JP2015212837A - Electrophotographic photoreceptor, method for manufacturing the same, and electrophotographic device using the same - Google Patents

Electrophotographic photoreceptor, method for manufacturing the same, and electrophotographic device using the same Download PDF

Info

Publication number
JP2015212837A
JP2015212837A JP2015141536A JP2015141536A JP2015212837A JP 2015212837 A JP2015212837 A JP 2015212837A JP 2015141536 A JP2015141536 A JP 2015141536A JP 2015141536 A JP2015141536 A JP 2015141536A JP 2015212837 A JP2015212837 A JP 2015212837A
Authority
JP
Japan
Prior art keywords
layer
charge
charge generation
generation layer
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015141536A
Other languages
Japanese (ja)
Other versions
JP6020679B2 (en
Inventor
清三 北川
Seizo Kitagawa
清三 北川
田中 靖
Yasushi Tanaka
靖 田中
鈴木 信二郎
Shinjiro Suzuki
信二郎 鈴木
弘 江森
Hiroshi Emori
弘 江森
和希 根橋
Kazuki Nehashi
和希 根橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015141536A priority Critical patent/JP6020679B2/en
Publication of JP2015212837A publication Critical patent/JP2015212837A/en
Application granted granted Critical
Publication of JP6020679B2 publication Critical patent/JP6020679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor having high sensitivity and high durability, which is applied to a high-resolution and high-speed electrophotographic device employing a positive charging system, and which exhibits excellent operational stability, prevents an image memory phenomenon or image defects due to cracks induced by a contact member or by contamination with fat and oil or sebum, and stably gives high picture qualities, a method for manufacturing the electrophotographic photoreceptor, and an electrophotographic photoreceptor using the electrophotographic photoreceptor.SOLUTION: The electrophotographic photoreceptor includes a charge transporting layer 2 comprising a hole transporting material and a binder resin, and a charge generating layer 3 comprising a charge generating material, a hole transporting material, an electron transporting material and a binder resin, successively layered on a conductive support body 1. A total amount of residual solvents included in the charge generating layer and the charge transporting layer is 50 μg/cmor less; a mass ratio of the electron transporting material to the hole transporting material included in the charge generating layer is 5:1 to 4:2; the charge transporting layer has a film thickness of 3 to 40 μm; the charge generating layer has a film thickness of 3 to 40 μm; and a moisture content percentage of the charge generating layer and the charge transporting layer as a whole is 0.05 to 1.5 mass%.

Description

本発明は電子写真用感光体(以下、単に「感光体」とも称する)、その製造方法およびそれを用いた電子写真装置に関し、詳しくは、電子写真方式のプリンタや複写機、ファクシミリなどに用いられる電子写真用感光体、その製造方法およびそれを用いた電子写真装置に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photoreceptor (hereinafter also simply referred to as “photoreceptor”), a method for producing the same, and an electrophotographic apparatus using the same, and more specifically, used for electrophotographic printers, copying machines, facsimiles, and the like. The present invention relates to an electrophotographic photoreceptor, a method for producing the same, and an electrophotographic apparatus using the same.

一般に、プリンタや複写機、ファクシミリ等の電子写真方式を利用した画像形成装置は、像担持体としての感光体と、感光体の表面を均一に帯電させる帯電装置と、感光体の表面に画像に応じた電気的な像(静電潜像)を書き込む露光装置と、この静電潜像をトナーで現像してトナー像を形成する現像装置と、このトナー像を転写紙に転写する転写装置とを備える。また、この転写紙上のトナーを転写紙に融着させるための定着装置も備えている。   In general, an image forming apparatus using an electrophotographic method such as a printer, a copying machine, a facsimile, or the like has a photosensitive member as an image carrier, a charging device that uniformly charges the surface of the photosensitive member, and an image on the surface of the photosensitive member. An exposure device for writing an electrical image (electrostatic latent image) corresponding thereto, a developing device for developing the electrostatic latent image with toner to form a toner image, and a transfer device for transferring the toner image to transfer paper, Is provided. A fixing device for fusing the toner on the transfer paper to the transfer paper is also provided.

このような画像形成装置では、その装置コンセプトにより使用される感光体が異なるが、現在では、大型機や高速機におけるSeやa−Si等の無機系感光体を除き、その優れた安定性、コストおよび使いやすさから、有機顔料を樹脂中に分散させてなる有機感光体(OPC:Organic Photo Conductor)が広く用いられている。この有機感光体は、無機系感光体が正帯電型であることと対照的に、負帯電型であることが一般的である。その理由は、負帯電型有機感光体においては、良好な正孔輸送機能をもつ正孔輸送材料が古くから開発されてきたのに対し、正帯電型有機感光体においては、良好な電子輸送能をもつ電子輸送材料がなかなか開発されてこなかった点にある。   In such an image forming apparatus, the photoconductor used differs depending on the apparatus concept, but at present, excluding inorganic photoconductors such as Se and a-Si in large machines and high speed machines, its excellent stability, From the viewpoint of cost and ease of use, an organic photoconductor (OPC) in which an organic pigment is dispersed in a resin is widely used. The organic photoreceptor is generally negatively charged, as opposed to the positively charged inorganic photoreceptor. The reason for this is that while negatively charged organic photoreceptors have been developed for a long time with hole transport materials having a good hole transport function, positively charged organic photoreceptors have good electron transport capability. It is in the point that the electron transport material with has not been developed.

一方で、この負帯電型有機感光体用の負帯電プロセスでは、負極性のコロナ放電によるオゾン発生量が、正極性に対し約10倍と圧倒的に多く、感光体への悪影響や、使用環境への悪影響が問題となっている。そのため、この負帯電プロセスでは、ローラー帯電やブラシ帯電のような接触帯電方式を採用することで、オゾン発生量を抑制している。しかし、この接触帯電方式は、正極性の非接触帯電方式に比べてコストが不利であること以外にも、帯電部材の汚染が避けられず、信頼性の面で不十分であることや、感光体の表面電位を均一化しにくいなど、高画質化の点でも不利な面をもっている。   On the other hand, in this negative charging process for negatively charged organic photoconductors, the amount of ozone generated by negative corona discharge is overwhelmingly about 10 times that of positive polarity, which adversely affects the photoconductor and the usage environment. The negative impact on is a problem. Therefore, in this negative charging process, the amount of ozone generation is suppressed by employing a contact charging method such as roller charging or brush charging. However, this contact charging method is disadvantageous in cost compared to the positive non-contact charging method, and contamination of the charging member is unavoidable, and is insufficient in terms of reliability, It also has a disadvantage in terms of high image quality, such as it is difficult to equalize the surface potential of the body.

これらの問題を解決するためには、正帯電型有機感光体を適用することが有効であり、高性能な正帯電型有機感光体が求められている。正帯電型有機感光体は、上述のような正帯電方式特有のメリットの他にも、一般にキャリア発生位置が感光層の表面近傍であることから、負帯電型有機感光体に比べてキャリアの横方向拡散が少なく、ドット再現性(解像性および階調性)に優れているという利点を有している。そのため、正帯電型有機感光体は、高解像度化の進む各分野で検討されるようになってきている。   In order to solve these problems, it is effective to apply a positively charged organic photoreceptor, and a high-performance positively charged organic photoreceptor is required. In addition to the merits inherent in the positive charging system as described above, the positively charged organic photoreceptor generally has a carrier generation position near the surface of the photosensitive layer, so that the carrier is more lateral than the negatively charged organic photoreceptor. It has the advantage of less directional diffusion and excellent dot reproducibility (resolution and gradation). For this reason, positively charged organic photoreceptors are being studied in various fields where resolution is increasing.

正帯電型有機感光体には、以下のように、大きく分けて4種類の層構成のものがあり、従来より種々提案されてきている。一つ目は、導電性支持体上に、電荷輸送層および電荷発生層を順次積層した2層構成の機能分離型感光体である(例えば、特許文献1および特許文献2参照)。二つ目は、上記2層構成の上に表面保護層を積層した3層構成の機能分離型感光体である(例えば、特許文献3、特許文献4および特許文献5参照)。三つ目は、一つ目とは逆に、電荷発生層および電荷(電子)輸送層を順次積層した逆積層の2層構成の機能分離型感光体である(例えば、特許文献6および特許文献7参照)。四つ目は、電荷発生材料、正孔輸送材料および電子輸送材料を同一層中に分散した単層型感光体である(例えば、特許文献6および特許文献8参照)。なお、上記4種類の分類においては、下引き層の有無は考慮しない。   The positively charged organic photoconductors are roughly classified into four types of layers as described below, and various types have been conventionally proposed. The first is a function separation type photoreceptor having a two-layer structure in which a charge transport layer and a charge generation layer are sequentially laminated on a conductive support (see, for example, Patent Document 1 and Patent Document 2). The second is a function separation type photoreceptor having a three-layer structure in which a surface protective layer is laminated on the two-layer structure (see, for example, Patent Document 3, Patent Document 4, and Patent Document 5). The third type is a function-separated type photoconductor having a two-layer structure in which a charge generation layer and a charge (electron) transport layer are sequentially stacked, contrary to the first one (for example, Patent Document 6 and Patent Document). 7). The fourth is a single-layer type photoreceptor in which a charge generation material, a hole transport material, and an electron transport material are dispersed in the same layer (see, for example, Patent Document 6 and Patent Document 8). In the above four types of classification, the presence or absence of the undercoat layer is not considered.

このうち、最後の四つ目の単層型感光体については、詳細な検討がなされ、一般的に広く実用化が進められている。その大きな理由は、正孔輸送材料の正孔輸送機能と比較して、輸送能において劣る電子輸送材料の電子輸送機能を、正孔輸送材料が補完する構成をとっていることにあると考えられる。この単層型感光体においては、分散型であるが故に、膜中内部でもキャリア発生は起きるが、感光層の表面近傍に近づくほどキャリア発生量が大きく、正孔輸送距離と比較して電子輸送距離は小さくてすむので、電子輸送能は正孔輸送能ほど高い必要はないものと考えられる。これにより、他の三つのタイプと比較して、実用上十分な環境安定性および疲労特性を実現している。   Of these, the fourth single-layer type photoconductor has been studied in detail, and is in widespread use in general. The main reason for this is thought to be that the hole transport material complements the electron transport function of the electron transport material that is inferior in transport ability compared to the hole transport function of the hole transport material. . Since this single-layer type photoreceptor is a dispersion type, carrier generation occurs inside the film, but the closer to the surface of the photosensitive layer, the larger the carrier generation amount, and the electron transport compared to the hole transport distance. Since the distance is small, it is considered that the electron transport ability does not need to be as high as the hole transport ability. This achieves practically sufficient environmental stability and fatigue characteristics as compared to the other three types.

しかし、単層型感光体においては、単一膜にキャリア発生およびキャリア輸送の両機能を持たせていることから、塗布工程の簡素化が可能であって高い良品率および工程能力を得やすいという長所を持つ反面、高感度化を図るために正孔輸送材料および電子輸送材料の両者を単一層内に多く含有させることで結着樹脂の含有量が低下して、耐久性が低下するという問題があった。よって、単層型感光体において、高感度と高耐久との両立を図ることには限界があった。   However, in a single-layer type photoreceptor, since a single film has both functions of carrier generation and carrier transport, it is possible to simplify the coating process and easily obtain a high yield rate and process capability. On the other hand, there is a problem that the content of the binder resin is reduced by containing both the hole transport material and the electron transport material in a single layer in order to increase the sensitivity, and the durability is lowered. was there. Therefore, there has been a limit to achieving both high sensitivity and high durability in the single layer type photoreceptor.

