JP2015215209A - Sample cell for x-ray absorption fine structure transmission measurement - Google Patents

Sample cell for x-ray absorption fine structure transmission measurement Download PDF

Info

Publication number
JP2015215209A
JP2015215209A JP2014097640A JP2014097640A JP2015215209A JP 2015215209 A JP2015215209 A JP 2015215209A JP 2014097640 A JP2014097640 A JP 2014097640A JP 2014097640 A JP2014097640 A JP 2014097640A JP 2015215209 A JP2015215209 A JP 2015215209A
Authority
JP
Japan
Prior art keywords
sample
ray
storage member
fine structure
sample storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014097640A
Other languages
Japanese (ja)
Inventor
雄祐 為則
Yusuke Tamenori
雄祐 為則
幸治 尾原
Koji Ohara
幸治 尾原
肇 谷田
Hajime Tanida
肇 谷田
喜晴 内本
Yoshiharu Uchimoto
喜晴 内本
光博 山根
Mitsuhiro Yamane
光博 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Japan Synchrotron Radiation Research Institute
Takimoto Co Ltd
Kyoto University NUC
Original Assignee
Japan Atomic Energy Research Institute
Japan Synchrotron Radiation Research Institute
Takimoto Co Ltd
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Japan Synchrotron Radiation Research Institute, Takimoto Co Ltd, Kyoto University NUC filed Critical Japan Atomic Energy Research Institute
Priority to JP2014097640A priority Critical patent/JP2015215209A/en
Publication of JP2015215209A publication Critical patent/JP2015215209A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sample cell for X-ray absorption fine structure transmission measurement in which the length in the X-ray irradiation direction of a storage region of a sample is made shorter than that of the prior art.SOLUTION: A storage recess is formed with cutting work on a center part of a polyimide sample storage member 20. A sample being a measurement object is stored in the storage recess, and sealed with an X-ray transmission window 10. The sample storage member 20 is held by a holding surface provided on a base part 110. The holding surface is a tapered surface projecting frontward, and the sample storage member 20 is curved with the holding surface. Consequently, tension acts on the sample storage member 20, and thereby the occurrence of wrinkles in the sample storage member 20 is suppressed.

Description

本発明は、X線吸収微細構造透過測定用の試料セルに関する。   The present invention relates to a sample cell for X-ray absorption fine structure transmission measurement.

X線吸収微細構造(X-ray absorption fine structure, XAFS)の透過X線強度測定には、測定対象の試料を収容した試料セルが用いられる。例えば、特許文献1には、in−situ XAFS測定用の試料セルが開示されている。当該特許文献1に記載された試料セルでは、2枚のX線透過窓の間に、気相又は液相の試料を保持する固定触媒が配置される。試料の収容領域のX線照射方向における長さ、即ち、2枚のX線透過窓の間隔は、2mmとされる。このように、従来のXAFS測定用の試料セルでは、試料の収容領域のX線照射方向における長さは数mm程度とされるのが一般的である。   For measurement of transmitted X-ray intensity of an X-ray absorption fine structure (XAFS), a sample cell containing a sample to be measured is used. For example, Patent Document 1 discloses a sample cell for in-situ XAFS measurement. In the sample cell described in Patent Document 1, a fixed catalyst that holds a gas phase or liquid phase sample is disposed between two X-ray transmission windows. The length of the sample accommodation region in the X-ray irradiation direction, that is, the distance between the two X-ray transmission windows is set to 2 mm. As described above, in the conventional sample cell for XAFS measurement, the length of the sample accommodation region in the X-ray irradiation direction is generally about several mm.

特開2006−162506号公報JP 2006-162506 A

試料の収容領域及び透過窓領域のX線照射方向における長さが大きすぎると、試料及び透過窓のX線吸収により、透過X線強度の測定精度が低下する虞がある。また、透過窓はX線吸収量が小さく、均一な厚みの部材を使う必要がある。照射X線は縦横が数百μmの大きさで、透過測定においては、試料がそのX線の大きさの中で均一な厚みで存在していることが必要である。特に5keV以下の低エネルギーのX線ではその透過窓による吸収の影響が顕著である。また、試料収容領域の長さが大きいと、照射X線が透過せずに試料に全て吸収され、透過X線強度を測定することができない。そこで、試料の収容領域及び透過窓領域のX線照射方向における長さを可及的に小さくすることが望まれる。   If the length of the sample storage region and the transmission window region in the X-ray irradiation direction is too large, the measurement accuracy of the transmission X-ray intensity may be reduced due to the X-ray absorption of the sample and the transmission window. Further, the transmissive window has a small amount of X-ray absorption, and it is necessary to use a member having a uniform thickness. The irradiated X-ray has a size of several hundreds μm in length and width, and in the transmission measurement, it is necessary that the sample exists with a uniform thickness in the size of the X-ray. In particular, in the case of X-rays with a low energy of 5 keV or less, the influence of absorption by the transmission window is remarkable. Moreover, if the length of the sample storage region is large, the irradiated X-rays are not transmitted and are all absorbed by the sample, and the transmitted X-ray intensity cannot be measured. Therefore, it is desired to reduce the length of the sample accommodation region and the transmission window region in the X-ray irradiation direction as much as possible.

