JP2015215263A - Nondestructive inspection method and system thereof - Google Patents

Nondestructive inspection method and system thereof Download PDF

Info

Publication number
JP2015215263A
JP2015215263A JP2014098900A JP2014098900A JP2015215263A JP 2015215263 A JP2015215263 A JP 2015215263A JP 2014098900 A JP2014098900 A JP 2014098900A JP 2014098900 A JP2014098900 A JP 2014098900A JP 2015215263 A JP2015215263 A JP 2015215263A
Authority
JP
Japan
Prior art keywords
scattered
ray
rays
scattering
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014098900A
Other languages
Japanese (ja)
Other versions
JP6299033B2 (en
Inventor
祐嗣 大石
Suketsugu Oishi
祐嗣 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2014098900A priority Critical patent/JP6299033B2/en
Publication of JP2015215263A publication Critical patent/JP2015215263A/en
Application granted granted Critical
Publication of JP6299033B2 publication Critical patent/JP6299033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nondestructive inspection system capable of simply detecting the state of an object to be inspected without being affected by fluctuations of a γ ray source and without causing the problem of restricting an arrangement position of a detector when a Compton-scattering γ ray is used.SOLUTION: The nondestructive inspection system comprises: a γ ray source 1 for irradiating an object 3 to be inspected with an X ray or a γ ray (hereafter, both together are referred to as a γ ray ) having at least two different peak energies; and a detector 2 for specifying a pattern having at least three peaks formed due to the thickness of the object 3 to be inspected on the basis of scattering γ ray energy distribution characteristics to detect the state of the object 3 to be inspected while detecting a scattering γ ray having the at least three different peak energies on the basis of Compton scattering caused by the result of the irradiation to acquire the scattering γ ray energy distribution characteristics representing signal intensity to the scattering γ ray energy of a scattering γ ray signal showing the detected scattering γ ray.

Description

本発明は非破壊検査方法およびその装置に関し、特にコンプトン散乱を利用した非破壊検査に適用して有用なものである。   The present invention relates to a nondestructive inspection method and an apparatus therefor, and is particularly useful when applied to a nondestructive inspection utilizing Compton scattering.

原子力設備の配管の検査等にはX線またはγ線(以下、本明細書において両者をまとめてγ線という)を利用した非破壊検査が汎用されている。これは検査対象物である配管等にγ線を照射し、これによる検査対象物の透過画像を解析して減肉の程度等を検出するものである(例えば特許文献1参照)。   Non-destructive inspection using X-rays or γ-rays (hereinafter collectively referred to as γ-rays in the present specification) is widely used for inspection of piping of nuclear facilities. In this method, γ-rays are irradiated to a pipe or the like that is an inspection object, and a transmission image of the inspection object is analyzed to detect the degree of thinning (for example, see Patent Document 1).

しかしながら、検査対象物の透過画像を得ることにより減肉の程度等を検査する場合においては、γ線を検出する検出器を、γ線を照射する線源に対し検査対象物を挟んで反対側に配置する必要がある。   However, when inspecting the degree of thinning by obtaining a transmission image of the inspection object, the detector for detecting γ rays is placed on the opposite side of the inspection object with respect to the radiation source that irradiates γ rays. Need to be placed in.

このため、線源に対する検査対象物の反対側が狭隘部であったり、他の配管等の障害物の存在により検出器を配設するための十分なスペースが確保できない場合も多い。   For this reason, the opposite side of the object to be inspected with respect to the radiation source is often a narrow part, or a sufficient space for disposing the detector cannot be secured due to the presence of obstacles such as other pipes.

一方、コンプトン後方散乱に基づく散乱γ線を利用すれば線源と検出器を検査対象物に対して同じ側に配設することもできる。コンプトン後方散乱とは、図8(a)に示すように、所定のγ線をターゲットTに照射したとき、γ線に対して角度Φの方向に飛び出す反跳電子Eとともに、エネルギーが変化した散乱γ線として元のγ線が散乱される現象をいう。ここで、散乱γ線の散乱角θはターゲットTに照射されるγ線のエネルギーEと散乱される散乱γ線の散乱γ線エネルギーEとで一意に定まる。散乱角θ>90°の領域に散乱する場合を、特に後方散乱という。 On the other hand, if scattered gamma rays based on Compton backscattering are used, the radiation source and the detector can be arranged on the same side with respect to the inspection object. Compton backscattering means that, as shown in FIG. 8 (a), when the target T is irradiated with a predetermined γ-ray, the energy changes with the recoil electrons E e that jump out in the direction of the angle Φ with respect to the γ-ray. A phenomenon in which the original γ rays are scattered as scattered γ rays. Here, the scattering angle θ of the scattered γ-ray is uniquely determined by the energy E 0 of the γ-ray irradiated to the target T and the scattered γ-ray energy E 1 of the scattered γ-ray scattered. The case of scattering in a region where the scattering angle θ> 90 ° is particularly referred to as backscattering.

したがって、図8(b)に示すように、γ線源01と検出器02とを散乱角θ>90°に合致するように配設すれば、γ線源01と検出器02とを検査対象物である配管03に対して同じ側に配設することができ、検出器02の配設条件を緩和することができる。ここで、検出器02では、図8(c)に示すように、散乱角θ(γ線源01の配設位置と検出器02の配設位置とがなす角度)で一意に特定される散乱γ線の散乱γ線エネルギーEで信号強度がピークとなる散乱γ線エネルギー分布が得られる。なお、図8(c)の横軸には、散乱γ線のエネルギーを採り、縦軸には検出器02で検出される散乱γ線信号の信号強度を採ってある。散乱γ線信号は、散乱γ線の強度を表す信号である。また、γ線源01および検出器02の前には、図示はしないが、通常コリメーターが配設される。 Therefore, as shown in FIG. 8B, if the γ-ray source 01 and the detector 02 are arranged so as to match the scattering angle θ> 90 °, the γ-ray source 01 and the detector 02 are inspected. It can arrange | position on the same side with respect to the piping 03 which is a thing, and the arrangement | positioning conditions of the detector 02 can be eased. Here, in the detector 02, as shown in FIG. 8C, the scattering uniquely identified by the scattering angle θ (the angle formed by the arrangement position of the γ-ray source 01 and the arrangement position of the detector 02). A scattered γ-ray energy distribution having a peak signal intensity is obtained at the scattered γ-ray energy E 1 of γ-rays. In FIG. 8C, the horizontal axis represents the energy of the scattered γ-ray, and the vertical axis represents the signal intensity of the scattered γ-ray signal detected by the detector 02. The scattered γ-ray signal is a signal representing the intensity of the scattered γ-ray. Although not shown, a normal collimator is usually provided in front of the γ-ray source 01 and the detector 02.

一方、図9(a)に示すように、検査対象物である配管03が内周に減肉を生起することなく正常な状態を維持している場合の後方散乱γ線の散乱γ線エネルギーEは、図9(b)に示すように、検査対象物である配管03の内周に減肉部03Aが形成されている場合よりも大きくなる。検査対象物である配管03の肉厚部分は鉄等の高密度物質であるのに対し、減肉部03Aは低密度の空気であるので、かかる空気部分でγ線の散乱強度が大きく低下するからである。例えば、γ線源01である放射性同位体イリジウム線源から照射されるγ線のエネルギーEが320keVとすると、散乱角θ=90°の場合の散乱γ線の散乱γ線エネルギーEは197keVと、一意に決まる。したがって、検査対象物である配管03に減肉部03Aが発生している場合には散乱γ線の散乱γ線エネルギーEの信号強度が小さくなる。 On the other hand, as shown in FIG. 9A, the scattered γ-ray energy E of the back-scattered γ-ray when the pipe 03 which is the inspection object maintains a normal state without causing thinning on the inner periphery. As shown in FIG. 9B, 1 is larger than the case where the thinned portion 03A is formed on the inner periphery of the pipe 03 that is the inspection object. The thick portion of the pipe 03, which is the inspection object, is a high-density material such as iron, whereas the thinned portion 03A is low-density air, so that the γ-ray scattering intensity greatly decreases in the air portion. Because. For example, assuming that the energy E 0 of γ-rays emitted from the radioisotope iridium source, which is the γ-ray source 01, is 320 keV, the scattered γ-ray energy E 1 of the scattered γ-rays when the scattering angle θ = 90 ° is 197 keV. It is uniquely determined. Accordingly, the signal intensity of the scattered γ ray energy E 1 of the scattered γ ray becomes small when the reduced thickness portion 03A on the pipe 03 which is an inspection object is occurring.