また、単層型感光体において結着樹脂の比率が低くなると、ガラス転移点が低くなって、接触部材に対する耐汚染性が悪化するという難点もあった。さらに、特許文献9、特許文献10および特許文献11に開示されているように、油脂・皮脂汚染対策として、単層型の感光層中に可塑剤としてフェニレン化合物を添加すると、ガラス転移点の低下がより助長されてしまう。そのため、有機感光体に接触するローラー等の当接圧が高い装置では、クリープ変形が顕著になり、印字欠陥になって顕在化するという問題もあった。   Further, when the ratio of the binder resin in the single-layer type photoreceptor is lowered, the glass transition point is lowered, and there is a problem that the stain resistance against the contact member is deteriorated. Further, as disclosed in Patent Document 9, Patent Document 10 and Patent Document 11, when a phenylene compound is added as a plasticizer in a single-layer type photosensitive layer as a countermeasure against oil and sebum contamination, the glass transition point is lowered. Will be promoted more. For this reason, in a device having a high contact pressure such as a roller that contacts the organic photoconductor, there is a problem that creep deformation becomes remarkable and printing defects become apparent.

そのため、近年の装置の小型化や高速化、高解像度化、カラー化に対応する感度、耐久性および耐汚染性を両立するためには、従来の単層型正帯電有機感光体では対応が困難であり、新たに、電荷輸送層と電荷発生層とを順次積層した積層型正帯電感光体についても提案されている(例えば、特許文献12および特許文献13参照)。この積層型正帯電感光体の層構成は、上述の一つ目の層構成に類似するものであるが、電荷発生層に含まれる電荷発生材料を少なくするとともに電子輸送材料を含有させ、下層の電荷輸送層に近い厚膜化ができる他、電荷発生層内の正孔輸送材料の添加量を少なくできるため、電荷発生層内の樹脂比率を従来の単層型より多く設定でき、高感度化と高耐久化との両立が図りやすい構成となっている。   For this reason, it is difficult to use conventional single-layer positively charged organic photoconductors in order to achieve both sensitivity, durability, and contamination resistance corresponding to recent downsizing, high speed, high resolution, and colorization of devices. A multilayer positively charged photoreceptor in which a charge transport layer and a charge generation layer are sequentially laminated has also been proposed (see, for example, Patent Document 12 and Patent Document 13). The layer structure of this laminated positively charged photoreceptor is similar to the first layer structure described above, but the charge generation material contained in the charge generation layer is reduced and the electron transport material is contained, so that The film can be made thicker than the charge transport layer, and the amount of hole transport material in the charge generation layer can be reduced, so the resin ratio in the charge generation layer can be set higher than the conventional single layer type, resulting in higher sensitivity. And high durability.

この積層型正帯電有機感光体は、単層型感光体と同様に、量産する際には浸漬塗工法によって製造される。そのため、電荷発生層を電荷輸送層上に積層塗工する際には、電荷発生層の材料溶解性、分散性および分散安定性が良いことが重要であることに加えて、電荷発生層塗布液の溶媒として、電荷輸送層の材料を溶出させにくい溶剤を選定する必要がある。このような溶媒としては、一般的に、沸点が高いものが好ましく、具体的には、沸点が60℃以上のもの、特には80℃以上のものが望ましい。中でも、高感度化のために高量子効率のチタニルフタロシアニンを電荷発生材料として用いた場合、比重が大きく、沸点が80℃以上であるジクロロエタンが好適である。溶媒に関する改良技術としては、例えば、特許文献14に、感光層の残留溶媒量を所定範囲に規定した感光体に係る技術が開示されている。   The multilayer positively charged organic photoconductor is manufactured by a dip coating method when mass-produced, like the single-layer photoconductor. Therefore, when the charge generation layer is applied on the charge transport layer, it is important that the charge generation layer has good material solubility, dispersibility, and dispersion stability. It is necessary to select a solvent that does not easily elute the charge transport layer material. As such a solvent, those having a high boiling point are generally preferred, and specifically those having a boiling point of 60 ° C. or higher, particularly 80 ° C. or higher are desirable. Among them, when titanyl phthalocyanine having a high quantum efficiency is used as a charge generation material for increasing sensitivity, dichloroethane having a large specific gravity and a boiling point of 80 ° C. or higher is preferable. As an improved technique related to the solvent, for example, Patent Document 14 discloses a technique related to a photoreceptor in which the amount of residual solvent in the photosensitive layer is defined within a predetermined range.

特公平05−30262号公報Japanese Patent Publication No. 05-30262 特開平04−242259号公報Japanese Patent Laid-Open No. 04-242259 特公平05−47822号公報Japanese Patent Publication No. 05-47822 特公平05−12702号公報Japanese Patent Publication No. 05-12702 特開平04−241359号公報Japanese Patent Laid-Open No. 04-241359 特開平05−45915号公報JP 05-45915 A 特開平07−160017号公報Japanese Patent Laid-Open No. 07-160017 特開平03−256050号公報Japanese Patent Laid-Open No. 03-256050 特開平2007−163523号公報Japanese Patent Laid-Open No. 2007-163523 特開2007−256768号公報JP 2007-256768 A 特開2007−121733号公報JP 2007-121733 A 特開2009−288569号公報JP 2009-288568 A 国際公開第2009/104571号パンフレットInternational Publication No. 2009/104571 Pamphlet 特開平9−43887号公報Japanese Patent Laid-Open No. 9-43887

しかしながら、上記特許文献12,13に開示されているような積層型正帯電有機感光体においても、高感度化、高耐久化、および、グリス等の油脂による汚染に対する耐性については両立できるものの、人体由来の皮脂付着に対する汚染、すなわち、クラック発生を完全には防止できるものではなかった。   However, the laminated positively charged organic photoconductors disclosed in Patent Documents 12 and 13 can achieve both high sensitivity, high durability, and resistance to contamination by oils such as grease. It was not possible to completely prevent contamination to sebum from the origin, that is, generation of cracks.

そこで、本発明の目的は、上記問題を解消して、高解像度かつ高速の正帯電方式の電子写真装置に適用され、動作安定性に優れるとともに、画像メモリーや、接触部材または油脂若しくは皮脂による汚染で生ずるクラックに起因する画像欠陥の発生がなく、安定して高画像品質が得られる、高感度でかつ高耐久な電子写真用感光体、その製造方法およびそれを用いた電子写真装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and to be applied to a high-resolution and high-speed positively charged electrophotographic apparatus, which has excellent operational stability and is contaminated by image memory, contact members, oils or sebum. The present invention provides a highly sensitive and highly durable photoconductor for electrophotography, a method for producing the same, and an electrophotographic apparatus using the same, which are free from image defects caused by cracks and can stably obtain high image quality. There is.

本発明者らは、単層型有機感光体と比較して感光体の表面層に含有させる電荷輸送材料の量を少なくでき、結着樹脂の比率を大きくすることができる上記積層型正帯電有機感光体において、皮脂によるクラックが発生する原因につき鋭意検討した結果、残留溶媒の量および電荷輸送材料の量による影響が大きいことを見出した。   The inventors of the present invention can reduce the amount of charge transport material contained in the surface layer of the photoreceptor compared with a single-layer type organic photoreceptor, and increase the ratio of the binder resin. As a result of intensive studies on the cause of the occurrence of cracks due to sebum in the photoreceptor, it has been found that the influence of the amount of the residual solvent and the amount of the charge transport material is large.

図3は、電荷発生層の乾燥を90℃1時間にて行った積層型正帯電有機感光体について、常温放置時間と残留溶媒量との関係を示すグラフであり、図4は、積層型正帯電有機感光体の表面上に皮脂を10日間付着させた後のクラック発生率を示すグラフである。ここで、クラックが発生した部分の皮脂は変色している場合が多く、皮脂からの油で溶け出した電荷輸送材料を表面の皮脂方向に移動させやすくしているものと考えられ、具体的には、以下のメカニズムがあるものと推測される。   FIG. 3 is a graph showing the relationship between the standing time at room temperature and the amount of residual solvent for a laminated positively charged organic photoreceptor in which the charge generation layer was dried at 90 ° C. for 1 hour, and FIG. It is a graph which shows the crack generation rate after making sebum adhere on the surface of a charged organic photoreceptor for 10 days. Here, the sebum of the cracked part is often discolored, and it is considered that the charge transport material dissolved by the oil from the sebum is easily moved in the sebum direction on the surface. Is presumed to have the following mechanism.

すなわち、感光層の膜中に残留溶媒が存在すると、皮脂から浸透した油によって溶け出した電荷輸送材料が、膜表面の皮脂の方向に移動しやすくなる。その後、電子輸送材料が移動することで、膜中の空隙がより大きくなり、この大きくなった空隙に応力が集中することで、クラックが発生するものと考えられ、この一連の現象のトリガーとして、残留溶媒が大きく寄与しているものと考えられる。   That is, when a residual solvent is present in the film of the photosensitive layer, the charge transport material dissolved by the oil that has permeated from the sebum easily moves in the direction of the sebum on the film surface. After that, the movement of the electron transport material makes the voids in the film larger, and it is considered that cracks occur due to stress concentration in the enlarged voids, and as a trigger for this series of phenomena, It is considered that the residual solvent contributes greatly.

ここで、感光層中の残留溶媒量を低減させるためには、その製造工程において、高温度で乾燥工程を行うことや、処理時間を長くすることが効果的であると考えられる。しかし、これらの方法では、熱の影響による機能材料の劣化を招きやすく、感光体の電気特性、つまり、感度特性や残留電位特性を悪化する傾向があり、性能の悪化を招きやすい。   Here, in order to reduce the amount of residual solvent in the photosensitive layer, it is considered effective to perform a drying process at a high temperature and to increase the processing time in the manufacturing process. However, these methods tend to cause deterioration of the functional material due to the influence of heat, tend to deteriorate the electrical characteristics of the photoreceptor, that is, sensitivity characteristics and residual potential characteristics, and easily deteriorate performance.

かかる観点から、本発明者らはさらに検討した結果、可能な限り低温かつ短時間で残留溶媒量を低減することができ、生産性を損なわない方法として、減圧下で乾燥を行うことが有効であることを見出し、これにより、電気特性を損なうことなく皮脂付着によるクラックの発生を防止した、感度と耐汚染性とに優れた高耐久の積層型正帯電有機感光体を安定的に生産できることを見出して、本発明を完成するに至った。   From such a viewpoint, as a result of further studies, the inventors have been able to reduce the amount of residual solvent at the lowest possible temperature and in the shortest possible time, and it is effective to perform drying under reduced pressure as a method that does not impair productivity. It has been found that this makes it possible to stably produce highly durable multilayer positively charged organic photoconductors with excellent sensitivity and stain resistance that prevent the occurrence of cracks due to sebum adhesion without impairing electrical properties. As a result, the present invention has been completed.

すなわち、本発明の電子写真用感光体は、導電性支持体上に、少なくとも正孔輸送材料および結着樹脂を含む電荷輸送層と、少なくとも電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂を含む電荷発生層とが順次積層されてなる積層型正帯電の電子写真用感光体において、
前記電荷発生層および前記電荷輸送層に含まれる残留溶媒の合計量が、50μg/cm以下であり、該電荷発生層における電子輸送材料と正孔輸送材料との質量比率が5:1〜4:2の範囲であり、該電荷輸送層の膜厚が3μm〜40μmの範囲であり、該電荷発生層の膜厚が3μm〜40μmの範囲であって、かつ、前記電荷発生層および前記電荷輸送層全体の水分含有率が、0.05質量%〜1.5質量%の範囲であることを特徴とするものである。
That is, the electrophotographic photoreceptor of the present invention comprises, on a conductive support, a charge transport layer containing at least a hole transport material and a binder resin, and at least a charge generating material, a hole transport material, an electron transport material and a binder. In a laminate type positively charged electrophotographic photoreceptor in which a charge generation layer containing a resin is sequentially laminated,
The total amount of residual solvent contained in the charge generation layer and the charge transport layer is 50 μg / cm 2 or less, and the mass ratio of the electron transport material to the hole transport material in the charge generation layer is 5: 1 to 4 2 in the range, the film thickness of the charge transport layer is in the range of 3 μm to 40 μm, the film thickness of the charge generation layer is in the range of 3 μm to 40 μm, and the charge generation layer and the charge transport layer The moisture content of the entire layer is in the range of 0.05% by mass to 1.5% by mass.