本発明は、かかる事情に鑑みてなされたものであり、その主たる目的は、上記課題を解決することができるX線吸収微細構造透過測定用の試料セルを提供することにある。   This invention is made | formed in view of this situation, The main objective is to provide the sample cell for X-ray absorption fine structure transmission measurement which can solve the said subject.

上述した課題を解決するために、本発明の一の態様の試料セルは、測定対象である試料を収容する試料セルであって、光源から照射されたX線を透過させるX線透過窓と、試料を収容するための収容凹部が形成されており、前記X線透過窓が前記収容凹部を塞ぐように取り付けられることによって、前記X線透過窓と前記収容凹部とによって試料の収容領域が形成される試料収容部材と、前記試料収容部材及び前記X線透過窓を保持する基部と、前記基部に取り付けられ、前記基部に対して前記試料収容部材及び前記X線透過窓を固定する固定部材と、を備え、前記試料収容部材は、スーパーエンジニアリングプラスチック製であり、前記収容凹部が切削加工によって形成されている。   In order to solve the above-described problem, a sample cell according to one aspect of the present invention is a sample cell that stores a sample to be measured, and an X-ray transmission window that transmits X-rays emitted from a light source; A storage recess for storing the sample is formed, and the X-ray transmission window is attached so as to close the storage recess, whereby a sample storage region is formed by the X-ray transmission window and the storage recess. A sample storage member, a base for holding the sample storage member and the X-ray transmission window, a fixing member attached to the base and fixing the sample storage member and the X-ray transmission window to the base, The sample storage member is made of super engineering plastic, and the storage recess is formed by cutting.

上記態様において、前記X線透過窓は、スーパーエンジニアリングプラスチック製であってもよい。   In the above aspect, the X-ray transmission window may be made of super engineering plastic.

上記態様において、前記収容凹部は、その深さが10μm以上100μm以下であってもよい。   In the above aspect, the accommodating recess may have a depth of 10 μm to 100 μm.

上記態様において、前記試料収容部材は、その厚さが15μm以上110μm以下であってもよい。   In the above aspect, the sample housing member may have a thickness of 15 μm to 110 μm.

上記態様において、前記固定部材は、前記試料収容部材に張力が生じるように、前記試料収容部材を前記基部に対して固定するように構成されていてもよい。   The said aspect WHEREIN: The said fixing member may be comprised so that the said sample storage member may be fixed with respect to the said base so that tension | tensile_strength may arise in the said sample storage member.

上記態様において、前記試料収容部材には、その主面に沿った方向に張力が生じるように構成されていてもよい。   In the above aspect, the sample storage member may be configured such that tension is generated in a direction along the main surface.

上記態様において、前記試料収容部材には、放射状に均等に張力が生じるように構成されていてもよい。   In the above aspect, the sample storage member may be configured so that tension is evenly generated radially.

上記態様において、前記基部は、前記X線照射方向に延びる貫通孔が設けられており、前記収容凹部を前記貫通孔に位置させた状態で前記試料収容部材を保持するように、前記貫通孔の周縁に前記試料収容部材の保持面が形成されており、前記保持面は、外側に向かうにしたがって、前記X線照射方向の同一側に位置が変化するように傾斜しており、前記固定部材は、前記保持面に保持された状態の前記試料収容部材を前記X線照射方向に押し付けることにより、前記試料収容部材に張力を生じさせるように構成されていてもよい。   In the above aspect, the base is provided with a through hole extending in the X-ray irradiation direction, and the through hole is formed so as to hold the sample storage member in a state where the storage recess is positioned in the through hole. A holding surface of the sample storage member is formed at the periphery, and the holding surface is inclined so that the position changes to the same side in the X-ray irradiation direction toward the outside, and the fixing member is The sample storage member held by the holding surface may be configured to generate tension by pressing the sample storage member in the X-ray irradiation direction.

上記態様において、前記保持面は、円錐台の斜面状をなしており、前記固定部材は、前記保持面に対応する円環状をなしていてもよい。   In the above aspect, the holding surface may have a truncated cone shape, and the fixing member may have an annular shape corresponding to the holding surface.

上記態様において、前記試料収容部材は、ポリイミド製であってもよい。   In the above aspect, the sample housing member may be made of polyimide.

本発明によれば、試料の収容領域及び透過窓領域のX線照射方向における長さを従来のものより小さくすることが可能となる。   According to the present invention, it is possible to make the length in the X-ray irradiation direction of the sample accommodation region and the transmission window region smaller than the conventional one.

実施の形態に係る試料セルの構成を示す正面図。The front view which shows the structure of the sample cell which concerns on embodiment. 実施の形態に係る試料セルの構成を示す平面断面図。FIG. 3 is a plan cross-sectional view illustrating a configuration of a sample cell according to the embodiment. 実施の形態に係る試料セルの構成を示す側面断面図。Side surface sectional drawing which shows the structure of the sample cell which concerns on embodiment. 基部の構成を示す正面図。The front view which shows the structure of a base. 基部の構成を示す平面断面図。The plane sectional view showing the composition of a base. 試料収容部材の構成を示す正面図。The front view which shows the structure of a sample storage member. 試料収容部材の構成を示す部分平面断面図。The fragmentary plane sectional view which shows the structure of a sample storage member. ロックリングとX線透過窓及び試料収容部材の保持面における取り付けの様子を説明するための試料セルの部分拡大平面断面図。The partial expanded plane sectional view of the sample cell for demonstrating the mode of attachment in the holding surface of a lock ring, an X-ray transmissive window, and a sample storage member. 試料収容部材に作用する張力を説明するための模式図。The schematic diagram for demonstrating the tension | tensile_strength which acts on a sample storage member. 評価実験の結果を示すグラフ。The graph which shows the result of evaluation experiment.