そこで、図8(c)に示す散乱γ線エネルギー分布において散乱γ線の散乱γ線エネルギーEを検出することにより減肉の発生を検出し得る(例えば、非特許文献1参照)。 Therefore, the occurrence of thinning can be detected by detecting the scattered γ-ray energy E 1 of the scattered γ-rays in the scattered γ-ray energy distribution shown in FIG. 8C (see, for example, Non-Patent Document 1).

特開2006―177841号公報JP 2006-177841 A

(社)日本原子力学会「1995秋の大会」(1995年10月17日〜20日、原研) コンプトン散乱を用いた保温材表面からの点検技術、(株)東芝、宇高彰、濱島隆之、後藤哲夫(Japan) Atomic Energy Society of Japan "1995 Autumn Conference" (October 17-20, 1995, JAERI) Inspection technology from the surface of thermal insulation materials using Compton scattering, Toshiba Corporation, Akira Udaka, Takayuki Takashima, Goto Tetsuo

ところが、上述の如く図8(c)に示す散乱γ線エネルギー分布特性における散乱γ線の散乱γ線エネルギーEの信号強度に基づき減肉を検出する場合には、γ線源01の揺らぎが問題となる。γ線源として、例えば放射性同位体線源を用いた場合、γ線源01から照射されるγ線の強度が時間の経過とともに揺らぐことがあり、これに伴い基準の信号強度が変化してしまい、高精度の測定の阻害要因となってしまうからである。 However, when the thinning is detected based on the signal intensity of the scattered γ-ray energy E 1 of the scattered γ-ray in the scattered γ-ray energy distribution characteristics shown in FIG. 8C as described above, the fluctuation of the γ-ray source 01 is It becomes a problem. For example, when a radioisotope source is used as the γ-ray source, the intensity of the γ-ray irradiated from the γ-ray source 01 may fluctuate with time, and the reference signal intensity changes accordingly. This is because it becomes an impediment to highly accurate measurement.

なお、上述の如く、基準の信号強度が変化してしまうという問題は、図8に示す場合のように、コンプトン後方散乱を利用する場合のみならず、コンプトン散乱を利用する従来の透過方式の場合にも、同様に発生する。すなわち、かかる基準の信号強度の揺れという問題は、散乱γ線エネルギーEの信号強度の大きさのみを利用する限り、後方散乱に限ることなく、一般に発生する。 As described above, the problem that the reference signal intensity changes is not only in the case of using Compton backscattering as in the case shown in FIG. 8, but in the case of the conventional transmission method using Compton scattering. The same occurs. That is, a problem that fluctuation of the signal intensity of such criteria as long as it utilizes only the magnitude of the signal intensity of the scattered γ ray energy E 1, not limited to backscattering generally occurs.

本発明は、上述の従来技術に鑑み、コンプトン散乱γ線を利用する場合において、検査対象物の状態を、γ線源の揺らぎの影響を受けることなく、さらに検出器の配設位置の制限という問題を生起することなく、簡便に高精度に検出し得る非破壊検査方法およびその装置を提供することを目的とする。   In view of the above-described prior art, the present invention, in the case of using Compton scattered γ-rays, the state of the inspection object is not affected by fluctuations in the γ-ray source, and is further referred to as a restriction on the arrangement position of the detector. It is an object of the present invention to provide a nondestructive inspection method and apparatus capable of easily and accurately detecting without causing a problem.

上記目的を達成する本発明は次の知見を基礎とするものである。図1(a)に示すように、コンプトン散乱は、前述の如く、エネルギーEのγ線がターゲットT1に照射されることにより、γ線に対して角度Φの方向に飛び出す反跳電子Eとともに、エネルギーが変化した散乱γ線として元のγ線が散乱される現象をいうが、かかる散乱は、所定の確率で複数回生起されることもある。図1(a)では、2回散乱の態様を示している。この場合、エネルギーEのγ線がターゲットT1に照射されてエネルギーE21の1回散乱γ線となり、さらに1回散乱γ線が同じターゲットT1で2回目の散乱を起こすことにより、エネルギーE22の2回散乱γ線となっている。このときの各γ線のエネルギーE,E21,E22および1回散乱角θ、2回散乱角θとの関係は、次式(1)(2)で示される。 The present invention that achieves the above object is based on the following knowledge. As shown in FIG. 1 (a), Compton scattering, as described above, by the γ ray energy E 0 is irradiated to the target T1, recoil electrons E pops out direction of an angle Φ with respect to γ rays e In addition, a phenomenon in which the original γ-rays are scattered as scattered γ-rays whose energy has changed, and such scattering may occur multiple times with a predetermined probability. FIG. 1A shows a mode of two-time scattering. In this case, by γ ray energy E 0 is irradiated to the target T1 to become a single scattered γ ray energy E 21, once more scattered γ rays causes a second scattered at the same target T1, the energy E 22 The twice scattered γ rays. At this time, the relationship between the energy E 0 , E 21 , E 22 of each γ-ray, the one-time scattering angle θ 1 , and the two-time scattering angle θ 2 is expressed by the following equations (1) and (2).

ちなみに、エネルギーEのγ線がターゲットT1内で1回のみ散乱される場合の散乱角θ(=θ)と散乱γ線エネルギーEの関係は下式(3)で示される。 Incidentally, the relationship between the scattering angle θ (= θ 1 + θ 2 ) and the scattered γ-ray energy E 1 when the γ-ray with energy E 0 is scattered only once in the target T1 is expressed by the following equation (3). .

一般に、散乱回数が多くなるにつれ、信号強度が小さくなるので、散乱回数が増える程、図8(c)に示す散乱γ線エネルギー分布特性上では散乱γ線信号が検出されにくくなる。しかも、多重散乱に基づく散乱γ線信号は、通常図8(c)に示す散乱γ線エネルギー分布特性上では1回散乱の場合の散乱γ線エネルギーよりも低エネルギー側に出現する。   In general, as the number of scattering increases, the signal intensity decreases. Therefore, as the number of scattering increases, the scattered γ-ray signal becomes harder to detect on the scattered γ-ray energy distribution characteristic shown in FIG. Moreover, the scattered γ-ray signal based on multiple scattering usually appears on the lower energy side of the scattered γ-ray energy in the case of one-time scattering on the scattered γ-ray energy distribution characteristics shown in FIG.

ところが、図1(b)に示すように、γ線源1から配管である検査対象物3に照射するγ線のエネルギーEおよび散乱角θを適切に選び、かつ測定精度を上げることにより、検出器2ではエネルギーEの1回散乱の高エネルギー側に、エネルギーE22の2回散乱のピークを観測できる。すなわち、例えば、E=320keVで散乱角θ=90°とすると(3)式よりE=197keV、(1)、(2)式よりE22=234keVとなる。ここで、2回の散乱により後方90°(=θ=θ+θ)に散乱されるための散乱角度として、1回目の散乱角θ=45°、2回目の散乱角θ=45°とした。 However, as shown in FIG. 1B, by appropriately selecting the energy E 0 and the scattering angle θ of the γ-rays irradiated from the γ-ray source 1 to the inspection object 3 that is a pipe, and increasing the measurement accuracy, the high energy side of the single scattering detector 2 in the energy E 1, can be observed a peak of two scattering energy E 22. That is, for example, when E 0 = 320 keV and the scattering angle θ = 90 °, E 1 = 197 keV from the equation (3), and E 22 = 234 keV from the equations (1) and (2). Here, as a scattering angle for scattering back 90 ° (= θ = θ 1 + θ 2 ) by two scatterings, the first scattering angle θ 1 = 45 ° and the second scattering angle θ 2 = 45. °.

図1(c)は、1回散乱とともに2回散乱のピークが出現した散乱γ線エネルギー分布特性を示す特性図である。同図に示す特性図においては、エネルギーEの信号強度P1よりも小さいが、エネルギーEの1回散乱ピークよりも高エネルギー側でエネルギーE22の2回散乱ピークを与える信号強度P2が観測されている。 FIG. 1C is a characteristic diagram showing a scattered γ-ray energy distribution characteristic in which a double scattering peak appears together with a single scattering. In the characteristic diagram shown in the figure, but less than the signal strength P1 of energy E 1, the signal strength P2 giving than once scattering peak energy E 1 at a high energy side twice scattering peaks of energy E 22 is observed Has been.