本発明においては、前記電荷発生層および前記電荷輸送層に含まれる残留溶媒の合計量が、5μg/cm以上50μg/cm以下であることが好ましい。また、前記電荷発生材料がチタニルフタロシアニンを含み、該電荷発生材料の含有率が、前記電荷発生層中の1〜2.5質量%であり、かつ、前記電荷発生層を形成する際に用いる溶媒がジクロロエタンであることが好ましい。さらに、前記電荷輸送層に含まれる結着樹脂が、ポリカーボネート系樹脂であり、かつ、該電荷輸送層における正孔輸送材料と結着樹脂との質量比率が、25:75〜75:25であることが好ましい。 In the present invention, the total amount of residual solvents contained in the charge generation layer and the charge transport layer is preferably 5 μg / cm 2 or more and 50 μg / cm 2 or less. The charge generation material contains titanyl phthalocyanine, the content of the charge generation material is 1 to 2.5% by mass in the charge generation layer, and the solvent is used when forming the charge generation layer. Is preferably dichloroethane. Furthermore, the binder resin contained in the charge transport layer is a polycarbonate resin, and the mass ratio of the hole transport material and the binder resin in the charge transport layer is 25:75 to 75:25. It is preferable.

また、本発明の電子写真用感光体の製造方法は、上記本発明の電子写真用感光体を製造するにあたり、
前記導電性支持体上に、前記電荷輸送層および前記電荷発生層を、浸漬塗布法により順次形成した後、形成された該電荷輸送層および該電荷発生層を、減圧下で乾燥することを特徴とするものである。
本発明においては、前記電荷発生層の浸漬塗布に用いる溶剤が、沸点が60℃以上のハロゲン化炭化水素であることが好ましい。また、前記電荷輸送層を浸漬塗布法により形成した後、該電荷輸送層を90〜120℃の範囲で熱風乾燥するとともに、前記電荷発生層を浸漬塗布法により形成した後、形成された該電荷輸送層および該電荷発生層を減圧下で乾燥するに先立って、該電荷発生層を90〜120℃の範囲で熱風乾燥することが好ましい。さらに、前記電荷輸送層および前記電荷発生層の減圧下での乾燥を、500Pa以下の真空度で、80〜100℃および30〜60分間の条件で行うことが好ましい。
Further, the production method of the electrophotographic photoreceptor of the present invention, in producing the electrophotographic photoreceptor of the present invention,
The charge transport layer and the charge generation layer are sequentially formed on the conductive support by a dip coating method, and the formed charge transport layer and the charge generation layer are dried under reduced pressure. It is what.
In the present invention, the solvent used for the dip coating of the charge generation layer is preferably a halogenated hydrocarbon having a boiling point of 60 ° C. or higher. In addition, after the charge transport layer is formed by a dip coating method, the charge transport layer is dried with hot air in a range of 90 to 120 ° C., and the charge generation layer is formed by a dip coating method, and then the formed charge is formed. Prior to drying the transport layer and the charge generation layer under reduced pressure, the charge generation layer is preferably dried with hot air in the range of 90 to 120 ° C. Furthermore, it is preferable that the charge transport layer and the charge generation layer are dried under reduced pressure at a vacuum degree of 500 Pa or less under conditions of 80 to 100 ° C. and 30 to 60 minutes.

さらに、本発明の電子写真装置は、上記本発明の電子写真用感光体を搭載したことを特徴とするものである。   Furthermore, an electrophotographic apparatus of the present invention is equipped with the electrophotographic photoreceptor of the present invention.

本発明によれば、上記構成としたことにより、高解像度かつ高速の正帯電方式の電子写真装置に適用され、動作安定性に優れるとともに、画像メモリーや、接触部材または油脂若しくは皮脂による汚染で生ずるクラックに起因する画像欠陥の発生がなく、安定して高画像品質が得られる、高感度でかつ高耐久な電子写真用感光体、その製造方法およびそれを用いた電子写真装置を実現することが可能となった。   According to the present invention, because of the above configuration, it is applied to a high-resolution and high-speed positively-charged electrophotographic apparatus, has excellent operational stability, and is caused by contamination with an image memory, a contact member, oil or fat or sebum. It is possible to realize a highly sensitive and highly durable electrophotographic photoreceptor, a method for producing the same, and an electrophotographic apparatus using the same, in which there is no occurrence of image defects due to cracks and stable high image quality can be obtained. It has become possible.

本発明の積層型正帯電電子写真用感光体の一構成例を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a configuration example of a laminated positively charged electrophotographic photoreceptor of the present invention. 本発明の積層型正帯電電子写真用感光体の他の構成例を示す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing another example of the configuration of the laminated positively charged electrophotographic photoreceptor of the present invention. 積層型正帯電有機感光体の常温での放置時間と残留溶媒量との関係を示すグラフである。3 is a graph showing the relationship between the standing time at room temperature of a laminated positively charged organic photoreceptor and the amount of residual solvent. 積層型正帯電有機感光体の表面上に皮脂を10日間付着させた後のクラック発生率を示すグラフである。It is a graph which shows the crack generation rate after attaching sebum on the surface of a lamination type positively charged organic photoreceptor for 10 days. 本発明の電子写真装置の一構成例を示す概略構成図である。1 is a schematic configuration diagram illustrating a configuration example of an electrophotographic apparatus of the present invention.

以下、本発明の実施の形態について、図面を用いて詳細に説明する。本発明は、以下の説明により何ら限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited by the following description.

図1および図2に、本発明の積層型正帯電電子写真用感光体の一構成例を示す模式的断面図を示す。図1に示すように、本発明の電子写真用感光体は、導電性支持体1上に、少なくとも電荷輸送層2および電荷発生層3が順次積層されてなる正帯電用の積層型電子写真用感光体である。また、本発明の電子写真用感光体は、図2に示すように、干渉縞対策としての下引き層4を含むものであってもよい。   FIG. 1 and FIG. 2 are schematic cross-sectional views showing an example of the configuration of the laminated positively charged electrophotographic photoreceptor of the present invention. As shown in FIG. 1, the electrophotographic photoreceptor of the present invention is a positively charged multi-layer electrophotographic apparatus in which at least a charge transport layer 2 and a charge generation layer 3 are sequentially laminated on a conductive support 1. It is a photoreceptor. Further, as shown in FIG. 2, the electrophotographic photoreceptor of the present invention may include an undercoat layer 4 as a countermeasure against interference fringes.

本発明においては、電荷輸送層2が少なくとも正孔輸送材料および結着樹脂を含むとともに、電荷発生層3が少なくとも電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂を含み、電荷発生層3および電荷輸送層2に含まれる残留溶媒の合計量が、50μg/cm以下である点が重要である。前述したように、皮脂汚染によるクラックの発生を抑制するためには、残留溶媒の量および電荷輸送材料の量を抑制することが重要となると考えられるが、電荷輸送材料の量は、感光体の基本特性に関わるものであるので、単独では調整できない。よって、本発明では、残留溶媒量を上記範囲に低く抑えることで、耐油脂汚染性の向上を図ったものである。上記残留溶媒の合計量は、50μg/cm以下であることが必要であり、好適には25μg/cm以下である。 In the present invention, the charge transport layer 2 includes at least a hole transport material and a binder resin, and the charge generation layer 3 includes at least a charge generation material, a hole transport material, an electron transport material, and a binder resin. It is important that the total amount of residual solvent contained in the layer 3 and the charge transport layer 2 is 50 μg / cm 2 or less. As described above, in order to suppress the occurrence of cracks due to sebum contamination, it is considered to be important to suppress the amount of residual solvent and the amount of charge transport material. It is related to basic characteristics and cannot be adjusted alone. Therefore, in the present invention, the amount of residual solvent is kept within the above range, thereby improving the resistance to oil and fat contamination. The total amount of the residual solvent needs to be 50 μg / cm 2 or less, preferably 25 μg / cm 2 or less.

本発明においては、電荷発生層および電荷輸送層に含まれる残留溶媒の合計量について、上記の条件を満足するものであればよく、これにより、本発明の所期の効果を得ることができるものである。本発明において、それ以外の各層の具体的な構成等の条件については、所望に応じ適宜決定することができ、特に制限されるものではない。   In the present invention, the total amount of residual solvent contained in the charge generation layer and the charge transport layer may be any as long as the above conditions are satisfied, and thereby the intended effect of the present invention can be obtained. It is. In the present invention, conditions such as a specific configuration of each of the other layers can be appropriately determined as desired, and are not particularly limited.

[導電性支持体]
導電性支持体1は、感光体の一電極としての役目を担うのと同時に、感光体を構成する各層の支持体ともなっている。導電性支持体1は、円筒状や板状、フィルム状などのいずれの形状でもよく、材質的には、アルミニウムやステンレス鋼、ニッケルなどの金属類の他、ガラスや樹脂などの表面に導電処理を施したものでもよい。
[Conductive support]
The conductive support 1 serves as one electrode of the photoconductor, and at the same time serves as a support for each layer constituting the photoconductor. The conductive support 1 may have any shape such as a cylindrical shape, a plate shape, or a film shape. In terms of material, a conductive treatment is applied to the surface of glass, resin, or the like in addition to metals such as aluminum, stainless steel, and nickel. It may be given.

[下引き層]
下引き層4は、本発明において基本的には不要であるが、必要に応じて設けることが可能である。下引き層4は、樹脂を主成分とする層や、アルマイトなどの金属酸化皮膜からなり、導電性支持体と電荷輸送層との密着性を向上する目的や、感光層への電荷の注入性を制御する目的で、設けられる。下引き層に用いられる樹脂材料としては、カゼインやポリビニルアルコール、ポリアミド、メラミン、セルロースなどの絶縁性高分子、および、ポリチオフェンやポリピロール、ポリアニリンなどの導電性高分子が挙げられ、これらの樹脂は単独、あるいは適宜組み合わせて混合して用いることができる。また、これらの樹脂に、二酸化チタンや酸化亜鉛などの金属酸化物を含有させることもできる。
[Underlayer]
The undercoat layer 4 is basically unnecessary in the present invention, but can be provided as necessary. The undercoat layer 4 is composed of a resin-based layer or a metal oxide film such as alumite, for the purpose of improving the adhesion between the conductive support and the charge transport layer, and the charge injection property to the photosensitive layer. It is provided for the purpose of controlling. Examples of the resin material used for the undercoat layer include insulating polymers such as casein, polyvinyl alcohol, polyamide, melamine, and cellulose, and conductive polymers such as polythiophene, polypyrrole, and polyaniline. Alternatively, they can be used in combination as appropriate. These resins can also contain metal oxides such as titanium dioxide and zinc oxide.

[電荷輸送層]
電荷輸送層2は、主として正孔輸送材料と結着樹脂とにより構成される。
[Charge transport layer]
The charge transport layer 2 is mainly composed of a hole transport material and a binder resin.

(正孔輸送材料)
電荷輸送層2に使用される正孔輸送材料としては、各種ヒドラゾン化合物やスチリル化合物、ジアミン化合物、ブタジエン化合物、インドール化合物等を単独、あるいは適宜組合せて用いることができるが、トリフェニルアミン骨格を含むスチリル系化合物が、コストおよび性能面で好適である。なお、電荷輸送層2は、電荷発生層3の内側にあり、部材汚染、すなわち、転写ローラーや現像ローラーの接触圧による影響が緩和されることから、単層型有機感光体の場合とは異なり、電荷輸送層2には、低分子量のトリフェニルアミンを、クラック対策の可塑剤として、副作用を抑えつつ使用することが可能である。
(Hole transport material)
As the hole transport material used for the charge transport layer 2, various hydrazone compounds, styryl compounds, diamine compounds, butadiene compounds, indole compounds and the like can be used alone or in appropriate combination, but include a triphenylamine skeleton. Styryl compounds are preferred in terms of cost and performance. The charge transport layer 2 is inside the charge generation layer 3 and is less affected by member contamination, that is, the contact pressure of the transfer roller and the developing roller. In the charge transport layer 2, it is possible to use a low molecular weight triphenylamine as a plasticizer for preventing cracks while suppressing side effects.