以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1乃至図3のそれぞれは、本実施の形態に係る試料セルの構成を示す正面図、平面断面図、及び側面断面図である。以下、図1の上下方向を「上下方向」、左右方向を「左右方向」、紙面手前側を「前方(正面側)」、紙面奥側を「後方(背面側)」という。図2においては、上方が「後方」、下方が「前方」、左右方向が「左右方向」、紙面手前側が「上方」、紙面奥側が「下方」である。また、図3においては、上下方向が「上下方向」、左方が「前方」、右方が「後方」、紙面手前側が「右方」、紙面奥側が「左方」である。   Each of FIG. 1 to FIG. 3 is a front view, a plan sectional view, and a side sectional view showing the configuration of the sample cell according to the present embodiment. Hereinafter, the vertical direction in FIG. 1 is referred to as “vertical direction”, the horizontal direction is referred to as “horizontal direction”, the front side of the paper is referred to as “front (front side)”, and the back side of the paper is referred to as “rear (back side)”. In FIG. 2, the upper side is “rear”, the lower side is “front”, the left-right direction is “left-right direction”, the front side of the page is “upper”, and the rear side of the page is “lower”. In FIG. 3, the vertical direction is “vertical direction”, the left is “front”, the right is “rear”, the front side of the paper is “right”, and the back side of the paper is “left”.

本実施の形態に係る試料セル100は、試料の測定に使用される際に、X線照射装置に対向配置される。このとき、X線照射方向が後方となるように、X線照射装置に対して配置される(図2及び図3参照)。   The sample cell 100 according to the present embodiment is disposed so as to face the X-ray irradiation apparatus when used for measuring a sample. At this time, it arrange | positions with respect to an X-ray irradiation apparatus so that an X-ray irradiation direction may become back (refer FIG.2 and FIG.3).

本実施の形態に係る試料セル100は、X線吸収微細構造透過測定に用いられる。試料セル100は、X線を透過するX線フィルタからなるX線透過窓10と、測定対象の試料を収容する試料収容部材20とを保持する基部110を備えている。   The sample cell 100 according to the present embodiment is used for X-ray absorption fine structure transmission measurement. The sample cell 100 includes a base 110 that holds an X-ray transmission window 10 formed of an X-ray filter that transmits X-rays and a sample storage member 20 that stores a sample to be measured.

図4及び図5は、基部110の構成を示す正面図及び平面断面図である。基部110は、ステンレス鋼製であり、実質的に直方体形状をなしている。この基部110には、正面中央位置に前後方向へ貫通する正面視円形の貫通孔111が設けられている。また、基部110の正面側には、貫通孔111の周縁において後方に窪んだ凹状の取付部113が形成されており、その取付部113の底面が、試料収容部材20の保持面112とされている。   4 and 5 are a front view and a plan sectional view showing the configuration of the base 110. The base 110 is made of stainless steel and has a substantially rectangular parallelepiped shape. The base portion 110 is provided with a through hole 111 having a circular shape when viewed from the front and passing through in the front center direction. In addition, a concave attachment portion 113 that is recessed rearward at the periphery of the through hole 111 is formed on the front side of the base portion 110, and the bottom surface of the attachment portion 113 serves as the holding surface 112 of the sample storage member 20. Yes.

保持面112は、正面視において円環状をなしており、内側から外側に向かうにしたがって、後方に後退するように傾斜している。つまり、保持面112は、貫通孔111の正面側開口部に近づくにしたがって、前方へ突出する円錐台の斜面状のテーパ面となっている。   The holding surface 112 has an annular shape when viewed from the front, and is inclined so as to recede backward from the inside toward the outside. That is, the holding surface 112 is a truncated cone-shaped tapered surface that protrudes forward as it approaches the front-side opening of the through-hole 111.

図6及び図7は、試料収容部材20の構成を示す正面図及び部分平面断面図である。試料収容部材20はポリイミド製であり、正面視において円形のフィルム状をなしている。かかる試料収容部材20は、正面中央に円形の収容凹部21が設けられている。この収容凹部21には測定対象の試料が収容される。収容凹部21は、均一な厚さのポリイミドフィルムを切削加工することによって形成されたものである。試料収容部材20の厚さは60μmであり、収容凹部21の深さは50μm以上55μm以下とされている。   6 and 7 are a front view and a partial plan sectional view showing the configuration of the sample storage member 20. The sample storage member 20 is made of polyimide and has a circular film shape when viewed from the front. The sample storage member 20 is provided with a circular storage recess 21 at the front center. A sample to be measured is accommodated in the accommodating recess 21. The housing recess 21 is formed by cutting a polyimide film having a uniform thickness. The thickness of the sample storage member 20 is 60 μm, and the depth of the storage recess 21 is 50 μm or more and 55 μm or less.

