JP2015215072A - Solenoid valve device - Google Patents

Solenoid valve device Download PDF

Info

Publication number
JP2015215072A
JP2015215072A JP2014099215A JP2014099215A JP2015215072A JP 2015215072 A JP2015215072 A JP 2015215072A JP 2014099215 A JP2014099215 A JP 2014099215A JP 2014099215 A JP2014099215 A JP 2014099215A JP 2015215072 A JP2015215072 A JP 2015215072A
Authority
JP
Japan
Prior art keywords
discharge valve
valve seat
inclined portion
outer diameter
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014099215A
Other languages
Japanese (ja)
Other versions
JP6310766B2 (en
Inventor
明靖 宮本
Akiyasu Miyamoto
明靖 宮本
安部 元幸
Motoyuki Abe
元幸 安部
義人 安川
Yoshito Yasukawa
義人 安川
徳尾 健一郎
Kenichiro Tokuo
健一郎 徳尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014099215A priority Critical patent/JP6310766B2/en
Publication of JP2015215072A publication Critical patent/JP2015215072A/en
Application granted granted Critical
Publication of JP6310766B2 publication Critical patent/JP6310766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Lift Valve (AREA)
  • Check Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure sealing performance for sealing a fluid and suppress excessive stress.SOLUTION: A solenoid valve comprises: a delivery valve seat member; and a delivery valve opening or closing a channel by separating from or contacting with the delivery valve seat member, the delivery valve seat member including a delivery valve seat portion in contact with the delivery valve and delivery valve seat inclined portions formed on an outside surface of the delivery valve seat portion, a seat-side contact portion of the delivery valve and the delivery valve seat portion of the delivery valve seat member being disposed to axially overlap each other, and delivery valve corners of the delivery valve being disposed at positions corresponding to the respective delivery valve seat inclined portions of the delivery valve seat member in an axial direction.

Description

本発明は、電磁弁装置について特に内燃機関の高圧燃料ポンプに用いられるものに関する。   The present invention relates to an electromagnetic valve device, particularly to a high pressure fuel pump for an internal combustion engine.

従来技術として特許文献1に示すように、例えば直噴ガソリンエンジンに用いられるコモンレール式の燃料噴射システムでは、燃料を加圧してコモンレールに供給する高圧燃料ポンプを備えている。高圧燃料ポンプは、エンジンのクランクシャフトに接続されて回転するカムシャフトを備え、カムシャフトの回転運動は、例えばカムにより往復運動に変換して、シリンダ内に設置されたプランジャに伝達される。プランジャ往復運動することにより、加圧室に燃料が吸い込まれる、高圧燃料ポンプによって、加圧され、コモンレールへと送出される。   As shown in Patent Document 1 as a conventional technique, for example, a common rail fuel injection system used in a direct injection gasoline engine includes a high pressure fuel pump that pressurizes fuel and supplies the fuel to the common rail. The high-pressure fuel pump includes a camshaft that is connected to a crankshaft of an engine and rotates, and the rotational motion of the camshaft is converted into a reciprocating motion by a cam, for example, and transmitted to a plunger installed in the cylinder. By reciprocating the plunger, the fuel is sucked into the pressurizing chamber, pressurized by a high-pressure fuel pump, and sent to the common rail.

高圧燃料ポンプには、加圧室とコモンレールの間には、吐出弁ユニットが設けられている。吐出弁ユニットは、吐出弁と吐出弁受け部材とを備え、吐出弁には吐出弁受け部材が設けられ、吐出弁は、吐出弁受け部材方向に付勢ばねによって押付けられている。また、吐出弁受け部材には、吐出弁と同様、シート面が設けられている。吐出弁の外周側には吐出弁ホルダが設けられ、これにより吐出弁の傾きならびに変位量を規定している。   The high-pressure fuel pump is provided with a discharge valve unit between the pressurizing chamber and the common rail. The discharge valve unit includes a discharge valve and a discharge valve receiving member. The discharge valve is provided with a discharge valve receiving member, and the discharge valve is pressed by a biasing spring in the direction of the discharge valve receiving member. Further, the discharge valve receiving member is provided with a seat surface as in the case of the discharge valve. A discharge valve holder is provided on the outer peripheral side of the discharge valve, thereby regulating the inclination and displacement of the discharge valve.

特開2002−48033号公報JP 2002-48033 A 特開2005−188379号公報JP 2005-188379 A

しかし、吐出弁と吐出弁ユニットの外周側に設けられた吐出弁ホルダとのクリアランスが大きい場合には、吐出弁は摺動長さと吐出弁と吐出弁ホルダのクリアランスにより、吐出弁に傾きが生ずる。傾斜した状態で吐出弁が吐出弁受け部材に衝突した場合、吐出弁と吐出弁受け部材間の接触面積が小さくなり、衝突応力が大きくなるという問題があった。これに起因して、シート面およびシート部の摩耗が進行し、燃料シール性能を悪化させるという問題があった。
摩耗を抑制するためには一般的に衝突箇所を曲面形状に形成することが有効であるが、高圧燃料ポンプの吐出弁のような小さい部品で構成されるものに対して、大きな曲面形状を付与することは幾何学的に困難である。仮に高信頼化のために十分に大きい曲面形状を付与した場合、吐出弁ユニットの大型化する。特に小型のポンプにおいては、吐出弁の大型化はポンプ本体の大型化に繋がるため、商品性の点で問題が生じる。
However, when the clearance between the discharge valve and the discharge valve holder provided on the outer peripheral side of the discharge valve unit is large, the discharge valve is inclined due to the sliding length and the clearance between the discharge valve and the discharge valve holder. . When the discharge valve collides with the discharge valve receiving member in an inclined state, there is a problem that the contact area between the discharge valve and the discharge valve receiving member is reduced, and the collision stress is increased. As a result, there has been a problem that the wear of the seat surface and the seat part progresses and the fuel seal performance deteriorates.
In order to suppress wear, it is generally effective to form a collision part in a curved surface shape, but a large curved surface shape is given to what is composed of small parts such as a discharge valve of a high-pressure fuel pump. It is geometrically difficult to do. If a sufficiently large curved surface shape is provided for high reliability, the discharge valve unit is increased in size. In particular, in a small pump, an increase in the discharge valve leads to an increase in the size of the pump body, which causes a problem in terms of merchantability.

また、特許文献2に示すように体格の増大を増すことなくアール形状を衝突部に付与することで応力低減を試みる技術があるが、シート面に対して曲面形状を付与することはシール性能を悪化させる可能性もある。   In addition, as shown in Patent Document 2, there is a technique for trying to reduce stress by imparting a round shape to the collision portion without increasing the physique, but imparting a curved shape to the seat surface improves sealing performance. There is also the possibility of making it worse.

そこで本発明は、流体を封止するシール性能を確保するとともに過大な応力を抑制することを目的とする。   Therefore, an object of the present invention is to secure a sealing performance for sealing a fluid and suppress excessive stress.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、
「吐出弁シート部材と、該吐出弁シート部材から離れる、又は接触することで流路の開閉を行う吐出弁と、を備えた電磁弁装置において、前記吐出弁シート部材は前記吐出弁が接触する吐出弁シート部と該吐出弁シート部の外径側の吐出弁シート傾斜部とが形成され、前記吐出弁のシート側接触部と前記吐出弁シート部材の前記吐出弁シート部とが軸方向において重なるように配置されるとともに、前記吐出弁の吐出弁角部が軸方向において前記吐出弁シート部材の前記吐出弁シート傾斜部に対応する位置になるように配置されること」を特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above problems.
In the electromagnetic valve device including a discharge valve seat member and a discharge valve that opens or closes the flow path by moving away from or in contact with the discharge valve seat member, the discharge valve sheet member contacts the discharge valve A discharge valve seat portion and a discharge valve seat inclined portion on the outer diameter side of the discharge valve seat portion are formed, and the sheet side contact portion of the discharge valve and the discharge valve seat portion of the discharge valve sheet member in the axial direction The discharge valve corners of the discharge valves are disposed so as to overlap with each other, and are disposed so as to correspond to the discharge valve seat inclined portions of the discharge valve seat member in the axial direction.