今回、2回散乱ピークを有するエネルギー分布特性を解析する中で、図2(a)に示すように、検査対象物3に減肉が発生していない場合と、図2(c)に示すように、減肉部3Aを有する場合とでは、散乱γ線エネルギー分布特性に顕著な違いが存在することが分かった。すなわち、減肉が発生していない場合には、図2(b)に示す散乱γ線エネルギー分布特性のように、予想通り、エネルギーEの1回散乱ピークの信号強度P1がエネルギーE22の2回散乱ピークの信号強度P2よりも大きいが、減肉部3Aが大きくなるにつれ、エネルギーEの1回散乱ピークの信号強度P1とエネルギーE22の2回散乱ピークの信号強度P2との差が縮まり、終には図2(d)に示す散乱γ線エネルギー分布特性のように、エネルギーEの1回散乱ピークの信号強度P1よりもエネルギーE22の2回散乱ピークの信号強度P2が大きくなるという逆転現象が生起されることが分かった。 In the analysis of the energy distribution characteristic having a two-time scattering peak this time, as shown in FIG. 2 (a), there is no thinning in the inspection object 3, and as shown in FIG. 2 (c). In addition, it was found that there is a significant difference in the scattered γ-ray energy distribution characteristics between the case where the thinned portion 3A is provided. That is, when the thinning does not occur, as the scattered γ ray energy distribution characteristic shown in FIG. 2 (b), as expected, the signal strength P1 of one scattering peak energy E 1 is the energy E 22 is larger than 2 times the scattering peak in signal strength P2, as the reduced thickness portion 3A is increased, the difference between the signal intensity P2 of two scattering peaks of one scattering peak of signal intensity P1 and energy E 22 energy E 1 is's lead, so that the scattered γ ray energy distribution characteristics in the final illustrated in FIG. 2 (d), 2 times the scattering peak in signal strength P2 of the energy E 22 than the signal strength P1 of one scattering peak energy E 1 It turns out that the reversal phenomenon of becoming larger occurs.

かかる逆転現象の発生原因は、次のように考えられる。図3(a)に示す1回散乱の場合において、γ線源を点線源でペンシルビームを放出するものとし、さらに散乱γ線の観測点も理想的な鉛コリメーターを設置して1点のみとすると、観測点における1回散乱ピークの信号強度は、一点(γ線進行軸と鉛コリメーター回転対称軸の交差点)のみの散乱情報を得ていることになる。このため、1回散乱ピークは、減肉等で鉄材質が存在しない領域においては、空気からの後方散乱となるため、散乱γ線は急激に減少する。一方、図3(b)に示す2回散乱の場合においては、理想的なコリメーターを設置したとしても、サンプル内での経路は無数に存在する。図中では、サンプル部分の垂直な線が経路の一部を表わしており、これはθ=θ=45°の場合に相当する。θ≠θ、θ=θ+θ(=90°)の場合の2回散乱を含めると経路は更に多くなる。ただし、この場合は2回散乱ピークのエネルギー位置が多少ずれるため、2回散乱ピークはブロードなものとなる。ここで、減肉等により、鉄サンプルの厚さが薄くなったとすると、図3(b)に示すように減肉した領域に相当する部分(図中の灰色部分)については、2回散乱は起こらないが、減肉せず残っている領域については、依然として2回散乱が起こり得る領域となる。したがって、サンプル厚さ減少に伴う2回散乱の信号強度の低下は、1回散乱の信号強度低下に比べて緩やかなものになると考えられる。場合によっては、今回の例のように1回散乱ピークと2回散乱ピーク強度が逆転する現象が起こるものと考えられる。 The cause of the occurrence of the reverse phenomenon is considered as follows. In the case of single scattering shown in FIG. 3 (a), a pencil beam is emitted from a γ-ray source as a point source, and an ideal lead collimator is also installed as the observation point for the scattered γ-ray. Then, as for the signal intensity of the single scattering peak at the observation point, the scattering information of only one point (the intersection of the γ ray traveling axis and the lead collimator rotational symmetry axis) is obtained. For this reason, the one-time scattering peak is backscattered from the air in a region where the iron material is not present due to thinning or the like, and thus the scattered γ-rays rapidly decrease. On the other hand, in the case of double scattering shown in FIG. 3B, there are an infinite number of paths in the sample even if an ideal collimator is installed. In the figure, the vertical line of the sample portion represents a part of the path, which corresponds to the case of θ 1 = θ 2 = 45 °. Including double scattering in the case of θ 1 ≠ θ 2 and θ = θ 1 + θ 2 (= 90 °), the number of paths is further increased. However, in this case, since the energy position of the twice-scattered peak is slightly shifted, the twice-scattered peak is broad. Here, when the thickness of the iron sample is reduced due to thinning or the like, the portion corresponding to the thinned region (gray portion in the drawing) is scattered twice as shown in FIG. The region that does not occur but remains thin is still a region where scattering can occur twice. Therefore, it is considered that the decrease in the signal intensity of the two-time scattering accompanying the decrease in the sample thickness is more gradual than the decrease in the signal intensity of the one-time scattering. In some cases, it is considered that a phenomenon occurs in which the once-scattered peak and the twice-scattered peak intensity are reversed as in the present example.

2回散乱ピークは、ノイズではないγ線信号の信号強度であることから、これをうまく利用することにより、新たな減肉検知手法に繋がる可能性がある。すなわち、1回散乱の信号強度の大小のみを見るのではなく、散乱γ線エネルギー分布特性を健全な場合のものと比較することで、配管等の減肉の発生、さらに一般的には検査対象物の状態を検出することができると考えられる。例えば、図4に示すように1回散乱ピークと2回散乱ピークの信号強度比(P2/P1)をとり、この比が所定の閾値以上の場合に減肉が発生していると判断するという手法である。また、この比は配管の減肉量に応じて変化すると考えられるので、その変化量により減肉量を特定することもできる。   Since the double scattering peak is the signal intensity of the γ-ray signal that is not noise, using this well may lead to a new thinning detection technique. In other words, rather than looking at the magnitude of the signal intensity of one-time scattering, comparing the scattered γ-ray energy distribution characteristics with those in a healthy case, the occurrence of thinning of pipes, etc. It is considered that the state of an object can be detected. For example, as shown in FIG. 4, the signal intensity ratio (P2 / P1) between the once-scattered peak and the twice-scattered peak is taken, and if this ratio is equal to or greater than a predetermined threshold, it is determined that thinning has occurred. It is a technique. Moreover, since it is thought that this ratio changes according to the amount of thickness reduction of piping, the amount of thickness reduction can also be specified by the amount of change.

この手法の利点としては、1回散乱ピーク、2回散乱ピークともに同じ線源および計測配置で測定を行っているため、信号強度比をとることにより、照射するγ線の線量が経時的に変化してもその影響を小さくして高精度の計測を行うことができる点が挙げられる。これは、例えば、健全なサンプルを用いて基準エネルギー分布特性を取得したときの照射γ線量に対し、実測時の照射γ線量が変化していたとしても、その変化の影響をキャンセルすることができるので、非常に有効である。   The advantage of this method is that both the once-scattered peak and the twice-scattered peak are measured with the same radiation source and measurement configuration, so the dose of γ-rays to be irradiated changes with time by taking the signal intensity ratio. Even so, the influence can be reduced and highly accurate measurement can be performed. For example, even if the irradiation γ dose at the time of actual measurement changes with respect to the irradiation γ dose when the reference energy distribution characteristic is acquired using a healthy sample, the influence of the change can be canceled. So it is very effective.

さらに、例えば照射γ線源としてイリジウム線源を考えた場合の散乱γ線エネルギー分布特性について調べたところ、以下のことが判明した。   Further, for example, when an iridium radiation source is considered as an irradiation γ-ray source, the scattered γ-ray energy distribution characteristics were examined, and the following was found.