(結着樹脂)
電荷輸送層2の結着樹脂としては、ビスフェノールA型、ビスフェノールZ型、ビスフェノールA型−ビフェニル共重合体などのポリカーボネート系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリフェニレン系樹脂などを、それぞれ単独で、あるいは適宜組み合わせて用いることができる。この中でも、後述するように、電荷輸送層2の結着樹脂としては電荷発生層3の結着樹脂と同じものが望ましいこと、および、溶出しにくさの点から、分子量が3万以上の樹脂を用いることが好ましく、特には、分子量が5万以上のポリカーボネート系樹脂が最適である。
(Binder resin)
Examples of the binder resin for the charge transport layer 2 include polycarbonate resins such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, polyester resins, polystyrene resins, polyphenylene resins, and the like. Or they can be used in appropriate combinations. Among these, as will be described later, the binder resin for the charge transport layer 2 is preferably the same as the binder resin for the charge generation layer 3 and has a molecular weight of 30,000 or more from the viewpoint of difficulty in elution. In particular, a polycarbonate resin having a molecular weight of 50,000 or more is optimal.

(溶剤)
電荷輸送層の溶剤としては、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジオキソラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類等が挙げられる。電荷輸送層に用いる溶剤は、正孔輸送材料や結着樹脂の溶解性、塗工性および保管安定性を考慮して選択される。
(solvent)
Examples of the solvent for the charge transport layer include halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, and chlorobenzene; ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, dioxane, dioxolane, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether; acetone, Examples include ketones such as methyl ethyl ketone and cyclohexanone. The solvent used for the charge transporting layer is selected in consideration of the solubility, coating property and storage stability of the hole transporting material and the binder resin.

(組成)
電荷輸送層2における正孔輸送材料と結着樹脂との質量比率は、1:3〜3:1(25:75〜75:25)の範囲とすることができ、好適には、1:1.5〜1.5:1(40:60〜60:40)の範囲である。正孔輸送材料の含有量が、電荷輸送層2中の25質量%より少ないと、一般に輸送機能が不足し、残留電位が高くなる他、装置内の露光部電位の環境依存性が大きくなり、画像品質の環境安定性が悪化してしまうので、使用に適さなくなるおそれがある。一方、正孔輸送材料の含有量が、電荷輸送層2中の75質量%より多くなり、すなわち、結着樹脂が電荷輸送層2中の25質量%より少なくなると、電荷発生層2を塗布した際の溶出の弊害が発生するおそれがある。
(composition)
The mass ratio of the hole transport material and the binder resin in the charge transport layer 2 can be in the range of 1: 3 to 3: 1 (25:75 to 75:25), preferably 1: 1. The range is from 5 to 1.5: 1 (40:60 to 60:40). If the content of the hole transport material is less than 25% by mass in the charge transport layer 2, generally the transport function is insufficient, the residual potential becomes high, and the environmental dependence of the exposed portion potential in the apparatus becomes large, Since the environmental stability of image quality deteriorates, it may not be suitable for use. On the other hand, when the content of the hole transport material is more than 75% by mass in the charge transport layer 2, that is, when the binder resin is less than 25% by mass in the charge transport layer 2, the charge generation layer 2 is applied. There is a risk of adverse effects of elution.

(膜厚)
電荷輸送層2の膜厚は、後述する電荷発生層3との兼ね合いで決められるが、実用上有効な性能を確保する観点より、3μm〜40μmの範囲が好適であり、より好適には5μm〜30μm、さらに好適には10μm〜20μmである。
(Film thickness)
The film thickness of the charge transport layer 2 is determined in consideration of the charge generation layer 3 described later, but from the viewpoint of ensuring practically effective performance, the range of 3 μm to 40 μm is preferable, and more preferably 5 μm to It is 30 μm, more preferably 10 μm to 20 μm.

[電荷発生層]
電荷発生層3は、前述したように、電荷発生材料の粒子を、正孔輸送材料および電子輸送材料が溶解した結着樹脂中に分散させた塗布液を塗布するなどの方法により形成される。電荷発生層3は、光を受容してキャリアを発生する機能をもつとともに、発生した電子を感光体表面に運び、正孔を上記電荷輸送層2に運ぶ機能を有する。電荷発生層3は、キャリアの発生効率が高いことと同時に、発生した正孔の電荷輸送層2への注入性が重要であり、電場依存性が少なく、低電場でも注入の良いことが望ましい。
[Charge generation layer]
As described above, the charge generation layer 3 is formed by a method of applying a coating liquid in which particles of a charge generation material are dispersed in a binder resin in which a hole transport material and an electron transport material are dissolved. The charge generation layer 3 has a function of receiving light to generate carriers, and a function of transporting generated electrons to the surface of the photoreceptor and transporting holes to the charge transport layer 2. The charge generation layer 3 has high carrier generation efficiency, and at the same time, the injection property of the generated holes into the charge transport layer 2 is important, has little electric field dependency, and preferably has good injection even at a low electric field.

(電荷発生材料)
電荷発生材料としては、X型無金属フタロシアニン単独、若しくは、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、γ型チタニルフタロシアニン、アモルファス型チタニルフタロシアニンを単独、または適宜組合せて用いることができ、画像形成に使用される露光光源の光波長領域に応じて好適な物質を選ぶことができる。高感度化の観点からは、量子効率の高いチタニルフタロシアニンが最適である。
(Charge generation material)
As the charge generation material, X-type metal-free phthalocyanine alone, or α-type titanyl phthalocyanine, β-type titanyl phthalocyanine, Y-type titanyl phthalocyanine, γ-type titanyl phthalocyanine, and amorphous-type titanyl phthalocyanine can be used alone or in appropriate combination. A suitable substance can be selected according to the light wavelength region of the exposure light source used for image formation. From the viewpoint of increasing sensitivity, titanyl phthalocyanine having high quantum efficiency is optimal.

ここで、電荷発生材料としてチタニルフタロシアニンを用いる場合には、電荷発生層3および電荷輸送層2全体の水分含有率が0.05質量%〜1.5質量%、特には0.1質量%〜1.0質量%の範囲であることが好ましい。水分含有率を多くすることにより、チタニルフタロシアニンについては感度を向上することができ、特に、低温低湿環境での印字濃度を確保しやすくすることができる。一方、水分含有率が多すぎると、特に、高温高湿環境での帯電性が不足する傾向があり、搭載する装置によっては、帯電性能が不足し、解像性が低下するおそれがある。   Here, when titanyl phthalocyanine is used as the charge generation material, the moisture content of the charge generation layer 3 and the charge transport layer 2 as a whole is 0.05 mass% to 1.5 mass%, particularly 0.1 mass% to The range is preferably 1.0% by mass. By increasing the water content, the sensitivity of titanyl phthalocyanine can be improved, and in particular, it is possible to easily ensure the print density in a low temperature and low humidity environment. On the other hand, if the water content is too high, the chargeability tends to be insufficient particularly in a high-temperature and high-humidity environment, and depending on the device to be mounted, the charging performance may be insufficient and the resolution may be lowered.

(電荷輸送材料(正孔輸送材料))
正孔輸送材料としては、電荷輸送層に正孔を注入する必要上、電荷輸送層の電荷輸送材料とのイオン化ポテンシャルの差異が小さいことが好ましく、具体的には、0.5ev以内が好ましい。特に、本発明において、電荷発生層3は電荷輸送層2上に塗布形成されるので、電荷発生層3の塗布時に、電荷輸送層2の塗布液への溶出の影響を抑えて、電荷発生層3の液状態を安定化させるために、電荷輸送層2に含まれる正孔輸送材料が電荷発生層3にも含まれていることが好ましく、より好ましくは、電荷輸送層2および電荷発生層3で用いる正孔輸送材料として、同じものを使用する。
(Charge transport material (hole transport material))
The hole transport material preferably has a small difference in ionization potential from the charge transport material of the charge transport layer, specifically, within 0.5 ev because it is necessary to inject holes into the charge transport layer. In particular, in the present invention, since the charge generation layer 3 is formed on the charge transport layer 2, the influence of elution of the charge transport layer 2 into the coating solution is suppressed when the charge generation layer 3 is applied. 3, it is preferable that the hole transport material contained in the charge transport layer 2 is also contained in the charge generation layer 3, more preferably the charge transport layer 2 and the charge generation layer 3. The same material is used as the hole transport material used in the above.

(電荷輸送材料(電子輸送材料))
電子輸送材料としては、高移動度の材料であるほど好ましく、ベンゾキノンやスチルベンキノン、ナフトキノン、ジフェノキノン、フェナントレンキノン、アゾキノン等のキノン系材料が好ましい。これらは、電荷輸送層への注入性や結着樹脂との相溶性から、単独で用いる他、2種以上の材料を用いて、析出を抑えつつ、電子輸送材料の含有量を増加させることも好ましい。
(Charge transport material (electron transport material))
The electron transport material is preferably a material having a high mobility, and quinone materials such as benzoquinone, stilbenequinone, naphthoquinone, diphenoquinone, phenanthrenequinone, and azoquinone are preferable. These can be used alone or in combination with a binder resin to increase the content of the electron transporting material while suppressing precipitation, because of its injectability into the charge transporting layer and compatibility with the binder resin. preferable.

(結着樹脂)
電荷発生層用の結着樹脂としては、ビスフェノールA型やビスフェノールZ型、ビスフェノールA型−ビフェニル共重合体などのポリカーボネート系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリフェニレン系樹脂などをそれぞれ単独、あるいは適宜組み合わせで混合して用いることができる。中でも、電荷発生材料の分散安定性、正孔輸送材料および電子輸送材料との相溶性、機械的安定性、化学的安定性、熱的安定性の点から、ポリカーボネート系樹脂が好適である。特には、上記正孔輸送材料と同様に、電荷発生層3の塗布時に電荷輸送層2の塗布液への溶出の影響を抑えて、電荷発生層3の液状態を安定化するために、電荷輸送層2に含まれる結着樹脂が電荷発生層3にも含まれていることが好ましく、より好ましくは、電荷輸送層2および電荷発生層3で用いる結着樹脂として、同じものを使用する。
(Binder resin)
As the binder resin for the charge generation layer, polycarbonate resins such as bisphenol A type, bisphenol Z type, bisphenol A type-biphenyl copolymer, polyester resins, polystyrene resins, polyphenylene resins, etc. may be used alone or It can be used by mixing in an appropriate combination. Among these, polycarbonate resins are preferable from the viewpoint of dispersion stability of the charge generation material, compatibility with the hole transport material and the electron transport material, mechanical stability, chemical stability, and thermal stability. In particular, as in the case of the hole transport material, in order to stabilize the liquid state of the charge generation layer 3 by suppressing the influence of elution into the coating liquid of the charge transport layer 2 when the charge generation layer 3 is applied, It is preferable that the binder resin contained in the transport layer 2 is also contained in the charge generation layer 3, and more preferably, the same resin is used as the binder resin used in the charge transport layer 2 and the charge generation layer 3.

(溶剤)
電荷発生層の溶剤としては、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン等のハロゲン化炭化水素;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジオキソラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類等が挙げられる。このうち、一般的に、沸点が高いものが好ましく、具体的には沸点が60℃以上のもの、特には沸点が80℃以上のものを用いることが好適である。中でも、高感度化のために高量子効率のチタニルフタロシアニンを電荷発生材料に用いた場合には、比重が重く、かつ沸点が80℃以上であるジクロロエタンを、電荷発生層を形成する際に用いる溶媒として用いることが、分散安定性および電荷輸送層の溶出しにくさの点で好適である。
(solvent)
As the solvent for the charge generation layer, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene; ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, dioxane, dioxolane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether; acetone, Examples include ketones such as methyl ethyl ketone and cyclohexanone. Of these, those having a high boiling point are generally preferred. Specifically, those having a boiling point of 60 ° C. or higher, particularly those having a boiling point of 80 ° C. or higher are preferably used. In particular, when titanyl phthalocyanine with high quantum efficiency is used as a charge generation material for high sensitivity, dichloroethane having a heavy specific gravity and a boiling point of 80 ° C. or higher is used as a solvent for forming the charge generation layer. It is preferable to use as the point of dispersion stability and difficulty in elution of the charge transport layer.