本発明によれば、大型化を招くことなく、シール性能と吐出弁傾斜時の過大な応力を抑制し、摩耗の発生を防ぐことができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, without causing an increase in size, it is possible to suppress sealing performance and excessive stress when the discharge valve is inclined, thereby preventing the occurrence of wear.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の第一実施例による高圧燃料ポンプおよび、燃料噴射弁を含む燃料供給システム図の一例である。1 is an example of a fuel supply system diagram including a high-pressure fuel pump and a fuel injection valve according to a first embodiment of the present invention. 本発明の第一実施例による高圧燃料供給ポンプの縦断面図である。1 is a longitudinal sectional view of a high-pressure fuel supply pump according to a first embodiment of the present invention. 本発明の第一実施例による高圧燃料供給ポンプの吸入弁ユニットの拡大縦断面図であり、吐出弁ユニットが開弁状態にある状態を示す。FIG. 3 is an enlarged longitudinal sectional view of a suction valve unit of the high-pressure fuel supply pump according to the first embodiment of the present invention, showing a state in which the discharge valve unit is in an open state. 本発明の第一実施例による高圧燃料供給ポンプの吐出弁ユニットの拡大縦断面図である。1 is an enlarged longitudinal sectional view of a discharge valve unit of a high-pressure fuel supply pump according to a first embodiment of the present invention. 本発明の第一実施例による高圧燃料供給ポンプの吐出弁受け部材の斜面角度と曲率比の関係を表したグラフを示す。The graph showing the relationship between the slope angle and curvature ratio of the discharge valve receiving member of the high-pressure fuel supply pump according to the first embodiment of the present invention is shown. 本発明の第一実施例による高圧燃料供給ポンプの吐出弁受け部材斜面角度と応力比の関係を表したグラフを示す。The graph showing the relationship between the discharge valve receiving member slope angle of the high-pressure fuel supply pump according to the first embodiment of the present invention and the stress ratio is shown. 本発明の第二実施例による高圧燃料供給ポンプの吐出弁の拡大縦断面図を示す。The expanded longitudinal cross-sectional view of the discharge valve of the high pressure fuel supply pump by 2nd Example of this invention is shown.

以下、実施例について、図面を用いて説明する。   Examples will be described below with reference to the drawings.

図1から図7を用いて、本発明の内燃機関用の高圧燃料ポンプの実施例について説明する。
<本実施例の構成>
図1、2を用いて本実施例の高圧燃料ポンプの構成について説明する。燃料タンク50の燃料はフィードポンプ57によって汲み上げられ、適切なフィード圧力に加圧されて吸入配管58を通して高圧燃料供給ポンプの低圧燃料吸入口9に送られる。
An embodiment of a high-pressure fuel pump for an internal combustion engine according to the present invention will be described with reference to FIGS.
<Configuration of this embodiment>
The configuration of the high-pressure fuel pump of this embodiment will be described with reference to FIGS. The fuel in the fuel tank 50 is pumped up by the feed pump 57, pressurized to an appropriate feed pressure, and sent to the low pressure fuel inlet 9 of the high pressure fuel supply pump through the suction pipe 58.

ポンプハウジング1の上流側(図面上部)にはダンパーカバー14が固定されている。ダンパーカバー14にはジョイント101が設けられており、低圧燃料吸入口9を形成している。ジョイント101の低圧吸入入口10aを介して低圧燃料吸入口9を通過した燃料は、吸入ジョイント101の内側に固定されたフィルタ100を通過し、さらに低圧燃料流路10b、圧力脈動低減機構11を介して吸入弁ユニット500の吸入ポート502に至る。吸入ジョイント101内の吸入フィルタ100は、燃料タンク50から低圧燃料吸入口9までの間に存在する異物を燃料の流れによって高圧燃料供給ポンプ内に吸収することを防ぐ役目がある。   A damper cover 14 is fixed on the upstream side (upper part of the drawing) of the pump housing 1. The damper cover 14 is provided with a joint 101 and forms a low-pressure fuel inlet 9. The fuel that has passed through the low-pressure fuel inlet 9 via the low-pressure inlet 10 a of the joint 101 passes through the filter 100 fixed inside the suction joint 101, and further passes through the low-pressure fuel flow path 10 b and the pressure pulsation reducing mechanism 11. To the suction port 502 of the suction valve unit 500. The suction filter 100 in the suction joint 101 serves to prevent foreign matter existing between the fuel tank 50 and the low-pressure fuel inlet 9 from being absorbed into the high-pressure fuel supply pump by the flow of fuel.

ポンプハウジング1には中央付近に加圧室12が設けられており、この加圧室12の入口の吸入ポート502の下流側には吸入弁ユニット500が、吐出通路7には吐出弁ユニット800が設けられている。   The pump housing 1 is provided with a pressurizing chamber 12 near the center. A suction valve unit 500 is provided downstream of the suction port 502 at the inlet of the pressurizing chamber 12, and a discharge valve unit 800 is provided in the discharge passage 7. Is provided.

コモンレール53には、インジェクタ54、圧力センサ56が装着されている。インジェクタ54は、内燃機関の気筒数に合わせて装着されており、ECU40の制御信号にしたがって開閉して、燃料をシリンダ内に噴射する。   An injector 54 and a pressure sensor 56 are attached to the common rail 53. The injectors 54 are mounted according to the number of cylinders of the internal combustion engine, and are opened and closed according to a control signal from the ECU 40 to inject fuel into the cylinders.

プランジャ2の下端には、カム5の回転運動を上下運動に変換し、プランジャ2に伝達するリテーナ3が嵌合によってプランジャ2に固定されており、プランジャ2はリテーナ3を介してばね4にてタペット3の底部内面に押し付けられている。これによりカム5の回転運動に伴い、プランジャ2を上下に運動させることができる。吸入弁ユニット500の構成は、可動子501、吸入弁502、吸入弁ばね505、アンカーばね504から成り、コイル507へ通電が無い状態では、可動子501は、アンカーばね504の付勢力と吸入弁ばね505の付勢力の差により、加圧室側(図1、2の右側)に移動している。   At the lower end of the plunger 2, a retainer 3 that converts the rotational motion of the cam 5 into vertical motion and transmits it to the plunger 2 is fixed to the plunger 2 by fitting. The plunger 2 is fixed by a spring 4 via the retainer 3. It is pressed against the inner surface of the bottom of the tappet 3. Thereby, the plunger 2 can be moved up and down with the rotational movement of the cam 5. The configuration of the suction valve unit 500 includes a movable element 501, a suction valve 502, a suction valve spring 505, and an anchor spring 504. When the coil 507 is not energized, the movable element 501 includes the biasing force of the anchor spring 504 and the suction valve. Due to the difference in the urging force of the spring 505, it moves to the pressurizing chamber side (right side in FIGS. 1 and 2).