図5(a)は検査対象物3の厚さが5mmの場合で、以下(b)、(c)、(d)、(e)、(f)がそれぞれ5.5mm、5.8mm、6mm、7mm、10mmの場合の散乱γ線エネルギー特性を示す特性図である。   FIG. 5A shows a case in which the thickness of the inspection object 3 is 5 mm, and (b), (c), (d), (e), and (f) are 5.5 mm, 5.8 mm, and 6 mm, respectively. FIG. 7 is a characteristic diagram showing scattered γ-ray energy characteristics when the thickness is 7 mm or 10 mm.

イリジウム線源の主要な放出γ線のエネルギーは317keVおよび468keVであることから、これらをE、E’とし、図5では、317keVおよび468keVそれぞれの原子核崩壊毎での放出割合83%(317keV)、48%(468keV)に応じて重ね合わせている。 Since the energy of the main emitted γ-rays of the iridium radiation source is 317 keV and 468 keV, these are designated as E 0 and E 0 ′. In FIG. 5, the emission rate is 83% (317 keV for each nuclear decay of 317 keV and 468 keV). ) And 48% (468 keV).

図5(a)〜図5(f)を参照すれば明らかな通り、検査対象物3の厚さに依って散乱γ線エネルギー分布特性に顕著な違いが存在することが分かった。これは、検査対象物3の厚さによって信号強度S1(317keV)、S2(317keV)、S1(468keV)、S2(468keV)の増減量が異なるために生じている。ここで、S1の符号は1回散乱γ線であることを、S2は2回散乱γ線であることを示しており、()内の(317keV)および(468keV)は各入射γ線エネルギーを示している。   As is apparent from FIGS. 5A to 5F, it has been found that there is a significant difference in the scattered γ-ray energy distribution characteristics depending on the thickness of the inspection object 3. This occurs because the increase / decrease amount of the signal intensities S1 (317 keV), S2 (317 keV), S1 (468 keV), and S2 (468 keV) differs depending on the thickness of the inspection object 3. Here, the sign of S1 indicates that it is a once-scattered γ-ray, S2 indicates that it is a twice-scattered γ-ray, and (317 keV) and (468 keV) in () denote the respective incident γ-ray energies. Show.

図5の特性は、基本的には、2回散乱ピークであるS2(317keV)、S2(468keV)の信号強度変化は大きくなく、1回散乱ピークであるS1(317keV)、S1(468keV)が2回散乱ピーク強度を逆転していく過程において、パターン変化が生じていることを示している。ここではγ線として異なる2つのエネルギー(この例では、エネルギー317keVと468keV)が照射されることで、パターン類型が増加している。   The characteristic of FIG. 5 is basically that the signal intensity changes of S2 (317 keV) and S2 (468 keV) which are two-time scattering peaks are not large, and S1 (317 keV) and S1 (468 keV) which are one-time scattering peaks. It shows that a pattern change occurs in the process of reversing the scattering peak intensity twice. Here, two different energies as γ rays (in this example, energy 317 keV and 468 keV) are irradiated, and the pattern type increases.

図5に示す例では、検査対象物3が薄くなるにつれて、信号強度S1(317keV)、S2(317keV)、S1(468keV)、S2(468keV)のピークが形成する形がV字(図5(f)、(e)、(d))→右肩下がり(図5(c)、(b))→山型(図5(a))となっており、散乱γ線エネルギー分布特性上のパターンにより、おおよその検査対象物3の厚さが把握できる。特に、この本例は5mm(図5(a))から6mm(図5(d))付近でパターンが顕著に変化していることから、この範囲での減肉検知に有効であると考えられる。もちろん定量的な評価を行うには、パターン類型だけなく、図6に示すように、信号強度S1(317keV)とS1(468keV)との比、信号強度S2(317keV)とS1(468keV)との比を参照することは言うまでもないが、エネルギー分布のパターンを利用することにより、減肉による危険性の判断材料を容易に与えることができる可能性が示唆されている。   In the example shown in FIG. 5, as the inspection object 3 becomes thinner, the shape in which the peaks of the signal strengths S1 (317 keV), S2 (317 keV), S1 (468 keV), and S2 (468 keV) are formed is V-shaped (FIG. 5 ( f), (e), (d)) → slope downward (FIGS. 5 (c), (b)) → mountain shape (FIG. 5 (A)), a pattern on the scattered γ-ray energy distribution characteristics Thus, the approximate thickness of the inspection object 3 can be grasped. In particular, in this example, since the pattern is remarkably changed in the vicinity of 5 mm (FIG. 5 (a)) to 6 mm (FIG. 5 (d)), it is considered that this example is effective for detecting the thinning in this range. . Of course, for quantitative evaluation, not only the pattern type but also the ratio of signal intensity S1 (317 keV) and S1 (468 keV), signal intensity S2 (317 keV) and S1 (468 keV) as shown in FIG. It goes without saying that the ratio is referred to, but it has been suggested that by using the pattern of energy distribution, a risk judgment material due to thinning can be easily given.

かかる知見を基礎とする本発明の第1の態様は、少なくとも2つの異なるピークエネルギーをもつX線またはγ線(以下、両者をまとめてγ線という)を検査対象物に照射するとともに、前記照射の結果生成されるコンプトン散乱に基づき少なくとも3つの異なるピークエネルギーをもつ散乱γ線を検出し、検出した前記散乱γ線を表す散乱γ線信号の前記散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を生成するとともに、前記散乱γ線エネルギー分布特性を利用し、前記検査対象物の厚さに起因して前記少なくとも3個のピークが形成するパターンを特定して前記検査対象物の状態を検出することを特徴とする非破壊検査方法にある。   The first aspect of the present invention based on such knowledge irradiates the inspection object with X-rays or γ-rays (hereinafter, collectively referred to as γ-rays) having at least two different peak energies. The scattered γ-rays having at least three different peak energies are detected based on the Compton scattering generated as a result of the above, and the scattered γ-rays representing the signal intensity of the scattered γ-ray signal representing the detected scattered γ-rays with respect to the scattered γ-ray energy A state of the inspection object by generating an energy distribution characteristic and using the scattered γ-ray energy distribution characteristic to identify a pattern formed by the at least three peaks due to the thickness of the inspection object It is in the nondestructive inspection method characterized by detecting.

本態様によれば、少なくとも3つの異なる散乱γ線エネルギーの信号強度のピーク位置で形成するパターンが検出対象物の厚さと相関があることを利用しているので、前記パターンの変遷により検査対象物の厚さ、例えば減肉を適確に検出し得る。   According to this aspect, since the pattern formed at the peak position of the signal intensity of at least three different scattered γ-ray energies is correlated with the thickness of the detection object, the inspection object is changed by the transition of the pattern. Thickness, for example, thinning can be accurately detected.

本発明の第2の態様は、第1の態様に記載する非破壊検査方法において、前記コンプトン散乱は、コンプトン後方散乱であることを特徴とする非破壊検査方法にある。   According to a second aspect of the present invention, in the nondestructive inspection method according to the first aspect, the Compton scattering is Compton backscattering.

本態様によれば、散乱γ線の検出器を検査対象に対しγ線源と同じ側に配設することができるので、機器配置の自由度が増す。   According to this aspect, the scattered γ-ray detector can be disposed on the same side as the γ-ray source with respect to the inspection object, so that the degree of freedom in equipment arrangement is increased.

本発明の第3の態様は、第1または第2の態様に記載する非破壊検査方法において、前記少なくとも3つの異なるピークエネルギーをもつ散乱γ線には、少なくとも1つの2回散乱γ線を含むことを特徴とする非破壊検査方法にある。   According to a third aspect of the present invention, in the nondestructive inspection method according to the first or second aspect, the scattered γ-rays having at least three different peak energies include at least one twice-scattered γ-ray. It is in the nondestructive inspection method characterized by this.

本態様によれば、2回散乱γ線をパターン認識の一つとして利用しているので、γ線源から放射するγ線の種類を減らすことができる。   According to this aspect, since the twice-scattered γ-ray is used as one of the pattern recognitions, the types of γ-rays emitted from the γ-ray source can be reduced.