(組成)
電荷発生層3における各々の機能材料(電荷発生材料、電子輸送材料および正孔輸送材料)の配分量については、以下のように設定される。まず、本発明においては、電荷発生層3中の電荷発生材料の含有率が、電荷発生層3中の1〜2.5質量%、特には1.3〜2.0質量%であることが好ましい。また、電荷発生層3における機能材料(電荷発生材料、電子輸送材料および正孔輸送材料)の和と結着樹脂との質量比率は、所望の特性を得るために35:65〜65:35の範囲で設定されるが、耐久性を確保しつつ、部材汚染、油脂汚染および皮脂汚染を抑制する観点から、上記質量比率を50以下:50以上として、結着樹脂の量を多くすることが好ましい。
(composition)
The distribution amount of each functional material (charge generation material, electron transport material and hole transport material) in the charge generation layer 3 is set as follows. First, in the present invention, the content of the charge generation material in the charge generation layer 3 is 1 to 2.5 mass%, particularly 1.3 to 2.0 mass% in the charge generation layer 3. preferable. The mass ratio of the sum of the functional materials (charge generation material, electron transport material and hole transport material) and the binder resin in the charge generation layer 3 is 35:65 to 65:35 in order to obtain desired characteristics. Although it is set in a range, it is preferable to increase the amount of the binder resin by setting the mass ratio to 50 or less: 50 or more from the viewpoint of suppressing member contamination, oil contamination and sebum contamination while ensuring durability. .

上記機能材料の質量比率が、電荷発生層3中の65質量%より多く、すなわち、結着樹脂の量が35質量%より少ないと、膜減り量が大きくなって、耐久性が低下する他、ガラス転移点の低下によりクリープ強度が不足して、トナーフィルミングや外部添加材、紙粉のフィルミングが起きやすくなり、さらに、接触部材汚染(クリープ変形)が生じ易くなり、グリス等の油脂による汚染性および皮脂汚染性も悪化する。また、上記機能材料の質量比率が、電荷発生層3中の35質量%より少なく、すなわち、結着樹脂の量が65質量%より多いと、所望の感度特性を得ることが困難となり、実用に適さなくなるおそれがある。   When the mass ratio of the functional material is greater than 65 mass% in the charge generation layer 3, that is, when the amount of the binder resin is less than 35 mass%, the amount of film reduction increases and durability decreases. Decrease in the glass transition point leads to insufficient creep strength, which tends to cause toner filming, external additives, and filming of paper powder, and more likely to cause contact member contamination (creep deformation). Contamination and sebum contamination are also worsened. Further, when the mass ratio of the functional material is less than 35 mass% in the charge generation layer 3, that is, when the amount of the binder resin is more than 65 mass%, it is difficult to obtain desired sensitivity characteristics. May not be suitable.

電子輸送材料と正孔輸送材料との質量比率は、1:5〜5:1の範囲で変えることができるが、本発明においては、電荷発生層3の下層に正孔輸送機能をもつ電荷輸送層2が存在するので、単層型有機感光体における一般的な上記質量比率の範囲である1:5〜2:4の正孔輸送材料リッチの組成とは逆に、5:1〜4:2の範囲が好適となり、特には、4:1〜3:2の範囲が、総合的な特性面でより好ましい。このように、本発明に係る積層型感光体では、下層である電荷輸送層2中に正孔輸送材料を多量に配合できるので、単層型感光体とは異なり、上層である電荷発生層3において、皮脂付着によるクラック発生の一要因である正孔輸送材料の含有量を低く抑えることができる。   The mass ratio of the electron transport material and the hole transport material can be changed in the range of 1: 5 to 5: 1. In the present invention, the charge transport having a hole transport function is provided in the lower layer of the charge generation layer 3. Contrary to the composition of the hole transport material rich of 1: 5 to 2: 4, which is a general range of the above mass ratio in the single layer type organic photoreceptor, 5: 1 to 4: The range of 2 is suitable, and in particular, the range of 4: 1 to 3: 2 is more preferable in terms of overall characteristics. Thus, in the multilayer photoconductor according to the present invention, a large amount of a hole transport material can be blended in the charge transport layer 2 which is the lower layer, so that the charge generation layer 3 which is the upper layer is different from the single layer photoconductor. , The content of the hole transporting material, which is one factor in the generation of cracks due to sebum adhesion, can be kept low.

(その他の添加剤)
本発明において、上記電荷発生層および電荷輸送層中には、所望に応じ、耐環境性や有害な光に対する安定性を向上させる目的で、酸化防止剤や光安定剤などの劣化防止剤を含有させることができる。このような目的に用いられる化合物としては、トコフェロールなどのクロマノール誘導体およびエステル化化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、エーテル化化合物、ジエーテル化化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられる。
(Other additives)
In the present invention, the charge generation layer and the charge transport layer contain, as desired, a deterioration inhibitor such as an antioxidant or a light stabilizer for the purpose of improving environmental resistance and stability against harmful light. Can be made. Compounds used for this purpose include chromanol derivatives such as tocopherol and esterified compounds, polyarylalkane compounds, hydroquinone derivatives, etherified compounds, dietherified compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives. Phosphonic acid ester, phosphorous acid ester, phenol compound, hindered phenol compound, linear amine compound, cyclic amine compound, hindered amine compound and the like.

また、上記電荷発生層および電荷輸送層中には、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイル等のレベリング剤を含有させることもできる。さらに、膜硬度の調整や、摩擦係数の低減、潤滑性の付与等を目的として、酸化ケイ素(シリカ)、酸化チタン、酸化亜鉛、酸化カルシウム、酸化アルミニウム(アルミナ)、酸化ジルコニウム等の金属酸化物、硫酸バリウム、硫酸カルシウム等の金属硫酸塩、窒化ケイ素、窒化アルミニウム等の金属窒化物の微粒子、または、4フッ化エチレン樹脂等のフッ素系樹脂粒子、フッ素系クシ型グラフト重合樹脂等を含有してもよい。さらにまた、必要に応じて、電子写真特性を著しく損なわない範囲で、その他公知の添加剤を含有させることもできる。   In addition, the charge generation layer and the charge transport layer may contain a leveling agent such as silicone oil or fluorine-based oil for the purpose of improving the leveling property of the formed film and imparting lubricity. Furthermore, metal oxides such as silicon oxide (silica), titanium oxide, zinc oxide, calcium oxide, aluminum oxide (alumina), zirconium oxide, etc. for the purpose of adjusting film hardness, reducing friction coefficient, and imparting lubricity Contains metal sulfate such as barium sulfate and calcium sulfate, fine particles of metal nitride such as silicon nitride and aluminum nitride, fluorine resin particles such as tetrafluoroethylene resin, fluorine comb-type graft polymerization resin, etc. May be. Furthermore, if necessary, other known additives can be contained as long as the electrophotographic characteristics are not significantly impaired.

(膜厚)
電荷発生層3の膜厚は、電荷輸送層2との兼ね合いで決められるが、実用上有効な性能を確保する観点より、3μm〜40μmの範囲が好適であり、好ましくは5μm〜30μmであり、より好ましくは10μm〜20μmである。
(Film thickness)
The film thickness of the charge generation layer 3 is determined in view of the balance with the charge transport layer 2, but from the viewpoint of ensuring practically effective performance, a range of 3 μm to 40 μm is preferable, preferably 5 μm to 30 μm. More preferably, it is 10 micrometers-20 micrometers.

本発明の感光体は、導電性支持体1上に、常法に従い、電荷輸送層2および電荷発生層3を、浸漬塗布法により順次形成した後、形成された電荷輸送層2および電荷発生層3を、減圧下で乾燥することにより、製造することができる。具体的にはまず、導電性支持体1上に、常法に従い、電荷輸送層2を浸漬塗布法により形成し、熱風乾燥等により乾燥する。次に、形成された電荷輸送層2上に、常法に従い、電荷発生層3を浸漬塗布法により形成し、熱風乾燥等により乾燥する。これら各層の形成後における熱風乾燥は、各層に含まれる機能材料の性能を損なわないために、通常、90〜120℃の範囲で行う。次に、形成された電荷輸送層2および電荷発生層3を、さらに、減圧下で乾燥することにより、電荷輸送層2および電荷発生層3中に残留する溶媒の量を効果的に低減して、感光体としての電気特性を損なうことなく、かつ、生産性よく、耐汚染性に優れた本発明の感光体を得ることが可能となる。   In the photoreceptor of the present invention, the charge transport layer 2 and the charge generation layer 3 are sequentially formed on the conductive support 1 by a dip coating method according to a conventional method, and then the charge transport layer 2 and the charge generation layer formed. 3 can be produced by drying under reduced pressure. Specifically, first, according to a conventional method, the charge transport layer 2 is formed on the conductive support 1 by a dip coating method and dried by hot air drying or the like. Next, the charge generation layer 3 is formed on the formed charge transport layer 2 by a dip coating method according to a conventional method, and dried by hot air drying or the like. In order not to impair the performance of the functional material contained in each layer, the hot air drying after the formation of each layer is usually performed in the range of 90 to 120 ° C. Next, the formed charge transport layer 2 and charge generation layer 3 are further dried under reduced pressure to effectively reduce the amount of the solvent remaining in the charge transport layer 2 and the charge generation layer 3. In addition, it is possible to obtain the photoconductor of the present invention having good productivity and excellent stain resistance without impairing the electrical characteristics of the photoconductor.

ここで、本発明における減圧乾燥は、例えば、500Pa以下、特には100Pa以下の真空度において、温度80〜100℃程度の熱風にて、30〜60分間の条件で行うことができる。減圧が不十分であるか、温度が低すぎるか、あるいは時間が短かすぎると、残留溶媒量が十分に低減せず、耐汚染性の点で不十分となるおそれがある。また、温度が高すぎるか時間が長すぎると、感光体としての電気特性を損なうおそれがある。   Here, the reduced-pressure drying in the present invention can be performed under conditions of 30 to 60 minutes with hot air at a temperature of about 80 to 100 ° C. in a vacuum degree of 500 Pa or less, particularly 100 Pa or less, for example. If the pressure reduction is insufficient, the temperature is too low, or the time is too short, the amount of residual solvent is not sufficiently reduced, and there is a possibility that the contamination resistance is insufficient. Also, if the temperature is too high or the time is too long, the electrical characteristics of the photoreceptor may be impaired.

なお、上記減圧乾燥により、電荷輸送層2および電荷発生層3中に含まれる水分含有量も減少するので、本発明においては、上記減圧乾燥後に、感光体を所定の時間、所定の高温高湿条件下に置くことが好ましい。これにより、電荷輸送層2および電荷発生層3中の水分含有率を、上記好適範囲内に調整することができる。   In addition, since the moisture content contained in the charge transport layer 2 and the charge generation layer 3 is reduced by the reduced pressure drying, in the present invention, after the reduced pressure drying, the photosensitive member is kept at a predetermined high temperature and high humidity for a predetermined time. It is preferable to place under conditions. Thereby, the moisture content in the charge transport layer 2 and the charge generation layer 3 can be adjusted within the preferred range.

(電子写真装置)
本発明の電子写真用感光体は、各種マシンプロセスに適用することにより所期の効果が得られるものである。具体的には、スポンジローラや、ブラシ等を用いた紙粉除去プロセスを備える方式および備えない方式、並びに、非磁性一成分、磁性一成分、二成分などの現像方式を用いた接触現像および非接触現像方式などの現像プロセスにおいても十分な効果を得ることができる。
(Electrophotographic equipment)
The electrophotographic photoreceptor of the present invention can achieve the desired effects when applied to various machine processes. Specifically, systems with and without a paper dust removal process using sponge rollers, brushes, etc., and contact development and non-development using development systems such as non-magnetic one component, magnetic one component, and two components. A sufficient effect can be obtained even in a development process such as a contact development system.