図3を用いて吐出弁ユニットの構成を説明する。図3は吐出弁ユニット800の拡大図であり、開弁状態を示す。吐出弁ユニット800は、吐出弁シート部材801とこの吐出弁シート部材801の吐出弁シート部806から離れる、又は接触することで流路の開閉を行う吐出弁802とを備える。吐出弁802は筒状、又は柱状で構成され、吐出弁シート部806は吐出弁シート部材801の中心軸に対して外径側に配置される。また吐出弁ユニット800は、吐出弁801を吐出弁シート部材801に向かって付勢する吐出弁ばね803と、吐出弁802及び吐出弁シート部材801を収容する吐出弁ホルダ804とを備えて構成される。   The configuration of the discharge valve unit will be described with reference to FIG. FIG. 3 is an enlarged view of the discharge valve unit 800, showing a valve open state. The discharge valve unit 800 includes a discharge valve sheet member 801 and a discharge valve 802 that opens or closes the flow path by moving away from or in contact with the discharge valve sheet portion 806 of the discharge valve sheet member 801. The discharge valve 802 has a cylindrical shape or a column shape, and the discharge valve seat portion 806 is disposed on the outer diameter side with respect to the central axis of the discharge valve seat member 801. The discharge valve unit 800 includes a discharge valve spring 803 that urges the discharge valve 801 toward the discharge valve sheet member 801, and a discharge valve holder 804 that houses the discharge valve 802 and the discharge valve sheet member 801. The

吐出弁シート部材801の平面状の吐出弁シート部806に対して吐出弁802の平面状のシート側接触部816が接触することによって燃料を封止している。また平面状のシート側接触部816は吐出弁802の中心軸に対して外径側に形成される。   The flat sheet-side contact portion 816 of the discharge valve 802 comes into contact with the flat discharge valve sheet portion 806 of the discharge valve sheet member 801 to seal the fuel. The planar sheet side contact portion 816 is formed on the outer diameter side with respect to the central axis of the discharge valve 802.

吐出弁受け部材802には、吐出弁シート部806よりも内径側に燃料通路813が設けられており、燃料は燃料通路813を通過した後、吐出弁シート部806とシート側接触部816との間を通り、吐出弁ホルダ804に設けられた燃料通路孔817を経て、コモンレール53へと送られる。吐出弁シート部材801と吐出弁ホルダ804とは、吐出弁シート部材801の吐出弁摺動部820で当接し、溶接により接合されて一体のユニットを形成している。   The discharge valve receiving member 802 is provided with a fuel passage 813 on the inner diameter side of the discharge valve seat portion 806, and after the fuel passes through the fuel passage 813, the discharge valve seat portion 806 and the seat side contact portion 816 It passes through the fuel passage hole 817 provided in the discharge valve holder 804, and is sent to the common rail 53. The discharge valve sheet member 801 and the discharge valve holder 804 are in contact with each other at a discharge valve sliding portion 820 of the discharge valve sheet member 801 and are joined by welding to form an integral unit.

一般的に溶接によって接合する場合、炭素量の多い高炭素鋼の使用は避けられている。高炭素鋼は急熱急冷によって熱影響部が著しく硬化し、溶接部の伸びが少なることから、溶接割れなどの欠陥が生じ易く、溶接には不向きな鋼材である。このような理由から本実施例における吐出弁シート部材801および吐出弁ホルダ804は、低・中炭素鋼を用いて構成している。   Generally, when joining by welding, the use of high carbon steel with a large amount of carbon is avoided. High carbon steel is a steel material that is not suitable for welding because the heat-affected zone is markedly hardened by rapid heating and quenching and the elongation of the welded portion is reduced, so that defects such as weld cracks are likely to occur. For this reason, the discharge valve seat member 801 and the discharge valve holder 804 in this embodiment are made of low / medium carbon steel.

一方、吐出弁802の材質は、溶接工程がないため吐出弁シート部材801よりも炭素量が多い材料を選定することができる。吐出弁802のシート側面部820は図面の左右方向にのみ運動するように、吐出弁ホルダ804の内周面にてガイドされている。以上のようにすることで、吐出弁ユニット800は燃料の流通方向を制限する逆止弁となる。   On the other hand, the discharge valve 802 can be selected from a material having a larger amount of carbon than the discharge valve sheet member 801 because there is no welding process. The sheet side surface portion 820 of the discharge valve 802 is guided by the inner peripheral surface of the discharge valve holder 804 so as to move only in the horizontal direction of the drawing. By doing so, the discharge valve unit 800 becomes a check valve that restricts the direction of fuel flow.

ここで、吐出弁802のシート側接触部816と吐出弁シート部材801の吐出弁シート部806は平面状に形成されている。従って、吐出弁802の変位量に対する燃料の通り道(開口面積)が、ボール弁や円錐弁に比べて大きくとりやすく、小型でも圧力損失が少なく小型で形成可能である。
<本実施例における高圧燃料ポンプの吸入行程動作>
図2を用いて燃料吸入状態を説明する。プランジャ2が図2の点線で示す上死点位置(上限位置)から下降(図面下方向)する吸入行程では、コイル507は非通電状態である。上述したように、コイル507への通電が無い状態では電磁吸入弁501は、アンカーばね504の付勢力と吸入弁ばね505の付勢力の差により、図3中の右方向に移動し、吸入弁502と吸入弁ホルダ510が接触している。そのため、低圧燃料通路10bと加圧室12が連通しているため、プランジャ2の下降に伴って、加圧室12に燃料が流入する。
Here, the sheet side contact part 816 of the discharge valve 802 and the discharge valve sheet part 806 of the discharge valve sheet member 801 are formed in a planar shape. Therefore, the passage (opening area) of the fuel with respect to the displacement amount of the discharge valve 802 can be easily made larger than that of the ball valve or the conical valve.
<Intake stroke operation of high-pressure fuel pump in this embodiment>
The fuel intake state will be described with reference to FIG. In the suction stroke in which the plunger 2 descends (downward in the drawing) from the top dead center position (upper limit position) indicated by the dotted line in FIG. 2, the coil 507 is in a non-energized state. As described above, when the coil 507 is not energized, the electromagnetic suction valve 501 moves to the right in FIG. 3 due to the difference between the biasing force of the anchor spring 504 and the biasing force of the suction valve spring 505, and the suction valve 502 and the suction valve holder 510 are in contact with each other. Therefore, since the low pressure fuel passage 10b and the pressurizing chamber 12 communicate with each other, the fuel flows into the pressurizing chamber 12 as the plunger 2 descends.

このとき吐出弁802は、加圧室12と燃料吐出口17の燃料差圧により生ずる力よりも、吐出弁802に付勢される吐出弁ばね803による付勢力の方が大きくなるように構成されているため、吐出弁シート部材801に接触し閉弁状態となっている。
<本実施例における高圧燃料ポンプの吐出行程動作>
次に図2、3を用いて燃料の吐出行程を説明する。プランジャ2が下死点位置(下限位置)に達し上昇を開始している状態において、ECU40からコイル507に通電が開始されると、コイル507の周囲に発生した磁束が、固定鉄心511、ヨーク518、そして可動子501を通り磁気回路を形成する。この磁束により、可動子501と固定鉄心511の間に磁気吸引力が発生する。発生した磁気吸引力が開弁方向に付勢されるアンカーばね504と閉弁方向に付勢される吸入弁ばね505の付勢力の差を超えると可動子501が変位し、可動子501と固定鉄心511の間に設けられた隙間量だけ移動すると可動子501と固定鉄心511とが衝突し、移動量を規定する構成となっている。
At this time, the discharge valve 802 is configured so that the biasing force by the discharge valve spring 803 biased by the discharge valve 802 is larger than the force generated by the fuel differential pressure between the pressurizing chamber 12 and the fuel discharge port 17. Therefore, it contacts the discharge valve seat member 801 and is in a closed state.
<Discharge stroke operation of high-pressure fuel pump in this embodiment>
Next, the fuel discharge process will be described with reference to FIGS. In the state where the plunger 2 reaches the bottom dead center position (lower limit position) and starts to rise, when energization is started from the ECU 40 to the coil 507, the magnetic flux generated around the coil 507 is changed to the fixed iron core 511 and the yoke 518. Then, a magnetic circuit is formed through the mover 501. Due to this magnetic flux, a magnetic attractive force is generated between the mover 501 and the fixed iron core 511. When the generated magnetic attractive force exceeds the difference between the biasing force of the anchor spring 504 biased in the valve opening direction and the suction valve spring 505 biased in the valve closing direction, the mover 501 is displaced and fixed to the mover 501. When moving by the gap amount provided between the iron cores 511, the movable element 501 and the fixed iron core 511 collide with each other, and the moving amount is defined.

