高速回転に対応して、内側軸装置60Aタービン翼群8Fは1段に外側軸装置60Bタービン翼群8Fは2段具備で最大速度駆動に対応し、内側軸装置60Aタービン翼群8Fは2段以上に外側軸装置60Bタービン翼群8Fは3段具備以上で最適速度駆動に対応し、二重反転機関用立型旋盤10Bにより嵌合組立部9M加工等として、タービン翼用研削盤10Fによりタービン翼群8F加工にし、タービン翼群8F兼外側軸装置60B等夫々の両端に各種軸受12C具備して、内側軸装置60Aや外側軸装置60B夫々別々に仮組立し、夫々の両端を二重反転機関用立型旋盤10Bで保持超高速回転バランス調整加工として、バランス加工良好な周速度や回転数での設計製造の実験として分解本組立てにし、同一流路面積既存蒸気タービン最終段翼群の1/20000容積同一水質量×30倍速度の2乗=900倍発電量の優位性比較説明倍率のタービン翼群8Fにして、落差800m製造3000段タービン翼群8F発電量を、既存蒸気タービン最終段翼群の900倍発電量×3000段=2700000倍発電量の竪型全動翼蒸気水重力タービン11Zとし、実験が必要な燃料費0発電狙い利益率抜群世界一狙いにして、工作機械も加工方法も前例皆無で挑戦が非常に困難と予想されますが、宝物は製造困難部分に集中存在と予想改良発明無限大に挑戦し、実験が必要な竪型全動翼蒸気水重力タービン11Z発電方法にして、製造物全部を極秘製造極秘運用極秘改良発明永遠独占狙いにする、運用利益率抜群世界一の地球温暖化防止にし、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 Since the design and manufacture of the vertical all-blade steam water gravity turbine 11Z power generation in FIG. 2 is proportional to the kinetic energy of the power generation amount = the mass × the square of the speed, the power generation amount approaches 0 when dammed with a stationary blade. There is no configuration other than all rotor blades, etc. There are no machine tools, no difficulty in manufacturing, no challenges, no turbine challenge, turbine blade group 8F angle by double reversal of all rotor blades compatible with heavy-weight linear ultra-high speed injection With the addition of the design, the water speed is 2 × 10 times, the turbine blade group 8F number is 1/3 or less, and the casting area is 3 times or more, etc., and the number of parts is 1/100 or less. By using a variety of magnets such as water speed and resonance, or by using various magnets to make the bearing load close to zero, and by adding zero approach such as resonance and vibration, driving at 30 times the water speed or aiming for zero vibration Each turbine blade group 8F is one cast part, and one cast part per paragraph. The inner shaft device 60A turbine blade group 8F has one stage and the outer shaft device 60B turbine blade group 8F has two stages for maximum speed drive. Correspondingly, the inner shaft device 60A turbine blade group 8F has two or more stages and the outer shaft device 60B turbine blade group 8F has three or more stages to support optimum speed driving, and is fitted and assembled by a vertical lathe 10B for counter rotating engine. As part 9M processing, etc., turbine blade group 8F is processed by turbine blade grinding machine 10F, and various bearings 12C are provided at both ends of turbine blade group 8F / outer shaft device 60B, etc., and inner shaft device 60A and outer shaft device 60B. Each is temporarily assembled separately, and both ends are held by a counter-rotating engine vertical lathe 10B. As an ultra-high speed rotation balance adjustment process, it is disassembled as an experiment of design and manufacture at a peripheral speed and rotation speed with good balance processing. Assembled, same flow path area 1/220000 volume of existing steam turbine last stage blade group Same water mass x 30 times speed squared = 900 times Advantage of power generation comparison Comparison explanation The turbine blade group 8F with a magnification of 3000 m The staged turbine blade group 8F power generation is 900 times the amount of power generation of the last stage blade group of the existing steam turbine x 3000 stages = 2700000 times the amount of power generation. Aiming for the best in the world, there are no precedents in machine tools and processing methods, and it is expected that challenges will be very difficult, but treasure is concentrated in difficult production areas and expected improvement invention infinity challenge, experiment is necessary The world's best global warming prevention with the highest operating profit rate, making all the products a top-secret manufacturing, top-secret operation, top secret improvement invention To, and to a variety of energy storage cycle combined combustion generators and coalescence method of power generation.

図3の図2円筒内側動翼群60Cタービン翼群8F兼内側軸装置60Aと、円筒外側動翼群60Dタービン翼群8F兼外側軸装置60B夫々のタービン翼群8Fは、逆浸透水52D噴射+80MPa超臨界圧力水蒸気5H噴射マッハ34等水速度製造+真空中重力加速度で発電して、発電入力の揚水入力は実用化数十年経過のため、研究を80MPa等の超臨界圧力水蒸気5H製造使用発電等に集中し、超臨界圧力水蒸気5Hマッハ34等水速度製造使用は、既存蒸気タービン発電の30倍速度の水速度使用となり、既存蒸気タービン発電の音速駆動部分駆動質量の略20000倍質量駆動となるため、質量増大による発電量が20000倍に近付くのに加えて、30倍速度駆動では発電量が900倍になる等既存技術で皆無の設計製造が最重要となり、真空度の増減による発電量の増減も膨大なため20℃以下等低温程高真空可能か等の実験研究にして、超臨界圧力水蒸気5H噴射温度の実験研究等最重要とし、発電入力の優位性比較説明倍率を計算可能部分は、超臨界圧力水蒸気5H製造熱量と使用熱量のため、図10の太陽光加熱器21で200℃に加熱した空気を液体酸素製造機89Aで圧縮熱製造の場合、電気駆動燃料費0で製造熱量の優位性比較説明倍率=圧縮比800では、同一燃料量既存ボイラーの13000倍超臨界圧力水蒸気5H製造熱量となり、使用熱量の優位性比較説明倍率=超臨界圧力水蒸気5H使用熱量が水速度製造用のため、燃料費0発電となり、発電入力が極限まで僅少になって発電出力が270万倍に近付く等実験を必要にし、重要実験皆無の最先端科学技術により利益率抜群世界一が予想されるため、極秘製造極秘運用極秘改良発明を最重要とします。 The turbine blade group 8F of each of the cylinder inner blade group 60C and turbine blade group 8F and inner shaft device 60A in FIG. 3 and the cylindrical outer blade group 60D and the turbine blade group 8F and outer shaft device 60B is injected with reverse osmosis water 52D. + 80MPa supercritical pressure water vapor 5H injection Mach 34, etc. Water velocity production + Electric power generation at gravity acceleration in vacuum, pumping input of power generation input has been in practical use for several decades, so research used supercritical pressure water vapor 5H production such as 80MPa Concentrating on power generation, etc., the supercritical pressure steam 5H Mach 34, etc. water speed production use will be 30 times the water speed use of the existing steam turbine power generation, about 20000 times the mass drive of the sonic drive partial drive mass of the existing steam turbine power generation Therefore, in addition to the fact that the amount of power generation due to the increase in mass approaches 20000 times, the power generation amount becomes 900 times with 30 times speed drive, and there is no design and manufacture with no existing technology. The amount of power generation due to the increase or decrease in the degree of vacuum is enormous, so the experimental research on whether high vacuum is possible at low temperatures, such as 20 ° C or less, is the most important, such as experimental research on the supercritical pressure steam 5H injection temperature. Compared to the advantage comparison explanation of the ratio, the part that can calculate the magnification is superheated steam 5H production heat amount and use heat amount, air heated to 200 ° C. by the solar heater 21 of FIG. 10 is compressed heat production by liquid oxygen production machine 89A In the case of the electric drive fuel cost 0, the advantage comparison explanation magnification of the production heat amount = compression ratio 800 = the same fuel amount 13,000 times the supercritical pressure steam 5H production heat amount of the existing boiler, and the advantage comparison explanation magnification of the use heat amount = super Because the amount of heat used by the critical pressure steam 5H is for water speed production, the fuel cost is 0 power generation, the power generation input becomes extremely small, and the power generation output approaches 2.7 million times. Since the profit margin preeminent world is expected by the Advanced Science and Technology, and the most important top-secret manufacturing top-secret operation secret improvement invention.

製造の過程では工作機械が皆無に近く不可能を可能にする実験が必要ですが、外側動翼60d外入口翼60eタービン翼群8Fや内側動翼60c内入口翼60fタービン翼群8Fや外側動翼60d外中間翼60gタービン翼群8Fや、内側動翼60c内中間翼60hタービン翼群8Fや外側動翼60d外中間翼60gタービン翼群8Fや内側動翼60c内出口翼60jタービン翼群8Fや外側動翼60d外出口翼60kタービン翼群8Fの、嵌合組立部9M等夫々を二重反転機関用立型旋盤10Bで加工し、夫々のタービン翼群8Fをタービン翼用研削盤10F加工として、内側軸装置60A外側軸装置60B夫々の両端に軸受12C具備別々に嵌合組立部9M仮組立とし、夫々の両端を二重反転機関用立型旋盤10Bで保持超高速回転バランス調整加工して、バランス加工良好な周速度や回転数での設計製造の実験として分解本組立てに移行し、軸受12C荷重を0にするため吸引電磁石永久磁石9Cや反発電磁石永久磁石9Bを具備して、軸受荷重0接近と部品数最少で超高速回転最大に対応とし、タービン翼群8Fの段数増減して振動や共振に対応し1鋳造部品にして、部品数1/100や最少等として共振や振動を最少に回転数最大狙いにし、二重反転磁気装置85又は二重反転歯車装置85Yにより二重反転する1組として、横軸1hに発電機1を夫々具備し、1組複数の発電機1発電にして、多数組の竪型全動翼蒸気水重力タービン11Z発電とし、最上部の1組を初速度製造の1組として、他は全部同一の地震等で被害僅少が可能な多数組とし、落差500〜800m狙いにして、実験が必要な給料世界一や雇用大増大する人類史上最大の貢献とし、重要実験皆無の最先端科学技術を大チャンスとして燃料費0で発電量の増大にし、利益率抜群世界一や地球温暖化防止発電の各種真空中重力利用発電にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 In the manufacturing process, it is necessary to conduct experiments that allow almost no machine tool to be possible. However, the outer rotor blade 60d outer inlet blade 60e turbine blade group 8F and inner rotor blade 60c inner inlet blade 60f turbine blade group 8F and outer rotor blade Blade 60d outer intermediate blade 60g turbine blade group 8F, inner blade 60c inner blade 60h turbine blade group 8F, outer blade 60d outer intermediate blade 60g turbine blade group 8F, inner blade 60c inner outlet blade 60j turbine blade group 8F And the outer rotor blade 60d, the outer outlet blade 60k, the turbine blade group 8F, etc., are each processed by the vertical lathe 10B for counter rotating engine, and each turbine blade group 8F is processed by the turbine blade grinding machine 10F. The inner shaft device 60A and the outer shaft device 60B are respectively provided with bearings 12C at both ends, and are temporarily assembled into a fitting assembly portion 9M, and each end is held by a counter rotating lathe 10B for super reversing engine. As an experiment of design and manufacture at a peripheral speed and rotation speed with good balance processing, shift to disassembly and assembling as an experiment, and an attractive electromagnet permanent magnet 9C and a counter-electromagnetic permanent magnet 9B are provided to reduce the load on the bearing 12C to zero. Then, the bearing load is close to 0 and the number of parts is minimized, so that the maximum rotation speed is maximized. The number of stages of the turbine blade group 8F is increased or decreased to cope with vibrations and resonances. The generator 1 is provided on the horizontal axis 1h as a set of resonance and vibration aimed at the maximum number of rotations and double-reversed by the counter-rotating magnetic device 85 or the counter-rotating gear device 85Y. The generator 1 power generation is a large number of vertical all-steamed steam water gravity turbine 11Z power generation, the uppermost one set is one set for initial speed production, and the others are all damaged by the same earthquake etc. Make a large number of groups, drop 500-800 Aiming to make the largest contribution in the history of mankind with the largest salary in the world that requires experimentation and a large increase in employment, and to increase power generation at zero fuel cost with the most advanced science and technology without any significant experiment as a great opportunity, the best in the world Various energy conservation cycle coalescence engine power generation and coalescence method power generation, which are converted to gravity-based power generation in vacuum for global warming prevention power generation.

図4の竪型全動翼蒸気比重大物質重力タービン11Yは、対向2段圧縮機12Y連結等の液体酸素製造機89Aによる、超臨界圧力水蒸気5H製造噴射で燃料費0発電として、運動エネルギ発電量=質量×速度の2乗に比例するを最重要+全動翼超高速回転狙いとし、軸受荷重0接近狙う反発電磁石永久磁石9Bや吸引電磁石永久磁石9Cを具備振動等0接近にして、重力発電建物12により真空中の重力加速度加速する落差を製造し、柱管12Bの高さと発電機1を具備する横軸1hの高さに合わせた階数の最適高さとして、柱管12B兼比重大物質上昇装置2Fにより比重大物質を最上部に可変速モーターで上昇保存し、揚水入力が回転速度の3乗に比例するに対応して、初速製造部6aの比重大物質加速器6W開放で比重大物質を噴射し、初速製造部6a比重大物質加速器6W開放して、80MPa等の超臨界圧力水蒸気5H噴射し、マッハ30等に加速して、真空度上昇中の重力加速度で二重反転タービン翼群8F駆動の発電にし、マッハ30で直線加速の計算では既存揚水発電と同一水質量マッハ30÷1/5=150倍水速度として、150倍×150倍=22500倍発電量にし、入力や想定外を差引後の発電量を1000倍狙い実験を必要にし、円筒内側動翼群60Cと円筒外側動翼群60Dを二重反転駆動して、大重量直線超高速噴射対応の全動翼二重反転とし、夫々が二重反転する円筒内側動翼群60C兼内側軸装置60Aと、円筒外側動翼群60D兼外側軸装置60Bにして、製造の過程では図3と同様に段落毎1鋳造部品にすることで、加工可能兼共振や振動0接近の超高速回転に対応して、内側軸装置60Aタービン翼群8Fは1段に外側軸装置60Bタービン翼群8Fは2段具備で最大速度駆動に対応し、内側軸装置60Aタービン翼群8Fは2段以上に外側軸装置60Bタービン翼群8Fは3段具備以上で最適速度駆動に対応し、夫々の両端には夫々最適軸受12Cを具備し、夫々別々に二重反転機関用立型旋盤10Bやタービン翼用研削盤10Fで製造して、夫々別々に仮組立後に二重反転機関用立型旋盤10Bで超高速バランス調整加工良好にし、バランス加工良好な周速度や回転数での設計製造の実験として、分解して本組立てにする全く新しい超大型工作機械製造の加工にし、横軸1hで二重反転する複数〜多数組で1台の竪型全動翼蒸気比重大物質重力タービン11Yを製造して、同一揚水量同一落差既存揚水発電の2倍で大革命を実験が必要な1000倍発電量狙い実験を必要にし、重要実験皆無の最先端科学技術を大チャンスとして、燃料費0で発電量の増大にし、利益率抜群世界一や地球温暖化防止発電の各種真空中重力利用発電にする、極秘製造極秘運用極秘改良発明を最重要とし、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 4 is a kinetic energy power generation using a supercritical pressure steam 5H production injection by a liquid oxygen production machine 89A such as a concatenated two-stage compressor 12Y connected as zero fuel cost power generation. Weight = proportional to mass × speed squared is the most important + all blades aiming at ultra-high speed rotation, bearing load 0 approaching anti-generator permanent magnet 9B and attracting electromagnet permanent magnet 9C equipped with vibration approaching 0 approach, gravity A head that accelerates gravity acceleration in vacuum by the power generation building 12 is manufactured, and the optimum height of the floor in accordance with the height of the column tube 12B and the height of the horizontal axis 1h provided with the generator 1 is significant compared with the column tube 12B. The material riser 2F stores and saves the critical material at the top with a variable speed motor, and the pumping input is proportional to the third power of the rotational speed. Jetting material , The initial speed production unit 6a ratio critical substance accelerator 6W is opened, supercritical pressure water vapor 5H such as 80 MPa is injected, accelerated to Mach 30 and the like, and driven by the counter-rotating turbine blade group 8F with gravitational acceleration while the degree of vacuum is rising. In the calculation of linear acceleration at Mach 30, the same water mass as the existing pumped power generation Mach 30 ÷ 1/5 = 150 times the water speed, 150 times × 150 times = 22500 times the power generation amount, after subtracting the input and unexpected Experiment, aiming at 1000 times the amount of power generated, the cylinder inner rotor blade group 60C and the cylinder outer rotor blade group 60D are driven in a double reversal to make a full rotor blade double reversal compatible with heavy-weight linear ultra-high speed injection, respectively. The cylinder inner rotor blade group 60C / inner shaft device 60A and the cylindrical outer rotor blade group 60D / outer shaft device 60B, which are double-reversed, are manufactured in the same manner as in FIG. Can be machined, resonance and vibration Corresponding to 0 approaching ultra-high speed rotation, the inner shaft device 60A turbine blade group 8F has one stage and the outer shaft device 60B turbine blade group 8F has two stages, corresponding to the maximum speed drive, and the inner shaft device 60A turbine blade group. 8F has two or more stages and the outer shaft device 60B turbine blade group 8F has three or more stages to support optimum speed driving, and each end has optimum bearings 12C, respectively, and is separately designed for a counter rotating engine. Manufactured with a lathe 10B and a turbine blade grinding machine 10F, and after each temporary assembly, the ultra-high-speed balance adjustment processing is made good with the vertical turning lathe 10B for counter rotating engine, and the balance processing is designed with good peripheral speed and rotation speed. As a manufacturing experiment, disassembled and assembled into a completely new ultra-large machine tool manufacturing, one vertical type full-blade steam ratio critical material gravity turbine with multiple to many pairs that are double-reversed on the horizontal axis 1h 11Y, The same amount of pumped water with the same head Double the existing pumped-storage power generation requires a revolutionary experiment that requires a 1000-fold power generation target. The state-of-the-art science and technology, which has no important experiments, is a great opportunity to increase the power generation amount at zero fuel cost. The most important is the top-secret manufacturing, top-secret operation improvement technology, making it the world's most profitable and world warming-preventing power generation using various types of gravity in vacuum.