一例として、図5に、本発明の電子写真装置の一構成例を示す概略構成図を示す。本発明の電子写真装置60は、導電性支持体1と、その外周面上に被覆された下引き層4および感光層300とを含む、本発明の電子写真用感光体7を搭載する。さらに、この電子写真装置60は、感光体7の外周縁部に配置された、帯電器(スコロトロン)21と、このスコロトロン21に印加電圧を供給する高圧電源22と、像露光部材23と、現像ローラ241を備えた現像器24と、給紙ローラ251および給紙ガイド252を備えた給紙部材25と、転写極(転写ローラ)26と、紙粉除去部材(紙粉除去スポンジローラ)27とから構成される。また、本発明の電子写真装置60は、カラープリンタとすることができる。   As an example, FIG. 5 shows a schematic configuration diagram showing a configuration example of the electrophotographic apparatus of the present invention. The electrophotographic apparatus 60 of the present invention mounts the electrophotographic photoreceptor 7 of the present invention including the conductive support 1, the undercoat layer 4 and the photosensitive layer 300 coated on the outer peripheral surface thereof. Further, the electrophotographic apparatus 60 includes a charger (scorotron) 21, a high-voltage power source 22 that supplies an applied voltage to the scorotron 21, an image exposure member 23, and a developer, which are disposed on the outer peripheral edge of the photoreceptor 7. A developing device 24 having a roller 241, a paper feeding member 25 having a paper feeding roller 251 and a paper feeding guide 252, a transfer pole (transfer roller) 26, a paper dust removing member (paper dust removing sponge roller) 27, Consists of The electrophotographic apparatus 60 of the present invention can be a color printer.

以下、本発明の具体的態様を、実施例を用いてさらに詳細に説明する。本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。   Hereinafter, specific embodiments of the present invention will be described in more detail using examples. The present invention is not limited by the following examples unless it exceeds the gist.

<電子写真感光体の作製実施例>
<実施例1>
導電性支持体としては、φ30mm×長さ244.5mm形状の、表面粗さ(Rmax)0.2μmに切削加工されたアルミニウム製の0.75mm肉厚管を用いた。
<Example of production of electrophotographic photoreceptor>
<Example 1>
As the conductive support, an aluminum 0.75 mm thick tube cut to a surface roughness (Rmax) of 0.2 μm and having a shape of φ30 mm × length 244.5 mm was used.

(電荷輸送層塗布液の作製)
正孔輸送材料としての、下記構造式1に示すスチリル化合物(CTM−A)と、結着樹脂としての、下記構造式2に示す繰り返し単位からなるポリカーボネート樹脂(TS2050,帝人化成(株)製)(CTB−A)とを、それぞれ100質量部として、溶剤としてのテトラヒドロフランに溶解し、電荷輸送層塗布液を作製した。

Figure 2015212837
Figure 2015212837
(Preparation of charge transport layer coating solution)
Polycarbonate resin composed of a styryl compound (CTM-A) represented by the following structural formula 1 as a hole transport material and a repeating unit represented by the following structural formula 2 as a binder resin (TS2050, manufactured by Teijin Chemicals Ltd.) (CTB-A) was dissolved in tetrahydrofuran as a solvent in an amount of 100 parts by mass to prepare a charge transport layer coating solution.
Figure 2015212837
Figure 2015212837

(電荷発生層塗布液の作製)
結着樹脂としての電荷輸送層で用いたと同様のポリカーボネート樹脂(CTB−A)100質量部に対し、電荷発生材料としての下記構造式3に示すY型チタニルフタロシアニン3質量部と、正孔輸送材料としての電荷輸送層で用いたと同様の化合物(CTM−A)11質量部と、電子輸送材料としての下記構造式4に示す化合物(ETM−A)44質量部とを、1,2−ジクロロエタンに混合し、ダイノーミル(シンマルエンタープライズ社のMULTILAB)で分散して、電荷発生層塗布液を得た。

Figure 2015212837
Figure 2015212837
(Preparation of charge generation layer coating solution)
For 100 parts by mass of the same polycarbonate resin (CTB-A) used in the charge transport layer as the binder resin, 3 parts by mass of Y-type titanyl phthalocyanine represented by the following structural formula 3 as a charge generation material, and a hole transport material 11 parts by mass of the same compound (CTM-A) as used in the charge transporting layer and 44 parts by mass of the compound (ETM-A) shown in the following structural formula 4 as an electron transporting material are added to 1,2-dichloroethane. The mixture was mixed and dispersed by a dyno mill (MULTILAB of Shinmaru Enterprise Co., Ltd.) to obtain a charge generation layer coating solution.
Figure 2015212837
Figure 2015212837

(感光体の作製)
上記導電性支持体上に、上記で調製した電荷輸送層塗布液を浸漬塗工法により塗工した後、乾燥炉で110℃1時間にて乾燥し、乾燥後の膜厚15μmの電荷輸送層を形成した。次に、形成された電荷輸送層上に、上記で調製した電荷発生層塗布液を浸漬塗工法により塗工した後、115℃1時間にて乾燥し、乾燥後の膜厚15μmの電荷発生層を形成して、感光体を得た。
(Production of photoconductor)
On the conductive support, the charge transport layer coating solution prepared above is applied by a dip coating method, and then dried in a drying furnace at 110 ° C. for 1 hour, and the dried charge transport layer having a thickness of 15 μm is formed. Formed. Next, the charge generation layer coating solution prepared above is applied on the formed charge transport layer by a dip coating method, then dried at 115 ° C. for 1 hour, and the charge generation layer having a thickness of 15 μm after drying. To form a photoreceptor.

得られた感光体については、以下のような条件で、膜中の残留溶媒量をガスクロマトグラフ分析にて、また、膜中の水分含有率をカールフィッシャー分析にて、それぞれ測定した。その結果、電荷発生層および電荷輸送層に含まれる残留溶媒の合計量は24μg/cm、水分含有率は0.10%であった。なお、測定方法は以下において同様である。 With respect to the obtained photoreceptor, the amount of residual solvent in the film was measured by gas chromatograph analysis and the water content in the film was measured by Karl Fischer analysis under the following conditions. As a result, the total amount of residual solvent contained in the charge generation layer and the charge transport layer was 24 μg / cm 2 and the water content was 0.10%. The measurement method is the same in the following.

(残留溶媒量測定)
i)熱脱着
熱脱着装置:日本分析工業(株)製 Curie−point pyrolyzer (HS−100A),
トラップ温度:150℃/20min加熱→−50℃コールドトラップ,
ii)ガスクロマトグラフ分析(GC−MS)測定
GC−MS測定装置:(株)島津製作所製 GC−MS QP5000,
注入口温度:280℃,
スプリット:1/10,
カラム:J&W製 キャピラリカラム DB−5(微極性)φ0.25×30m,
カラム温度:40℃(3分保持)→280℃(10℃/分)→280℃で3分保持(測定時間30分),
キャリアガス:ヘリウム 1mL/分
(Residual solvent amount measurement)
i) Thermal desorption thermal desorption apparatus: Curie-point pyrolyzer (HS-100A) manufactured by Nippon Analytical Industries, Ltd.
Trap temperature: 150 ° C / 20min heating → -50 ° C cold trap,
ii) Gas chromatographic analysis (GC-MS) measurement GC-MS measuring apparatus: GC-MS QP5000 manufactured by Shimadzu Corporation
Inlet temperature: 280 ° C,
Split: 1/10,
Column: J & W manufactured capillary column DB-5 (slight polarity) φ0.25 × 30 m,
Column temperature: 40 ° C. (3 minutes hold) → 280 ° C. (10 ° C./min)→3 minutes hold at 280 ° C. (measurement time 30 minutes),
Carrier gas: Helium 1mL / min

(水分含有率測定)
カールフィッシャー(KF)水分測定装置:三菱化学製 KF−100,
適定モード:容量滴定法,
KF試薬:アクアミクロンSS(三菱化学(株)),
脱水溶剤:アクアミクロンPE(三菱化学(株)),
試料調整:OPCドラム切出し片を50ccスクリュー管に入れ、約35gのジクロロメタン(DCM)中に溶解し、KF分析試料とする。
算出方法:分析試料中の水分量測定値からDCM中水分および感光膜剥離素管中水分をバックグラウンドとして差し引き、下記式に基づき膜中水分量を算出する。膜重量はDCM溶解分である。
「膜中の水分含有率算出式」:
(OPCドラム溶液水分量×OPCドラム重量−素管溶液水分量×素管重量−DCM水分量×DCM量)/膜重量
(Moisture content measurement)
Karl Fischer (KF) moisture measuring device: KF-100, manufactured by Mitsubishi Chemical
Fixed mode: volumetric titration method,
KF reagent: Aquamicron SS (Mitsubishi Chemical Corporation),
Dehydrated solvent: Aquamicron PE (Mitsubishi Chemical Corporation),
Sample preparation: An OPC drum cut piece is placed in a 50 cc screw tube and dissolved in about 35 g of dichloromethane (DCM) to obtain a KF analysis sample.
Calculation method: The moisture content in the film and the moisture content in the photosensitive film peeling element tube are subtracted as background from the measured moisture content value in the analysis sample, and the moisture content in the film is calculated based on the following formula. The membrane weight is DCM dissolved.
“Calculation formula of moisture content in membrane”:
(OPC drum solution moisture content × OPC drum weight−element tube solution moisture amount × element tube weight−DCM moisture amount × DCM amount) / membrane weight

<実施例2>
電荷発生層塗布後の乾燥条件を100℃1時間とした以外は実施例1と同様にして電荷発生層までを形成し、その後、真空乾燥炉内で、圧力200Pa、100℃30分にて乾燥を行って、実施例2の感光体を得た。この感光体において、電荷発生層および電荷輸送層に含まれる残留溶媒の合計量は25μg/cm、膜中水分率は0.05%であった。
<Example 2>
The charge generation layer is formed in the same manner as in Example 1 except that the drying condition after application of the charge generation layer is 100 ° C. for 1 hour, and then dried at a pressure of 200 Pa and 100 ° C. for 30 minutes in a vacuum drying furnace. The photoreceptor of Example 2 was obtained. In this photoreceptor, the total amount of residual solvent contained in the charge generation layer and the charge transport layer was 25 μg / cm 2 and the moisture content in the film was 0.05%.

<実施例3>
実施例2の感光体を、さらに60℃90%RHの高温高湿環境下で4時間放置して、実施例3の感光体を得た。この感光体において、電荷発生層および電荷輸送層に含まれる残留溶媒の合計量は実施例2と同一であり、膜中水分率は0.33%であった。
<Example 3>
The photoreceptor of Example 2 was further allowed to stand for 4 hours in a high-temperature and high-humidity environment at 60 ° C. and 90% RH to obtain the photoreceptor of Example 3. In this photoreceptor, the total amount of residual solvent contained in the charge generation layer and the charge transport layer was the same as in Example 2, and the moisture content in the film was 0.33%.

<実施例4>
実施例2の感光体を、さらに70℃90%RHの高温高湿の環境下で24時間放置して、実施例4の感光体を得た。この感光体において、電荷発生層および電荷輸送層に含まれる残留溶媒の合計量は実施例2と同一であり、膜中水分率は1.45%であった。
<Example 4>
The photoreceptor of Example 2 was further allowed to stand for 24 hours in a high-temperature and high-humidity environment at 70 ° C. and 90% RH to obtain a photoreceptor of Example 4. In this photoreceptor, the total amount of residual solvent contained in the charge generation layer and the charge transport layer was the same as in Example 2, and the moisture content in the film was 1.45%.

<実施例5>
真空乾燥炉内での乾燥条件を変えることにより、残留溶媒の合計量を15μg/cmに調整した以外は実施例3と同様にして、感光体を作製した。膜中水分率は0.42%であった。
<Example 5>
A photoconductor was produced in the same manner as in Example 3 except that the total amount of residual solvent was adjusted to 15 μg / cm 2 by changing the drying conditions in the vacuum drying furnace. The moisture content in the film was 0.42%.