磁気吸引力により可動子501が固定鉄心511側に引き寄せられると、吸入弁502を加圧室12側へ押し付けていた付勢力がなくなるため、吸入弁502は吸入弁ばね505の付勢力によって閉弁運動を開始し、やがて閉弁状態となる。この時、吸入弁502の加圧室12側(図面右側)の空隙と低圧燃料室10bに連通する吸入ポート508との圧力差は、加圧室12内の圧力上昇に伴って、低圧燃料室10b側の圧力よりも高くなり、吸入弁502の閉弁運動を助けている。   When the mover 501 is pulled toward the fixed iron core 511 by the magnetic attraction force, the urging force that presses the suction valve 502 toward the pressurizing chamber 12 side disappears, so the suction valve 502 is closed by the urging force of the suction valve spring 505. The exercise starts and eventually the valve is closed. At this time, the pressure difference between the space on the pressurizing chamber 12 side (right side of the drawing) of the suction valve 502 and the suction port 508 communicating with the low pressure fuel chamber 10b is increased as the pressure in the pressurization chamber 12 increases. The pressure is higher than the pressure on the 10b side, and assists the valve closing movement of the suction valve 502.

その後、プランジャ2は引き続き上昇するため、加圧室12の容積が減少し、加圧室12内の圧力が上昇する。そして、吐出弁ばね803よりも加圧室12と燃料吐出口17の燃料差圧により生ずる力の方が大きくなると、吐出弁ばね803の力に打ち勝ち、吐出弁802は吐出弁シート部材801から離れ、燃料がコモンレール53を通してインジェクタ54に供給される。   Thereafter, since the plunger 2 continues to rise, the volume of the pressurizing chamber 12 decreases, and the pressure in the pressurizing chamber 12 rises. When the force generated by the fuel differential pressure between the pressurizing chamber 12 and the fuel discharge port 17 becomes larger than the discharge valve spring 803, the force of the discharge valve spring 803 is overcome and the discharge valve 802 is separated from the discharge valve seat member 801. The fuel is supplied to the injector 54 through the common rail 53.

吸入弁502が完全に閉弁し加圧室12内の圧力が上昇して高圧吐出が開始された後、コイル507への通電を断つと、固定鉄心511と可動子501の間に発生していた磁気吸引力が消滅する。アンカーばね504の付勢力よりも磁気吸引力が小さくなると、可動子501は、アンカーばね504の付勢力によって吸入弁502側へ移動を開始し、可動子501が吸入弁502と接触し、可動子501の運動を止める。加圧室12内の圧力による閉弁力がアンカーばね504の付勢力よりも大きくなるように形成してあるため、可動子501が吸入弁502を押しても開弁しない。
エンジン制御装置ECU40からの指令に基づきコイル507に通電するタイミングを制御することにより、高圧で吐出される燃料の流量を調節することができる。プランジャ2が下死点から上死点へと上昇運動に転じた直後に吸入弁502が閉弁するよう通電タイミングを制御すれば、燃料の停留が少なく高圧吐出される燃料が多くすることができる。
When the suction valve 502 is completely closed and the pressure in the pressurizing chamber 12 is increased and high pressure discharge is started, and the coil 507 is de-energized, it is generated between the fixed iron core 511 and the mover 501. The magnetic attractive force disappears. When the magnetic attractive force becomes smaller than the urging force of the anchor spring 504, the mover 501 starts moving toward the suction valve 502 by the urging force of the anchor spring 504, and the mover 501 comes into contact with the suction valve 502. Stop 501 exercise. Since the valve closing force due to the pressure in the pressurizing chamber 12 is formed to be larger than the urging force of the anchor spring 504, the valve does not open even when the mover 501 presses the suction valve 502.
By controlling the timing of energizing the coil 507 based on a command from the engine control unit ECU 40, the flow rate of fuel discharged at a high pressure can be adjusted. If the energization timing is controlled so that the intake valve 502 is closed immediately after the plunger 2 moves upward from the bottom dead center to the top dead center, the amount of fuel discharged with high pressure can be increased with less fuel retention. .

以上のように高圧燃料ポンプは、コイル507への通電時間を制御することで、吸入弁502の閉弁時間を制御して、所望の流量に吐出できるようになっている。以上が電磁式の高圧燃料ポンプの基本的な動作を説明したものである。なお本実施例における磁気回路を構成する部材は、可動子501、固定鉄心511、ヨーク518であり、これらの材質は全て磁性材料とした構成されている。
<本実施例の課題>
上述したように、吸入行程および吐出行程時には、吐出弁802は開閉弁運動を繰り返す。その際、吐出弁802が外径側において吐出弁ホルダ804と摺動する長さL1と吐出弁802の摺動部外径L3と吐出弁ホルダ804の摺動部内径L2との差により、吐出弁802は傾斜した状態で吐出弁シート部材801に衝突する場合がある。傾斜して衝突した場合、吐出弁側面部822とシート側接触部816との交差位置である吐出弁角部818が吐出弁シート部806に衝突する。その際、吐出弁角部818と吐出弁シート部806との間の接触面積は小さくなり、衝突応力は傾斜がない平行状態で吐出弁802のシート側接触部816と吐出弁シート部806とが衝突した場合よりも過大となる。
As described above, the high-pressure fuel pump can control the closing time of the intake valve 502 by controlling the energization time to the coil 507, and can discharge to a desired flow rate. The above explains the basic operation of the electromagnetic high-pressure fuel pump. The members constituting the magnetic circuit in this embodiment are a movable element 501, a fixed iron core 511, and a yoke 518, and these materials are all made of a magnetic material.
<Problems of this embodiment>
As described above, the discharge valve 802 repeats the opening / closing valve movement during the intake stroke and the discharge stroke. At that time, the discharge valve 802 has a length L1 that slides with the discharge valve holder 804 on the outer diameter side, a sliding portion outer diameter L3 of the discharge valve 802, and a sliding portion inner diameter L2 of the discharge valve holder 804. The valve 802 may collide with the discharge valve seat member 801 in an inclined state. When the vehicle collides at an inclination, the discharge valve corner portion 818 that is the intersection position of the discharge valve side surface portion 822 and the seat side contact portion 816 collides with the discharge valve seat portion 806. At that time, the contact area between the discharge valve corner portion 818 and the discharge valve seat portion 806 is reduced, and the collision stress is in a parallel state with no inclination, so that the seat side contact portion 816 and the discharge valve seat portion 806 of the discharge valve 802 are in a parallel state. Excessive than the case of a collision.

そこで以下においては本実施例の課題である吐出弁ユニット800を大型化することなく過大な応力を抑制し、摩耗を抑制する構成について説明する。
<本実施例の構成・作用・効果>
図4を用いて、本実施例における吐出弁ユニット800の構成、作用および効果について説明する。図4に示すように本実施例の吐出弁802は平面状のシート側接触部816とシート側接触部816の外径側にシート側傾斜部822とが形成されて構成される。この平面状のシート側接触部816と外径側のシート側傾斜部822との交点を吐出弁角部818と呼ぶ。
Therefore, a configuration that suppresses excessive stress and suppresses wear without increasing the size of the discharge valve unit 800, which is a problem of the present embodiment, will be described below.
<Configuration / Function / Effect of this embodiment>
The configuration, operation, and effect of the discharge valve unit 800 in the present embodiment will be described with reference to FIG. As shown in FIG. 4, the discharge valve 802 of this embodiment includes a planar sheet side contact portion 816 and a sheet side inclined portion 822 formed on the outer diameter side of the sheet side contact portion 816. The intersection of the planar sheet-side contact portion 816 and the outer-diameter side seat-side inclined portion 822 is referred to as a discharge valve corner portion 818.