図5の横型全動翼蒸気水重力タービン11Xは、対向2段圧縮機12Y連結等電気駆動の液体酸素製造機89Aによる、超臨界圧力水蒸気5H製造噴射初速製造部6aで初速度製造し燃料費0発電として、水力発電機出入力は回転数の3乗に比例するを最重要+全動翼超高速回転周速度記録狙いとし、軸受荷重0接近狙う反発電磁石永久磁石9Bや吸引電磁石永久磁石9Cを具備振動等0接近にして、重力発電建物12により真空中の重力加速度加速する落差を製造し、柱管12Bの高さと発電機1を具備する水平軸16A高さに合わせた階数の最適高さとして、柱管12B兼比重大物質上昇装置2Fにより逆浸透水52Dを最上部に可変速モーターで上昇保存し、揚水入力が回転速度の3乗に比例するに対応して、比重大物質加速器6Wで逆浸透水52Dを加圧噴射し、初速製造部6aの超臨界圧力水蒸気5H噴射速度でマッハ30等に加速して、真空度上昇中の重力加速度で一体タービン翼群8G周速度マッハ30等駆動の発電にし、マッハ30で直線加速の計算では既存揚水発電と同一水質量マッハ30÷1/5=150倍水速度として、150倍×150倍=同一水質量既存揚水発電の22500倍発電量にし、入力や速度等想定外を差引後の発電量を実験が必要な1000倍狙いにして、大質量直線超高速噴射対応の一体タービン翼群8Gとし、夫々が超高速回転して周速度マッハ30狙いにして、夫々の両端には夫々最適軸受12Cを具備し、夫々別々に二重反転機関用旋盤10Cやタービン翼用研削盤10Fで製造して、夫々別々に本組立後に二重反転機関用旋盤10Cで保持超高速バランス調整加工良好にし、バランス加工良好な周速度や回転数での設計製造の実験として、重力発電建物12で使用する全く新しい超大型工作機械製造の加工にし、直列同回転歯車4D複数〜多数組連結駆動で1台の横型全動翼蒸気水重力タービン11Xを製造して、同一揚水量同一落差既存揚水発電の2倍で大革命を実験が必要な1000倍発電量狙いにし、重要実験皆無の最先端科学技術を大チャンスとして、燃料費0で発電量の増大にし、利益率抜群世界一や地球温暖化防止発電の各種真空中重力利用発電にする、極秘製造極秘運用極秘改良発明を最重要として、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 The horizontal full-blade steam water gravity turbine 11X in FIG. 5 is produced at the initial speed by the supercritical pressure steam 5H production injection initial speed production unit 6a by the electrically driven liquid oxygen production machine 89A such as the opposed two-stage compressor 12Y connection, and the fuel cost. As zero power generation, the hydroelectric generator input / output is proportional to the cube of the rotation speed, but the most important + total moving blade ultra high speed rotation peripheral speed recording aim, counter bearing permanent magnet 9B and attracting electromagnet permanent magnet 9C aiming at bearing load approaching 0 The gravity power generation building 12 produces a head that accelerates gravitational acceleration in the vacuum, and the optimum height of the floor according to the height of the column 12B and the horizontal axis 16A equipped with the generator 1 As a matter of course, the reverse osmosis water 52D is stored at the top by a variable speed motor by the column pipe 12B and the ratio critical substance riser 2F, and the pumping input is proportional to the third power of the rotational speed. At 6W The permeated water 52D is injected under pressure, accelerated to the Mach 30 or the like at the supercritical pressure water vapor 5H injection speed of the initial speed production unit 6a, and driven by the integrated turbine blade group 8G peripheral speed Mach 30 or the like with the gravitational acceleration during the increase in the degree of vacuum. In the calculation of linear acceleration at Mach 30, the same water mass as the existing pumped power generation Mach 30 ÷ 1/5 = 150 times the water speed, 150 times × 150 times = the same water mass The current pumped power generation is 22,500 times the power generation amount, Aiming at 1000 times the necessary power generation after subtracting unexpected values such as input and speed, etc., it is set as an integrated turbine blade group 8G compatible with large mass linear ultra high speed injection, and each of them rotates at super high speed and aims at peripheral speed Mach 30 Each end is provided with an optimum bearing 12C, and each is separately manufactured with a counter rotating engine lathe 10C and a turbine blade grinding machine 10F, and each counter rotating engine lathe is separately assembled after the main assembly. 10 As a result of design and manufacturing experiments with good peripheral speed and rotation speed, the balance ultra-high-speed balance adjustment processing is improved. Manufacture one horizontal full-swing steam water gravity turbine 11X with multiple to many coupled drives, aiming for 1000 times the amount of power generation that requires experimentation with a double revolution of existing pumped power generation with the same pumping amount and the same head Taking advantage of cutting-edge science and technology with no experiments, increasing the amount of power generation with zero fuel cost, making it the world's most profitable and global warming-preventing power generation using gravity in vacuum. As the most important, various energy storage cycle coalescence engine power generation and coalescence method power generation are adopted.

図6の図5断面図一体タービン翼群8G製造過程では、外径最大最短長さ1.5m以下で超高速比重大物質速度最大速度対応の共振最少狙いの実験として、外径最小最大長の6m以上を超高速水速度3番速度対応の実験とし、外径中間中間長を超高速水速度2番速度対応の実験として、水力発電機出力は回転数の3乗に比例するを最重要とし、発電量が回転速度の3乗に比例するか2乗に比例するか実験を必要として、最良環境の真空中での最大回転速度の研究等各種宝探しの研究や挑戦を必要とし、一体タービン翼群8G1部品の両端に軸受12Cを設ける水平軸16A具備して、回転部を1部品にすることで駆動最大水速度対応や、2部品や3部品としてマッハ30等超高速周速度対応可能か等の実験にし、部品数最少で振動や共振の0接近狙いにして、反発電磁石永久磁石9Bを下部に具備し吸引電磁石永久磁石9Cを上部に具備し軸受荷重や振動を0接近にし、10万回転等超高速回転として発電量が回転速度の3乗に比例するか等の実験にして、製造過程では一体タービン翼群8G1部品では外部加工のみや、2部品や3部品の場合は内部や外部や両端等を二重反転機関用旋盤10C加工し、一体タービン翼群8G外周のタービン翼等をタービン翼用研削盤10F加工にして、両端の軸受12C部を二重反転機関用旋盤10Cで保持し、超高速回転バランス調整加工して、バランス加工良好な周速度や回転数での設計製造の実験とし、両端の水平軸16A等に軸受12Cや発電機1を夫々具備して、超高速周速度マッハ30等に挑戦する複数〜多数組の一体タービン翼群8G具備にし、最上部の1組を初速度製造の1組として、実験が必要な横型全動翼蒸気水重力タービン11X燃料費0発電にし、落差500〜800m狙いにして、給料世界一や雇用大増大する人類史上最大の貢献とし、利益率抜群世界一の地球温暖化防止にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 In the manufacturing process of the integrated turbine blade group 8G in FIG. 5 as a turbine blade group 8G, as an experiment aiming at the resonance minimum corresponding to the maximum high-speed specific material speed maximum speed with the maximum outer diameter minimum length of 1.5 m or less, The most important thing is that the hydro generator output is proportional to the cube of the number of revolutions, with 6m or more being the experiment corresponding to the super high speed water speed No. 3 and the outer diameter intermediate length being the experiment corresponding to the super high speed water speed No. 2. It requires experiments to determine whether the amount of power generation is proportional to the cube of the rotational speed or the square of the rotational speed, and requires various treasure hunt research and challenges such as research on the maximum rotational speed in a vacuum in the best environment. It has a horizontal shaft 16A with bearings 12C on both ends of the group 8G1 parts, and it can handle the maximum driving water speed by making the rotating part one part, or can support super high speed peripheral speeds such as Mach 30 as two parts or three parts, etc. In this experiment, vibration and resonance are zero with the minimum number of parts. Nearly aiming, anti-generator permanent magnet 9B is provided at the bottom, and attraction electromagnet permanent magnet 9C is provided at the top, bearing load and vibration are brought close to 0, and the amount of power generation is the cube of the rotational speed as ultra-high speed rotation such as 100,000 rotations. In the manufacturing process, only the external machining is performed for the integrated turbine blade group 8G1 part, and the inside, outside, both ends, etc. are machined for the counter rotating engine 10C in the case of two parts or three parts, The turbine blades etc. on the outer periphery of the integrated turbine blade group 8G are processed by a turbine blade grinding machine 10F, the bearings 12C at both ends are held by a counter rotating machine lathe 10C, and an ultra-high speed rotation balance adjustment process is performed to achieve a good balance process. A series of multiple turbines that challenge the ultra-high-speed peripheral speed Mach 30 and the like, with the bearings 12C and the generator 1 provided on the horizontal shafts 16A and the like at both ends, respectively, as experiments in design and manufacture at a peripheral speed and rotational speed. Wing group G equipped, the top one set is the first speed production one set, horizontal all-stained-blade steam water gravity turbine 11X that requires experimentation is set to zero power generation, aiming for a drop of 500-800m, the best salary in the world and employment It will be the largest contribution in the ever-increasing human history, and the combination of various energy conservation cycle combined engine power generation and combined method power generation, which will be the world's best global warming prevention with the highest profit rate.

図7の横型全動翼蒸気比重大物質重力タービン11Wは、対向2段圧縮機12Y連結等電気駆動の液体酸素製造機89Aによる、超臨界圧力水蒸気5H製造し初速製造部6a噴射で初速度製造し燃料費0発電として、水力発電機出入力は回転数の3乗に比例するを最重要+全動翼超高速回転記録狙いとし、軸受荷重0接近狙う反発電磁石永久磁石9Bや吸引電磁石永久磁石9Cを具備振動等0接近にして、重力発電建物12により真空中の重力加速度加速する落差を製造し、柱管12Bの高さと発電機1を具備する水平軸16Aの高さに合わせた階数の最適高さとして、柱管12B兼比重大物質上昇装置2Fにより逆浸透水52Dや比重大物質等を最上部に可変速モーター等で上昇保存し、揚水入力が回転速度の3乗に比例するに対応して、比重大物質加速器6Wで比重大物質を逆浸透水52D等で各種混合噴射し、初速製造部6aの80MPa等超臨界圧力水蒸気5H噴射速度てマッハ30等に加速して、真空度上昇中の重力加速度で一体タービン翼群8G駆動の発電にし、マッハ30で直線加速の計算では既存揚水発電と同一水質量マッハ30÷1/5=150倍水速度として、150倍×150倍=同一水質量既存揚水発電の22500倍発電量にし、入力や速度等想定外を差引後の発電量を実験が必要な1000倍発電量狙いにして、大質量直線超高速噴射対応の一体タービン翼群8Gにし、夫々が超高速回転して周速度マッハ30狙いにして、夫々の両端には夫々最適軸受12Cを具備し、夫々別々に二重反転機関用旋盤10Cやタービン翼用研削盤10Fで製造して、夫々別々に本組立後に二重反転機関用旋盤10Cで保持超高速バランス調整加工良好にし、バランス加工良好な周速度や回転数での設計製造の実験として、重力発電建物12で使用する全く新しい超大型工作機械製造の加工にし、直列同回転歯車4D複数〜多数組連結駆動で1台の横型全動翼蒸気比重大物質重力タービン11Wを製造して、同一揚水量同一落差既存揚水発電の2倍で大革命を実験が必要な1000倍発電量狙いにし、重要実験皆無の最先端科学技術を大チャンスとして、燃料費0で発電量の大増大にし、利益率抜群世界一や地球温暖化防止発電の各種真空中重力利用発電にする、極秘製造極秘運用極秘改良発明を最重要とし、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 The horizontal full rotor blade steam ratio critical material gravity turbine 11W in FIG. 7 is produced by supercritical pressure steam 5H by an electrically driven liquid oxygen production machine 89A such as an opposing two-stage compressor 12Y connection, and produced at an initial speed by an initial speed production section 6a injection. However, as power generation with zero fuel cost, the input / output of the hydroelectric generator is proportional to the cube of the number of revolutions. 9C is made close to vibration, etc., 0, and a gravitational power generation building 12 produces a head that accelerates gravitational acceleration in a vacuum, and has a floor height that matches the height of the column tube 12B and the horizontal axis 16A equipped with the generator 1. As the optimum height, the reverse osmosis water 52D, the specific critical substance, etc. are stored at the top by the variable speed motor etc. by the column pipe 12B and specific critical substance rising device 2F, and the pumping input is proportional to the cube of the rotational speed. Correspondingly, Gravity acceleration while increasing the degree of vacuum by injecting various critical substances with reverse osmosis water 52D, etc. with the critical substance accelerator 6W and accelerating to the supercritical pressure water vapor 5H injection speed of 80MPa, etc. at the initial speed production unit 6a to Mach 30 In the calculation of linear acceleration at Mach 30, the same water mass Mach 30 ÷ 1/5 = 150 times faster than the existing pumped power generation, 150 times × 150 times = same water mass Existing pumped water Aiming at a power generation amount of 2500 times that of power generation, and a power generation amount after subtracting unexpected inputs and speeds, etc., to a power generation amount of 1000 times that requires experimentation, an integrated turbine blade group 8G compatible with high-mass linear ultra-high speed injection, Rotating at high speed and aiming at the peripheral speed Mach 30, each end is provided with an optimum bearing 12C, and separately manufactured with a counter rotating engine lathe 10C and a turbine blade grinding machine 10F. Separately after this assembly, it is held by the counter rotating engine lathe 10C, and the super high speed balance adjustment processing is made good, and as an experiment of design and manufacture at the peripheral speed and rotation speed with good balance processing, a completely new super large size used in the gravity power generation building 12 Machine tool manufacturing process, a single horizontal full-rotor blade steam ratio critical material gravity turbine 11W is manufactured with a series of multiple rotating gears 4D connected in series, and the same pumping amount is the same head with twice the existing pumping power generation Aiming at 1000 times the amount of power generation that requires experimentation, taking the state-of-the-art science and technology without any important experiments as a great opportunity, increasing the amount of power generation at zero fuel cost, the world's most profitable and various types of global warming prevention power generation The top secret manufacturing and top secret improvement invention that makes gravity power generation in vacuum is the most important, and various energy storage cycle coalescence engine power generation and coalescence method power generation.