なお、本実施の形態においては、試料収容部材20の材料をポリイミドとしたが、これに限定されるものではない。試料収容部材20を他のスーパーエンジニアリングプラスチックで構成することも可能である。ここで、「スーパーエンジニアリングプラスチック」とは、耐熱温度が150℃以上、強度が49MPa以上、曲げ弾性率が2.4GPa以上の合成樹脂をいい、非晶ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンスルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、液晶ポリマー等が含まれる。かかるスーパーエンジニアリングプラスチックは切削性がよいため、切削加工によって高精度に加工成形することが可能である。上述したような微細な収容凹部を形成するには高い加工精度が要求されるため、スーパーエンジニアリングプラスチックが適している。また、測定では試料温度を変化させる場合があり、様々な温度環境下において液体試料を保持することが可能である点でも、スーパーエンジニアリングプラスチックが適している。   In the present embodiment, the material of the sample storage member 20 is polyimide, but the material is not limited to this. It is also possible to configure the sample storage member 20 with another super engineering plastic. Here, “super engineering plastic” means a synthetic resin having a heat resistant temperature of 150 ° C. or higher, a strength of 49 MPa or higher, and a flexural modulus of 2.4 GPa or higher. Examples include sulfide, polyether ether ketone, polyimide, polyether imide, fluororesin, and liquid crystal polymer. Since such super engineering plastic has good machinability, it can be machined with high precision by cutting. Super engineering plastics are suitable because high processing accuracy is required to form the fine accommodating recesses as described above. Further, in the measurement, the sample temperature may be changed, and the super engineering plastic is also suitable in that the liquid sample can be held under various temperature environments.

上記の試料収容部材20の正面には、X線透過窓10が収容凹部21を塞ぐように配置される。X線透過窓10は、ポリイミド製であり、厚さが5μmの正面視円形のフィルム状をなしている。かかるX線透過窓10はX線の透過性を有しており、X線吸収量の小さい材質とすることが好ましい。なお、試料収容部材20の場合と同様に、X線透過窓10をポリイミド以外のスーパーエンジニアリングプラスチックで構成してもよい。   The X-ray transmission window 10 is disposed on the front surface of the sample storage member 20 so as to close the storage recess 21. The X-ray transmission window 10 is made of polyimide and has a circular film shape with a thickness of 5 μm when viewed from the front. The X-ray transmission window 10 is preferably made of a material having X-ray permeability and a small X-ray absorption amount. As in the case of the sample storage member 20, the X-ray transmission window 10 may be made of super engineering plastic other than polyimide.

上述したような試料収容部材20の収容凹部21に試料(気相又は液相)が収容され、試料収容部材20の正面にX線透過窓10が取り付けられる。このようにして互いに密着された試料収容部材20とX線透過窓10は、試料収容部材20が後側、X線透過窓10が前側に位置するようにして、保持面112に取り付けられる。このとき、試料収容部材20は収容凹部21が貫通孔111上に位置するように配置される。   A sample (gas phase or liquid phase) is accommodated in the accommodating recess 21 of the sample accommodating member 20 as described above, and the X-ray transmission window 10 is attached to the front surface of the sample accommodating member 20. The sample storage member 20 and the X-ray transmission window 10 that are brought into close contact with each other in this manner are attached to the holding surface 112 so that the sample storage member 20 is positioned on the rear side and the X-ray transmission window 10 is positioned on the front side. At this time, the sample storage member 20 is disposed so that the storage recess 21 is positioned on the through hole 111.

さらに、X線透過窓10の正面側には、押さえ部材であるロックリング31,32が配置される(図2及び図3参照)。ロックリング31,32のそれぞれは、正面視において円環状の部材であって、ロックリング31は無酸素銅製であり、ロックリング32は黄銅製である。ロックリング31の外径は,32の内径よりも若干大きく、ロックリング32がロックリング31の内側に嵌合される。   Further, on the front side of the X-ray transmission window 10, lock rings 31 and 32, which are pressing members, are arranged (see FIGS. 2 and 3). Each of the lock rings 31 and 32 is an annular member in a front view, and the lock ring 31 is made of oxygen-free copper and the lock ring 32 is made of brass. The outer diameter of the lock ring 31 is slightly larger than the inner diameter of 32, and the lock ring 32 is fitted inside the lock ring 31.

また、ロックリング31の正面側には、ロックリング31を固定するロックスクリュー41が配置される。ロックスクリュー41は、正面視において円環状をなす黄銅製の部材である。かかるロックスクリュー41の外周面には雄ネジが形成されている。また、基部110の正面側の取付部113の内周面には雌ネジが形成されており(図5参照)、ロックスクリュー41が取付部113に螺合される。   A lock screw 41 that fixes the lock ring 31 is disposed on the front side of the lock ring 31. The lock screw 41 is a brass member that has an annular shape when viewed from the front. A male screw is formed on the outer peripheral surface of the lock screw 41. A female screw is formed on the inner peripheral surface of the attachment portion 113 on the front side of the base 110 (see FIG. 5), and the lock screw 41 is screwed into the attachment portion 113.