これに対して本実施例の吐出弁シート部材801は平面状の吐出弁シート部806と吐出弁シート部806の外径側に吐出弁シート傾斜部(807、808)とが形成されて構成される。吐出弁802の移動方向を軸方向とすると、吐出弁802のシート側接触部816と吐出弁シート部材801の吐出弁シート部806とが軸方向において重なるように配置される。そして、吐出弁802の吐出弁角部818が軸方向において吐出弁シート部材801の吐出弁シート傾斜部(807、808)に対応する位置になるように配置される。   On the other hand, the discharge valve seat member 801 of this embodiment is configured by forming a flat discharge valve seat portion 806 and discharge valve seat inclined portions (807, 808) on the outer diameter side of the discharge valve seat portion 806. The When the moving direction of the discharge valve 802 is the axial direction, the seat side contact portion 816 of the discharge valve 802 and the discharge valve seat portion 806 of the discharge valve sheet member 801 are disposed so as to overlap in the axial direction. The discharge valve corner portion 818 of the discharge valve 802 is disposed so as to correspond to the discharge valve seat inclined portion (807, 808) of the discharge valve seat member 801 in the axial direction.

これにより、吐出弁802のシート側接触部816と吐出弁シート部材801の吐出弁シート部806との接触面を確保することができ、シール性能を維持することが可能となる。また、吐出弁802傾斜時の吐出弁シート部材801と吐出弁802との衝突位置は、吐出弁シート部材801の吐出弁シート傾斜部(807、808)とシート側接触部816とにすることで接触面積を大きくすることができ、傾斜時でも過大な応力を抑制できる。さらに吐出弁802と吐出弁シート部材801との衝突時に発生する回転モーメントが大きくなり、直動方向の運動エネルギが回転方向のエネルギに分散され、衝突時の応力を低減し、摩耗の抑制が可能である。   As a result, a contact surface between the sheet-side contact portion 816 of the discharge valve 802 and the discharge valve sheet portion 806 of the discharge valve sheet member 801 can be secured, and the sealing performance can be maintained. Further, the collision position between the discharge valve sheet member 801 and the discharge valve 802 when the discharge valve 802 is inclined is determined by the discharge valve sheet inclined portions (807, 808) and the sheet side contact portion 816 of the discharge valve sheet member 801. The contact area can be increased, and excessive stress can be suppressed even during tilting. Furthermore, the rotational moment generated at the time of collision between the discharge valve 802 and the discharge valve seat member 801 increases, and the kinetic energy in the linear motion direction is distributed to the energy in the rotational direction, reducing the stress at the time of collision and suppressing wear. It is.

ここで図4において、吐出弁シート部材801の吐出弁シート傾斜部として、大きい曲率R0を持った曲面部809を形成することで傾斜時でも過大な応力を抑制することが考えられる。しかしこの場合、シート外径D1は小さくなり、有効なシート面積が減少するため、シール性能の低下を生じる虞がある。   Here, in FIG. 4, it is conceivable that excessive stress is suppressed even at the time of inclination by forming a curved surface portion 809 having a large curvature R0 as the discharge valve seat inclined portion of the discharge valve seat member 801. However, in this case, the seat outer diameter D1 is reduced, and the effective seat area is reduced, which may cause a reduction in sealing performance.

一方で吐出弁シート部材801の外径D2を拡大することでシート外径D1を大きくし、有効なシート面積を確保することも考えられるが、この場合には吐出弁ユニット800の大型化を招く虞がある。   On the other hand, it is conceivable to enlarge the outer diameter D2 of the discharge valve seat member 801 to increase the seat outer diameter D1 and ensure an effective seat area. In this case, however, the discharge valve unit 800 is increased in size. There is a fear.

そこで吐出弁シート部材801の吐出弁シート傾斜部は、吐出弁シート部806の外径側に形成され、外径側端部が吐出弁シート部806よりも反吐出弁側に位置する第1傾斜部808と、この第1傾斜部808の外径側に形成され、外径側端部が第1傾斜部808よりもさらに反吐出弁側に位置する第2傾斜部807とで構成するようにしている。   Therefore, the discharge valve seat inclined portion of the discharge valve seat member 801 is formed on the outer diameter side of the discharge valve seat portion 806, and the outer diameter side end portion is located on the counter discharge valve side from the discharge valve seat portion 806. And a second inclined portion 807 which is formed on the outer diameter side of the first inclined portion 808 and whose outer diameter side end is located further on the side opposite to the discharge valve than the first inclined portion 808. ing.

これにより吐出弁802が傾斜した場合においても吐出弁802のシート側接触部816の吐出弁シート部材801との接触面を第1傾斜部808とすることができ傾斜時でも過大な応力を抑制することが可能となる。また、第2傾斜部807を有することで、シート外径D1を拡大しながら吐出弁シート部材801の外径D2は抑えることができ、吐出弁ユニット800の大型化の抑制が可能である。   As a result, even when the discharge valve 802 is inclined, the contact surface of the sheet-side contact portion 816 of the discharge valve 802 with the discharge valve sheet member 801 can be the first inclined portion 808, and excessive stress is suppressed even during the inclination. It becomes possible. Further, by including the second inclined portion 807, the outer diameter D2 of the discharge valve seat member 801 can be suppressed while increasing the seat outer diameter D1, and the increase in size of the discharge valve unit 800 can be suppressed.

なお、第1傾斜部808を所定の曲率の曲面部とするとともに、第2傾斜部807を略直線状の傾斜部とし、これらの第1傾斜部808(曲面部)と第2傾斜部807(略直線状傾斜部)とが滑らかに連続して繋がるようにして吐出弁シート傾斜部が形成されることが望ましい。これにより吐出弁802が傾斜した場合において吐出弁802のシート側接触部816が吐出弁シート部材801の第1傾斜部808(曲面部)と接触するようにできるので、特に過大な応力の抑制が可能となる。   The first inclined portion 808 is a curved surface portion having a predetermined curvature, and the second inclined portion 807 is a substantially linear inclined portion. The first inclined portion 808 (curved surface portion) and the second inclined portion 807 ( It is desirable that the discharge valve seat inclined portion is formed so as to be smoothly and continuously connected to the (substantially linear inclined portion). Accordingly, when the discharge valve 802 is inclined, the seat side contact portion 816 of the discharge valve 802 can be brought into contact with the first inclined portion 808 (curved surface portion) of the discharge valve sheet member 801. It becomes possible.

また、吐出弁シート部806と第2傾斜部807(略直線状傾斜部)の成す角805を鋭角に形成することで、部品寸法に依存することなく、所望の曲率を持った曲面部808を形成できる。   Further, by forming an acute angle 805 formed by the discharge valve seat portion 806 and the second inclined portion 807 (substantially linear inclined portion), the curved surface portion 808 having a desired curvature can be obtained without depending on the component dimensions. Can be formed.

次に図5、6を用いて、斜面部の角度と形成可能な曲率の関係を示す。図5のグラフは、シート部の最外径D1が7.0mm、吐出弁の外径D2が7.85mmとした場合の吐出弁ユニットにおいて、斜面部の角度805を設けた際の形成可能な曲率比(R/R0)の関係を示した図である。ここでR0は、斜面角度が90[deg]のときの形成可能な最大曲率である。つまり,斜面を設けることなく,R0より大きな曲率で側面部と平面部を一様な曲率で平滑に形成することは幾何学的にできない。   Next, the relationship between the angle of the slope and the curvature that can be formed will be described with reference to FIGS. The graph of FIG. 5 can be formed when the angle 805 of the inclined surface portion is provided in the discharge valve unit when the outermost diameter D1 of the seat portion is 7.0 mm and the outer diameter D2 of the discharge valve is 7.85 mm. It is the figure which showed the relationship of curvature ratio (R / R0). Here, R0 is the maximum curvature that can be formed when the slope angle is 90 [deg]. That is, it is not possible to geometrically form the side surface portion and the flat surface portion smoothly with a uniform curvature with a curvature larger than R0 without providing a slope.