図8の図7断面図一体タービン翼群8G製造過程では図6と同様に、外径最大最短長さ1.5m以下で超高速比重大物質速度最大速度対応の共振最少狙いの実験として、外径最小最大長の6m以上を超高速比重大物質速度3番速度対応の実験とし、外径中間中間長を超高速比重大物質速度2番速度対応の実験として、水力発電機出入力は回転数の3乗に比例するを最重要や入力は実用化終了とし、発電量が回転速度の3乗に比例するか2乗に比例するか実験を必要として、最良環境の真空中での最大回転速度周速度の研究等各種宝探しの研究や挑戦を必要とし、一体タービン翼群8G1部品の両端に軸受12Cを設ける水平軸16A具備して、回転部を1部品にすることで駆動最大比重大物質速度対応や、2部品や3部品としてマッハ30等超高速周速度対応可能か等の実験にし、部品数最少で振動や共振の0接近狙いにして、反発電磁石永久磁石9Bを下部に具備し吸引電磁石永久磁石9Cを上部に具備し軸受荷重や振動を0接近にし、10万回転等超高速回転として発電量が回転速度や周速度の3乗に比例するか等の実験にして、製造過程では一体タービン翼群8G1部品では外部加工のみや、2部品や3部品の場合は内部や外部や両端等を二重反転機関用旋盤10C加工し、一体タービン翼群8G外周のタービン翼等をタービン翼用研削盤10F加工にして、両端の軸受12C部を二重反転機関用旋盤10Cで保持し、超高速回転バランス調整加工して、バランス加工良好な周速度や回転数での設計製造の実験として、製造終了使用にし、両端の水平軸16A等に軸受12Cや発電機1を夫々具備して、超高速周速度マッハ30等に挑戦する複数〜多数組の一体タービン翼群8G具備にし、最上部の1組を初速度製造の1組として、実験が必要な横型全動翼蒸気比重大物質重力タービン11W燃料費0発電にし、落差500〜800m狙いにして、給料世界一や雇用大増大する人類史上最大の貢献とし、利益率抜群世界一の地球温暖化防止にする、各種エネルギ保存サイクル合体機関発電及び合体方法発電にする。 In the manufacturing process of the integrated turbine blade group 8G in FIG. 7 as shown in FIG. 6, as in the case of FIG. The hydrodynamic generator I / O is the number of revolutions, with the minimum diameter maximum length of 6m or more as the experiment corresponding to the super high speed specific material speed No. 3 and the intermediate diameter of the outer diameter as the experiment corresponding to the ultra high speed specific material speed No. 2 The most important and input is the end of practical use, and it is necessary to experiment whether the amount of power generation is proportional to the third power of the rotation speed or the second power, and the maximum rotation speed in the vacuum of the best environment It requires various treasure hunt research and challenges such as peripheral speed research, and has a horizontal shaft 16A provided with bearings 12C on both ends of the integral turbine blade group 8G1 parts, and the rotating part is made into one part. Correspondence, Mach 30 etc. as 2 parts or 3 parts Experimenting whether high-speed peripheral speed can be supported, etc., aiming at zero approach of vibration and resonance with the minimum number of parts, equipped with anti-generator permanent magnet 9B in the lower part and attracted electromagnet permanent magnet 9C in the upper part, bearing load and vibration Experimenting whether the power generation amount is proportional to the cube of the rotational speed and the peripheral speed as an ultra-high speed rotation such as 100,000 rotations, etc., in the manufacturing process, only the external machining or two parts in the integrated turbine blade group 8G1 part in the manufacturing process In the case of three parts, the lathe 10C is machined inside, outside, both ends, etc., and the turbine blades on the outer periphery of the integrated turbine blade group 8G are machined into the grinding blade 10F for the turbine blades. It is held by a counter rotating engine lathe 10C, and is adjusted for ultra-high speed rotation balance, and is designed to be used as a design / production experiment with good peripheral speed and rotation speed. 12C Each generator 1 is equipped with a plurality of multiple turbine blade groups 8G that challenge the ultra-high-speed peripheral speed Mach 30 and the like, and the uppermost set is one set for initial speed production, and experiments are required. Horizontal all-blade steam ratio critical material gravity turbine 11W Fuel cost 0 power generation, aiming for a drop of 500-800m, making the largest contribution in the history of mankind with the world's highest salary and employment, and the world's most profitable prevention of global warming Various energy storage cycle coalescence engine power generation and coalescence method power generation.

図9の液体酸素製造機89Aは、電気駆動として燃料費0で発電用超臨界圧力水蒸気5Hを製造噴射し、燃料費0の各種発電にして副産物の液体酸素や液体窒素等を製造するするもので、図の簡単圧縮機3sを図11の対向2段圧縮機12Yと交換や、上吸引下反発磁石9bや吸引磁石9cにより軸受荷重0接近で超高速回転対応として、燃料費0発電電気駆動+空気タービン3t駆動にし、図10の太陽光加熱器21で10倍温度200℃等に加熱した空気28aを、対向2段圧縮機12Yの逆浸透水52D冷却の圧縮翼で圧縮して、内側圧縮翼群53D外側圧縮翼群53Cで圧縮比800等にする過程て逆浸透水52Dを加熱し、超高圧圧縮空気28a製造過程で超臨界圧力水蒸気5H製造準備して、対向2段圧縮機12Yの圧縮空気熱交換器2Y超臨界圧力水蒸気管5Hを長大として熱交換し、1段圧縮機で80MPa等超臨界圧力水蒸気5Hを製造して、2段圧縮機を低温空気熱交換器2W逆浸透水52D冷却として超臨界圧力水蒸気5H製造準備し、更に低温空気熱交換器2Wでは空気タービン3t排気冷却の低温アルコール52C冷却にして、低温圧縮空気28aにしてタービン遠心力で分離した液体酸素5Kや液体窒素5L等は分離使用し、排気によりアルコール管52Cを冷却低温アルコール52Cにして、空気タービン3tを駆動排気温度を−270℃近傍にし、断熱膨張駆動の過程で液化温度に合わせて液体酸素5Kや液体窒素5Lを外周に遠心力噴射して、段落毎の外周下部より夫々に分割し、液体酸素5Kや液体窒素5L等で回収して、不用品や液体窒素5Lを適宜に空気タービン3t熱交換排気とし、アルコール管52Cで熱交換アルコール52Cを−100℃近傍として、アルコール管52Cを低温空気熱交換器2Wに延長し、圧縮空気28aを冷却低温圧縮空気28aにして、液体酸素5K+液体窒素5L大量製造し、液体酸素5K+液体窒素5L+超臨界圧力水蒸気5H等各種熱供給設備3Dとして、内側圧縮翼群53Dや内側出力翼群53B兼内側軸装置60A及び、外側圧縮翼群53Cや外側出力翼群53A兼外側軸装置60Bの、夫々の両端最適位置に軸受12C具備して、夫々別々に二重反転機関用旋盤10Cや圧縮翼用研削盤10Dや出力翼用研削盤10Eで製造し、夫々別々に嵌合組立部9M螺子組立螺子固定や圧入螺子固定等に仮組立して、二重反転機関用旋盤10Cで両端保持超高速回転バランス調整加工とし、バランス良好として分解本組立てにする内側軸装置60Aと外側軸装置60Bの超高速二重反転して、対向2段圧縮機12Yで超臨界圧力水蒸気5Hを製造する、極秘製造極秘運用極秘改良発明を最重要とし、液体酸素製造機89Aにする。 The liquid oxygen production machine 89A in FIG. 9 produces and injects supercritical pressure steam 5H for power generation at a fuel cost of 0 as an electric drive, and produces by-product liquid oxygen, liquid nitrogen, etc. by various power generation at a fuel cost of 0 Then, the simple compressor 3s shown in the figure is replaced with the opposing two-stage compressor 12Y shown in FIG. + The air turbine 3t is driven, and the air 28a heated to 10 times the temperature 200 ° C or the like by the solar heater 21 in FIG. 10 is compressed by the reverse osmosis water 52D cooling compressor blades of the opposed two-stage compressor 12Y, The reverse osmosis water 52D is heated by the compression blade group 53D outer compression blade group 53C in the process of making the compression ratio 800, etc., and the supercritical pressure water vapor 5H is prepared in the production process of the ultrahigh pressure compressed air 28a. Compressed air heat Heat exchanger 2Y supercritical pressure steam pipe 5H is long, heat is produced by supercritical pressure steam 5H such as 80MPa with a single-stage compressor, and the two-stage compressor is cooled by low-temperature air heat exchanger 2W reverse osmosis water 52D Preparation of supercritical pressure steam 5H production, and in the low-temperature air heat exchanger 2W, the low-temperature alcohol 52C of the air turbine 3t exhaust cooling is cooled to the low-temperature compressed air 28a, and the liquid oxygen 5K and liquid nitrogen 5L separated by the turbine centrifugal force, etc. Is used for cooling, the alcohol pipe 52C is cooled by cooling, and the low temperature alcohol 52C is cooled, the exhaust temperature of the air turbine 3t is driven to around −270 ° C., and liquid oxygen 5K and liquid nitrogen 5L are adjusted in accordance with the liquefaction temperature in the process of adiabatic expansion driving. Is sprayed to the outer periphery, divided into parts from the lower periphery of each paragraph, and recovered with liquid oxygen 5K, liquid nitrogen 5L, etc. L is appropriately set as the air turbine 3t heat exchange exhaust, the heat exchange alcohol 52C is set to around −100 ° C. with the alcohol pipe 52C, the alcohol pipe 52C is extended to the low temperature air heat exchanger 2W, and the compressed air 28a is cooled with the low temperature compressed air 28a As a heat supply equipment 3D such as liquid oxygen 5K + liquid nitrogen 5L mass production, liquid oxygen 5K + liquid nitrogen 5L + supercritical pressure steam 5H, the inner compression blade group 53D, the inner output blade group 53B and the inner shaft device 60A, The outer compression blade group 53C and the outer output blade group 53A / outer shaft device 60B are provided with bearings 12C at the optimum positions at both ends, respectively, and the counter rotating engine lathe 10C, the compression blade grinding machine 10D, and the output blade are separately provided. Manufactured by the grinding machine 10E, and temporarily assembled into the fitting assembly 9M screw assembly screw fixing and press-fitting screw fixing, respectively, and both on the counter rotating engine lathe 10C. Ultra-high-speed rotation of the inner shaft device 60A and the outer shaft device 60B, which are end-supported ultra-high-speed rotation balance adjustment processing and disassembled and assembled as a good balance, is produced, and supercritical pressure steam 5H is produced by the opposed two-stage compressor 12Y. Therefore, the top secret manufacturing and top secret operation invention is the most important, and the liquid oxygen producing machine 89A is used.

設計や製造の過程では、段落毎1鋳造部品にすることで加工可能兼共振や振動0接近の超高速回転に対応して、内側圧縮翼や出力翼は1段翼に外側圧縮翼や出力翼は2段具備で最大速度駆動に対応し、内側圧縮翼や出力翼は2段翼以上に外側圧縮翼や出力翼は3段具備以上で最適速度駆動に対応し、対向2段圧縮機2Y連結で軸受荷重0接近容易や低温圧縮空気28aにして、液体酸素製造機89A+竪型全動翼蒸気水重力タービン11Z等各種燃料費0発電とし、燃料費0発電超安価電気駆動を武器に電気+熱供給設備3Dとして、海底や永久凍土地下のメタンハイドレートに超臨界圧力水蒸気5H〜高温水52bを注入する、米国シェールガス回収装置類似+日本メタン回収装置にし、超臨界圧力水蒸気5H〜高温水52bをメタンハイドレートに注入メタンガスで回収して、液体窒素5Lで冷却して液体メタンで回収し、永久凍土地下のメタンハイドレートに高温水52b噴射メタンの気化回収する、超大型透明円錐形の囲いを設けて頂部より気化メタンを回収して、液体窒素5L冷却して液体メタンで回収して貯蔵利用し、太陽光や高温水52bで加熱する水滴の多い超大型の温室にして、外気と遮断メタン菌メタン製造量の研究や日照時間や水滴の多い温室牧草地放牧の研究とし、温室牧草地を増大する液体メタンの大量生産等輸入燃料0が可能かの実験や、牛肉の大量生産等の実験にして、燃料電池自動車を駆動する水素製造では超安価な水の電気分解分解により水素製造し、最も安価な水素製造として燃料電池自動車に供給する、竪型全動翼蒸気水重力タービン11Z等各種燃料費0発電+液体酸素製造機89Aにする。 In the process of design and manufacturing, it is possible to process by making one cast part per stage, and the inner compression blade and output blade are one-stage blade and the outer compression blade and output blade corresponding to ultra high speed rotation with resonance and zero vibration approach. Is equipped with two stages and supports maximum speed drive. Inner compressor blades and output blades are equipped with two or more stage blades, and outer compressor blades and output blades are equipped with three or more stages and support optimum speed drive. With an easy bearing load of 0 and low-temperature compressed air 28a, liquid oxygen production machine 89A + vertical type moving blade steam water gravity turbine 11Z and other fuel costs 0 power generation, etc. As a heat supply facility 3D, supercritical pressure water vapor 5H to high temperature water 52b is injected into methane hydrate under the seabed or permafrost, similar to US shale gas recovery device + Japan methane recovery device, supercritical pressure water vapor 5H to high temperature water 52b methane high An extra large transparent conical enclosure is provided that recovers with methane gas injected into the rate, cools with 5 liters of liquid nitrogen and recovers with liquid methane, and vaporizes and recovers the methane hydrate injected into the methane hydrate under the permafrost land. Vaporized methane is recovered from the top, cooled with 5 L of liquid nitrogen, recovered and stored in liquid methane, stored in an ultra-large greenhouse with many water droplets heated by sunlight or high-temperature water 52b, and the outside air and blocked methane fungus methane Research on production volume, research on grazing in greenhouse pastures with lots of sunlight, and experiments on whether zero imported fuel is possible, such as mass production of liquid methane that increases greenhouse pastures, and on experiments such as mass production of beef In the hydrogen production for driving a fuel cell vehicle, a vertical all blade steam water gravity turbine 11 that produces hydrogen by electrolysis of ultra-low cost water and supplies it to the fuel cell vehicle as the cheapest hydrogen production To equal various fuel costs 0 Power + liquid oxygen production unit 89A.