ロックリング32の正面側には、ロックリング32を固定するロックスクリュー42が配置される。ロックスクリュー42は、円筒状をなすステンレス鋼製の部材である。かかるロックスクリュー42は、その外径がロックスクリュー41の内径と概ね同一であり、ロックスクリュー42の内側に同軸的に配置される。ロックスクリュー42の後側部分の外周面には雄ネジが形成されている。また、ロックスクリュー41の内周面には雌ネジが形成されており、ロックスクリュー42がロックスクリュー41と螺合される。   A lock screw 42 for fixing the lock ring 32 is disposed on the front side of the lock ring 32. The lock screw 42 is a cylindrical member made of stainless steel. The outer diameter of the lock screw 42 is substantially the same as the inner diameter of the lock screw 41, and is arranged coaxially inside the lock screw 42. A male screw is formed on the outer peripheral surface of the rear portion of the lock screw 42. A female screw is formed on the inner peripheral surface of the lock screw 41, and the lock screw 42 is screwed to the lock screw 41.

図8は、図2の部分拡大図である。図8には、ロックリング31,32と、X線透過窓10及び試料収容部材20との、保持面112に取り付けられた様子が示されている。ロックスクリュー41が取付部113に締め付けられると(図2及び図3参照)、図8に示すようにロックリング31がX線透過窓10及び試料収容部材20を後方に押さえつける。また、ロックスクリュー42がロックスクリュー41に締め付けられると(図2及び図3参照)、図8に示すようにロックリング32がX線透過窓10及び試料収容部材20を後方に押さえつける。このとき、保持面112がテーパ面であるため、ロックリング31,32に押さえつけられたX線透過窓10及び試料収容部材20が、保持面112上を中央から外側へ向かって摺動しようとする。また、X線透過窓10及び試料収容部材20は、保持面112に沿わされるため、中央が前方に突出するように湾曲する。これにより、X線透過窓10及び試料収容部材20には、それぞれの主面に沿って、中央から外側に向かって半径方向に張力が発生する。   FIG. 8 is a partially enlarged view of FIG. FIG. 8 shows a state in which the lock rings 31 and 32, the X-ray transmission window 10 and the sample storage member 20 are attached to the holding surface 112. When the lock screw 41 is fastened to the mounting portion 113 (see FIGS. 2 and 3), the lock ring 31 presses the X-ray transmission window 10 and the sample storage member 20 backward as shown in FIG. When the lock screw 42 is tightened to the lock screw 41 (see FIGS. 2 and 3), the lock ring 32 presses the X-ray transmission window 10 and the sample storage member 20 backward as shown in FIG. At this time, since the holding surface 112 is a tapered surface, the X-ray transmission window 10 and the sample storage member 20 pressed against the lock rings 31 and 32 try to slide on the holding surface 112 from the center toward the outside. . Further, since the X-ray transmission window 10 and the sample storage member 20 are along the holding surface 112, they are curved so that the center protrudes forward. Thereby, tension is generated in the X-ray transmission window 10 and the sample storage member 20 in the radial direction from the center toward the outside along the main surfaces.

図9は、試料収容部材20に作用する張力を説明するための模式図である。図9に示すように、試料収容部材20には、周方向に均等な張力が生じている。これは、X線透過窓10についても同様である。   FIG. 9 is a schematic diagram for explaining the tension acting on the sample storage member 20. As shown in FIG. 9, uniform tension is generated in the sample housing member 20 in the circumferential direction. The same applies to the X-ray transmission window 10.

X線透過窓10及び試料収容部材20の収容凹部21が設けられている部分は厚さが約5μmと非常に小さく、容易に皺が生じ、また収容凹部21の深さ(つまり、収容されている試料の厚さ)が均一でなくなってしまう。これらはX線が照射され、測定が行われる部分であるので、皺が生じたり、収容凹部21の深さが均一でなくなったりすると測定結果に悪影響を及ぼしてしまう。上記のようにX線透過窓10及び試料収容部材20に中央から外側に向かう張力を作用させることで、皺の発生を抑制し、収容凹部21の深さを均一にすることができる。   The portion of the X-ray transmission window 10 and the sample storage member 20 where the storage recess 21 is provided has a very small thickness of about 5 μm and easily wrinkles, and the depth of the storage recess 21 (that is, the storage recess 21 is stored). The thickness of the sample is not uniform. Since these are portions where X-rays are irradiated and measurement is performed, if the wrinkles occur or the depth of the housing recess 21 is not uniform, the measurement results are adversely affected. By applying the tension from the center to the outside on the X-ray transmission window 10 and the sample storage member 20 as described above, the generation of wrinkles can be suppressed and the depth of the storage recess 21 can be made uniform.

また、基部110の左側面からは、右方に延びる挿入穴5が設けられている。挿入穴5は、貫通孔111の近傍まで延設されており、温度センサである熱電対のプローブが挿入される。この温度センサにより、試料の温度が測定される。   Further, an insertion hole 5 extending rightward is provided from the left side surface of the base 110. The insertion hole 5 extends to the vicinity of the through-hole 111, and a thermocouple probe as a temperature sensor is inserted therein. The temperature of the sample is measured by this temperature sensor.

上記のようにして試料が試料セル100に収容されると、試料セル100は真空チャンバ内に設置される。真空チャンバ内に配置された試料セル100にX線が照射され、X線吸収微細構造解析による試料の測定が行われる。   When the sample is stored in the sample cell 100 as described above, the sample cell 100 is placed in the vacuum chamber. The sample cell 100 disposed in the vacuum chamber is irradiated with X-rays, and the sample is measured by X-ray absorption fine structure analysis.