図6は、吐出弁802が傾斜して接触した状態において、吐出弁802と吐出弁シート部材801との接触部位における接触面圧σを計算し、斜面角度が90[deg]のときの発生する応力σ0で正規化した時のグラフである。   FIG. 6 illustrates a case where the contact surface pressure σ at the contact portion between the discharge valve 802 and the discharge valve seat member 801 is calculated in a state in which the discharge valve 802 is in contact with an inclination, and is generated when the slope angle is 90 [deg]. It is a graph when normalized by stress σ0.

このグラフから、第2傾斜部807を設け、衝突部位を第1傾斜部808(曲面部)とすることで、発生する応力が低減されることがわかる。すなわち、第2傾斜部807を略直線状の傾斜部とし、吐出弁シート部806と第2傾斜部807の成す角を鋭角に形成することが望ましく、特に図5、6に示すように、10[deg]以下とすれば、大きな接触面圧の低減効果が得られることから、この斜面角度805は10[deg]以下が望ましい。   From this graph, it can be seen that the stress generated is reduced by providing the second inclined portion 807 and setting the collision site as the first inclined portion 808 (curved surface portion). That is, it is desirable that the second inclined portion 807 is a substantially linear inclined portion, and the angle formed by the discharge valve seat portion 806 and the second inclined portion 807 is formed at an acute angle. In particular, as shown in FIGS. If it is set to [deg] or less, a large contact surface pressure reduction effect can be obtained. Therefore, the slope angle 805 is preferably 10 [deg] or less.

一方、本実施例では吐出弁802と吐出弁ホルダ804との幾何学的な関係(式(1))から決まる吐出弁傾き角度θより吐出弁シート部806と第2傾斜部807の成す斜面角度805を大きく形成することが望ましい。これにより、吐出弁802と吐出弁シート部材801の衝突部を第1傾斜部808(曲面部)とシート側接触部816とし、接触面積を大きくすることができ、傾斜時でも過大な応力を抑制できる。
On the other hand, in this embodiment, the slope angle formed by the discharge valve seat portion 806 and the second inclined portion 807 from the discharge valve inclination angle θ determined from the geometrical relationship (formula (1)) between the discharge valve 802 and the discharge valve holder 804. It is desirable to make 805 large. As a result, the collision portion between the discharge valve 802 and the discharge valve seat member 801 is the first inclined portion 808 (curved surface portion) and the seat-side contact portion 816, so that the contact area can be increased, and excessive stress is suppressed even when inclined. it can.

以上をまとめると本実施例では、吐出弁ユニット801に大型化を招くことなく曲率の大きい第1傾斜部808(曲面部)を設けることが可能であり、吐出弁802が傾斜して衝突した際には、第1傾斜部808(曲面部)が衝突面となるため、衝突部の過大な応力が発生するのを防止することができる。
なお本実施例では、第2傾斜部807と吐出弁シート部806の間に、第1傾斜部808(曲面部)とシート角部810と曲率が異なる曲面部を設けた際の作用と効果について説明したが、これは、曲率が異なる曲面部が3つ以上存在しても同様の効果が得られる。
In summary, in this embodiment, the discharge valve unit 801 can be provided with the first inclined portion 808 (curved surface portion) having a large curvature without causing an increase in size, and when the discharge valve 802 collides with an inclination. In this case, since the first inclined portion 808 (curved surface portion) becomes a collision surface, it is possible to prevent an excessive stress from being generated in the collision portion.
In this embodiment, the operation and effect when a curved portion having a different curvature from the first inclined portion 808 (curved surface portion) and the sheet corner portion 810 is provided between the second inclined portion 807 and the discharge valve seat portion 806. As described above, the same effect can be obtained even when there are three or more curved surface portions having different curvatures.

図7は、本発明の実施例2に係る吐出弁ユニット800の衝突部周りの断面図である。図7において、902は吐出弁、905は斜面角度、906はシート面、907は斜面部、908は曲面部をそれぞれ表している。   FIG. 7 is a cross-sectional view around the collision portion of the discharge valve unit 800 according to the second embodiment of the present invention. In FIG. 7, reference numeral 902 denotes a discharge valve, 905 denotes a slope angle, 906 denotes a sheet surface, 907 denotes a slope portion, and 908 denotes a curved surface portion.

本実施例は実施例1と同様に吐出弁シート部材901と、吐出弁シート部材901から離れる、又は接触することで流路の開閉を行う吐出弁902と、を備える。吐出弁シート部材901は吐出弁902が接触する平面状の吐出弁シート部916と該吐出弁シート部916の外径側の吐出弁シート傾斜部918とが形成され、これらの交点を吐出弁シート部材角部918と呼ぶ。   As in the first embodiment, this embodiment includes a discharge valve sheet member 901 and a discharge valve 902 that opens or closes the flow path by moving away from or in contact with the discharge valve sheet member 901. The discharge valve sheet member 901 is formed with a flat discharge valve sheet portion 916 that contacts the discharge valve 902 and a discharge valve seat inclined portion 918 on the outer diameter side of the discharge valve seat portion 916, and these intersections are formed at the discharge valve sheet. This is called a member corner 918.

そして、吐出弁902のシート側接触部906と吐出弁シート部材901の吐出弁シート部916とが軸方向において重なるように配置されるとともに、吐出弁シート部材901の吐出弁シート部材角部918が軸方向において吐出弁902の吐出弁シート傾斜部(907、908)に対応する位置になるように配置される。   The sheet side contact portion 906 of the discharge valve 902 and the discharge valve sheet portion 916 of the discharge valve sheet member 901 are arranged so as to overlap in the axial direction, and the discharge valve sheet member corner portion 918 of the discharge valve sheet member 901 is arranged. It arrange | positions so that it may become a position corresponding to the discharge valve sheet | seat inclination part (907,908) of the discharge valve 902 in an axial direction.

吐出弁902の吐出弁シート傾斜部(907、908)は、吐出弁902のシート側接触部906の外径側に形成され、外径側端部がシート側接触部906よりも反吐出弁シート部材側に位置する第1傾斜部908と、第1傾斜部908の外径側に形成され、外径側端部が第1傾斜部908よりもさらに反吐出弁シート部材側に位置する第2傾斜部907とで構成される。また、第1傾斜部908を曲面部により形成するとともに、第2傾斜部907を略直線状に形成することが望ましい。   The discharge valve seat inclined portions (907, 908) of the discharge valve 902 are formed on the outer diameter side of the sheet side contact portion 906 of the discharge valve 902, and the outer diameter side end portion is more anti-discharge valve seat than the sheet side contact portion 906. A first inclined portion 908 positioned on the member side, and a second inclined portion formed on the outer diameter side of the first inclined portion 908 and having an outer diameter side end portion further on the side opposite to the discharge valve seat member than the first inclined portion 908. And an inclined portion 907. Further, it is desirable that the first inclined portion 908 is formed by a curved surface portion, and the second inclined portion 907 is formed in a substantially linear shape.

シート側接触部906よりもの外径側に第2傾斜部907を設けたことにより、小さいに部品に対して大きな曲率R2を持ちかつ円周方向に形成された第1傾斜部908を形成し、吐出弁902が傾斜して吐出弁受け部材901に衝突しても過大な応力の抑制が可能である。   By providing the second inclined portion 907 on the outer diameter side of the seat side contact portion 906, the first inclined portion 908 having a large curvature R2 with respect to the component and formed in the circumferential direction is formed. Even if the discharge valve 902 is inclined and collides with the discharge valve receiving member 901, excessive stress can be suppressed.