本発明の第4の態様は、第1〜第3の態様の何れか一つに記載する非破壊検査方法において、さらに、2つの異なる前記散乱γ線信号の信号強度の比を加味して前記検査対象物の状態を検出することを特徴とする非破壊検査方法にある。   According to a fourth aspect of the present invention, in the nondestructive inspection method according to any one of the first to third aspects, the ratio of the signal strengths of the two different scattered γ-ray signals is further considered. A non-destructive inspection method is characterized by detecting a state of an inspection object.

本態様によれば、さらに容易かつ的確に検査対象物の状態を検出することができる。   According to this aspect, the state of the inspection object can be detected more easily and accurately.

本発明の第5の態様は、少なくとも2つの異なるピークエネルギーをもつX線またはγ線(以下、両者をまとめてγ線という)を検査対象物に照射するγ線源と、前記照射の結果生起されるコンプトン散乱に基づき、少なくとも3つの異なるピークエネルギーをもつ散乱γ線を検出し、検出した前記散乱γ線を表す散乱γ線信号の前記散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を求める一方、前記散乱γ線エネルギー分布特性に基づき、前記検査対象物の厚さに起因して前記少なくとも3個のピークが形成するパターンを特定して前記検査対象物の状態を検出する検出器とを有することを特徴とする非破壊検査装置にある。   According to a fifth aspect of the present invention, there is provided a γ-ray source that irradiates an inspection object with X-rays or γ-rays having at least two different peak energies (hereinafter collectively referred to as γ-rays), and the occurrence of the irradiation Scattered γ-ray energy distribution representing a signal intensity of the scattered γ-ray signal representing the detected scattered γ-ray with respect to the scattered γ-ray energy based on Compton scattering that is detected and detecting scattered γ-rays having at least three different peak energies While detecting the characteristics, detection based on the scattered γ-ray energy distribution characteristics to identify the pattern formed by the at least three peaks due to the thickness of the inspection object and detect the state of the inspection object And a non-destructive inspection apparatus characterized by comprising:

本態様によれば、少なくとも3つの異なる散乱γ線エネルギーの信号強度のピーク位置で形成するパターンが検出対象物の厚さと相関があることを利用しているので、前記パターンの変遷により検査対象物の厚さ、例えば減肉を適確に検出し得る。   According to this aspect, since the pattern formed at the peak position of the signal intensity of at least three different scattered γ-ray energies is correlated with the thickness of the detection object, the inspection object is changed by the transition of the pattern. Thickness, for example, thinning can be accurately detected.

本発明の第6の態様は、第5の態様に記載する非破壊検査装置において、前記コンプトン散乱は、コンプトン後方散乱であり、前記検出器は、前記検査対象物に対して同じ側に配設されていることを特徴とする非破壊検査装置にある。   According to a sixth aspect of the present invention, in the nondestructive inspection apparatus according to the fifth aspect, the Compton scattering is Compton backscattering, and the detector is disposed on the same side with respect to the inspection object. It is in the nondestructive inspection device characterized by being.

本態様によれば、散乱γ線の検出器を検査対象に対しγ線源と同じ側に配設することができるので、機器配置の自由度が増す。   According to this aspect, the scattered γ-ray detector can be disposed on the same side as the γ-ray source with respect to the inspection object, so that the degree of freedom in equipment arrangement is increased.

本発明の第7の態様は、第5または第6の態様に記載する非破壊検査装置において、前記少なくとも3つの異なるピークエネルギーをもつ散乱γ線には、少なくとも1つの2回散乱γ線を含むことを特徴とする非破壊検査装置にある。   According to a seventh aspect of the present invention, in the nondestructive inspection apparatus according to the fifth or sixth aspect, the scattered γ-rays having at least three different peak energies include at least one twice-scattered γ-ray. It is in the nondestructive inspection apparatus characterized by this.

本態様によれば、2回散乱γ線をパターン認識の一つとして利用しているので、γ線源から放射するγ線の種類を減らすことができる。   According to this aspect, since the twice-scattered γ-ray is used as one of the pattern recognitions, the types of γ-rays emitted from the γ-ray source can be reduced.

本発明の第8の態様は、第5〜第7の態様の何れか一つに記載する非破壊検査装置において、前記γ線源は、少なくとも2つの異なるピークエネルギーをもつ2種類以上の同位体核種で形成したことを特徴とする非破壊検査装置にある。   An eighth aspect of the present invention is the nondestructive inspection apparatus according to any one of the fifth to seventh aspects, wherein the γ-ray source has at least two different isotopes having different peak energies. It is a nondestructive inspection device characterized by being formed of nuclides.

本態様によれば、複数の単色のγ線を良好に放射することができる。   According to this aspect, it is possible to emit a plurality of monochromatic γ rays satisfactorily.

本発明の第9の態様は、第5〜第7の態様の何れか一つに記載する非破壊検査装置において、前記γ線源は、電子とレーザー光との衝突により生成される少なくとも2つの異なるピークエネルギーを有するγ線を照射するレーザーコンプトン散乱線源であることを特徴とする非破壊検査装置にある。   According to a ninth aspect of the present invention, in the nondestructive inspection apparatus according to any one of the fifth to seventh aspects, the γ-ray source includes at least two generated by collisions between electrons and laser light. A non-destructive inspection apparatus characterized by being a laser Compton scattered radiation source that irradiates gamma rays having different peak energies.

本態様によれば、レーザー光と衝突させる電子のエネルギーを変えるだけで所望のエネルギーを有する単色のγ線を任意に生成し得る。   According to this aspect, it is possible to arbitrarily generate monochromatic γ-rays having desired energy simply by changing the energy of electrons that collide with laser light.

本発明の第10の態様は、第5〜第9の態様の何れか一つに記載する非破壊検査装置において、前記検出器は、さらに、2つの異なる前記散乱γ線信号の信号強度の比を加味して前記検査対象物の状態を検出することを特徴とする非破壊検査装置にある。   A tenth aspect of the present invention is the nondestructive inspection apparatus according to any one of the fifth to ninth aspects, wherein the detector further includes a ratio of signal intensities of the two different scattered γ-ray signals. The non-destructive inspection apparatus is characterized in that the state of the inspection object is detected in consideration of the above.

本態様によれば、さらに容易かつ的確に検査対象物の状態を検出することができる。   According to this aspect, the state of the inspection object can be detected more easily and accurately.

本発明によれば、検査対象物の厚さが薄くなるに従い、散乱γ線エネルギー分布において、少なくとも3つの異なるピークによって形成されるピークパターンが特定の変化をするという知見に基づき、このパターンの変遷を利用して検査対象物の厚さを検出することができる。ここで、本発明は、散乱γ線に基づく信号強度と他の対象物とを比較するものではなく、ピークのパターン形状の変化のみを基準として所定の判断をするものであるので、γ線源の揺らぎ等の影響を受けることもない。   According to the present invention, based on the knowledge that the peak pattern formed by at least three different peaks has a specific change in the scattered γ-ray energy distribution as the thickness of the object to be inspected decreases. Can be used to detect the thickness of the inspection object. Here, the present invention does not compare the signal intensity based on the scattered γ-rays with other objects, but makes a predetermined determination based only on the change in the pattern shape of the peak. It will not be affected by the fluctuations.