図10の太陽光加熱器21の熱製造は、空気温度20℃を圧縮して圧縮比8で13倍の260℃になるため、例えば液体酸素製造機89Aの対向2段圧縮機12Yで、太陽光加熱器21で10倍温度等に加熱した空気28aを圧縮比800狙いにして、対向2段圧縮機12Y水冷却圧縮翼53Cで熱交換圧縮して圧縮空気熱交換器2Yで熱交換し、超臨界圧力水蒸気5Hを製造して、燃料費0発電電気駆動で大気温度の13000倍熱量の超臨界圧力水蒸気5H製造の実験にし、80MPa超臨界圧力水蒸気5H噴射で逆浸透水52D吸引噴射加速して、竪型全動翼蒸気水重力タービン11Zを駆動し、同一流路面積既存蒸気タービン最終翼群の1/20000容積同一水質量として、同一水質量×30倍速度の2乗=900倍発電量燃料費0駆動のタービン翼群8Fにし、図9の液体酸素製造機89Aを駆動では、超臨界圧力水蒸気5H温熱+液体空気28a冷熱製造供給の、電気+液体空気冷熱+高温水52b等温熱の供給設備3Dにして、温熱利用全盛や冷熱利用全盛にするもので、太陽光加熱器21を水面に浮力を設け又は平地に円形鉄道を設けて具備し、太陽光を東から西に直角維持回転制御する図に無い水上装置や陸上装置として、太陽光加熱器21には回転支持部4fを設けて歯車装置4dやローラー4eを具備し、円筒回転部77Gとして太陽光を上下方向直角維持回転制御して、浮力や円形鉄道利用により東西方向直角維持回転制御する装置とし、太陽光を2方向直角維持回転制御して、加熱保存熱量最大狙う熱吸収管4H内空気温度を最高にする装置とし、地球最大熱量の太陽光を矩形長レンズ2dにより直線状に集めて、焦点距離付近に熱吸収管4H具備内部空気路28A空気28a温度を最高にして、外部空気路28A空気28a温度も上昇し、既存のレンズ断面を直線状に延長矩形の長レンズ2dとして、レンズ材質全部を使用可能とし、発泡プラスチック等の断熱材2cを円筒回転部77G等で囲って円筒等の長大な筒として、長大な長レンズ2dを継手80A+締付具80Bで密封し、上部を外部空気路28Aとし熱吸収管4H内部を内部空気路28Aとして、2空気路28A選択吸入の太陽光加熱器21にする。 Since the heat production of the solar heater 21 of FIG. 10 compresses the air temperature of 20 ° C. and becomes 13 times 260 ° C. with a compression ratio of 8, for example, in the opposed two-stage compressor 12Y of the liquid oxygen production machine 89A, The air 28a heated to 10 times the temperature by the light heater 21 is aimed at a compression ratio of 800, heat exchange compression is performed by the opposed two-stage compressor 12Y water-cooled compression blade 53C, and heat exchange is performed by the compressed air heat exchanger 2Y. Supercritical pressure water vapor 5H is manufactured, and the experiment of supercritical pressure water vapor 5H production of 13000 times the amount of heat at atmospheric temperature with zero fuel cost electricity generation electric drive, reverse osmosis water 52D suction injection acceleration with 80MPa supercritical pressure water vapor 5H injection is accelerated Then, the vertical all-blade steam water gravity turbine 11Z is driven, and the same water mass × 30 times the speed squared = 900 times power generation with the same flow path area as 1/20000 volume of the existing steam turbine final blade group. Fuel consumption In the case of driving turbine blade group 8F and driving liquid oxygen producing machine 89A in FIG. 9, supercritical pressure water vapor 5H warm temperature + liquid air 28a cold production supply supply of electricity + liquid air cold heat + hot water 52b isothermal heat supply equipment 3D The solar heater 21 is provided with buoyancy on the surface of the water or a circular railroad on the flat ground, and the solar light is rotated at right angles from the east to the west. The solar heater 21 is provided with a rotation support portion 4f and provided with a gear device 4d and a roller 4e. It is a device that controls rotation at right angles in the east and west directions by using buoyancy and circular railway, and it is a device that maximizes the air temperature in the heat absorption pipe 4H that aims at the maximum amount of heat storage heat by controlling sunlight in two directions at right angles. The sunlight with the maximum heat amount is collected linearly by the rectangular long lens 2d, the temperature of the internal air passage 28A air 28a is maximized near the focal length, and the temperature of the external air passage 28A air 28a is also increased. The entire lens material can be used as a rectangular long lens 2d extending linearly in cross section of the lens, and the heat insulating material 2c such as foamed plastic is surrounded by a cylindrical rotating portion 77G as a long cylinder such as a cylinder. The lens 2d is sealed with a joint 80A + fastener 80B, and the upper part is an external air path 28A and the heat absorption pipe 4H is an internal air path 28A.

図11の液体酸素89A連結駆動の対向2段圧縮機12Yは、対向圧縮にすることで圧縮推力を平衡にして推力軸受0接近を容易にするもので、設計や製造の過程では、上吸引下反発磁石9bや吸引磁石9cにより軸受荷重0接近で超高速回転対応とし、段落毎1鋳造部品にすることで加工可能兼共振や振動0接近の超高速回転に対応して、内側圧縮翼群53Dは1段翼に外側圧縮翼群53Cは2段具備で最大速度駆動に対応し、内側圧縮翼群53Dは2段翼以上に外側圧縮翼群53Cは3段具備以上で最適速度駆動に対応し、内側軸装置60A兼内側圧縮翼群53D+外側軸装置60B兼外側圧縮翼群53Cの両端に軸受12C具備し、夫々別々に二重反転機関用旋盤10Cや圧縮翼用研削盤10D加工して、夫々別々に螺子組立固定や嵌め合い組立固定等に仮組立てし、二重反転機関用旋盤10Cで両端を保持超高速回転バランス調整加工等として、バランス調整良好として分解し、本組立にする対向2段圧縮機12Yとして、二重反転磁気装置85〜二重反転歯車装置85Yにより、内側軸装置60A+外側軸装置60Bを二重反転駆動し、多数の逆浸透水52D冷却圧縮翼とした内側圧縮翼群53D+外側圧縮翼群53Cで、入口外箱噴口6Gから吸入した空気28aを直線冷却圧縮の対向圧縮にして、磁気利用に追加する軸受荷重0接近にし、対向2段圧縮機12Y超高速二重反転の対向直線冷却圧縮にして、圧縮比800狙いで圧縮空気熱交換器2Yに供給し、超臨界圧力水蒸気管5Hと熱交換して、燃料費0で大気温度の1300倍熱量の超臨界圧力水蒸気5H製造量狙いとし、全動翼二重反転圧縮の駆動入力電力との比較実験にする、対向2段圧縮機12Yにする。 The opposed two-stage compressor 12Y connected to the liquid oxygen 89A shown in FIG. 11 facilitates the approach to the thrust bearing 0 by balancing the compression thrust by optimizing the compression. The repulsion magnet 9b and the attraction magnet 9c can handle ultra-high-speed rotation when the bearing load is close to 0, and can be machined by making one cast part per stage. Is equipped with two stages of outer compressor blades 53C for maximum speed drive, inner compressor blade group 53D has more than two stages, and outer compressor blade group 53C has more than three stages for optimum speed drive. The bearings 12C are provided at both ends of the inner shaft device 60A / inner compression blade group 53D + outer shaft device 60B / outer compression blade group 53C. Screw assembly fixed and fitted separately Temporarily assembled to mating and fixing, etc., held at both ends by a counter rotating machine lathe 10C, disassembled as a good balance adjustment, such as an ultra-high speed rotation balance adjustment process, and double as the opposed two-stage compressor 12Y to be assembled By the reversal magnetic device 85 to the reversing gear device 85Y, the inner shaft device 60A + the outer shaft device 60B are double-reversed and driven by the inner compression blade group 53D + the outer compression blade group 53C as a large number of reverse osmosis water 52D cooling compression blades. Then, the air 28a sucked from the inlet outer box nozzle 6G is made into the opposite compression of the linear cooling compression, the bearing load to be added to the magnetic utilization is brought close to 0, and the opposite two-stage compressor 12Y is made into the opposite linear cooling compression of the ultra high speed counter rotation. , Aiming at a compression ratio of 800, supply to the compressed air heat exchanger 2Y, heat exchange with the supercritical pressure steam pipe 5H, and produce supercritical pressure steam 5H with 1300 times the heat of the atmospheric temperature at zero fuel cost It aimed to the comparative experiment between the drive input power Zendotsubasa counterrotating compression, to opposite two-stage compressor 12Y.

既存最先端科学技術が簡単に金儲け可能な発明実施全部や、静翼で堰き止め減速して使用する機関類全部や、超高速回転バランス調整加工が必要な機関類発明が皆無等、物理基礎の運動エネルギ=質量×速度の2乗に比例するを利用0接近の静翼具備全部のため、竪型全動翼蒸気水重力タービン11Z等各種発電量の優位性比較説明倍率が、既存火力発電蒸気タービン最終翼群の1800万倍発電量に少し近付く可能性があり、既存の火力発電や原子力発電が自然淘汰する可能性があり、太陽光発電や風力発電も順次0になる可能性がある。 All of the invention implementations that can make money easily with existing state-of-the-art science and technology, all the engines that are used by damming with a stationary blade and decelerating, and there are no engine inventions that require ultra-high-speed rotation balance adjustment processing. Use kinetic energy = proportional to the square of mass × speed. Because all of the stationary blades close to 0 are used, the advantage comparison explanation of various power generations such as the vertical type moving blade steam water gravity turbine 11Z is the same as the existing thermal power generation steam. There is a possibility that the power generation amount of the turbine last blade group will be a little closer to 18 million times, there is a possibility that the existing thermal power generation and nuclear power generation will naturally occur, and solar power generation and wind power generation may also become zero sequentially.