曲面部の曲率R2に関しても実施例1と同様に、図9における破線部909に示すように、単純に曲面部を吐出弁902に付与し、曲率R0を拡大した場合、曲率R0の拡大に伴い、シート外径は小さくなり、有効なシート面積が減少していく。そのため、傾斜時の過大な応力の抑制とシール性能の両立が幾何学的に困難となる。吐出弁902の外径を拡大すれば、傾斜時の過大な衝突応力の抑制とシール性能の両立が可能となるが、吐出弁ユニットの体格増加を伴う。本実施例では、シート部の最外径部から斜面部を設けることで、体格増加を招くことなく、曲面形状を付与することができる。   Regarding the curvature R2 of the curved surface portion, similarly to the first embodiment, when the curved surface portion is simply given to the discharge valve 902 and the curvature R0 is enlarged as shown by the broken line portion 909 in FIG. 9, the curvature R0 increases. The outer diameter of the seat becomes smaller and the effective seat area decreases. For this reason, it is geometrically difficult to achieve both suppression of excessive stress during tilting and sealing performance. If the outer diameter of the discharge valve 902 is enlarged, it becomes possible to achieve both suppression of excessive collision stress during tilting and sealing performance, but with an increase in the size of the discharge valve unit. In the present embodiment, the curved surface shape can be provided without increasing the physique by providing the inclined surface portion from the outermost diameter portion of the seat portion.

以上をまとめると本実施例では、吐出弁ユニット800の大型化を招くことなく曲率の大きい曲面部908を吐出弁902に設けることが可能であり、吐出弁902が傾斜して衝突した際には、上記の曲面部908が衝突面となるため、衝突部の過大な応力の抑制が可能である。
なお本実施例では、第2傾斜部907とシート側接触部906の間に、第1傾斜部908(曲面部)と曲面部を設けた際の作用と効果について説明したが、これは曲率が異なる曲面部が2つ以上存在しても同様の効果が得られる。
In summary, in this embodiment, it is possible to provide the discharge valve 902 with a curved surface portion 908 having a large curvature without causing an increase in the size of the discharge valve unit 800. When the discharge valve 902 collides with an inclination, Since the curved surface portion 908 serves as a collision surface, excessive stress at the collision portion can be suppressed.
In this embodiment, the operation and effect when the first inclined portion 908 (curved surface portion) and the curved surface portion are provided between the second inclined portion 907 and the sheet side contact portion 906 have been described. The same effect can be obtained even if two or more different curved surface portions exist.

1・・・ポンプハウジング、800・・・吐出弁ユニット、2・・・プランジャ、801・・・吐出弁受け部材、3・・・タペット、802・・・吐出弁、5・・・カム、803、・・・吐出弁ばね、7・・・吐出通路、804・・・吐出弁ホルダ、9・・・低圧燃料吸入口、805・・・斜面角度、10a・・・低圧吸入入口、806・・・吐出弁シート部、10b・・・低圧燃料路、807・・・第2傾斜部(略直線状斜面部)、11・・・圧力脈動低減機構、808・・・第1傾斜部(曲面部)12・・・加圧室、809・・・破線部、14・・・ダンパーカバー、17・・・吐出口、811・・・接触位置、40・・・ECU、50・・・燃料タンク、813・・・燃料通路、53・・・コモンレール、816・・・シート側接触部、54・・・インジェクタ、817・・・燃料通路孔、56・・・圧力センサ、818・・・吐出弁角部、57・・・フィードポンプ、820・・・吐出弁摺動部、58・・・吸入配管、821・・・シート側面部、100・・・フィルタ、822・・・弁体側面部、101・・・ジョイント、900・・・吐出弁ユニット、500・・・吸入弁ユニット、901・・・吐出弁シート部材、501・・・可動子、902・・・吐出弁、502・・・吸入弁、905・・・斜面部角度、504・・・アンカーばね、906・・・シート面、505・・・吸入弁ばね、907・・・斜面部、507・・・電磁コイル、908・・・曲面部、508・・・吸入弁ポート、909・・・破線部、509・・・吸入弁ばね、916・・・シート平面部、510・・・吸入弁ホルダ、918・・・シート角部、511・・・固定鉄心。 DESCRIPTION OF SYMBOLS 1 ... Pump housing, 800 ... Discharge valve unit, 2 ... Plunger, 801 ... Discharge valve receiving member, 3 ... Tappet, 802 ... Discharge valve, 5 ... Cam, 803 ..., ... discharge valve spring, 7 ... discharge passage, 804 ... discharge valve holder, 9 ... low pressure fuel inlet, 805 ... slope angle, 10a ... low pressure inlet, 806 Discharge valve seat portion, 10b: low pressure fuel passage, 807 ... second inclined portion (substantially linear inclined portion), 11 ... pressure pulsation reducing mechanism, 808 ... first inclined portion (curved surface portion) ) 12 ... Pressurizing chamber, 809 ... Broken line portion, 14 ... Damper cover, 17 ... Discharge port, 811 ... Contact position, 40 ... ECU, 50 ... Fuel tank, 813 ... Fuel passage, 53 ... Common rail, 816 ... Seat side contact part 54 ... injector, 817 ... fuel passage hole, 56 ... pressure sensor, 818 ... discharge valve corner, 57 ... feed pump, 820 ... discharge valve sliding part, 58 ...・ Suction piping, 821... Seat side surface, 100... Filter, 822 .. Valve body side surface, 101... Joint, 900... Discharge valve unit, 500. ... discharge valve seat member, 501 ... mover, 902 ... discharge valve, 502 ... suction valve, 905 ... slope angle, 504 ... anchor spring, 906 ... seat surface 505 ... Suction valve spring, 907 ... Slope, 507 ... Electromagnetic coil, 908 ... Curved surface, 508 ... Suction valve port, 909 ... Broken line part, 509 ... Suction A valve spring, 916. 10 ... suction valve holder, 918 ... seat angle section, 511 ... fixed iron core.

Claims (9)