コンプトン後方散乱の2回散乱を利用する本発明の原理を模式的に示す図で、(a)は2回散乱を概念的に示す説明図、(b)はこの場合の機器配置を示す説明図、(c)は2回散乱ピークが観察される散乱γ線エネルギー分布特性を示す特性図である。It is a figure which shows typically the principle of this invention using the Compton backscattering 2 times scattering, (a) is explanatory drawing which shows 2 times scattering conceptually, (b) is explanatory drawing which shows apparatus arrangement | positioning in this case (C) is a characteristic view showing the scattered γ-ray energy distribution characteristic in which a double scattering peak is observed. 本発明の原理を模式的に示す図で、(a)および(b)が検出対象物の配管に減肉がない場合、(c)および(d)が減肉がある場合である。In the figure which shows the principle of this invention typically, (a) and (b) are the cases where there is no thinning in the piping of the detection object, and (c) and (d) are the cases where there is thinning. コンプトン後方散乱における1回散乱の場合と2回散乱との場合の比較において、鉄サンプルに照射されたγ線の経路を示す説明図である。In Compton backscattering, it is explanatory drawing which shows the path | route of the gamma ray irradiated to the iron sample in the case of the case of 1 time scattering and the case of 2 times scattering. 1回散乱ピークと2回散乱ピークの信号強度比(P2/P1)の鉄サンプルの厚さに対する特性を示す特性図である。It is a characteristic view which shows the characteristic with respect to the thickness of the iron sample of the signal intensity ratio (P2 / P1) of a 1 time scattering peak and a 2 times scattering peak. 照射γ線源としてイリジウム線源を想定し、主要な放出γ線エネルギーである317keVおよび468keVからの散乱γ線をそれぞれの原子核崩壊毎の所定割合に応じて重ね合わせることにより得られた散乱γ線エネルギー分布特性図である。Assuming an iridium radiation source as an irradiation γ-ray source, scattered γ-rays obtained by superimposing scattered γ-rays from 317 keV and 468 keV, which are main emitted γ-ray energies, in accordance with a predetermined ratio for each nuclear decay. It is an energy distribution characteristic view. 信号強度S1(317keV)とS1(468keV)との比および信号強度S2(317keV)とS1(468keV)との比を示す特性図である。It is a characteristic figure which shows ratio of signal strength S1 (317 keV) and S1 (468 keV), and ratio of signal strength S2 (317 keV) and S1 (468 keV). 本発明の実施の形態に係る非破壊検査装置を示すブロック図である。It is a block diagram which shows the nondestructive inspection apparatus which concerns on embodiment of this invention. 従来周知のコンプトン後方散乱(1回散乱)の原理を模式的に示す説明図である。It is explanatory drawing which shows the principle of conventionally well-known Compton backscattering (single-time scattering) typically. コンプトン後方散乱を利用して配管の減肉を非破壊検査する従来技術の原理を模式的に示す説明図である。It is explanatory drawing which shows typically the principle of the prior art which carries out nondestructive inspection of the thinning of piping using Compton backscattering.

以下、本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図7は本発明の実施の形態に係る非破壊検査装置を示すブロック図である。同図に示すように、本形態に係る非破壊検査装置は、例えば配管である検査対象物3に向けてγ線を照射するγ線源1と、前記照射の結果得られるコンプトン散乱に基づく散乱γ線を検出する検出器2とを有している。γ線源1は、少なくとも2つの異なるピークエネルギーを持つγ線(本形態では、E=317keVおよびE’=468keV)を照射する同位体線源で構成してある。本形態の場合、γ線源1としてイリジウム同位体線源を想定しているが、核種に特別な限定はない。また、3つの異なるピークエネルギーを持つγ線を照射するγ線源1としたい場合は、例えば、イリジウム同位体線源にセシウム同位体線源を追加した組み合わせが考えられる。 FIG. 7 is a block diagram showing a nondestructive inspection apparatus according to an embodiment of the present invention. As shown in the figure, the nondestructive inspection apparatus according to this embodiment includes a γ-ray source 1 that irradiates γ-rays toward an inspection object 3 that is, for example, a pipe, and scattering based on Compton scattering obtained as a result of the irradiation. and a detector 2 for detecting γ-rays. The γ-ray source 1 is composed of an isotope radiation source that irradiates γ-rays having at least two different peak energies (E 0 = 317 keV and E 0 ′ = 468 keV in this embodiment). In the case of the present embodiment, an iridium isotope source is assumed as the γ-ray source 1, but there is no particular limitation on the nuclide. Moreover, when it is desired to use the γ-ray source 1 that irradiates γ-rays having three different peak energies, for example, a combination in which a cesium isotope source is added to an iridium isotope source can be considered.

検出器2は、γ線の照射の結果生起されるコンプトン散乱に基づき、少なくとも3つの異なる散乱γ線エネルギーにおいて信号強度のピークをもつ散乱γ線を検出し、検出した散乱γ線を表す散乱γ線信号の散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を求める。この散乱γ線エネルギー分布の一例を図5に示している。図5は、イリジウム同位体線源を想定した場合の例であり、主要な放出γ線としてエネルギー317keV、468keVのγ線が照射される。   The detector 2 detects scattered γ-rays having signal intensity peaks at at least three different scattered γ-ray energies, based on Compton scattering that occurs as a result of γ-ray irradiation, and the scattered γ representing the detected scattered γ-rays. A scattered γ-ray energy distribution characteristic representing the signal intensity with respect to the scattered γ-ray energy of the line signal is obtained. An example of the scattered γ-ray energy distribution is shown in FIG. FIG. 5 shows an example in which an iridium isotope source is assumed, and γ-rays with energy of 317 keV and 468 keV are irradiated as main emitted γ-rays.

図5に示す場合、γ線源1から照射される主要なγ線エネルギーは317keV、468keVの2つであるが、検出器2側における処理において1回散乱γ線のみならず2回散乱γ線を利用することができる場合には、γ線源1側から照射されるγ線のエネルギーが2つであっても検出器2側では、少なくとも3つの異なるピークエネルギーを持つ散乱γ線を得ることができる。かくして、散乱γ線エネルギー分布特性に基づき、検査対象物3の厚さに起因して少なくとも3個のピークが形成するパターンを特定して検査対象物3の状態、例えば配管の肉厚を検出する。   In the case shown in FIG. 5, there are two main γ-ray energies irradiated from the γ-ray source 1 317 keV and 468 keV, but not only once scattered γ rays but also twice scattered γ rays in the processing on the detector 2 side. Can be used, even if there are two γ-ray energies irradiated from the γ-ray source 1 side, scattered γ-rays having at least three different peak energies can be obtained on the detector 2 side. Can do. Thus, based on the scattered γ-ray energy distribution characteristics, the pattern formed by at least three peaks due to the thickness of the inspection object 3 is specified to detect the state of the inspection object 3, for example, the thickness of the pipe. .

このように、本形態は、散乱γ線エネルギーに対する散乱γ線の信号強度を表す散乱γ線エネルギー分布特性における信号強度の少なくとも3個のピークで形成するパターンを利用するものである。この場合のピークは少なくとも3個必要になるが、前述の如く3個の中には、照射側のγ線に基づく2回散乱γ線を利用し得る場合がある。したがって、2回散乱γ線を利用し得る場合には、γ線源1としては、必ずしも3つのピークエネルギーを有するγ線を照射するγ線源である必要はなく、本形態の如く異なる2つのピークエネルギーを有するγ線を照射するγ線源であっても構わない。   As described above, this embodiment uses a pattern formed by at least three peaks of signal intensity in the scattered γ-ray energy distribution characteristic representing the signal intensity of the scattered γ-ray with respect to the scattered γ-ray energy. In this case, at least three peaks are required, but as described above, there are cases where two of the three peaks can use twice-scattered γ-rays based on γ-rays on the irradiation side. Therefore, when the twice-scattered γ-rays can be used, the γ-ray source 1 does not necessarily need to be a γ-ray source that irradiates γ-rays having three peak energies. It may be a γ-ray source that irradiates γ-rays having peak energy.

かくして検出器2は、散乱γ線エネルギー分布特性に基づき、検査対象物の厚さに起因して少なくとも3個のピークが形成するパターンを特定して検査対象物3の減肉等の状態を検出する。   Thus, the detector 2 detects a state such as thinning of the inspection object 3 by specifying a pattern formed by at least three peaks due to the thickness of the inspection object based on the scattered γ-ray energy distribution characteristics. To do.