0:優位性比較説明倍率(実験の必要倍率) 0:各種エネルギ保存サイクル合体機関(各種熱エネルギは空気温度として熱ポンプで圧縮熱回収熱製造使用して、重力エネルギは上昇保存噴射真空中重力加速度加速して発電し電気駆動や電気製造物駆動等各種関連機関) 1:発電機、 1c:液体燃料、 1e:工場発電、 1f:横軸軸受0接近(横軸軸受+推力軸受+電磁石等で軸受荷重0接近) 1h:横軸(外側軸装置と内側軸装置の回転方向交互にする軸) 1A:蓄電池、 1D:燃料噴射ポンプ、 1H:自家発電、 1K:液体燃料制御弁、 1L:高圧燃料加熱管、 2A:耐熱材、 2C:1〜複数段圧縮熱回収器(熱エネルギを空気温度とし熱ポンプで複数回圧縮熱交換器で複数回熱回収して残りを温熱50+液体冷熱28aに分割保存) 2W:低温空気熱交換器、 2Y:圧縮空気熱交換器(高圧空気28a冷熱+過熱蒸気50温熱製造) 2b:水抵抗僅少(船底に空気や燃焼ガスや過熱蒸気等を高速噴射して水抵抗僅少にする) 2c:断熱材、 2d:長レンズ(凸レンズ断面を直線状に延長矩形とし、複数使用で焦点距離最短レンズ幅最大狙う) 2E:比重大物質(合金含む、白金球・金球・タングステン合金粉末焼結球・銀球・銅球・錫球・鉛球・亜鉛球・アルミニウム球・インジウム・カドミウム・ガリウム・タリウム・ビスマス等比重の大きい物質) 2E:比重大物質(製造法は小径程衝撃エネルギが低減するため例えば溶融鋼を大気中に噴射高速衝突粉砕空気冷却水冷却で超小径鋼球等製造) 2E:比重大物質(シリコン樹脂被覆やケイ素樹脂被覆の被覆白金合金球・被覆金合金球・被覆タングステン合金粉末焼結球・被覆銀合金球・被覆ビスマス合金球・被覆銅合金球・被覆錫合金球・被覆鉛合金球・被覆亜鉛合金球・被覆アルミニウム合金球) 3d:合体タービン、 3e:2段圧縮機、 3s:簡単圧縮機、 3u:タービン、 3D:電気熱供給設備、 3E:比重大物質(水銀や水等常温で液体の比重大物質) 3E:比重大物質(低融点合金の500度以下液体で安定高温液体合金) 3Q:理論膨張機関(ボイルの法則で最良狙う) 3R:理論ガスタービン、 3S:理論蒸気タービン、 3T:理論気体圧縮機、 3U:理論タービン、 4C:対向同期歯車、 4D:直列同回転歯車、 4H:熱吸収管(長レンズ2dで太陽光を熱吸収管に直線状に集めて管内空気温度を最高に加熱して菅外空気温度も上昇する) 4J:蓄電池駆動車輪、 4L:理論膨張機関自動車、 4M:理論タービン自動車、 4Q:理論燃焼室(過熱蒸気製造で理論空燃比燃焼既存の4倍燃焼量等や20倍圧力過熱蒸気噴射狙う燃焼室)、 4T:軸流二重反転圧縮機、 4V:軸流二重反転タービン、 4d:歯車装置、 4e:ローラー、 4f:回転支持部、 5:空気噴射ノズル、 5b:圧縮空気路、 5G:水蒸気加熱管、 5G:水管、 5H:超臨界圧力水蒸気、 5H:超臨界圧力水蒸気管、 5J:圧縮空気過熱管、 5K:液体酸素、 5L:液体窒素室、 5L:液体窒素、 5M:高圧高温燃焼室、 5Q:高圧高温水制御弁、 5S:圧縮空気加熱管、 5V:圧縮空気制御弁、 5Z:水ポンプ、 6:最終圧縮翼、 6a:初速製造部、 6A:過熱蒸気ロケット噴口(用途により逆噴射可能にした噴口) 6B:圧縮空気噴射ノズル、 6F:水噴射ノズル、 6G:外箱噴口、 6H:排水管、 6W:比重大物質加速機、 6X:燃料噴射ノズル、 6Y:燃焼ガス噴射ノズル、 6Z:水蒸気噴射ノズル、 6a:初速製造部、 7A:プロペラ、 7B:回転翼、 7C:スクリュー、 8a:タービン翼、 8d:上側膨張翼群、 8e:下側膨張翼群、 8f:組立タービン翼群、 8g:上側圧縮翼群、 8h:下側圧縮翼群、 8j:組立圧縮翼群、 8k:内側圧縮翼(両側中心支持内側軸装置具備) 8m:外側圧縮翼(両側中心支持外側軸装置具備)、 8n:内側出力翼(両側中心支持内側軸装置具備)、 8p:外側出力翼(両側中心支持外側軸装置具備) 8q:内側圧縮翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした圧縮翼) 8r:外側圧縮翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした圧縮翼)、 8s:内側出力翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした出力翼)、 8t:外側出力翼(回転速度や周速度に合せた角度や曲線や回転半径二重反転とした出力翼) 8F:タービン翼群(運動エネルギ=質量×速度の2乗に比例する。を利用超高速駆動物質速度記録に挑戦最大発電量にする) 8G:一体タービン翼群(可変速発電電動機では一定周波交流で可変速となり、入出力が回転数の3乗に比例して変化する。を利用超高速周速度記録に挑戦最大発電量にする) 9B:反発電磁石永久磁石、 9C:吸引電磁石永久磁石、 9D:空気圧部、 9E:空気圧部、 9M:嵌合組立部、 9Q:垂直平行板、 9b:上吸引下反発磁石、 9c:吸引磁石、 9d:反発磁石、 10B:二重反転機関用立型旋盤、 10C:二重反転機関用旋盤、 10D:圧縮翼用研削盤、 10E:出力翼用研削盤、 10F:タービン翼用研削盤、 10G:タービン翼用研削盤、 11:全動翼蒸気タービン、 11a:リニア噴射車両、 11b:噴射車両、 11B:二重反転自動車、 11C:二重反転船舶、 11D:復水器、 11E:二重反転飛行機、 11F:二重反転噴射船舶、 11G:二重反転噴射飛行機、 11I:回転翼飛行機、 11J:回転翼噴射飛行機、 11M:オスプレイ特大、 11N:オスプレイ大型、 11W:横型全動翼蒸気比重大物質重力タービン、 11X:横型全動翼蒸気水重力タービン、 11Y:竪型全動翼蒸気比重大物質重力タービン、 11Z:竪型全動翼蒸気水重力タービン、 12:重力発電建物、 12A:鉄骨骨組、 12B:柱管、 12C:軸受、 12D:角フランジ、 12E:二重反転噴射機関、 12F:二重反転空気噴射機関、 12G:二重反転機関、 12N:2段圧縮機、 12Y:対向2段圧縮機、 12Z:対向2段圧縮機、 16:水平軸板(精密組立を容易にする円盤) 16A:水平軸、 21:太陽光加熱器(吸入空気路を熱吸収管4H内にも設けて主使用する) 24A:圧縮空気制御弁、 25:過熱蒸気制御弁、 25b:高圧燃料制御弁、 25c:燃料管、 28A:吸入空気路、 28a:空気、 28b:吸入空気路、 29a:超高圧空気、 38H:理論スクリュー船舶、 38J:理論噴射船舶、 38T:理論噴射飛行機、 38U:理論プロペラ飛行機、 49:燃焼ガス、 50:過熱蒸気、 50:過熱蒸気室、 50A:高圧高温水、 50a:過熱蒸気噴射管、 52A:水、 52B:水管、 52C:アルコール、 52C:アルコール管、 52D:逆浸透水(固形物除去タービン翼群8Fの摩耗量を僅少にする水)、 52D:逆浸透水管、 52E:蒸留水、 52E:蒸留水管、 52a:水、 52b:高温水、 53A:外側出力翼群(駆動流体速度の1/10前後外周速度狙う出力翼) 53B:内側出力翼群(駆動流体速度に近い外周速度狙う出力翼) 53C:外側圧縮翼群(5H製造用の逆浸透水52D冷却翼) 53D:内側圧縮翼群、 60A:内側軸装置、 60B:外側軸装置、 60C:円筒内側動翼群、 60D:円筒外側動翼群、 60G:外側環状翼群、 60H:内側環状翼群、 60c:内側動翼群、 60d:外側動翼群、 60e:外入口翼群、 60f:内入口翼群、 60g:外中間翼群、 60h:内中間翼群、 60j:内出口翼群、 60k:外出口翼群、 77A:ガスタービン外箱、 77B:ロケット外箱、 77C:二重反転機外箱、 77G:円筒回転部、 77a:タービン外箱、 77b:圧縮機外箱、 80:軸受(磁力+空気圧利用で可能な限り軸受荷重を0に近付ける) 80A:継手、 80B:締付具、 80a:推力軸受(磁力+空気圧利用で可能な限り軸受荷重を0に近付ける) 85:二重反転磁気装置(磁石利用歯車高さ僅少から無接触にし横軸1h歯車により相互逆回転にする) 85Y:二重反転歯車装置(横軸1h歯車により相互逆回転にする) 88B:蒸気合体空気噴射部、 88C:理論空気噴射部、 88L:蒸気合体水噴射部、 88M:理論水噴射部、 89A:液体酸素製造機 0: Advantage comparison explanation magnification (required magnification of experiment) 0: Various energy storage cycle coalescence engine (various heat energy is used as heat temperature by compression heat recovery heat production with heat pump, gravitational energy rise storage gravity in vacuum 1) Generator, 1c: Liquid fuel, 1e: Factory power generation, 1f: Horizontal shaft bearing 0 approach (horizontal shaft bearing + thrust bearing + electromagnet, etc.) 1h: Horizontal axis (axis that alternates rotation direction of outer shaft device and inner shaft device) 1A: Storage battery, 1D: Fuel injection pump, 1H: In-house power generation, 1K: Liquid fuel control valve, 1L: High-pressure fuel heating pipe, 2A: heat-resistant material, 2C: 1 to multi-stage compression heat recovery device (heat energy is air temperature, heat pump is used to recover heat multiple times with a compression heat exchanger, and the rest is hot 50 + liquid cold heat 2 2W: Low-temperature air heat exchanger 2Y: Compressed air heat exchanger (high-pressure air 28a cold heat + superheated steam 50 heat production) 2b: Low water resistance (high speed of air, combustion gas, superheated steam, etc. on the bottom of the ship) 2c: Insulating material, 2d: Long lens (Convex lens cross-section is extended into a rectangular shape, the longest focal length is achieved by multiple use) 2E: Specific material (including alloy, platinum) Sphere, gold sphere, tungsten alloy powder sintered sphere, silver sphere, copper sphere, tin sphere, lead sphere, zinc sphere, aluminum sphere, indium, cadmium, gallium, thallium, bismuth, etc. In the method, the impact energy decreases as the diameter decreases. For example, molten steel is injected into the atmosphere, and high-speed collision pulverization and air cooling water cooling is used to produce ultra-small diameter steel balls. 2E: Specific critical substances (silicon resin coating and Coated platinum alloy balls, coated gold alloy balls, coated tungsten alloy powder sintered balls, coated silver alloy balls, coated bismuth alloy balls, coated copper alloy balls, coated tin alloy balls, coated lead alloy balls, coated zinc alloy balls 3d: Combined turbine, 3e: Two-stage compressor, 3s: Simple compressor, 3u: Turbine, 3D: Electric heat supply equipment, 3E: Specific critical substances (specific gravity of liquid such as mercury and water at room temperature) 3E: Specific critical material (low-melting-point low-temperature liquid and stable high-temperature liquid alloy) 3Q: Theoretical expansion engine (best aim by Boyle's law) 3R: Theoretical gas turbine, 3S: Theoretical steam turbine, 3T: Theoretical gas compressor, 3U: Theoretical turbine, 4C: Opposing synchronous gear, 4D: In-line co-rotating gear, 4H: Heat absorption tube (long-lens 2d collects sunlight into heat absorption tube in a straight line 4J: Storage battery drive wheel, 4L: Theoretical expansion engine vehicle, 4M: Theoretical turbine vehicle, 4Q: Theoretical combustion chamber (theoretical air-fuel ratio combustion in the production of superheated steam) 4T: axial flow counter-rotating compressor, 4V: axial flow counter-rotating turbine, 4d: gear unit, 4e: roller, 4f: rotation support Part, 5: air injection nozzle, 5b: compressed air passage, 5G: steam heating pipe, 5G: water pipe, 5H: supercritical pressure steam, 5H: supercritical pressure steam pipe, 5J: compressed air superheated pipe, 5K: liquid oxygen 5L: liquid nitrogen chamber, 5L: liquid nitrogen, 5M: high pressure high temperature combustion chamber, 5Q: high pressure high temperature water control valve, 5S: compressed air heating pipe, 5V: compressed air control valve, 5Z: water pump, 6: top 6a: Superheated steam rocket injection port (injection port that can be back-injected depending on the application) 6B: Compressed air injection nozzle, 6F: Water injection nozzle, 6G: Outer box injection port, 6H: Drain pipe, 6W : Specific critical material accelerator, 6X: Fuel injection nozzle, 6Y: Combustion gas injection nozzle, 6Z: Steam injection nozzle, 6a: Initial speed production section, 7A: Propeller, 7B: Rotary blade, 7C: Screw, 8a: Turbine blade, 8d: Upper expansion blade group, 8e: Lower expansion blade group, 8f: Assembly turbine blade group, 8g: Upper compression blade group, 8h: Lower compression blade group, 8j: Assembly compression blade group, 8k: Inner compression blade ( 8m: Outer compression blade (equipped with both-side center support outer shaft device), 8n: Inner output blade (equipped with both-side center support inner shaft device), 8p: Outer output blade (middle of both sides) 8q: Inner compression blade (compression blade with angle and curve according to rotational speed and circumferential speed, and rotation radius double reversal) 8r: Outer compression blade (angle according to rotation speed and peripheral speed) 8s: Inner output blade (angle, curve and rotation radius according to rotation speed and peripheral speed), 8t: Outer output blade (rotation speed) 8F: Turbine blade group (kinetic energy = mass × speed squared in proportion to square) 8G: Integrated turbine blade group (variable speed generator motor changes variable speed with constant frequency AC, and input / output changes in proportion to the cube of the number of revolutions) 9B: Counter-generator permanent magnet, 9C: Attracting electromagnet permanent magnet, 9D: Pneumatic part, 9E: Pneumatic part, 9M: Mating assembly part, 9Q: Vertical Parallel plate, 9b: Upper suction lower repulsion magnet, 9c: Attraction magnet, 9d: Repulsion magnet, 10B: Vertical lathe for counter rotating engine, 10C: Lathe for counter rotating engine, 10D: Grinding machine for compression blade, 10E : Grinding machine for output blades, 10F: Grinding machine for turbine blades, 10G: Grinding machine for turbine blades, 11: All blade steam turbine, 11a: Linear injection vehicle, 11b: Injection vehicle, 11B: Automatic double reversal 11C: Counter-inversion ship, 11D: Condenser, 11E: Counter-inversion airplane, 11F: Counter-inversion injection ship, 11G: Counter-inversion injection airplane, 11I: Rotary wing airplane, 11J: Rotary wing injection airplane, 11M: Osprey extra large, 11N: Osprey large, 11W: Horizontal full blade steam ratio critical material gravity turbine, 11X: Horizontal full blade steam water gravity turbine, 11Y: Vertical full blade steam ratio critical material gravity turbine, 11Z: Vertical all blade steam water gravity turbine, 12: Gravity power generation building, 12A: Steel frame, 12B: Column tube, 12C: Bearing, 12D: Square flange, 12E: Counter-rotating injection engine, 12F: Counter-rotating air injection Engine, 12G: Counter-rotating engine, 12N: Two-stage compressor, 12Y: Opposed two-stage compressor, 12Z: Opposed two-stage compressor, 16: Horizontal shaft 16A: Horizontal axis, 21: Solar heater (mainly used with the intake air passage also provided in the heat absorption pipe 4H) 24A: Compressed air control valve, 25: Superheated steam control valve 25b: High pressure fuel control valve, 25c: Fuel pipe, 28A: Intake air passage, 28a: Air, 28b: Intake air passage, 29a: Ultra high pressure air, 38H: Theoretical screw vessel, 38J: Theoretical injection vessel, 38T: Theoretical vessel Jet plane, 38U: Theoretical propeller plane, 49: Combustion gas, 50: Superheated steam, 50: Superheated steam chamber, 50A: High-pressure high-temperature water, 50a: Superheated steam injection pipe, 52A: Water, 52B: Water pipe, 52C: Alcohol, 52C: alcohol pipe, 52D: reverse osmosis water (water that reduces the amount of wear of the solid matter removing turbine blade group 8F), 52D: reverse osmosis water pipe, 52E: Distilled water, 52E: Distilled water pipe, 52a: Water, 52b: High-temperature water, 53A: Outer output blade group (output blade aiming at peripheral speed around 1/10 of the driving fluid speed) 53B: Inner output blade group (close to the driving fluid speed) 53C: Outer compression blade group (reverse osmosis water 52D cooling blade for 5H production) 53D: Inner compression blade group, 60A: Inner shaft device, 60B: Outer shaft device, 60C: Cylindrical inner blade group 60D: cylindrical outer blade group, 60G: outer annular blade group, 60H: inner annular blade group, 60c: inner blade group, 60d: outer blade group, 60e: outer inlet blade group, 60f: inner inlet blade group 60g: Outer intermediate blade group, 60h: Inner intermediate blade group, 60j: Inner outlet blade group, 60k: Outer outlet blade group, 77A: Gas turbine outer box, 77B: Rocket outer box, 77C: Double reversing machine outer box , 77G: Yen Cylindrical rotating part, 77a: Turbine outer box, 77b: Compressor outer box, 80: Bearing (Bearing load as close to 0 as possible by using magnetic force + air pressure) 80A: Joint, 80B: Fastening tool, 80a: Thrust bearing (Use magnetic force + air pressure to bring the bearing load as close to 0 as possible.) 85: Counter rotating magnetic device (magnet using gear height is slight to non-contact and reciprocally rotates with a horizontal shaft 1h gear) 85Y: Counter rotating Gear device (reciprocally rotated by a 1h gear on the horizontal axis) 88B: Steam combined air injection unit, 88C: Theoretical air injection unit, 88L: Steam combined water injection unit, 88M: Theoretical water injection unit, 89A: Liquid oxygen production machine

Claims (693)