吐出弁シート部材と、
該吐出弁シート部材から離れる、又は接触することで流路の開閉を行う吐出弁と、を備えた電磁弁装置において、
前記吐出弁シート部材は前記吐出弁が接触する吐出弁シート部と該吐出弁シート部の外径側の吐出弁シート傾斜部とが形成され、
前記吐出弁のシート側接触部と前記吐出弁シート部材の前記吐出弁シート部とが軸方向において重なるように配置されるとともに、前記吐出弁の吐出弁角部が軸方向において前記吐出弁シート部材の前記吐出弁シート傾斜部に対応する位置になるように配置されることを特徴とする電磁弁装置。
A discharge valve seat member;
In a solenoid valve device comprising: a discharge valve that opens and closes a flow path by moving away from or contacting the discharge valve seat member,
The discharge valve seat member is formed with a discharge valve seat portion that contacts the discharge valve and a discharge valve seat inclined portion on the outer diameter side of the discharge valve seat portion,
The sheet-side contact portion of the discharge valve and the discharge valve sheet portion of the discharge valve sheet member are arranged so as to overlap in the axial direction, and the discharge valve corner portion of the discharge valve is axially aligned with the discharge valve sheet member The electromagnetic valve device is arranged so as to be in a position corresponding to the discharge valve seat inclined portion.
請求項1に記載の電磁弁装置において、
前記吐出弁シート部材の前記吐出弁シート傾斜部は、
前記吐出弁シート部の外径側に形成され、外径側端部が前記吐出弁シート部よりも反吐出弁側に位置する第1傾斜部と、
該第1傾斜部の外径側に形成され、外径側端部が前記第1傾斜部よりもさらに反吐出弁側に位置する第2傾斜部とで構成されることを特徴とする電磁弁装置。
The electromagnetic valve device according to claim 1,
The discharge valve seat inclined portion of the discharge valve seat member is
A first inclined portion that is formed on the outer diameter side of the discharge valve seat portion and whose outer diameter side end is located on the side opposite to the discharge valve seat than the discharge valve seat portion;
An electromagnetic valve characterized in that it is formed on the outer diameter side of the first inclined part, and the outer diameter side end part is constituted by a second inclined part located further on the counter-discharge valve side than the first inclined part. apparatus.
請求項2に記載の電磁弁装置において、
前記第1傾斜部を曲面部により形成することを特徴とする電磁弁装置。
The electromagnetic valve device according to claim 2,
The electromagnetic valve device, wherein the first inclined portion is formed by a curved surface portion.
請求項2又は3に記載の電磁弁装置において、
前記第2傾斜部を略直線状の傾斜部とし、前記第1傾斜部と前記第2傾斜部とが連続して繋がるように形成されることを特徴とする電磁弁装置。
The electromagnetic valve device according to claim 2 or 3,
The electromagnetic valve device, wherein the second inclined portion is a substantially linear inclined portion, and the first inclined portion and the second inclined portion are continuously connected.
請求項2又は3に記載の電磁弁装置において、
前記第2傾斜部を略直線状の傾斜部とし、前記吐出弁シート部と前記第2傾斜部の成す角を鋭角に形成することを特徴とする電磁弁装置。
The electromagnetic valve device according to claim 2 or 3,
An electromagnetic valve device, wherein the second inclined portion is a substantially linear inclined portion, and an angle formed by the discharge valve seat portion and the second inclined portion is formed as an acute angle.
請求項2又は3に記載の電磁弁装置において、
前記吐出弁シート部と前記第2傾斜部の成す角を前記吐出弁の駆動時の最大傾き角度よりも大きくすることを特徴とする電磁弁装置。
The electromagnetic valve device according to claim 2 or 3,
An electromagnetic valve device characterized in that an angle formed by the discharge valve seat portion and the second inclined portion is larger than a maximum inclination angle when the discharge valve is driven.
吐出弁シート部材と、
該吐出弁シート部材から離れる、又は接触することで流路の開閉を行う吐出弁と、を備えた電磁弁装置において、
前記吐出弁シート部材は前記吐出弁が接触する吐出弁シート部と該吐出弁シート部の外径側の吐出弁シート傾斜部とが形成され、
前記吐出弁のシート側接触部と前記吐出弁シート部材の前記吐出弁シート部とが軸方向において重なるように配置されるとともに、前記吐出弁シート部材の吐出弁シート部材角部が軸方向において前記吐出弁の前記吐出弁シート傾斜部に対応する位置になるように配置されることを特徴とする電磁弁装置。
A discharge valve seat member;
In a solenoid valve device comprising: a discharge valve that opens and closes a flow path by moving away from or contacting the discharge valve seat member,
The discharge valve seat member is formed with a discharge valve seat portion that contacts the discharge valve and a discharge valve seat inclined portion on the outer diameter side of the discharge valve seat portion,
The sheet-side contact portion of the discharge valve and the discharge valve sheet portion of the discharge valve sheet member are arranged so as to overlap in the axial direction, and the discharge valve sheet member corner of the discharge valve sheet member is axially An electromagnetic valve device, wherein the electromagnetic valve device is disposed so as to correspond to the discharge valve seat inclined portion of the discharge valve.
請求項7に記載の電磁弁装置において、
前記吐出弁の前記吐出弁シート傾斜部は、
前記吐出弁のシート側接触部の外径側に形成され、外径側端部が前記シート側接触部よりも反吐出弁シート部材側に位置する第1傾斜部と、
該第1傾斜部の外径側に形成され、外径側端部が前記第1傾斜部よりもさらに反吐出弁シート部材側に位置する第2傾斜部とで構成されることを特徴とする電磁弁装置。
The electromagnetic valve device according to claim 7,
The discharge valve seat inclined portion of the discharge valve is
A first inclined portion that is formed on the outer diameter side of the seat side contact portion of the discharge valve, and the outer diameter side end portion is located on the side opposite to the discharge valve seat member from the seat side contact portion;
It is formed in the outer diameter side of this 1st inclination part, and an outer diameter side edge part is comprised by the 2nd inclination part located in the anti-discharge valve seat member side further than the said 1st inclination part, It is characterized by the above-mentioned. Solenoid valve device.
請求項8に記載の電磁弁装置において、
前記第1傾斜部を曲面部により形成することを特徴とする電磁弁装置。
The electromagnetic valve device according to claim 8,
The electromagnetic valve device, wherein the first inclined portion is formed by a curved surface portion.
JP2014099215A 2014-05-13 2014-05-13 Discharge valve unit and high-pressure fuel pump Active JP6310766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099215A JP6310766B2 (en) 2014-05-13 2014-05-13 Discharge valve unit and high-pressure fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099215A JP6310766B2 (en) 2014-05-13 2014-05-13 Discharge valve unit and high-pressure fuel pump

Publications (2)

Publication Number Publication Date
JP2015215072A true JP2015215072A (en) 2015-12-03
JP6310766B2 JP6310766B2 (en) 2018-04-11

Family

ID=54752126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099215A Active JP6310766B2 (en) 2014-05-13 2014-05-13 Discharge valve unit and high-pressure fuel pump

Country Status (1)

Country Link
JP (1) JP6310766B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220002168U (en) * 2021-03-03 2022-09-14 주식회사 대진에이치에스 Structure of securing load area of counter balance valve and increasing flow rate discharge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161375A (en) * 2001-11-27 2003-06-06 Miura Co Ltd Valve
JPWO2005088175A1 (en) * 2004-03-12 2007-08-09 トヨタ自動車株式会社 valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161375A (en) * 2001-11-27 2003-06-06 Miura Co Ltd Valve
JPWO2005088175A1 (en) * 2004-03-12 2007-08-09 トヨタ自動車株式会社 valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220002168U (en) * 2021-03-03 2022-09-14 주식회사 대진에이치에스 Structure of securing load area of counter balance valve and increasing flow rate discharge
KR200496618Y1 (en) 2021-03-03 2023-03-16 주식회사 대진에이치에스 Structure of securing load area of counter balance valve and increasing flow rate discharge

Also Published As

Publication number Publication date
JP6310766B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6462873B2 (en) Flow control valve and high-pressure fuel supply pump
JP6044664B2 (en) Control method of direct injection type fuel injection pump
JP5724661B2 (en) High pressure pump and control method thereof
US11542903B2 (en) High-pressure fuel supply pump provided with electromagnetic intake valve
JP6633195B2 (en) High pressure fuel supply pump
JP2006291838A (en) High pressure fuel pump
JP2015108409A (en) Solenoid valve
JP5577270B2 (en) High pressure pump
JP6877093B2 (en) High-pressure fuel supply pump control device and high-pressure fuel supply pump
JP6310766B2 (en) Discharge valve unit and high-pressure fuel pump
WO2019107101A1 (en) High-pressure fuel supply pump
JP6530978B2 (en) Solenoid valve and high pressure fuel supply pump
JPWO2018221077A1 (en) Solenoid valve, electromagnetic suction valve mechanism, and high-pressure fuel pump
JP5577269B2 (en) High pressure pump
JP2018100651A (en) Valve mechanism and high-pressure fuel supply pump with the same
JP6838244B2 (en) Solenoid valve and high pressure fuel supply pump
JP6770193B2 (en) High pressure fuel supply pump
WO2019097990A1 (en) Relief valve mechanism and fuel supply pump comprising same
JP7299817B2 (en) high pressure fuel supply pump
JP7248783B2 (en) Solenoid valve mechanism and high-pressure fuel supply pump provided with the same
JP7385750B2 (en) Fuel pump
JP7397729B2 (en) Fuel pump
JP7024071B2 (en) Fuel supply pump
WO2024084567A1 (en) Fuel pump
JP6938101B2 (en) Manufacturing method of high-pressure fuel supply pump and high-pressure fuel supply pump

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R150 Certificate of patent or registration of utility model

Ref document number: 6310766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350