さらに詳言すると、検出器2は、コンプトン後方散乱γ線を入射する入射部2A、コンプトン後方散乱γ線を表すコンプトン後方散乱γ線信号を生成する信号処理部2B、コンプトン後方散乱γ線信号をこれが対応する検査対象物の厚さ情報とともに記憶している記憶部2D、記憶部2Dが記憶しているデータに基づき所定の情報処理を行なう情報処理部2C、情報処理部2Cで検出した検出結果を表示する表示部2Eを有している。情報処理部2Cでは、検査対象物3の各厚さ毎の散乱γ線エネルギー分布特性、すなわち図5に示す特性を生成するとともに、各特性図中の特定の3個のピークが形成するパターンを比較して検査対象物3の厚さを特定する。例えば、図5に示すように、ピークが形成するパターン形状が、V字(図5(f)、(e)、(d))、右肩下がり(図5(c)、(b))または山型(図5(a))の何れであるかにより、検査対象物3の厚さを特定し、減肉等の程度を検出する。ここで、減肉等の特定に際しては、図6に示す特性を考慮するようにしても良い。当該特性は、記憶部2Dの記憶内容に基づき、情報処理部2Cで作成する。また、情報処理部2Cにおいて、検査対象物3の減肉等の状態を特定するためには、比較のための初期の検査対象物3の散乱γ線エネルギー分布特性に関するデータが必要になる。当該データは、予め記憶部2Dに記憶してある。   More specifically, the detector 2 includes an incident unit 2A that receives Compton backscattered γ rays, a signal processing unit 2B that generates a Compton backscattered γray signal representing Compton backscattered γrays, and a Compton backscattered γray signal. The storage unit 2D stored together with the thickness information of the corresponding inspection object, the information processing unit 2C that performs predetermined information processing based on the data stored in the storage unit 2D, and the detection result detected by the information processing unit 2C Is displayed. In the information processing unit 2C, the scattered γ-ray energy distribution characteristics for each thickness of the inspection object 3, that is, the characteristics shown in FIG. 5 are generated, and a pattern formed by three specific peaks in each characteristic diagram is generated. The thickness of the inspection object 3 is specified by comparison. For example, as shown in FIG. 5, the pattern shape formed by the peak is V-shaped (FIGS. 5 (f), (e), (d)), lower right shoulder (FIG. 5 (c), (b)) or The thickness of the inspection object 3 is specified depending on whether the shape is a mountain shape (FIG. 5A), and the degree of thinning is detected. Here, the characteristics shown in FIG. 6 may be taken into consideration when specifying the thinning or the like. The characteristic is created by the information processing unit 2C based on the storage contents of the storage unit 2D. Further, in order to specify the state of thinning or the like of the inspection object 3 in the information processing unit 2C, data regarding the scattered γ-ray energy distribution characteristics of the initial inspection object 3 for comparison is required. The data is stored in advance in the storage unit 2D.

表示部2Eには情報処理部2Cにおける検出結果を可視化する。検査対象物3が配管で、その減肉の程度に基づき交換の目安を提供する場合には、例えばピークが形成するパターンがV字(図5(f)、(e)、(d))の場合、良好、右肩下がり(図5(c)、(b))の場合、減肉を生起しているが、交換の必要はない、山型(図5(a))減肉が進行しているので交換等の指示を表示することもできる。   The detection result in the information processing unit 2C is visualized on the display unit 2E. When the inspection object 3 is a pipe and provides an indication of replacement based on the degree of thinning, for example, the pattern in which the peak is formed is V-shaped (FIGS. 5 (f), (e), (d)). In the case of good, lower right shoulder (FIGS. 5 (c) and (b)), thinning has occurred, but there is no need for replacement, and mountain-shaped (FIG. 5 (a)) thinning proceeds. Therefore, it is possible to display an instruction for replacement.

このように、本形態における検出器2では、検査対象物3の厚さが薄くなるに従い、信号のピークパターンが変遷し、減肉等に固有のパターンとなる。したがって、かかるパターンの変化を観察することで検査対象物3の減肉等の状態変化を検出し得る。   As described above, in the detector 2 according to the present embodiment, as the thickness of the inspection object 3 becomes thinner, the peak pattern of the signal changes and becomes a pattern unique to thinning or the like. Therefore, it is possible to detect a change in state such as thinning of the inspection object 3 by observing the change in the pattern.

ここで、本形態では、信号強度と他の対象物とを比較するものではなく、ピークのパターン形状の変化のみを基準として所定の判断をするものであるので、γ線源1の揺らぎ等の影響を受けることもない。   Here, in this embodiment, the signal intensity is not compared with other objects, but a predetermined determination is made based only on the change in the pattern shape of the peak. It is not affected.

なお、上記実施の形態は、γ線源1を同位体線源で形成した場合であるが、少なくとも2つの異なるピークエネルギーをもつγ線源であれば、同位体線源に限るものではない。電子とレーザー光との衝突により生成される少なくとも2つの異なるピークエネルギーを有するγ線を照射するレーザーコンプトン散乱(LCS)線源であっても良い。この場合、電子のエネルギーやレーザー光の波長を適宜選択することにより所望のエネルギーのγ線を得ることができ、さらに、レーザー光に対する電子の衝突角度を調整することによっても得られるγ線のエネルギーを選定し得る。また、コンプトン後方散乱γ線を利用する場合に関して説明したが、後方散乱に限るものではない。ただ、後方散乱を利用する場合にはγ線源1と検出器2とを検査対象物3である配管に対して同じ側に配設することができるので、機器配置の自由度が向上する。また、検査対象物3も配管である必要はなく、必ずしも減肉を検出するものである必要もない。広く検査対象物の各部の寸法を検出する非破壊検査装置として有用なものである。   Although the above embodiment is a case where the γ-ray source 1 is formed of an isotope source, it is not limited to an isotope source as long as it is a γ-ray source having at least two different peak energies. It may be a laser Compton scattering (LCS) radiation source that irradiates gamma rays having at least two different peak energies generated by collision between electrons and laser light. In this case, gamma rays of desired energy can be obtained by appropriately selecting the energy of the electrons and the wavelength of the laser light, and further the gamma ray energy obtained by adjusting the collision angle of the electrons with the laser light. Can be selected. Further, the case of using Compton backscattered γ rays has been described, but the present invention is not limited to backscattering. However, when using backscattering, since the γ-ray source 1 and the detector 2 can be arranged on the same side with respect to the pipe that is the inspection object 3, the degree of freedom in equipment arrangement is improved. Further, the inspection object 3 does not need to be a pipe, and does not necessarily need to detect thinning. It is useful as a nondestructive inspection apparatus that widely detects the dimensions of each part of an inspection object.

本発明は配管等の検査対象物が錯綜して配設されている発電所等の保守、点検等に伴う非破壊検査を実施する産業分野で有効に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used in an industrial field where non-destructive inspection is performed for maintenance, inspection, etc. of a power plant where inspection objects such as piping are arranged in a complicated manner.

1 γ線源
2 検出器
2A 入射部
2B 信号処理部
2C 情報処理部
2D 記憶部
2E 表示部
3 検査対象物
DESCRIPTION OF SYMBOLS 1 γ-ray source 2 Detector 2A Incident part 2B Signal processing part 2C Information processing part 2D Storage part 2E Display part 3 Inspection object

Claims (10)