円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which a cylindrical inner rotor blade group (60C) is one stage and a cylindrical outer rotor blade group (60D) is two stages, and a vertical all-blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which a cylindrical inner rotor blade group (60C) has two stages and a cylindrical outer rotor blade group (60D) has three stages, and a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which a cylindrical inner rotor blade group (60C) has three stages and a cylindrical outer rotor blade group (60D) has four stages, and a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, with a cylindrical inner blade group (60C) as four stages and a cylindrical outer blade group (60D) as five stages, and a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which a cylindrical inner rotor blade group (60C) is five stages and a cylindrical outer rotor blade group (60D) is six stages, and a vertical all blade steam water gravity turbine (11Z) is used. 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which a cylindrical inner rotor blade group (60C) has six stages and a cylindrical outer rotor blade group (60D) has seven stages, and a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, with a cylindrical inner blade group (60C) as seven stages and a cylindrical outer blade group (60D) as eight stages, and a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods using a cylindrical inner rotor blade group (60C) as eight stages and a cylindrical outer rotor blade group (60D) as nine stages as a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods using a cylindrical inner blade group (60C) as nine stages and a cylindrical outer blade group (60D) as ten stages, and a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods using a cylindrical inner rotor blade group (60C) as 10 stages and a cylindrical outer rotor blade group (60D) as 11 stages and a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods using a cylindrical inner rotor blade group (60C) as 11 stages and a cylindrical outer rotor blade group (60D) as 12 stages, and a vertical all-blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycles using a cylindrical inner blade group (60C) as one stage, a cylindrical outer blade group (60D) as two stages, and each stage as a cast part, a vertical all blade steam water gravity turbine (11Z). Merger engine and merger method. 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy conservation cycles with a cylindrical inner blade group (60C) as two stages, a cylindrical outer blade group (60D) as three stages, and each stage as one cast part as a vertical all blade steam water gravity turbine (11Z) Merger engine and merger method. 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycles with a cylindrical inner rotor blade group (60C) as three stages, a cylindrical outer rotor blade group (60D) as four stages, and each stage as a cast part, a vertical all blade steam water gravity turbine (11Z). Merger engine and merger method. 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy conservation cycles with a cylindrical inner blade group (60C) as four stages, a cylindrical outer blade group (60D) as five stages, and each stage as a cast part, a vertical all blade steam water gravity turbine (11Z). Merger engine and merger method. 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy conservation cycles with a cylindrical inner blade group (60C) as five stages, a cylindrical outer blade group (60D) as six stages, and each stage as a cast part, a vertical all blade steam water gravity turbine (11Z). Merger engine and merger method. 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycles with a cylindrical inner blade group (60C) as six stages, a cylindrical outer blade group (60D) as seven stages, and each stage as a cast part, a vertical all blade steam water gravity turbine (11Z) Merger engine and merger method. 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycles with a cylindrical inner blade group (60C) as seven stages, a cylindrical outer blade group (60D) as eight stages, and each stage as a cast part, a vertical all blade steam water gravity turbine (11Z) Merger engine and merger method. 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycles using a cylindrical all-blade group (60C) as eight stages, a cylindrical outer blade group (60D) as nine stages, and each stage as one cast part, a vertical all-blade steam-water gravity turbine (11Z) Merger engine and merger method. 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycles using a cylindrical inner blade group (60C) as nine stages, a cylindrical outer blade group (60D) as ten stages, and each stage as one cast part as a vertical all blade steam water gravity turbine (11Z). Merger engine and merger method. 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycles using a cylindrical inner rotor blade group (60C) as 10 stages, a cylindrical outer rotor blade group (60D) as 11 stages, and each stage as one casting part as a vertical all blade steam water gravity turbine (11Z). Merger engine and merger method. 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycles using a cylindrical inner blade group (60C) as 11 stages, a cylindrical outer blade group (60D) as 12 stages, and each stage as a cast part, a vertical all blade steam water gravity turbine (11Z). Merger engine and merger method. 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is processed as one cast part by a vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage is processed as a cast part with a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage is processed as a cast part with a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has four stages, the cylindrical outer rotor blade group (60D) has five stages, and each stage is processed as one cast part by a vertical lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has five stages, the cylindrical outer rotor blade group (60D) has six stages, and each stage is processed as a cast part by a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage is processed as a cast part on a counter-rotating engine vertical lathe (10B). Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has seven stages, the cylindrical outer blade group (60D) has eight stages, and each stage is processed as a cast part with a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage is processed as a cast part on a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is nine stages, the cylindrical outer rotor blade group (60D) is ten stages, and each stage is processed as one cast part by a vertical lathe (10B) for a counter rotating engine, and the vertical type Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage is processed as a cast part on a counter-rotating engine vertical lathe (10B). Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 11 stages, the cylindrical outer rotor blade group (60D) has 12 stages, and each stage is processed as a cast part by a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is one cast part. 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has four stages, the cylindrical outer rotor blade group (60D) has five stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has five stages, the cylindrical outer blade group (60D) has six stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has seven stages, the cylindrical outer rotor blade group (60D) has eight stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) is composed of nine stages, the cylindrical outer blade group (60D) is composed of ten stages, and each stage is formed as one cast component, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has 11 stages, the cylindrical outer blade group (60D) has 12 stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescence engines and coalescence methods that are processed into a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is one casting part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has four stages, the cylindrical outer rotor blade group (60D) has five stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has five stages, the cylindrical outer blade group (60D) has six stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has seven stages, the cylindrical outer rotor blade group (60D) has eight stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) is composed of nine stages, the cylindrical outer blade group (60D) is composed of ten stages, and each stage is formed as one cast component, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has 11 stages, the cylindrical outer blade group (60D) has 12 stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine, and the super-high-speed balance adjustment processing is performed to make the vertical rotor blade steam water gravity turbine (11Z) ) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is one cast part. 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) is four stages, the cylindrical outer blade group (60D) is five stages, and each stage is one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has five stages, the cylindrical outer blade group (60D) has six stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has seven stages, the cylindrical outer rotor blade group (60D) has eight stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) is composed of nine stages, the cylindrical outer blade group (60D) is composed of ten stages, and each stage is formed as one cast component, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage has one cast part. 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)単数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has 11 stages, the cylindrical outer blade group (60D) has 12 stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) A single set of various energy storage cycle coalescence engines and coalescence methods that form a vertical all blade steam water gravity turbine (11Z). 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is one casting part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has four stages, the cylindrical outer rotor blade group (60D) has five stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has five stages, the cylindrical outer blade group (60D) has six stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has seven stages, the cylindrical outer rotor blade group (60D) has eight stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) is nine stages, the cylindrical outer blade group (60D) is ten stages, and each stage is one cast part. 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)複数組にして竪型全動翼蒸気水重力タービン(11Z)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has 11 stages, the cylindrical outer blade group (60D) has 12 stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Apparatus (60B) Inner shaft apparatus (60A) Various energy storage cycle coalescing engine and coalescence method using a plurality of sets of vertical rotor blade steam water gravity turbines (11Z). 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a cylindrical inner rotor blade group (60C) as a first stage and a cylindrical outer rotor blade group (60D) as a second stage and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods using a cylindrical inner rotor blade group (60C) in two stages and a cylindrical outer rotor blade group (60D) in three stages as a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods using a cylindrical inner rotor blade group (60C) as three stages and a cylindrical outer rotor blade group (60D) as four stages and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a cylindrical inner rotor blade group (60C) as four stages and a cylindrical outer rotor blade group (60D) as five stages and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a cylindrical inner rotor blade group (60C) as five stages and a cylindrical outer rotor blade group (60D) as six stages and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a cylindrical inner rotor blade group (60C) as six stages and a cylindrical outer rotor blade group (60D) as seven stages, and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a cylindrical inner rotor blade group (60C) as seven stages and a cylindrical outer rotor blade group (60D) as eight stages and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a cylindrical inner rotor blade group (60C) as eight stages and a cylindrical outer rotor blade group (60D) as nine stages and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a cylindrical inner rotor blade group (60C) as nine stages and a cylindrical outer rotor blade group (60D) as ten stages and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a cylindrical inner rotor blade group (60C) as 10 stages and a cylindrical outer rotor blade group (60D) as 11 stages, and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a cylindrical inner rotor blade group (60C) as 11 stages and a cylindrical outer rotor blade group (60D) as 12 stages and a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energies for the vertical inner blade group (60C) and the outer cylindrical blade group (60D) as two stages, and each stage as one casting component, and a vertical all-blade steam ratio critical material gravity turbine (11Y) Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy for a cylindrical full-scale blade steam ratio critical material gravity turbine (11Y) with the cylindrical inner blade group (60C) in two stages, the cylindrical outer blade group (60D) in three stages, and each stage as one cast part Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energies for the vertical inner blade group (60C) and the outer cylindrical blade group (60D) as four stages, and each stage as one cast part for the vertical type moving blade steam ratio critical material gravity turbine (11Y) Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy for the vertical inner blade group (60Y) and the outer cylindrical blade group (60D) as five stages, and each stage as one cast part, and a vertical all-blade steam ratio critical material gravity turbine (11Y) Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy for a cylindrical full-scale blade steam ratio critical material gravity turbine (11Y) with a cylindrical inner blade group (60C) as five stages, a cylindrical outer blade group (60D) as six stages, and each stage as one cast part. Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy for the vertical inner blade group (60Y) and the outer cylindrical blade group (60D) as seven stages and each stage as one casting part as a vertical all-blade steam ratio critical material gravity turbine (11Y) Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energies for the vertical inner blade group (60C) and the outer cylindrical blade group (60D) as eight stages, and each stage as one cast component for a vertical all-blade steam ratio critical material gravity turbine (11Y) Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy for the vertical inner rotor blade group (60Y) and the outer cylindrical rotor blade group (60D) as nine stages, and each stage as one cast part for a vertical all-blade steam ratio critical material gravity turbine (11Y) Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energies for the vertical inner blade group (60Y) and the outer cylindrical blade group (60D) as 10 stages, and each stage as one cast part, and a vertical all-blade steam ratio critical material gravity turbine (11Y) Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energies of a vertical all-blade steam ratio critical material gravity turbine (11Y) with 10 cylinder inner rotor blade groups (60C), 11 outer cylinder blade groups (60D) and 11 stages each casting part Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energies for the cylindrical inner blade group (60C) and the outer cylindrical blade group (60D) as 12 stages and each stage as one cast part for the vertical type moving blade steam ratio critical material gravity turbine (11Y) Storage cycle coalescence engine and coalescence method. 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is processed as one cast part by a vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage is processed as a cast part with a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage is processed as a cast part with a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has four stages, the cylindrical outer rotor blade group (60D) has five stages, and each stage is processed as one cast part by a vertical lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is five stages, the cylindrical outer rotor blade group (60D) is six stages, and each stage is processed as one cast part by a vertical lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage is processed as a cast part on a counter-rotating engine vertical lathe (10B). Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has seven stages, the cylindrical outer blade group (60D) has eight stages, and each stage is processed as a cast part with a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage is processed as a cast part on a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is nine stages, the cylindrical outer rotor blade group (60D) is ten stages, and each stage is processed as one cast part by a vertical lathe (10B) for a counter rotating engine, and the vertical type Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage is processed as a cast part on a counter-rotating engine vertical lathe (10B). Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 11 stages, the cylindrical outer rotor blade group (60D) has 12 stages, and each stage is processed as a cast part by a vertical turning lathe (10B) for a counter rotating engine. Various energy storage cycle coalescence engine and coalescence method as a moving blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is one casting part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has four stages, the cylindrical outer rotor blade group (60D) has five stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has five stages, the cylindrical outer blade group (60D) has six stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has seven stages, the cylindrical outer rotor blade group (60D) has eight stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) is composed of nine stages, the cylindrical outer blade group (60D) is composed of ten stages, and each stage is formed as one cast component, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has 11 stages, the cylindrical outer blade group (60D) has 12 stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), various energy storage cycle coalescing engines and coalescence methods that are processed into a vertical all-blade steam ratio critical material gravity turbine (11Y). 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is one casting part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has four stages, the cylindrical outer rotor blade group (60D) has five stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has five stages, the cylindrical outer blade group (60D) has six stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has seven stages, the cylindrical outer rotor blade group (60D) has eight stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) is composed of nine stages, the cylindrical outer blade group (60D) is composed of ten stages, and each stage is formed as one cast component, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has 11 stages, the cylindrical outer blade group (60D) has 12 stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B) and the like are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. (11Y) Various energy storage cycle coalescence engines and coalescence methods. 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is one casting part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has four stages, the cylindrical outer rotor blade group (60D) has five stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has five stages, the cylindrical outer blade group (60D) has six stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has seven stages, the cylindrical outer rotor blade group (60D) has eight stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) is composed of nine stages, the cylindrical outer blade group (60D) is composed of ten stages, and each stage is formed as one cast component, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has 11 stages, the cylindrical outer blade group (60D) has 12 stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engines and coalescence methods, wherein the inner shaft device (60A) of the device (60B) is a vertical type moving blade steam ratio critical material gravity turbine (11Y) driven vertically by a counter rotating magnetic device (85). 円筒内側動翼群(60C)を1段として円筒外側動翼群(60D)を2段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) is one stage, the cylindrical outer rotor blade group (60D) is two stages, and each stage is one casting part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を2段として円筒外側動翼群(60D)を3段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has two stages, the cylindrical outer rotor blade group (60D) has three stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を3段として円筒外側動翼群(60D)を4段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has three stages, the cylindrical outer rotor blade group (60D) has four stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を4段として円筒外側動翼群(60D)を5段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has four stages, the cylindrical outer rotor blade group (60D) has five stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を5段として円筒外側動翼群(60D)を6段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has five stages, the cylindrical outer blade group (60D) has six stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を6段として円筒外側動翼群(60D)を7段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has six stages, the cylindrical outer blade group (60D) has seven stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を7段として円筒外側動翼群(60D)を8段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has seven stages, the cylindrical outer rotor blade group (60D) has eight stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を8段として円筒外側動翼群(60D)を9段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has eight stages, the cylindrical outer blade group (60D) has nine stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を9段として円筒外側動翼群(60D)を10段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) is composed of nine stages, the cylindrical outer blade group (60D) is composed of ten stages, and each stage is formed as one cast component, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を10段として円筒外側動翼群(60D)を11段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner rotor blade group (60C) has 10 stages, the cylindrical outer rotor blade group (60D) has 11 stages, and each stage has one cast part, and the counter rotating engine vertical lathe (10B) and turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 円筒内側動翼群(60C)を11段として円筒外側動翼群(60D)を12段として夫々の段を1鋳造部品として二重反転機関用立型旋盤(10B)とタービン翼用研削盤(10F)で加工して外側軸装置(60B)等夫々を仮組立して二重反転機関用立型旋盤(10B)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で垂直連結駆動する竪型全動翼蒸気比重大物質重力タービン(11Y)とした各種エネルギ保存サイクル合体機関及び合体方法。   The cylindrical inner blade group (60C) has 11 stages, the cylindrical outer blade group (60D) has 12 stages, and each stage has one cast part, and a counter rotating engine vertical lathe (10B) and a turbine blade grinding machine ( 10F), the outer shaft device (60B), etc. are temporarily assembled and held by the vertical turning lathe (10B) for counter rotating engine. Various energy storage cycle coalescence engine and coalescence method using a vertical type moving blade steam ratio critical material gravity turbine (11Y) in which the device (60B) inner shaft device (60A) is vertically connected and driven by a counter rotating gear device (85Y). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods with a horizontal all-blade steam-water gravity turbine (11X) with an integral turbine blade group (8G) horizontal shaft (16A) as one cast part and a total length of 1.5 m or less. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescing methods in which the integrated turbine blade group (8G) horizontal shaft (16A) is a cast part and the total length is 2 m or less, and a horizontal all-blade steam-water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) horizontal shaft (16A) is a cast part and the total length is 2.5 m or less, and is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescence methods, in which the integrated turbine blade group (8G) and the horizontal shaft (16A) are one cast part and the total length is 3 m or less, and a horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods with a horizontal all-blade steam-water gravity turbine (11X) with an integral turbine blade group (8G) horizontal shaft (16A) as one cast part and a total length of 3,5 m or less. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescing methods in which the integrated turbine blade group (8G) horizontal shaft (16A) is a cast part and the total length is 4 m or less, and a horizontal all-blade steam-water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) horizontal shaft (16A) is a cast part and the overall length is 4,5 m or less, and is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescence methods, in which the integrated turbine blade group (8G) and the horizontal axis (16A) are one cast part and the total length is 5 m or less, and a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) horizontal shaft (16A) is a cast part and the overall length is 5,5 m or less and is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescing methods in which the integrated turbine blade group (8G) horizontal shaft (16A) is a cast part and the total length is 6 m or less, and a horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal shaft (16A) as one cast part and has a total length of 6 m or more, and is a horizontal full blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the horizontal turbine (11G) has a total length of 1.5 m or less with two integrated cast turbine blade groups (8G) and a horizontal axis (16A). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal shaft (16A) as two cast parts and has a total length of 2 m or less, and is a horizontal full blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal shaft (16A) as two cast parts and has a total length of 2.5 m or less, and is a horizontal full blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, including a horizontal all-blade steam water gravity turbine (11X) with an integral turbine blade group (8G) horizontal shaft (16A) as two cast parts and a total length of 3 m or less. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal shaft (16A) as two cast parts and has a total length of 3,5 m or less, and is a horizontal full-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal turbine blade (11X) with an integral turbine blade group (8G) horizontal shaft (16A) as two cast parts and a total length of 4 m or less. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal shaft (16A) as two cast parts and has a total length of 4,5 m or less, and is a horizontal full-blade steam water gravity turbine (11X) 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal turbine blade (11X) with an integral turbine blade group (8G) horizontal shaft (16A) as two cast parts and a total length of 5 m or less. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal shaft (16A) as two cast parts and has a total length of 5,5 m or less, and is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods with a horizontal all-blade steam-water gravity turbine (11X) with an integral turbine blade group (8G) horizontal shaft (16A) as two cast parts and a total length of 6 m or less. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal axis (16A) as two cast parts and has a total length of 6 m or more, and is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) and the horizontal shaft (16A) are three cast parts and the total length is 1.5 m or less, and is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal shaft (16A) as three cast parts and has a total length of 2 m or less, and is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal all-blade steam water gravity turbine (11X) with a total length of 2.5 m or less using three integral parts of an integrated turbine blade group (8G) horizontal axis (16A). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal shaft (16A) as three cast parts and has a total length of 3 m or less, and is a horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal shaft (16A) as three cast parts and has a total length of 3,5 m or less, and is a horizontal full blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescence methods, in which an integrated turbine blade group (8G) and a horizontal shaft (16A) are three cast parts and the total length is 4 m or less, and a horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal turbine blade (11X) with an integral turbine blade group (8G) horizontal shaft (16A) as three cast parts and a total length of 4,5 m or less. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal all-blade steam water gravity turbine (11X) with a total length of 5 m or less using three integral parts of the integrated turbine blade group (8G) horizontal axis (16A). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal all-blade steam-water gravity turbine (11X) with an integral turbine blade group (8G) horizontal shaft (16A) as three cast parts and a total length of 5,5 m or less. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which an integrated turbine blade group (8G) and a horizontal shaft (16A) are three cast parts and the total length is 6 m or less, and a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, including an integral turbine blade group (8G) and a horizontal shaft (16A) as three cast parts and a total length of 6 m or more, and a horizontal full-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part and the total length is 1.5 m or less and machined with a counter-rotating engine lathe (10C) to obtain a horizontal all-blade steam water gravity turbine (11X). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 2m or less, machined with a counter rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 2,5 m or less, machined with a counter-rotating engine lathe (10C) to obtain a horizontal all-blade steam water gravity turbine (11X) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 3 m or less, machined with a counter rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part and the total length is 3.5 m or less and machined with a counter-rotating engine lathe (10C) to make a horizontal all-blade steam water gravity turbine (11X) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 4m or less, machined with a counter rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 4,5m or less and machined with counter-rotating engine lathe (10C) to make a horizontal all blade steam water gravity turbine (11X) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 5 m or less, machined with a counter rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   An integrated turbine blade group (8G) horizontal shaft (16A) as a single cast part and processed with a counter rotating machine lathe (10C) with a total length of 5,5 m or less to form a horizontal full blade steam water gravity turbine (11X). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 6m or less, machined with a counter rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 6m or more, machined with a counter rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 1.5 m or less, machined with a counter-rotating engine lathe (10C) to make a horizontal all blade steam water gravity turbine (11X) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machined with counter-rotating engine lathe (10C) and various energies to make a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 2,5 m or less, machined with a counter-rotating engine lathe (10C) to make a horizontal all blade steam water gravity turbine (11X) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various turbine energies (8G) Horizontal shaft (16A) with two cast parts and a total length of 3m or less, machined with a counter-rotating engine lathe (10C) to produce a horizontal all-blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   An integrated turbine blade group (8G) with a horizontal axis (16A) as two cast parts and a total length of 3,5 m or less, machined with a counter rotating engine lathe (10C), to obtain a horizontal all blade steam water gravity turbine (11X). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various turbine energies (8G) Horizontal shaft (16A) with two cast parts and a total length of 4m or less, machined with a counter rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   An integrated turbine blade group (8G) horizontal shaft (16A) with two cast parts and a total length of 4,5 m or less, machined with a counter-rotating engine lathe (10C), to obtain a horizontal all-blade steam water gravity turbine (11X). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various turbine energies (8G) Horizontal shaft (16A) with two cast parts and a total length of 5m or less, machined with a counter-rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 5,5 m or less, machined with a counter-rotating engine lathe (10C) to make a horizontal all-blade steam water gravity turbine (11X) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 6m or less, machined with a counter-rotating engine lathe (10C) to produce a horizontal all-blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 6m or more and machined with a counter rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   An integrated turbine blade group (8G) with a horizontal axis (16A) as three cast parts and a total length of 1.5 m or less and machined with a counter-rotating engine lathe (10C) to produce a horizontal all-blade steam water gravity turbine (11X). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and total length of 2m or less, machined with counter rotating engine lathe (10C) to make horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   An integrated turbine blade group (8G) with a horizontal axis (16A) as three cast parts and a total length of 2.5 m or less and machined with a counter-rotating engine lathe (10C) to obtain a horizontal all-blade steam water gravity turbine (11X). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machined with counter-rotating engine lathe (10C), and various energies to make horizontal all-blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   An integrated turbine blade group (8G) with a horizontal axis (16A) as three cast parts and a total length of 3,5 m or less and processed with a counter rotating lathe (10C) to form a horizontal all blade steam water gravity turbine (11X). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machined with counter-rotating engine lathe (10C) to make horizontal all-blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   An integrated turbine blade group (8G) with a horizontal axis (16A) as three cast parts and a total length of 4,5 m or less and machined with a counter rotating engine lathe (10C) to obtain a horizontal all blade steam water gravity turbine (11X). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machined with counter-rotating engine lathe (10C), and various energies made into a horizontal all-blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   An integrated turbine blade group (8G) horizontal shaft (16A) with three cast parts and a total length of 5,5 m or less was machined with a counter rotating engine lathe (10C) to obtain a horizontal all blade steam water gravity turbine (11X). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machined with counter-rotating engine lathe (10C) and various energies to make a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 6m or more, machined with a counter rotating engine lathe (10C) to produce a horizontal all blade steam water gravity turbine (11X) Storage cycle coalescence engine and coalescence method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 1.5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 2 m or less, processed by a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G), and a horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 3 m or less, machined with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G), and a horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 3,5 m or less, machined with a counter-rotating engine lathe (10C) and a turbine blade grinding machine (10G), and a horizontal full blade Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 4 m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 4,5 m or less, machined with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G), and a horizontal all blade Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal axis (16A) as one cast part, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 5,5m or less, machined with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G) to create a horizontal all blade Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 6m or more, processed by a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G), and a horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 1.5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2.5m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 3 m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 3.5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4m or less, machined with counter rotating engine lathe (10C) and turbine blade grinder (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of less than 4,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 6m or more, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 1.5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2.5m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 3,5 m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and total length of 4,5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 6m or more, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade steam water Various energy storage cycle coalescence engine and coalescence method as a gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 1.5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), and assembly into a counter rotating engine Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machining with double reversing engine lathe (10C) and turbine blade grinding machine (10G) Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 3, 5 m or less, processed with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G) and assembled into a double Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one casting part, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 4,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5,5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of less than 1,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 3,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and assembled Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into counter rotating engine Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 1,5m and machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 2,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 3,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into double Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4,5m or less, machining with double turning engine lathe (10C) and turbine blade grinding machine (10G) Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy conservation cycle coalescing engines and coalescence methods, which are obtained by using a horizontal all-blade steam-water gravity turbine (11X) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method for a horizontal full blade steam water gravity turbine (11X) that is held and adjusted with a lathe (10C) for ultra-high speed balance. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 1.5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), and assembly into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machining with double reversing engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 3, 5 m or less, processed with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G) and assembled into a double Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one casting part, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 4,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5,5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of less than 1,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 3,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and assembled Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 1,5m and machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 2,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 3,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into double Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4,5m or less, machining with double turning engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding Ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, and making a horizontal full blade steam water gravity turbine (11X) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various types of energy conservation cycle coalescence engine and coalescence using various magnetics to make a bearing (12C) with a bearing load close to 0 to form a horizontal all blade steam water gravity turbine (11X) Method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 1.5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), and assembly into a counter rotating engine Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machining with double reversing engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 3, 5 m or less, processed with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G) and assembled into a double Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one casting part, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 4,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5,5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of less than 1,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 3,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and assembled Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into counter rotating engine Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 1,5m and machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 2,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 3,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into double Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4,5m or less, machining with double turning engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing blade steam water gravity that is held by a rotating engine lathe (10C) and is made of ultra-high-speed balance and processed by various magnetisms to make a bearing (12C) close to zero bearing load and vertically connected by a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal full-swing steam-water gravity turbine (4D) driven in series by the same rotating gear (4D), using a magnetic lathe (10C) and adjusting the ultra-high-speed balance and using various magnets to make a bearing (12C) close to zero bearing load. 11X) various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 1.5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), and assembly into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machining with double reversing engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 3, 5 m or less, processed with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G) and assembled into a double Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one casting part, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 4,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5,5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of less than 1,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 3,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and assembled Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 1,5m and machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 2,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 3,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into double Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4,5m or less, machining with double turning engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to the horizontal all-blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気水重力タービン(11X)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescing engine and coalescence method, which is a horizontal all blade steam water gravity turbine (11X). 