<実施例6>
真空乾燥炉内での乾燥条件を変えることにより、残留溶媒の合計量を5μg/cmに調整した以外は実施例3と同様にして、感光体を作製した。膜中水分率は0.56%であった。
<Example 6>
A photoconductor was produced in the same manner as in Example 3 except that the total amount of residual solvent was adjusted to 5 μg / cm 2 by changing the drying conditions in the vacuum drying furnace. The moisture content in the film was 0.56%.

<実施例7>
電荷発生層中の電子輸送材料と正孔輸送材料との比を3:1(41.25質量部:13.75質量部)とした以外は実施例1と同様にして、感光体を作製した。
<Example 7>
A photoconductor was prepared in the same manner as in Example 1 except that the ratio of the electron transport material to the hole transport material in the charge generation layer was 3: 1 (41.25 parts by mass: 13.75 parts by mass). .

<実施例8>
電荷発生層中の電子輸送材料と正孔輸送材料との比を2:3(22質量部:33質量部)とした以外は実施例1と同様にして、感光体を作製した。
<Example 8>
A photoconductor was prepared in the same manner as in Example 1 except that the ratio of the electron transport material to the hole transport material in the charge generation layer was 2: 3 (22 parts by mass: 33 parts by mass).

<実施例9>
電荷発生層および電荷輸送層の正孔輸送材料として、化合物(CTM−A)に代えて、下記構造式5に示す化合物(CTM−B)を用いた以外は実施例1と同様にして、感光体を作製した。

Figure 2015212837
<Example 9>
In the same manner as in Example 1, except that the compound (CTM-B) represented by the following structural formula 5 was used in place of the compound (CTM-A) as the hole transport material for the charge generation layer and the charge transport layer. The body was made.
Figure 2015212837

<実施例10>
電荷発生層および電荷輸送層の正孔輸送材料として、化合物(CTM−A)に代えて、上記構造式5に示す化合物(CTM−B)を用いた以外は実施例8と同様にして、感光体を作製した。
<Example 10>
In the same manner as in Example 8, except that the compound (CTM-B) represented by the above structural formula 5 was used in place of the compound (CTM-A) as the hole transport material for the charge generation layer and the charge transport layer. The body was made.

<実施例11>
電荷発生層および電荷輸送層の正孔輸送材料として、化合物(CTM−A)に代えて、下記構造式6に示す化合物(CTM−C)を用いた以外は実施例1と同様にして、感光体を作製した。

Figure 2015212837
<Example 11>
In the same manner as in Example 1 except that the compound (CTM-C) represented by the following structural formula 6 was used in place of the compound (CTM-A) as the hole transport material for the charge generation layer and the charge transport layer. The body was made.
Figure 2015212837

<実施例12>
電荷発生層および電荷輸送層の正孔輸送材料として、化合物(CTM−A)に代えて、上記構造式6に示す化合物(CTM−C)を用いた以外は実施例8と同様にして、感光体を作製した。
<Example 12>
In the same manner as in Example 8, except that the compound (CTM-C) represented by the above structural formula 6 was used in place of the compound (CTM-A) as the hole transport material for the charge generation layer and the charge transport layer. The body was made.

<実施例13>
電荷発生層および電荷輸送層の正孔輸送材料として、化合物(CTM−A)のうちの10質量%を下記構造式7に示す化合物(CTM−D)で置き換えた以外は実施例1と同様にして、感光体を作製した。

Figure 2015212837
<Example 13>
Except that 10% by mass of the compound (CTM-A) was replaced with the compound (CTM-D) represented by the following structural formula 7 as the hole transport material for the charge generation layer and the charge transport layer, the same as in Example 1. Thus, a photoreceptor was produced.
Figure 2015212837

<実施例14>
電荷発生層および電荷輸送層の正孔輸送材料として、化合物(CTM−A)のうちの10質量%を上記構造式7に示す化合物(CTM−D)で置き換えた以外は実施例8と同様にして、感光体を作製した。
<Example 14>
As in Example 8, except that 10% by mass of the compound (CTM-A) was replaced with the compound (CTM-D) shown in the structural formula 7 as a hole transport material for the charge generation layer and the charge transport layer. Thus, a photoreceptor was produced.

<実施例15>
電荷発生層の電子輸送材料として、化合物(ETM−A)に代えて、下記構造式8に示す化合物(ETM−B)を用いた以外は実施例1と同様にして、感光体を作製した。

Figure 2015212837
<Example 15>
A photoconductor was prepared in the same manner as in Example 1 except that instead of the compound (ETM-A), the compound (ETM-B) represented by the following structural formula 8 was used as the electron transport material for the charge generation layer.
Figure 2015212837

<実施例16>
電荷発生層の電子輸送材料として、化合物(ETM−A)に代えて、上記構造式8に示す化合物(ETM−B)を用いた以外は実施例8と同様にして、感光体を作製した。
<Example 16>
A photoconductor was prepared in the same manner as in Example 8 except that instead of the compound (ETM-A), the compound (ETM-B) represented by the structural formula 8 was used as the electron transport material for the charge generation layer.

<実施例17>
電荷発生層および電荷輸送層の結着樹脂として、ポリカーボネート樹脂(CTB−A)に代えて、下記構造式9に示す繰り返し単位からなるポリカーボネート樹脂(CTB−B)を用いた以外は実施例1と同様にして、感光体を作製した。

Figure 2015212837
<Example 17>
Example 1 except that a polycarbonate resin (CTB-B) composed of a repeating unit represented by the following structural formula 9 was used instead of the polycarbonate resin (CTB-A) as a binder resin for the charge generation layer and the charge transport layer. Similarly, a photoreceptor was produced.
Figure 2015212837

<実施例18>
電荷発生層および電荷輸送層の結着樹脂として、ポリカーボネート樹脂(CTB−A)に代えて、上記構造式9に示す繰り返し単位からなるポリカーボネート樹脂(CTB−B)を用いた以外は実施例8と同様にして、感光体を作製した。
<Example 18>
Example 8 except that the polycarbonate resin (CTB-B) composed of the repeating unit shown in the structural formula 9 was used as the binder resin for the charge generation layer and the charge transport layer instead of the polycarbonate resin (CTB-A). Similarly, a photoreceptor was produced.

<実施例19>
電荷発生層および電荷輸送層の結着樹脂として、ポリカーボネート樹脂(CTB−A)に代えて、下記構造式10に示す繰り返し単位からなるポリカーボネート樹脂(CTB−C)を用いた以外は実施例1と同様にして、感光体を作製した。

Figure 2015212837
<Example 19>
Example 1 except that a polycarbonate resin (CTB-C) composed of repeating units represented by the following structural formula 10 was used as the binder resin for the charge generation layer and the charge transport layer instead of the polycarbonate resin (CTB-A). Similarly, a photoreceptor was produced.
Figure 2015212837

<実施例20>
電荷発生層および電荷輸送層の結着樹脂として、ポリカーボネート樹脂(CTB−A)に代えて、上記構造式10に示す繰り返し単位からなるポリカーボネート樹脂(CTB−C)を用いた以外は実施例8と同様にして、感光体を作製した。
<Example 20>
Example 8 was used except that the polycarbonate resin (CTB-C) composed of the repeating unit represented by the structural formula 10 was used as the binder resin for the charge generation layer and the charge transport layer instead of the polycarbonate resin (CTB-A). Similarly, a photoreceptor was produced.

<実施例21>
実施例2の感光体を、さらに70℃90%RHの高温高湿の環境下で48時間放置して、実施例21の感光体を得た。この感光体において、電荷発生層および電荷輸送層に含まれる残留溶媒の合計量は実施例2と同一であり、膜中水分率は1.61%であった。
<Example 21>
The photoreceptor of Example 2 was further allowed to stand for 48 hours in a high-temperature and high-humidity environment at 70 ° C. and 90% RH to obtain the photoreceptor of Example 21. In this photoreceptor, the total amount of residual solvent contained in the charge generation layer and the charge transport layer was the same as in Example 2, and the moisture content in the film was 1.61%.

<実施例22>
真空乾燥炉内での乾燥を85℃で40分行ったことにより、残留溶媒の合計量を38μg/cmとした以外は実施例2と同様にして、感光体を作製した。
<Example 22>
A photoconductor was produced in the same manner as in Example 2 except that drying in a vacuum drying furnace was performed at 85 ° C. for 40 minutes, so that the total amount of residual solvent was 38 μg / cm 2 .

<実施例23>
真空乾燥炉内での乾燥を85℃で30分行ったことにより、残留溶媒の合計量を45μg/cmとした以外は実施例2と同様にして、感光体を作製した。
<Example 23>
A photoconductor was produced in the same manner as in Example 2 except that drying in a vacuum drying oven was performed at 85 ° C. for 30 minutes, so that the total amount of residual solvent was 45 μg / cm 2 .

<比較例1>
真空乾燥炉内での乾燥を85℃で20分行ったことにより、残留溶媒の合計量を55μg/cmとした以外は実施例2と同様にして、感光体を作製した。
<Comparative Example 1>
By performing drying in a vacuum drying furnace at 85 ° C. for 20 minutes, a photoconductor was produced in the same manner as in Example 2 except that the total amount of residual solvent was changed to 55 μg / cm 2 .

(感光体評価)
感光体の性能は、下記(1)〜(4)の各項目につき、◎、○、△および×の4段階にて評価した。それぞれ、◎は非常に良好なレベル、○は良好なレベル、△は実使用上は問題ないレベル、×は使用不可レベルである。得られた結果を下記表中に示す。
(Photoreceptor evaluation)
The performance of the photoconductor was evaluated in each of the following items (1) to (4) in four stages of ◎, ○, Δ, and ×. In each case, ◎ is a very good level, ◯ is a good level, Δ is a level that does not cause a problem in actual use, and × is an unusable level. The obtained results are shown in the following table.

(1)実機耐久性
ブラザー工業(株)製の市販のモノクロレーザープリンタHL−6050にて、低温低湿(10℃20%RH)、常温常湿(24℃45%RH)および高温高湿(35℃90%RH)環境下で、30000枚までの耐久試験を行い、印字濃度(面画濃度)、解像性(白抜き細線再現性および孤立ドット再現性)、カブリ、画像メモリー(中間調画像でのゴースト画像)およびフィルミングによる点欠陥発生のレベルを評価した。
(1) Durability of actual machine Using a commercially available monochrome laser printer HL-6050 manufactured by Brother Industries, Ltd., low temperature and low humidity (10 ° C., 20% RH), normal temperature and normal humidity (24 ° C., 45% RH), and high temperature and high humidity (35 Endurance test up to 30000 sheets under an environment of 90 ° C), print density (surface density), resolution (reproducibility of white lines and isolated dots), fog, image memory (halftone image) Ghost images) and the level of point defects due to filming.

(2)部材汚染性
上記装置のドラムカートリッジに感光体およびトナーカートリッジを装着した状態で、50℃90%RHの環境下に5日間放置して、感光体表面の変化の有無を確認した。
(2) Contamination of the member With the photosensitive drum and toner cartridge mounted on the drum cartridge of the above apparatus, it was left in an environment of 50 ° C. and 90% RH for 5 days to check whether the surface of the photosensitive drum had changed.

(3)耐油脂性
上記装置で用いられるグリスを感光体表面に付着させて、5日間放置した後の感光体表面の変化の有無を調査した。
(3) Oil and grease resistance The grease used in the above apparatus was adhered to the surface of the photoconductor, and the presence or absence of a change in the surface of the photoconductor after being allowed to stand for 5 days was investigated.

(4)皮脂汚染性
人間由来の皮脂を感光体表面に付着させて、10日間放置した後の付着部分のクラック発生の有無を調査した。
(4) Sebum Contamination Property Human-derived sebum was adhered to the surface of the photoconductor, and the presence or absence of cracks in the adhered portion after leaving for 10 days was investigated.