(評価実験)
発明者らは、上記の実施の形態に係る試料セル100を製作し、その性能の評価実験を行った。図10は、実験結果を示すグラフである。図10のグラフにおいて、横軸はX線のエネルギーを示し、縦軸はX線吸収量を示している。この実験では、セシウムを含有する試料を測定対象とし、収容凹部21の深さを50μmとした。
(Evaluation experiment)
The inventors manufactured the sample cell 100 according to the above-described embodiment, and performed an evaluation experiment on its performance. FIG. 10 is a graph showing experimental results. In the graph of FIG. 10, the horizontal axis indicates X-ray energy, and the vertical axis indicates the amount of X-ray absorption. In this experiment, a sample containing cesium was used as a measurement target, and the depth of the housing recess 21 was 50 μm.

図10に示すように、X線エネルギーが5.0keVのときに吸収端が現れている。吸収端においては、明瞭なピークが観測されており、また、吸収端から続くエネルギー領域において微細構造が明確に認められる。このように、試料の厚さを微小にすれば測定精度が向上し、X線吸収微細構造を明確に観測することが可能である。本実施の形態に係る試料セルによれば、微小な深さの収容凹部21を形成することが可能であるので、測定精度のよい試料セルを構成することが可能となる。   As shown in FIG. 10, the absorption edge appears when the X-ray energy is 5.0 keV. A clear peak is observed at the absorption edge, and a fine structure is clearly recognized in the energy region continuing from the absorption edge. As described above, if the thickness of the sample is made minute, the measurement accuracy is improved and the X-ray absorption fine structure can be clearly observed. According to the sample cell according to the present embodiment, it is possible to form the accommodating recess 21 with a very small depth, and thus it is possible to configure a sample cell with high measurement accuracy.

(その他の実施の形態)
なお、上述した実施の形態においては、収容凹部21の深さを50μm以上55μm以下としたが、これに限定されるものではない。収容凹部21の深さは任意に設定することが可能である。ただし、上述したように試料の厚さが小さいほど測定精度が向上することから、収容凹部21の深さは100μm以下であることが好ましい。また、加工精度の観点から、収容凹部21の深さは10μm以上であることが好ましい。
(Other embodiments)
In the above-described embodiment, the depth of the accommodating recess 21 is 50 μm or more and 55 μm or less, but is not limited to this. The depth of the housing recess 21 can be arbitrarily set. However, since the measurement accuracy is improved as the thickness of the sample is smaller as described above, the depth of the accommodating recess 21 is preferably 100 μm or less. Moreover, it is preferable that the depth of the accommodation recessed part 21 is 10 micrometers or more from a viewpoint of processing accuracy.

また、上述した実施の形態においては、試料収容部材20の厚さを60μmとしたが、これに限定されるものではない。試料収容部材20の厚さは、収容凹部の深さよりも大きければよい。ただし、収容凹部21における底部の厚さは、測定精度の観点から、小さい方がよく、特に10μm以下とすることが好ましい。また、試料収容部材20の強度及び加工精度の観点からは、収容凹部21における底部の厚さを5μm以上とすることが好ましい。これらの観点から、収容凹部21の深さが10μm以上100μm以下の場合には、試料収容部材20の厚さを15μm以上110μm以下とすることが好ましい。   In the above-described embodiment, the thickness of the sample storage member 20 is 60 μm, but the present invention is not limited to this. The thickness of the sample accommodation member 20 should just be larger than the depth of an accommodation recessed part. However, the thickness of the bottom of the housing recess 21 is preferably small from the viewpoint of measurement accuracy, and is particularly preferably 10 μm or less. Further, from the viewpoint of the strength and processing accuracy of the sample storage member 20, it is preferable that the thickness of the bottom of the storage recess 21 is 5 μm or more. From these viewpoints, when the depth of the housing recess 21 is 10 μm or more and 100 μm or less, the thickness of the sample housing member 20 is preferably 15 μm or more and 110 μm or less.

また、上述した実施の形態においては、保持面112をテーパ面とし、試料収容部材20を保持面112に沿わせて湾曲させることにより、試料収容部材20に張力を作用させる構成としたが、これに限定されるものではない。他の構成により、試料収容部材20に張力を生じさせることとすることもできる。例えば、基部110に取り付けられた試料収容部材20(及びX線透過窓10)を、バネ等によって周囲から引っ張るようにして、試料収容部材20(及びX線透過窓10)に張力を生じさせる構成とすることも可能である。   In the above-described embodiment, the holding surface 112 is a tapered surface, and the sample accommodating member 20 is bent along the holding surface 112 so that tension is applied to the sample accommodating member 20. It is not limited to. The tension can be generated in the sample storage member 20 by another configuration. For example, the sample storage member 20 (and the X-ray transmission window 10) attached to the base 110 is pulled from the surroundings by a spring or the like to generate tension in the sample storage member 20 (and the X-ray transmission window 10). It is also possible.