内側出力翼群(53B)を1段として外側出力翼群(53A)を2段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which the inner output blade group (53B) is one stage and the outer output blade group (53A) is two stages and a liquid oxygen producing machine (89A). 内側出力翼群(53B)を2段として外側出力翼群(53A)を3段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which the inner output blade group (53B) is in two stages and the outer output blade group (53A) is in three stages to form a liquid oxygen production machine (89A). 内側出力翼群(53B)を3段として外側出力翼群(53A)を4段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which the inner output blade group (53B) has three stages and the outer output blade group (53A) has four stages, and a liquid oxygen producing machine (89A). 内側出力翼群(53B)を4段として外側出力翼群(53A)を5段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which the inner output blade group (53B) has four stages and the outer output blade group (53A) has five stages and a liquid oxygen producing machine (89A). 内側出力翼群(53B)を5段として外側出力翼群(53A)を6段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which five stages of inner output blade groups (53B) and six stages of outer output blade groups (53A) are used as a liquid oxygen producing machine (89A). 内側出力翼群(53B)を6段として外側出力翼群(53A)を7段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods using six stages of inner output blade groups (53B) and seven stages of outer output blade groups (53A) as a liquid oxygen producing machine (89A). 内側出力翼群(53B)を7段として外側出力翼群(53A)を8段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which the inner output blade group (53B) has seven stages and the outer output blade group (53A) has eight stages, and a liquid oxygen producing machine (89A). 内側出力翼群(53B)を8段として外側出力翼群(53A)を9段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which the inner output blade group (53B) has eight stages and the outer output blade group (53A) has nine stages, and a liquid oxygen producing machine (89A). 内側出力翼群(53B)を9段として外側出力翼群(53A)を10段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which nine stages of inner output blade groups (53B) and ten stages of outer output blade groups (53A) are used as a liquid oxygen producing machine (89A). 内側出力翼群(53B)を10段として外側出力翼群(53A)を11段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which the inner output blade group (53B) has 10 stages and the outer output blade group (53A) has 11 stages, and is a liquid oxygen producing machine (89A). 内側出力翼群(53B)を11段として外側出力翼群(53A)を12段として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods using 11 stages of inner output blade groups (53B) and 12 stages of outer output blade groups (53A) as a liquid oxygen producing machine (89A). 内側出力翼群(53B)を1段として外側出力翼群(53A)を2段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods using a liquid oxygen production machine (89A) with the inner output blade group (53B) as one stage, the outer output blade group (53A) as two stages, and each stage as one casting part. 内側出力翼群(53B)を2段として外側出力翼群(53A)を3段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which the inner output blade group (53B) has two stages, the outer output blade group (53A) has three stages, and each stage has one casting part as a liquid oxygen production machine (89A). 内側出力翼群(53B)を3段として外側出力翼群(53A)を4段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which the inner output blade group (53B) has three stages, the outer output blade group (53A) has four stages, and each stage has one casting part as a liquid oxygen production machine (89A). 内側出力翼群(53B)を4段として外側出力翼群(53A)を5段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which the inner output blade group (53B) has four stages, the outer output blade group (53A) has five stages, and each stage has one casting part as a liquid oxygen production machine (89A). 内側出力翼群(53B)を5段として外側出力翼群(53A)を6段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which the inner output blade group (53B) has five stages, the outer output blade group (53A) has six stages, and each stage has one casting part as a liquid oxygen production machine (89A). 内側出力翼群(53B)を6段として外側出力翼群(53A)を7段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which the inner output blade group (53B) has six stages, the outer output blade group (53A) has seven stages, and each stage has one casting part as a liquid oxygen production machine (89A). 内側出力翼群(53B)を7段として外側出力翼群(53A)を8段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescence methods using seven stages of inner output blade group (53B), eight stages of outer output blade group (53A), and each stage as one casting part as a liquid oxygen production machine (89A). 内側出力翼群(53B)を8段として外側出力翼群(53A)を9段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle merging engines and merging methods in which the inner output blade group (53B) has eight stages, the outer output blade group (53A) has nine stages, and each stage has one casting part as a liquid oxygen production machine (89A). 内側出力翼群(53B)を9段として外側出力翼群(53A)を10段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the inner output blade group (53B) is nine stages, the outer output blade group (53A) is ten stages, and each stage is one cast part, and a liquid oxygen production machine (89A). 内側出力翼群(53B)を10段として外側出力翼群(53A)を11段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods using a liquid oxygen production machine (89A) with 10 stages of the inner output blade group (53B), 11 stages of the outer output blade group (53A), and each stage as one casting part. 内側出力翼群(53B)を11段として外側出力翼群(53A)を12段として夫々の段を1鋳造部品として液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods in which the inner output blade group (53B) is 11 stages, the outer output blade group (53A) is 12 stages, and each stage is one cast part, and a liquid oxygen production machine (89A). 内側出力翼群(53B)を1段として外側出力翼群(53A)を2段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is one stage, the outer output blade group (53A) is two stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) to produce a liquid oxygen production machine (89A) Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を2段として外側出力翼群(53A)を3段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   A liquid oxygen production machine (89A) by processing the inner output blade group (53B) in two stages, the outer output blade group (53A) in three stages, and processing each stage as a cast part with a counter rotating engine lathe (10C). Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を3段として外側出力翼群(53A)を4段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   A liquid oxygen producing machine (89A) is processed by a counter rotating engine lathe (10C) with three stages of the inner output blade group (53B) and four stages of the outer output blade group (53A) and one stage as a cast part. Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を4段として外側出力翼群(53A)を5段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has four stages, the outer output blade group (53A) has five stages, and each stage is processed as a cast part on a counter rotating engine lathe (10C) to produce a liquid oxygen production machine (89A). Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を5段として外側出力翼群(53A)を6段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has five stages, the outer output blade group (53A) has six stages, and each stage is processed as a cast part on a counter rotating engine lathe (10C) to produce a liquid oxygen producing machine (89A). Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を6段として外側出力翼群(53A)を7段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is six stages, the outer output blade group (53A) is seven stages, and each stage is processed as one casting part on a counter rotating engine lathe (10C) to produce a liquid oxygen production machine (89A) Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を7段として外側出力翼群(53A)を8段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is seven stages, the outer output blade group (53A) is eight stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) to produce a liquid oxygen production machine (89A) Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を8段として外側出力翼群(53A)を9段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is eight stages, the outer output blade group (53A) is nine stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) to produce a liquid oxygen production machine (89A) Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を9段として外側出力翼群(53A)を10段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is nine stages, the outer output blade group (53A) is ten stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) to produce a liquid oxygen production machine (89A) Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を10段として外側出力翼群(53A)を11段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 10 stages, the outer output blade group (53A) is 11 stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) to produce a liquid oxygen production machine (89A) Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を11段として外側出力翼群(53A)を12段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 11 stages, the outer output blade group (53A) is 12 stages, and each stage is processed as a cast part on a counter rotating engine lathe (10C) to produce a liquid oxygen production machine (89A) Various energy storage cycle coalescence engines and coalescence methods. 内側出力翼群(53B)を1段として外側出力翼群(53A)を2段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is one stage, the outer output blade group (53A) is two stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を2段として外側出力翼群(53A)を3段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is two stages, the outer output blade group (53A) is three stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を3段として外側出力翼群(53A)を4段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is three stages, the outer output blade group (53A) is four stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を4段として外側出力翼群(53A)を5段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has four stages, the outer output blade group (53A) has five stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を5段として外側出力翼群(53A)を6段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is five stages, the outer output blade group (53A) is six stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を6段として外側出力翼群(53A)を7段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has six stages, the outer output blade group (53A) has seven stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を7段として外側出力翼群(53A)を8段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is seven stages, the outer output blade group (53A) is eight stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を8段として外側出力翼群(53A)を9段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 8 stages, the outer output blade group (53A) is 9 stages, and each stage is processed as one cast part with a counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を9段として外側出力翼群(53A)を10段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 9 stages, the outer output blade group (53A) is 10 stages, and each stage is processed as one cast part on the counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を10段として外側出力翼群(53A)を11段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 10 stages, the outer output blade group (53A) is 11 stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を11段として外側出力翼群(53A)を12段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 11 stages, the outer output blade group (53A) is 12 stages, and each stage is processed as one cast part on the counter rotating engine lathe (10C) and output blade grinding machine (10E). Various energy storage cycle coalescing engines and coalescence methods for a liquid oxygen producing machine (89A). 内側出力翼群(53B)を1段として外側出力翼群(53A)を2段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is one stage, the outer output blade group (53A) is two stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を2段として外側出力翼群(53A)を3段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is two stages, the outer output blade group (53A) is three stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を3段として外側出力翼群(53A)を4段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is three stages, the outer output blade group (53A) is four stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を4段として外側出力翼群(53A)を5段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has four stages, the outer output blade group (53A) has five stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を5段として外側出力翼群(53A)を6段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is five stages, the outer output blade group (53A) is six stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を6段として外側出力翼群(53A)を7段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has six stages, the outer output blade group (53A) has seven stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を7段として外側出力翼群(53A)を8段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is seven stages, the outer output blade group (53A) is eight stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を8段として外側出力翼群(53A)を9段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 8 stages, the outer output blade group (53A) is 9 stages, and each stage is processed as one cast part with a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼 群(53B)を9段として外側出力翼群(53A)を10段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 9 stages, the outer output blade group (53A) is 10 stages, and each stage is processed as one cast part with a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を10段として外側出力翼群(53A)を11段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 10 stages, the outer output blade group (53A) is 11 stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を11段として外側出力翼群(53A)を12段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 11 stages, the outer output blade group (53A) is 12 stages, and each stage is processed as one cast part on the counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, each of the outer shaft device (60B) and the inner shaft device (60A) is temporarily assembled and held by a counter rotating engine lathe (10C) to adjust the ultra-high speed balance, thereby preparing a liquid oxygen production machine (89A). Cycle coalescence engine and coalescence method. 内側出力翼群(53B)を1段として外側出力翼群(53A)を2段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is one stage, the outer output blade group (53A) is two stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を2段として外側出力翼群(53A)を3段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is two stages, the outer output blade group (53A) is three stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を3段として外側出力翼群(53A)を4段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is three stages, the outer output blade group (53A) is four stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を4段として外側出力翼群(53A)を5段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has four stages, the outer output blade group (53A) has five stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を5段として外側出力翼群(53A)を6段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is five stages, the outer output blade group (53A) is six stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を6段として外側出力翼群(53A)を7段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has six stages, the outer output blade group (53A) has seven stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を7段として外側出力翼群(53A)を8段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is seven stages, the outer output blade group (53A) is eight stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を8段として外側出力翼群(53A)を9段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 8 stages, the outer output blade group (53A) is 9 stages, and each stage is processed as one cast part with a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を9段として外側出力翼群(53A)を10段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 9 stages, the outer output blade group (53A) is 10 stages, and each stage is processed as one cast part on the counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を10段として外側出力翼群(53A)を11段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 10 stages, the outer output blade group (53A) is 11 stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を11段として外側出力翼群(53A)を12段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転歯車装置(85Y)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 11 stages, the outer output blade group (53A) is 12 stages, and each stage is processed as one cast part on the counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating gear device (85Y). 内側出力翼群(53B)を1段として外側出力翼群(53A)を2段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is one stage, the outer output blade group (53A) is two stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を2段として外側出力翼群(53A)を3段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is two stages, the outer output blade group (53A) is three stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を3段として外側出力翼群(53A)を4段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is three stages, the outer output blade group (53A) is four stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を4段として外側出力翼群(53A)を5段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has four stages, the outer output blade group (53A) has five stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を5段として外側出力翼群(53A)を6段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is five stages, the outer output blade group (53A) is six stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を6段として外側出力翼群(53A)を7段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) has six stages, the outer output blade group (53A) has seven stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を7段として外側出力翼群(53A)を8段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is seven stages, the outer output blade group (53A) is eight stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を8段として外側出力翼群(53A)を9段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 8 stages, the outer output blade group (53A) is 9 stages, and each stage is processed as one cast part with a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を9段として外側出力翼群(53A)を10段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 9 stages, the outer output blade group (53A) is 10 stages, and each stage is processed as one cast part on the counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を10段として外側出力翼群(53A)を11段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 10 stages, the outer output blade group (53A) is 11 stages, and each stage is processed as one cast part on a counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 内側出力翼群(53B)を11段として外側出力翼群(53A)を12段として夫々の段を1鋳造部品として二重反転機関用旋盤(10C)と出力翼用研削盤(10E)で加工して外側軸装置(60B)内側軸装置(60A)夫々を仮組立して二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の外側軸装置(60B)内側軸装置(60A)を二重反転磁気装置(85)で水平連結駆動する液体酸素製造機(89A)とした各種エネルギ保存サイクル合体機関及び合体方法。   The inner output blade group (53B) is 11 stages, the outer output blade group (53A) is 12 stages, and each stage is processed as one cast part on the counter rotating engine lathe (10C) and output blade grinding machine (10E). Then, the outer shaft device (60B) and the inner shaft device (60A) are temporarily assembled, held by a counter rotating engine lathe (10C), and subjected to ultra-high-speed balance adjustment processing. (60B) Various energy storage cycle merging engines and merging methods in which the inner shaft device (60A) is a liquid oxygen producing machine (89A) that is horizontally coupled and driven by a counter-rotating magnetic device (85). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11W) with integral turbine blade group (8G) horizontal shaft (16A) as one cast part and total length of 1.5m or less. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11W) with integral turbine blade group (8G) horizontal shaft (16A) as one cast part and total length of 2 m or less. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11 W) with integral turbine blade group (8G) horizontal shaft (16A) as one cast part and total length of 2.5 m or less. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11W) with integral turbine blade group (8G) horizontal shaft (16A) as one cast part and total length of 3 m or less. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11W) with integral turbine blade group (8G) horizontal shaft (16A) as one cast part and total length of 3,5 m or less. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) horizontal shaft (16A) is a cast part and the total length is 4 m or less, and the horizontal full-blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal turbine blade specific gravity gravity turbine (11 W) with an integral turbine blade group (8G) horizontal shaft (16A) as one cast part and a total length of 4,5 m or less. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which an integral turbine blade group (8G) horizontal shaft (16A) is a cast part and a total length is 5 m or less and a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11W) with integral turbine blade group (8G) horizontal shaft (16A) as one cast part and total length of 5,5m or less. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, including an integral turbine blade group (8G) and a horizontal axis (16A) as a single cast part and a total length of 6 m or less, and a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11 W) with integral turbine blade group (8G) horizontal shaft (16A) as one cast part and total length of 6m or more. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal full-blade steam ratio critical material gravity turbine (11 W) with an integral turbine blade group (8G) horizontal shaft (16A) as two cast parts and a total length of 1.5 m or less. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) has a horizontal axis (16A) as two cast parts and has a total length of 2 m or less and is a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11 W) with two integrated cast turbine blade groups (8G) horizontal shaft (16A) and a total length of 2.5 m or less. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) has a horizontal shaft (16A) as two cast parts and has a total length of 3 m or less, and is a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal full-blade steam ratio critical material gravity turbine (11 W) with an integral turbine blade group (8G) horizontal shaft (16A) as two cast parts and a total length of 3.5 m or less. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) has a horizontal axis (16A) as two cast parts and has a total length of 4 m or less, and is a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal full-blade steam ratio critical material gravity turbine (11W) with an integral turbine blade group (8G) horizontal shaft (16A) as two cast parts and a total length of 4,5 m or less. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) has a horizontal axis (16A) as two cast parts and has a total length of 5 m or less, and is a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, in which an integral turbine blade group (8G) horizontal shaft (16A) is used as two cast parts and the overall length is 5,5 m or less, and a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescing engines and coalescence methods, in which the integrated turbine blade group (8G) has a horizontal axis (16A) as two cast parts and has a total length of 6 m or less, and is a horizontal full-blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods with a turbine blade group (8G) horizontal shaft (16A) as two cast parts and a total length of 6 m or more, and a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11W) with integral turbine blade group (8G) horizontal shaft (16A) as three cast parts and total length of 1.5m or less. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11W) with integral turbine blade group (8G) horizontal shaft (16A) as three cast parts and total length of 2 m or less. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal full-blade steam ratio critical material gravity turbine (11W) with an integral turbine blade group (8G) horizontal shaft (16A) as three cast parts and a total length of 2.5 m or less. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) has a horizontal shaft (16A) as three cast parts and has a total length of 3 m or less and is a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal full-blade steam ratio critical material gravity turbine (11W) with an integral turbine blade group (8G) horizontal shaft (16A) as three cast parts and a total length of 3,5 m or less. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) has a horizontal shaft (16A) as three cast parts and has a total length of 4 m or less, and is a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using horizontal turbine blade specific gravity gravity turbine (11W) with integral turbine blade group (8G) horizontal shaft (16A) as three cast parts and total length of 4,5m or less. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) has a horizontal shaft (16A) as three cast parts and has a total length of 5 m or less and is a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engine and coalescence method using a horizontal turbine blade specific ratio gravity material gravity turbine (11 W) with an integral turbine blade group (8G) horizontal shaft (16A) as three cast parts and a total length of 5,5 m or less. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) has a horizontal shaft (16A) as three cast parts and has a total length of 6 m or less, and is a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Various energy storage cycle coalescence engines and coalescence methods, wherein the integrated turbine blade group (8G) has a horizontal shaft (16A) as three cast parts and has a total length of 6 m or more, and is a horizontal full-blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 1.5m or less and machined with a counter-rotating engine lathe (10C), horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 2 m or less and machined with a counter-rotating engine lathe (10C) to produce a horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 2.5m or less and machined on a counter rotating engine lathe (10C), horizontal full blade constant ratio gravity material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 3 m or less and machined with a counter-rotating engine lathe (10C) to make a horizontal full blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 3,5 m or less and machined with a counter-rotating engine lathe (10C), horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 4 m or less and machined with a counter-rotating engine lathe (10C) to obtain a horizontal full-rotor blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 4,5m or less and machined with a counter-rotating engine lathe (10C). Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 5 m or less and machined with a counter-rotating engine lathe (10C) to produce a horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 5,5 m or less and machined on a counter rotating engine lathe (10C), and a horizontal full rotor blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 6 m or less and machined with a counter-rotating engine lathe (10C) to make a horizontal full blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 6m or more and machined with a counter-rotating engine lathe (10C) to make a horizontal full blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 1.5m or less, machined with counter-rotating engine lathe (10C), horizontal type full blade constant ratio gravity material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 2 m or less and machined with a counter-rotating engine lathe (10C) to obtain a horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2.5m or less, machined with counter-rotating engine lathe (10C), horizontal type full blade constant ratio gravity material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 3 m or less and machined with a counter-rotating engine lathe (10C) to make a horizontal full blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Combined turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 3.5m or less, machined with a counter-rotating engine lathe (10C), horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 4 m or less, machined with a counter-rotating engine lathe (10C) to make a horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Combined turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4,5m or less, machined with counter-rotating engine lathe (10C), horizontal type full blade constant ratio gravity material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 5 m or less, machined with a counter-rotating engine lathe (10C) to make a horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and total length of 5,5m or less, machined with counter-rotating engine lathe (10C), horizontal type full blade constant ratio gravity material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 6 m or less, machined with a counter-rotating engine lathe (10C), and made into a horizontal full rotor blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 6m or more and machined with a counter-rotating engine lathe (10C) to obtain a horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 1.5m or less, machined with counter-rotating engine lathe (10C), horizontal type full blade constant ratio gravity material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 2 m or less, machined with a counter-rotating engine lathe (10C) to make a horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2.5m or less, machined with counter rotating engine lathe (10C), horizontal full rotor blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 3 m or less, machined with a counter-rotating engine lathe (10C), and made into a horizontal full rotor blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3,5m or less and machined with counter-rotating engine lathe (10C), horizontal type full blade constant ratio gravity material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 4 m or less, machined with a counter-rotating engine lathe (10C), and made into a horizontal full-rotor blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and total length of 4,5m or less, machined with counter-rotating engine lathe (10C), horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 5m or less, machined with a counter-rotating engine lathe (10C), and made into a horizontal full rotor blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less and machined with counter rotating machine lathe (10C), horizontal full rotor blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 6 m or less and machined with a counter-rotating engine lathe (10C) to make a horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 6m or more and machined with a counter-rotating engine lathe (10C) to make a horizontal full-blade steam ratio critical material gravity turbine (11W) Various energy storage cycle coalescence engines and coalescence methods. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 1.5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Combined turbine blade group (8G) with horizontal axis (16A) as one cast part and with a total length of 2 m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full rotor blade steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Combined turbine blade group (8G) with horizontal axis (16A) as one cast part and with a total length of 3m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full rotor blade steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 3,5 m or less, machined with a counter-rotating engine lathe (10C) and a turbine blade grinding machine (10G), and a horizontal full blade Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 4m or less, machined with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G) to create a horizontal full blade steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, with a total length of 4,5 m or less, machined with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G), and a horizontal all blade Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Combined turbine blade group (8G) with horizontal axis (16A) as one cast part and with a total length of 5m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full rotor blade steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 5,5m or less, machined with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G) to create a horizontal all blade Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) and horizontal full blade steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part and with a total length of 6m or more, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full rotor blade steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 1.5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2.5m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 3m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G), and horizontal full blade constant gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of 3.5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G), and horizontal full-blade steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts and a total length of less than 4,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) and horizontal full blade steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G), and horizontal full blade static gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 6m or more, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 1.5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2.5m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and a total length of 3,5 m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal axis (16A) with 3 cast parts, total length of 4m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts and total length of 4,5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) and horizontal full blade steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method with steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machined with counter-rotating engine lathe (10C) and turbine blade grinding machine (10G), horizontal full blade constant steam specific gravity Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or more, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method as a large material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 1.5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), and assembly into a counter rotating engine Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machining with double reversing engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 3, 5 m or less, processed with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G) and assembled into a double Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one casting part, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 4,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5,5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of less than 1,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 3,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and assembled Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into counter rotating engine Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 1,5m and machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 2,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 3,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into double Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4,5m or less, machining with double turning engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescing engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a turning engine lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W) by holding ultrahigh-speed balance adjustment processing on a lathe (10C). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 1.5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), and assembly into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machining with double reversing engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 3, 5 m or less, processed with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G) and assembled into a double Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one casting part, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 4,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5,5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of less than 1,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 3,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and assembled Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 1,5m and machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 2,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 3,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into double Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4,5m or less, machining with double turning engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Reversing engine lathe (10C) holding ultra high-speed balance adjustment processing, using various magnetism to make bearing (12C) close to zero bearing load, various energy storage cycle as horizontal full blade steam ratio critical material gravity turbine (11W) Merger engine and merger method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with a lathe (10C) Ultra high-speed balance adjustment processing Various magnetic storage, combined with a bearing (12C) approaching zero bearing load, a horizontal full blade steam ratio critical material gravity turbine (11W) And coalescing method. 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 1.5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), and assembly into a counter rotating engine Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machining with double reversing engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 3, 5 m or less, processed with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G) and assembled into a double Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one casting part, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 4,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5,5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of less than 1,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 3,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and assembled Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into counter rotating engine Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 1,5m and machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 2,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 3,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into double Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4,5m or less, machining with double turning engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type rotor blade steam ratio is seriously controlled by using ultra-high-speed balance adjustment processing with a rotating engine lathe (10C) and using various magnetism to make a bearing (12C) close to a bearing load of 0 (vertical connection) with a series rotating gear (4D). Various energy storage cycle coalescence engine and coalescence method as a material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Horizontal type full-blade blade steam ratio critical material gravity that is driven by vertical connection with series rotating gear (4D) using bearings (12C) close to bearing load 0 by using various magnets and holding ultra-high-speed balance processing with lathe (10C) Various energy storage cycle coalescence engine and coalescence method as a turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 1.5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), and assembly into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 2.5 m or less, machining with double reversing engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 3m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as a single cast part, total length of 3, 5 m or less, processed with a counter rotating engine lathe (10C) and a turbine blade grinding machine (10G) and assembled into a double Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one casting part, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 4,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 5,5m or less, double-reversed engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or less, machining with a counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を1鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) as one cast part, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of less than 1,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 2,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 3,5m or less, machined by counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 2 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 4,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and assembled Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5m or less, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) are assembled and double-assembled Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G), assembled into a counter rotating engine Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を2鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with two cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を1,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 1,5m and machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 2m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を2,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 2,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 3m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を3,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) is 3 cast parts, total length is less than 3,5m, machined with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) and assembled into double Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を4,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 4,5m or less, machining with double turning engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を5,5m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 5,5m or less, double counter-rotating engine lathe (10C) and turbine blade grinding machine (10G) Super-high-speed balance adjustment processed by turning engine lathe (10C), using various magnetism to make bearing (12C) close to zero bearing load, driven oppositely by counter-synchronous gear (4C), and vertically driven by series co-rotating gear (4D) Various energy storage cycle coalescing engines and coalescence methods that are coupled to drive a horizontal all-blade steam ratio critical material gravity turbine (11 W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以下として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or less, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W). 一体タービン翼群(8G)水平軸(16A)を3鋳造部品として全長を6m以上として二重反転機関用旋盤(10C)とタービン翼用研削盤(10G)で加工本組立てして二重反転機関用旋盤(10C)で保持超高速バランス調整加工して各種磁気利用し軸受荷重0接近の軸受(12C)にして対向同期歯車(4C)で対向駆動し直列同回転歯車(4D)で垂直連結駆動する横型全動翼蒸気比重大物質重力タービン(11W)とした各種エネルギ保存サイクル合体機関及び合体方法。   Integrated turbine blade group (8G) Horizontal shaft (16A) with 3 cast parts, total length of 6m or more, machining with counter rotating engine lathe (10C) and turbine blade grinding machine (10G) Holding with high speed lathe (10C), adjusting to ultra high speed balance, using various magnetism to make bearing (12C) close to zero bearing load, opposed driving with counter synchronous gear (4C), vertical driving with series rotating gear (4D) Various energy storage cycle coalescence engine and coalescence method using a horizontal full rotor blade steam ratio critical material gravity turbine (11W).
JP2014101863A 2014-05-16 2014-05-16 Various energies conservation cycle combined machine Pending JP2015218640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014101863A JP2015218640A (en) 2014-05-16 2014-05-16 Various energies conservation cycle combined machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014101863A JP2015218640A (en) 2014-05-16 2014-05-16 Various energies conservation cycle combined machine