少なくとも2つの異なるピークエネルギーをもつX線またはγ線(以下、両者をまとめてγ線という)を検査対象物に照射するとともに、前記照射の結果生成されるコンプトン散乱に基づき少なくとも3つの異なるピークエネルギーをもつ散乱γ線を検出し、検出した前記散乱γ線を表す散乱γ線信号の前記散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を生成するとともに、
前記散乱γ線エネルギー分布特性を利用し、前記検査対象物の厚さに起因して前記少なくとも3個のピークが形成するパターンを特定して前記検査対象物の状態を検出することを特徴とする非破壊検査方法。
X-rays or γ-rays having at least two different peak energies (hereinafter collectively referred to as γ-rays) are irradiated onto the inspection object, and at least three different peak energies are based on Compton scattering generated as a result of the irradiation. And generating a scattered γ-ray energy distribution characteristic representing a signal intensity of the scattered γ-ray signal representing the detected scattered γ-ray with respect to the scattered γ-ray energy.
Using the scattered γ-ray energy distribution characteristic, the pattern formed by the at least three peaks due to the thickness of the inspection object is specified, and the state of the inspection object is detected. Non-destructive inspection method.
請求項1に記載する非破壊検査方法において、
前記コンプトン散乱は、コンプトン後方散乱であることを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 1,
The non-destructive inspection method, wherein the Compton scattering is Compton backscattering.
請求項1または請求項2に記載する非破壊検査方法において、
前記少なくとも3つの異なるピークエネルギーをもつ散乱γ線には、少なくとも1つの2回散乱γ線を含むことを特徴とする非破壊検査方法。
In the nondestructive inspection method according to claim 1 or 2,
The non-destructive inspection method, wherein the scattered γ-rays having at least three different peak energies include at least one twice-scattered γ-ray.
請求項1〜請求項3の何れか一つに記載する非破壊検査方法において、
さらに、2つの異なる前記散乱γ線信号の信号強度の比を加味して前記検査対象物の状態を検出することを特徴とする非破壊検査方法。
In the nondestructive inspection method according to any one of claims 1 to 3,
Furthermore, a non-destructive inspection method characterized by detecting a state of the inspection object in consideration of a ratio of signal intensities of two different scattered γ-ray signals.
少なくとも2つの異なるピークエネルギーをもつX線またはγ線(以下、両者をまとめてγ線という)を検査対象物に照射するγ線源と、
前記照射の結果生起されるコンプトン散乱に基づき、少なくとも3つの異なるピークエネルギーをもつ散乱γ線を検出し、検出した前記散乱γ線を表す散乱γ線信号の前記散乱γ線エネルギーに対する信号強度を表す散乱γ線エネルギー分布特性を求める一方、前記散乱γ線エネルギー分布特性に基づき、前記検査対象物の厚さに起因して前記少なくとも3個のピークが形成するパターンを特定して前記検査対象物の状態を検出する検出器とを有することを特徴とする非破壊検査装置。
A γ-ray source that irradiates the object to be inspected with X-rays or γ-rays having at least two different peak energies (hereinafter collectively referred to as γ-rays)
Based on Compton scattering generated as a result of the irradiation, scattered γ-rays having at least three different peak energies are detected, and a signal intensity of the scattered γ-ray signal representing the detected scattered γ-rays with respect to the scattered γ-ray energy is represented. While obtaining scattered γ-ray energy distribution characteristics, a pattern formed by the at least three peaks due to the thickness of the inspection object is identified based on the scattered γ-ray energy distribution characteristics, and the inspection object A non-destructive inspection apparatus comprising a detector for detecting a state.
請求項5に記載する非破壊検査装置において、
前記コンプトン散乱は、コンプトン後方散乱であり、前記検出器は、前記検査対象物に対して同じ側に配設されていることを特徴とする非破壊検査装置。
In the nondestructive inspection device according to claim 5,
The Compton scattering is Compton backscattering, and the detector is disposed on the same side with respect to the inspection object.
請求項5または請求項6に記載する非破壊検査装置において、
前記少なくとも3つの異なるピークエネルギーをもつ散乱γ線には、少なくとも1つの2回散乱γ線を含むことを特徴とする非破壊検査装置。
In the nondestructive inspection device according to claim 5 or 6,
The non-destructive inspection apparatus characterized in that the scattered γ-rays having at least three different peak energies include at least one twice-scattered γ-ray.
請求項5〜請求項7の何れか一つに記載する非破壊検査装置において、
前記γ線源は、それぞれ放射エネルギーが異なる少なくとも2つの異なるピークエネルギーをもつ2種類以上の同位体核種で形成したことを特徴とする非破壊検査装置。
In the nondestructive inspection device according to any one of claims 5 to 7,
The non-destructive inspection apparatus, wherein the γ-ray source is formed of two or more isotope nuclides having at least two different peak energies each having different radiation energy.
請求項5〜請求項7の何れか一つに記載する非破壊検査装置において、
前記γ線源は、電子とレーザー光との衝突により生成される少なくとも2つの異なるピークエネルギーを有するγ線を照射するレーザーコンプトン散乱線源であることを特徴とする非破壊検査装置。
In the nondestructive inspection device according to any one of claims 5 to 7,
The non-destructive inspection apparatus, wherein the γ-ray source is a laser Compton scattered radiation source that irradiates γ-rays having at least two different peak energies generated by collisions between electrons and laser light.
請求項5〜請求項9の何れか一つに記載する非破壊検査装置において、
前記検出器は、さらに、2つの異なる前記散乱γ線信号の信号強度の比を加味して前記検査対象物の状態を検出することを特徴とする非破壊検査装置。
In the nondestructive inspection apparatus according to any one of claims 5 to 9,
The detector further detects a state of the inspection object in consideration of a ratio of signal intensities of two different scattered γ-ray signals.
JP2014098900A 2014-05-12 2014-05-12 Nondestructive inspection method and apparatus Active JP6299033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014098900A JP6299033B2 (en) 2014-05-12 2014-05-12 Nondestructive inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014098900A JP6299033B2 (en) 2014-05-12 2014-05-12 Nondestructive inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2015215263A true JP2015215263A (en) 2015-12-03
JP6299033B2 JP6299033B2 (en) 2018-03-28

Family

ID=54752274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014098900A Active JP6299033B2 (en) 2014-05-12 2014-05-12 Nondestructive inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP6299033B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772049A (en) * 1980-08-25 1982-05-06 Philips Nv Tomograph
WO1997033141A1 (en) * 1996-03-04 1997-09-12 The Penn State Research Foundation Compton backscatter pipe wall thickness gauge employing focusing collimator and annular detector
JP2009544026A (en) * 2006-07-20 2009-12-10 ジーエスアイ ヘルムホルツツェントゥルム フュア シュヴェリオーネンフォルシュング ゲーエムベーハー Method for determining the material composition of a material specimen
JPWO2010101221A1 (en) * 2009-03-05 2012-09-10 独立行政法人産業技術総合研究所 Nondestructive inspection system using nuclear resonance fluorescence scattering
EP2667184A1 (en) * 2012-05-22 2013-11-27 Aribex, Inc. Handheld backscatter X-ray system for 3-D imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772049A (en) * 1980-08-25 1982-05-06 Philips Nv Tomograph
WO1997033141A1 (en) * 1996-03-04 1997-09-12 The Penn State Research Foundation Compton backscatter pipe wall thickness gauge employing focusing collimator and annular detector
JP2009544026A (en) * 2006-07-20 2009-12-10 ジーエスアイ ヘルムホルツツェントゥルム フュア シュヴェリオーネンフォルシュング ゲーエムベーハー Method for determining the material composition of a material specimen
JPWO2010101221A1 (en) * 2009-03-05 2012-09-10 独立行政法人産業技術総合研究所 Nondestructive inspection system using nuclear resonance fluorescence scattering
EP2667184A1 (en) * 2012-05-22 2013-11-27 Aribex, Inc. Handheld backscatter X-ray system for 3-D imaging
US20130315368A1 (en) * 2012-05-22 2013-11-28 Aribex, Inc. Handheld X-Ray System for 3D Scatter Imaging
JP2013253969A (en) * 2012-05-22 2013-12-19 Aribex Inc Handheld x-ray system for 3d scatter imaging

Also Published As

Publication number Publication date
JP6299033B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
Durham et al. Tests of cosmic ray radiography for power industry applications
EP2221847A2 (en) Compact multi-focus x-ray source, x-ray diffraction imaging system, and method for fabricating compact multi-focus x-ray source
JP7311161B2 (en) Nondestructive inspection method and apparatus
JP6633480B2 (en) Apparatus and method for measuring heavy element content
JP5429788B2 (en) Nondestructive inspection method and apparatus
Udod et al. State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review
KR102437705B1 (en) System and method for estimating the radiation activity of a radiation source located inside an object
JP7340476B2 (en) Radiation measurement device and radiation measurement method
JP6299033B2 (en) Nondestructive inspection method and apparatus
JP6598205B2 (en) Nondestructive inspection method and apparatus
US20190025231A1 (en) A method of detection of defects in materials with internal directional structure and a device for performance of the method
KR101994539B1 (en) System and method of Compton computed tomography
JP6497701B2 (en) Nondestructive inspection method and apparatus
JP2006010356A (en) Non-destructive analyzing method using pulse neutron transmitting method and its non-destructive analyzer
US9020099B1 (en) Miniaturized pipe inspection system for measuring corrosion and scale in small pipes
JP6277520B2 (en) Nondestructive inspection method and apparatus
US8976936B1 (en) Collimator for backscattered radiation imaging and method of using the same
JP5030056B2 (en) Nondestructive inspection method and apparatus
JP2017044642A (en) Structure inspection device and inspection method therefor
JP7223420B2 (en) Temperature measuring device, temperature measuring method
JP7449821B2 (en) Internal condition inspection system and internal condition inspection method
Harara Deposit thickness measurement in pipes by tangential radiography using gamma ray sources
US20230393082A1 (en) Nondestructive inspecting device, and nondestructive inspecting method
JP7437337B2 (en) Internal state imaging device and internal state imaging method
Thangavelu et al. Flaw detection by spatially coded backscatter radiography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6299033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250