また、上述した実施の形態においては、保持面112を円錐台の斜面状のテーパ面とし、円環状のロックリング31,32によって、X線透過窓10及び試料収容部材20を保持面112に押さえつける構成について述べた。このように構成することで、X線透過窓10及び試料収容部材20には、放射状に均等に張力が生じる。このため、張力に偏りが生じることがなく、皺の発生及び収容凹部21の深さのばらつきが生じることを防止することができる。しかし、上記構成に限定されるものではない。例えば、保持面112を複数の斜面からなる角錐台状のテーパ面とし、X線透過窓10及び試料収容部材20を、各斜面に押さえつけるようにすることも可能である。このようにすることによっても、皺の発生を抑制したり、収容凹部21の深さを均一にしたりする効果は得られる。   In the above-described embodiment, the holding surface 112 is a tapered surface having a truncated cone shape, and the X-ray transmission window 10 and the sample storage member 20 are pressed against the holding surface 112 by the annular lock rings 31 and 32. The configuration was described. With this configuration, the X-ray transmission window 10 and the sample storage member 20 are uniformly tensioned radially. For this reason, there is no bias in tension, and it is possible to prevent wrinkles and variations in the depth of the accommodating recess 21 from occurring. However, it is not limited to the said structure. For example, the holding surface 112 may be a truncated pyramid tapered surface having a plurality of inclined surfaces, and the X-ray transmission window 10 and the sample storage member 20 may be pressed against each inclined surface. Also by doing in this way, the effect of suppressing the generation of wrinkles or making the depth of the accommodating recess 21 uniform can be obtained.

また、上述した実施の形態においては、X線透過窓10及び試料収容部材20のそれぞれを円形のフィルム状としたが、これらに限定されるものではない。X線透過窓10及び試料収容部材20は、正面視において円形以外の形状のフィルム状とすることも可能である。   In the above-described embodiment, each of the X-ray transmission window 10 and the sample storage member 20 is formed in a circular film shape, but is not limited thereto. The X-ray transmission window 10 and the sample storage member 20 can be formed into a film shape other than a circle in front view.

本発明の試料セルは、例えば低エネルギーで温度可変のX線吸収微細構造透過測定用の試料セル等として有用である。   The sample cell of the present invention is useful, for example, as a sample cell for X-ray absorption fine structure transmission measurement with low energy and variable temperature.

10 X線透過窓
20 試料収容部材
21 収容凹部
31,32 ロックリング
41,42 ロックスクリュー
100 試料セル
110 基部
111 貫通孔
112 保持面
DESCRIPTION OF SYMBOLS 10 X-ray transmissive window 20 Sample storage member 21 Storage recessed part 31, 32 Lock ring 41, 42 Lock screw 100 Sample cell 110 Base 111 Through-hole 112 Holding surface

Claims (10)