Figure 2015212837
Figure 2015212837

上記表中の結果より、残留溶媒量を低減した各実施例の感光体においては、皮脂の付着によるクラックの発生がなく、耐汚染性が向上しており、さらに、膜中水分率を所定の範囲内とすることで、安定した高画像品質についても確保できることが確かめられた。これに対し、残留溶媒量の多い比較例の感光体では、皮脂に対する耐汚染性が不足し、感光体表面にクラックが発生してしまった。   From the results in the above table, in the photoconductors of each Example in which the amount of residual solvent was reduced, there was no occurrence of cracks due to the adhesion of sebum, the contamination resistance was improved, and the moisture content in the film was set to a predetermined value. It was confirmed that stable high image quality can be secured by setting the value within the range. On the other hand, in the photoconductor of the comparative example having a large amount of residual solvent, the contamination resistance against sebum was insufficient and cracks occurred on the surface of the photoconductor.

以上の結果、本発明によれば、高解像度かつ高速の正帯電方式の電子写真装置に適用され、動作安定性に優れるとともに、画像メモリーや、接触部材または油脂若しくは皮脂による汚染で生ずるクラックに起因する画像欠陥の発生がなく、安定して高画像品質が得られる、高感度でかつ高耐久な電子写真用感光体、その製造方法およびそれを用いた電子写真装置を得ることができる。   As a result of the above, according to the present invention, it is applied to a high-resolution and high-speed positively chargeable electrophotographic apparatus, and has excellent operational stability, and is caused by cracks caused by contamination due to image memory, contact members, oils or sebum. Thus, there can be obtained a highly sensitive and highly durable electrophotographic photoreceptor, a method for producing the same, and an electrophotographic apparatus using the same, in which no image defects are generated and high image quality can be stably obtained.

1 導電性支持体
2 電荷輸送層
3 電荷発生層
4 下引き層
7 電子写真用感光体
21 帯電器(スコロトロン)
22 高圧電源
241 現像ローラ
24 現像器
251 給紙ローラ
252 給紙ガイド
25 給紙部材
26 転写極(転写ローラ)
27 紙粉除去部材(スポンジローラ)
60 電子写真装置
300 感光層
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Charge transport layer 3 Charge generation layer 4 Undercoat layer 7 Electrophotographic photoreceptor 21 Charger (Scorotron)
22 High-voltage power supply 241 Developing roller 24 Developing device 251 Paper feeding roller 252 Paper feeding guide 25 Paper feeding member 26 Transfer pole (transfer roller)
27 Paper dust removing member (sponge roller)
60 Electrophotographic apparatus 300 Photosensitive layer

Claims (9)

導電性支持体上に、少なくとも正孔輸送材料および結着樹脂を含む電荷輸送層と、少なくとも電荷発生材料、正孔輸送材料、電子輸送材料および結着樹脂を含む電荷発生層とが順次積層されてなる積層型正帯電の電子写真用感光体において、
前記電荷発生層および前記電荷輸送層に含まれる残留溶媒の合計量が、50μg/cm以下であり、該電荷発生層における電子輸送材料と正孔輸送材料との質量比率が5:1〜4:2の範囲であり、該電荷輸送層の膜厚が3μm〜40μmの範囲であり、該電荷発生層の膜厚が3μm〜40μmの範囲であって、かつ、前記電荷発生層および前記電荷輸送層全体の水分含有率が、0.05質量%〜1.5質量%の範囲であることを特徴とする電子写真用感光体。
A charge transport layer including at least a hole transport material and a binder resin, and a charge generation layer including at least a charge generation material, a hole transport material, an electron transport material and a binder resin are sequentially stacked on the conductive support. In the laminated positively charged electrophotographic photoreceptor,
The total amount of residual solvent contained in the charge generation layer and the charge transport layer is 50 μg / cm 2 or less, and the mass ratio of the electron transport material to the hole transport material in the charge generation layer is 5: 1 to 4 2 in the range, the film thickness of the charge transport layer is in the range of 3 μm to 40 μm, the film thickness of the charge generation layer is in the range of 3 μm to 40 μm, and the charge generation layer and the charge transport layer An electrophotographic photoreceptor, wherein the moisture content of the entire layer is in the range of 0.05% by mass to 1.5% by mass.
前記電荷発生層および前記電荷輸送層に含まれる残留溶媒の合計量が、5μg/cm以上50μg/cm以下である請求項1記載の電子写真用感光体。 The electrophotographic photoreceptor according to claim 1, wherein the total amount of residual solvent contained in the charge generation layer and the charge transport layer is 5 μg / cm 2 or more and 50 μg / cm 2 or less. 前記電荷発生材料がチタニルフタロシアニンを含み、該電荷発生材料の含有率が、前記電荷発生層中の1〜2.5質量%であり、かつ、前記電荷発生層を形成する際に用いる溶媒がジクロロエタンである請求項1記載の電子写真用感光体。   The charge generation material contains titanyl phthalocyanine, the content of the charge generation material is 1 to 2.5% by mass in the charge generation layer, and the solvent used for forming the charge generation layer is dichloroethane The photoconductor for electrophotography according to claim 1. 前記電荷輸送層に含まれる結着樹脂が、ポリカーボネート系樹脂であり、かつ、該電荷輸送層における正孔輸送材料と結着樹脂との質量比率が、25:75〜75:25である請求項1記載の電子写真用感光体。   The binder resin contained in the charge transport layer is a polycarbonate-based resin, and a mass ratio of the hole transport material and the binder resin in the charge transport layer is 25:75 to 75:25. The electrophotographic photoreceptor according to 1. 請求項1記載の電子写真用感光体を製造するにあたり、
前記導電性支持体上に、前記電荷輸送層および前記電荷発生層を、浸漬塗布法により順次形成した後、形成された該電荷輸送層および該電荷発生層を、減圧下で乾燥することを特徴とする電子写真用感光体の製造方法。
In producing the electrophotographic photoreceptor according to claim 1,
The charge transport layer and the charge generation layer are sequentially formed on the conductive support by a dip coating method, and the formed charge transport layer and the charge generation layer are dried under reduced pressure. A method for producing an electrophotographic photoreceptor.
前記電荷発生層の浸漬塗布に用いる溶剤が、沸点が60℃以上のハロゲン化炭化水素である請求項5記載の電子写真用感光体の製造方法。   The method for producing an electrophotographic photoreceptor according to claim 5, wherein the solvent used for the dip coating of the charge generation layer is a halogenated hydrocarbon having a boiling point of 60 ° C. or higher. 前記電荷輸送層を浸漬塗布法により形成した後、該電荷輸送層を90〜120℃の範囲で熱風乾燥するとともに、前記電荷発生層を浸漬塗布法により形成した後、形成された該電荷輸送層および該電荷発生層を減圧下で乾燥するに先立って、該電荷発生層を90〜120℃の範囲で熱風乾燥する請求項6記載の電子写真用感光体の製造方法。   After the charge transport layer is formed by a dip coating method, the charge transport layer is dried with hot air in a range of 90 to 120 ° C., and the charge generation layer is formed by a dip coating method. The method for producing an electrophotographic photoreceptor according to claim 6, wherein the charge generation layer is dried with hot air in the range of 90 to 120 ° C. prior to drying the charge generation layer under reduced pressure. 前記電荷輸送層および前記電荷発生層の減圧下での乾燥を、500Pa以下の真空度で、80〜100℃および30〜60分間の条件で行う請求項7記載の電子写真用感光体の製造方法。   The method for producing an electrophotographic photoreceptor according to claim 7, wherein the charge transport layer and the charge generation layer are dried under reduced pressure at a vacuum degree of 500 Pa or less under conditions of 80 to 100 ° C. and 30 to 60 minutes. . 請求項1記載の電子写真用感光体を搭載したことを特徴とする電子写真装置。   An electrophotographic apparatus comprising the electrophotographic photosensitive member according to claim 1.
JP2015141536A 2015-07-15 2015-07-15 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same Active JP6020679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141536A JP6020679B2 (en) 2015-07-15 2015-07-15 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141536A JP6020679B2 (en) 2015-07-15 2015-07-15 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013527755A Division JP5782125B2 (en) 2011-08-05 2011-08-05 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same

Publications (2)

Publication Number Publication Date
JP2015212837A true JP2015212837A (en) 2015-11-26
JP6020679B2 JP6020679B2 (en) 2016-11-02

Family

ID=54697078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141536A Active JP6020679B2 (en) 2015-07-15 2015-07-15 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same

Country Status (1)

Country Link
JP (1) JP6020679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154740A1 (en) * 2017-02-24 2018-08-30 富士電機株式会社 Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device using same
CN111108443A (en) * 2018-01-19 2020-05-05 富士电机株式会社 Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, and electrophotographic apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023231A (en) * 1973-06-04 1975-03-12
JPH03233885A (en) * 1989-11-28 1991-10-17 Mita Ind Co Ltd Heat treating unit and drying method for functional thin film using it
JP2002296820A (en) * 2001-03-30 2002-10-09 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2002311606A (en) * 2001-04-13 2002-10-23 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2007188003A (en) * 2006-01-16 2007-07-26 Sharp Corp Method for manufacturing electrophotographic photoreceptor
JP2008224734A (en) * 2007-03-08 2008-09-25 Kyocera Mita Corp Electrophotographic photoreceptor and image forming apparatus
WO2011093410A1 (en) * 2010-01-29 2011-08-04 富士電機システムズ株式会社 Photosensitive body for xerography, manufacturing method for same, and xerographic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023231A (en) * 1973-06-04 1975-03-12
JPH03233885A (en) * 1989-11-28 1991-10-17 Mita Ind Co Ltd Heat treating unit and drying method for functional thin film using it
JP2002296820A (en) * 2001-03-30 2002-10-09 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2002311606A (en) * 2001-04-13 2002-10-23 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2007188003A (en) * 2006-01-16 2007-07-26 Sharp Corp Method for manufacturing electrophotographic photoreceptor
JP2008224734A (en) * 2007-03-08 2008-09-25 Kyocera Mita Corp Electrophotographic photoreceptor and image forming apparatus
WO2011093410A1 (en) * 2010-01-29 2011-08-04 富士電機システムズ株式会社 Photosensitive body for xerography, manufacturing method for same, and xerographic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154740A1 (en) * 2017-02-24 2018-08-30 富士電機株式会社 Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device using same
JPWO2018154740A1 (en) * 2017-02-24 2019-03-07 富士電機株式会社 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same
US10416579B2 (en) 2017-02-24 2019-09-17 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same
CN111108443A (en) * 2018-01-19 2020-05-05 富士电机株式会社 Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, and electrophotographic apparatus
CN111108443B (en) * 2018-01-19 2024-01-02 富士电机株式会社 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus

Also Published As

Publication number Publication date
JP6020679B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5782125B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same
JP7180717B2 (en) Electrophotographic photoreceptor, manufacturing method thereof, and electrophotographic apparatus
JP6583563B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same
JP6020679B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus using the same
KR20170058846A (en) Electrophotographic photoreceptor, electrophotographic apparatus comprising the same, and package of electrophotographic photoreceptor
WO2015008322A1 (en) Photosensitive body for electrophotography, method for manufacturing same, and electrophotography device
JP6838666B2 (en) Photoreceptor for electrophotographic, its manufacturing method and electrophotographic equipment
CN110392865B (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
US10429752B2 (en) Electrophotographic photoconductor, manufacturing method thereof, and electrophotographic apparatus using the same
US20240176257A1 (en) Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic apparatus
US11073771B2 (en) Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic device including the same
CN111025864B (en) Electrophotographic photoreceptor and electrophotographic device equipped with the same
JP3950559B2 (en) Electrophotographic equipment
WO2015008323A1 (en) Photosensitive body for electrophotography, method for manufacturing same, and electrophotography device
JP2002174919A (en) Contact electrification monolayer positive chargeable organic photoreceptor, manufacture of the same and image forming member
JP2007114649A (en) Organic photoreceptor, image forming method, image forming apparatus and process cartridge
JP2002214808A (en) Image forming device and monolayer positive electrifying type organic photoreceptor set in the same
JP2006234925A (en) Organic photoreceptor, and image forming method and apparatus
JP2007010961A (en) Organophotoreceptor, image forming method and apparatus, and process cartridge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6020679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250