Publications (1)

Publication Number Publication Date
JP2015218640A true JP2015218640A (en) 2015-12-07

Family

ID=54778235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101863A Pending JP2015218640A (en) 2014-05-16 2014-05-16 Various energies conservation cycle combined machine

Country Status (1)

Country Link
JP (1) JP2015218640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108035811A (en) * 2017-12-05 2018-05-15 通化师范学院 The vertical double matter turbines of axis deceleration directly do power output method
CN108035802A (en) * 2017-12-05 2018-05-15 通化师范学院 Combustion gas orients and the precombustion chamber that keeps in a fire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108035811A (en) * 2017-12-05 2018-05-15 通化师范学院 The vertical double matter turbines of axis deceleration directly do power output method
CN108035802A (en) * 2017-12-05 2018-05-15 通化师范学院 Combustion gas orients and the precombustion chamber that keeps in a fire

Similar Documents

Publication Publication Date Title
JP2015218640A (en) Various energies conservation cycle combined machine
JP2016113952A (en) Cycle combined engine for reserving various kinds of energy
JP2015068331A (en) Various energy conservation cycle combined engine
JP2015108307A (en) Combined engine of various energy conservation cycles
JP2015218641A (en) Various energies conservation cycle combined machine
JP2016205222A (en) Various energies conservation cycle combined machine
JP2017078365A (en) Various energy storage cycle combination engine
JP2015132221A (en) Various energy reservation cycle combined engine
JP2015132223A (en) Various energy reservation cycle combined engine
JP2014173506A (en) Various energy conservation cycle combination engine
JP2015021445A (en) Various energy preservation cycle combined engines
JP2014231767A (en) Various energy reservation cycle combined engine
JP2015132224A (en) Various energy reservation cycle combined engine
JP2015132222A (en) Various energy reservation cycle combined engine
JP2015086695A (en) Various energy conservation cycle combined structure
JP2015086696A (en) Various energy conservation cycle combined structure
JP2015108308A (en) Combined engine of various energy conservation cycles
JP2015086698A (en) Various energy conservation cycle combined structure
JP2013227891A (en) Various energy conservation cycle union engine
JP2014005749A (en) Various energy storing cycle integrated mechanism
JP2015086697A (en) Various energy conservation cycle combined structure
JP2015068332A (en) Various energy conservation cycle combined engine
JP2015040530A (en) Various energy conservation cycle combined structure
JP2015040528A (en) Various energy conservation cycle combined structure
JP2014185531A (en) Various energy conservation cycle combined engine