測定対象である試料を収容する試料セルであって、
光源から照射されたX線を透過させるX線透過窓と、
試料を収容するための収容凹部が形成されており、前記X線透過窓が前記収容凹部を塞ぐように取り付けられることによって、前記X線透過窓と前記収容凹部とによって試料の収容領域が形成される試料収容部材と、
前記試料収容部材及び前記X線透過窓を保持する基部と、
前記基部に取り付けられ、前記基部に対して前記試料収容部材及び前記X線透過窓を固定する固定部材と、
を備え、
前記試料収容部材は、スーパーエンジニアリングプラスチック製であり、前記収容凹部が切削加工によって形成されている、
X線吸収微細構造透過測定用の試料セル。
A sample cell for storing a sample to be measured,
An X-ray transmission window that transmits X-rays emitted from the light source;
A storage recess for storing the sample is formed, and the X-ray transmission window is attached so as to close the storage recess, whereby a sample storage region is formed by the X-ray transmission window and the storage recess. A sample storage member,
A base for holding the sample storage member and the X-ray transmission window;
A fixing member attached to the base, and fixing the sample storage member and the X-ray transmission window to the base;
With
The sample storage member is made of super engineering plastic, and the storage recess is formed by cutting,
Sample cell for X-ray absorption fine structure transmission measurement.
前記X線透過窓は、スーパーエンジニアリングプラスチック製である、
請求項1に記載のX線吸収微細構造透過測定用の試料セル。
The X-ray transmission window is made of super engineering plastic.
A sample cell for X-ray absorption fine structure transmission measurement according to claim 1.
前記収容凹部は、その深さが10μm以上100μm以下である、
請求項1又は2に記載のX線吸収微細構造透過測定用の試料セル。
The accommodation recess has a depth of 10 μm or more and 100 μm or less,
A sample cell for X-ray absorption fine structure transmission measurement according to claim 1 or 2.
前記試料収容部材は、その厚さが15μm以上110μm以下である、
請求項3に記載のX線吸収微細構造透過測定用の試料セル。
The sample housing member has a thickness of 15 μm or more and 110 μm or less.
A sample cell for X-ray absorption fine structure transmission measurement according to claim 3.
前記固定部材は、前記試料収容部材に張力が生じるように、前記試料収容部材を前記基部に対して固定するように構成されている、
請求項1乃至4の何れかに記載のX線吸収微細構造透過測定用の試料セル。
The fixing member is configured to fix the sample storage member to the base so that tension is generated in the sample storage member.
The sample cell for X-ray absorption fine structure permeation | transmission measurement in any one of Claims 1 thru | or 4.
前記試料収容部材には、その主面に沿った方向に張力が生じるように構成されている、
請求項5に記載のX線吸収微細構造透過測定用の試料セル。
The sample storage member is configured to generate tension in a direction along the main surface thereof.
The sample cell for X-ray absorption fine structure permeation | transmission measurement of Claim 5.
前記試料収容部材には、放射状に均等に張力が生じるように構成されている、
請求項6に記載のX線吸収微細構造透過測定用の試料セル。
The sample storage member is configured so that tension is evenly generated radially,
The sample cell for X-ray absorption fine structure permeation | transmission measurement of Claim 6.
前記基部は、前記X線照射方向に延びる貫通孔が設けられており、前記収容凹部を前記貫通孔に位置させた状態で前記試料収容部材を保持するように、前記貫通孔の周縁に前記試料収容部材の保持面が形成されており、
前記保持面は、外側に向かうにしたがって、前記X線照射方向の同一側に位置が変化するように傾斜しており、
前記固定部材は、前記保持面に保持された状態の前記試料収容部材を前記X線照射方向に押し付けることにより、前記試料収容部材に張力を生じさせるように構成されている、
請求項5乃至7の何れかに記載のX線吸収微細構造透過測定用の試料セル。
The base is provided with a through-hole extending in the X-ray irradiation direction, and the sample is disposed at the periphery of the through-hole so as to hold the sample-accommodating member in a state where the accommodating recess is positioned in the through-hole. A holding surface of the housing member is formed,
The holding surface is inclined so that its position changes to the same side in the X-ray irradiation direction as it goes outward.
The fixing member is configured to generate tension on the sample storage member by pressing the sample storage member held on the holding surface in the X-ray irradiation direction.
The sample cell for X-ray absorption fine structure permeation | transmission measurement in any one of Claim 5 thru | or 7.
前記保持面は、円錐台の斜面状をなしており、
前記固定部材は、前記保持面に対応する円環状をなしている、
請求項8に記載のX線吸収微細構造透過測定用の試料セル。
The holding surface has a truncated cone shape,
The fixing member has an annular shape corresponding to the holding surface;
The sample cell for X-ray absorption fine structure permeation | transmission measurement of Claim 8.
前記試料収容部材は、ポリイミド製である、
請求項1乃至9の何れかに記載のX線吸収微細構造透過測定用の試料セル。
The sample storage member is made of polyimide.
A sample cell for X-ray absorption fine structure transmission measurement according to any one of claims 1 to 9.
JP2014097640A 2014-05-09 2014-05-09 Sample cell for x-ray absorption fine structure transmission measurement Pending JP2015215209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097640A JP2015215209A (en) 2014-05-09 2014-05-09 Sample cell for x-ray absorption fine structure transmission measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097640A JP2015215209A (en) 2014-05-09 2014-05-09 Sample cell for x-ray absorption fine structure transmission measurement

Publications (1)

Publication Number Publication Date
JP2015215209A true JP2015215209A (en) 2015-12-03

Family

ID=54752229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097640A Pending JP2015215209A (en) 2014-05-09 2014-05-09 Sample cell for x-ray absorption fine structure transmission measurement

Country Status (1)

Country Link
JP (1) JP2015215209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073043A1 (en) 2015-10-30 2017-05-04 Canon Kabushiki Kaisha Radiation imaging system, information processing apparatus for irradiation image, image processing method for radiation image, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073043A1 (en) 2015-10-30 2017-05-04 Canon Kabushiki Kaisha Radiation imaging system, information processing apparatus for irradiation image, image processing method for radiation image, and program

Similar Documents

Publication Publication Date Title
JP6144419B2 (en) Microscope observation container and observation apparatus
Luangtip et al. The X-ray spectral evolution of the ultraluminous X-ray source Holmberg IX X-1
SG10201811725SA (en) Systems and methods for assessing biological samples
JP6230250B2 (en) Surface enhanced Raman scattering unit and Raman spectroscopic analysis method
JP2019536997A5 (en)
US20150219729A1 (en) Magnetic field measurement apparatus
JP2015161527A5 (en)
JP2016020893A5 (en)
JP2015141113A5 (en)
JP2018500575A5 (en)
JP2015215209A (en) Sample cell for x-ray absorption fine structure transmission measurement
BR112022011255A2 (en) MICROSCOPIC IMAGES WITHOUT FOCUS OF A SAMPLE
ZA202000316B (en) Convergent x-ray imaging device and method
JP2015152388A (en) Sample holder for x-ray analysis, and sample installation jig
EP4235255A3 (en) An optical arrangement and method for imaging a sample
US20150300811A1 (en) Apparatus for measuring inner diameter
JP2015175657A (en) Jig and method for mounting radiation detector, and method for positioning sample container
Weber et al. Compton polarimeter for 10–30 keV x rays
JP2017062184A5 (en)
KR200476744Y1 (en) Collimator for non-destructive inspection and radiation source apparatus comprising the same
JP2015064280A5 (en)
JP6365659B2 (en) Calcium fluoride optical member, manufacturing method thereof, gas holding container and light source device
JP2011077212A (en) Light emitting device
JP6201394B2 (en) X-ray source, X-ray device
JP6347539B2 (en) Ultrasonic inspection equipment