JP2006234925A - Organic photoreceptor, and image forming method and apparatus - Google Patents

Organic photoreceptor, and image forming method and apparatus Download PDF

Info

Publication number
JP2006234925A
JP2006234925A JP2005045758A JP2005045758A JP2006234925A JP 2006234925 A JP2006234925 A JP 2006234925A JP 2005045758 A JP2005045758 A JP 2005045758A JP 2005045758 A JP2005045758 A JP 2005045758A JP 2006234925 A JP2006234925 A JP 2006234925A
Authority
JP
Japan
Prior art keywords
charge
organic photoreceptor
charge transport
image
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005045758A
Other languages
Japanese (ja)
Inventor
Koichi Kudo
浩一 工藤
Kunihiro Ogura
都宏 小倉
Hiroko Yamaguchi
裕子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2005045758A priority Critical patent/JP2006234925A/en
Publication of JP2006234925A publication Critical patent/JP2006234925A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic photoreceptor with which an electrophotographic image can be produced at a high speed of ≥400 mm per second and to provide an organic photoreceptor having stable potential characteristics of a high potential by using a non-halogen solvent, and to provide an image forming method and image forming apparatus using the organic photoreceptor. <P>SOLUTION: The organic photoreceptor is used for the image forming method of applying a uniform electrostatic charge in an electrostatic charging process onto the organic photoreceptor at a process speed of ≥400 mm per second, forming the electrostatic latent image in an image exposure process, and visualizing the electrostatic latent image to the toner image under conditions of an unexposed part potential (¾VH¾) of 600 to 1,000 V in a developing process. The organic photoreceptor has a charge generating layer and a plurality of charge transfer layers on a conductive support and the charge transfer layer adjacent to the charge generating layer contains a plurality of charge transfer substances of <0.05 eV in the difference of an ionization potential and the charge transfer layer is formed by using the non-halogen solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子写真方式の複写機やプリンターに適用できる有機感光体、画像形成方法及び画像形成装置に関するものであり、秒速400mm以上の高速で電子写真画像を作製できる有機感光体、画像形成方法及び画像形成装置に関する発明である。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic photoreceptor, an image forming method and an image forming apparatus that can be applied to an electrophotographic copying machine and printer, and an organic photoreceptor and an image forming method capable of producing an electrophotographic image at a high speed of 400 mm / second or more. And an image forming apparatus.

従来、電子写真法として最も代表的なカールソン法での複写機においては、感光体を一様に帯電させた後、露光によって電荷を像様に消去せしめ、静電荷潜像を形成する。この静電荷潜像をトナーによって現像して可視化し、次いでそのトナーを紙などに転写してから定着することにより画像形成が行われてきた。   2. Description of the Related Art Conventionally, in a copying machine using the Carlson method, which is the most typical electrophotographic method, after a photoreceptor is uniformly charged, charges are erased imagewise by exposure to form an electrostatic charge latent image. This electrostatic charge latent image is developed and visualized with toner, and then the toner is transferred to paper or the like and then fixed to form an image.

これまで電子写真感光体としては、セレン、酸化亜鉛、カドミウムなどの無機光導電性物質を感光層の主成分とする無機感光体が、広く使用されてきた。しかし、これらの無機感光体は有害なものが多く、環境対策上問題がある。   Conventionally, as an electrophotographic photoreceptor, an inorganic photoreceptor having an inorganic photoconductive substance such as selenium, zinc oxide, cadmium or the like as a main component of a photosensitive layer has been widely used. However, these inorganic photoreceptors are often harmful and have problems in terms of environmental measures.

従って近年、無公害である有機物を用いた有機感光体の開発が盛んであり、広く実用化されてきている。なかでも電荷発生機能と電荷輸送機能とを異なる物質に分担させ、所望の特性を有する化合物を広い範囲から選択できる機能分離型の感光体が盛んに開発されている。   Therefore, in recent years, organic photoreceptors using non-polluting organic substances have been actively developed and widely used. In particular, a function-separated type photoconductor, in which a charge generation function and a charge transport function are assigned to different substances and a compound having desired characteristics can be selected from a wide range, has been actively developed.

又、近年、電子写真方式を用いた画像形成方法は、デジタル信号処理による書き込みで、高速化が進展し、カット紙を用いた複写機やプリンターでは秒速100枚以上の印刷速度を持つ複写機やプリンターが開発されている。   In recent years, the image forming method using the electrophotographic method has been accelerated by writing by digital signal processing, and a copying machine or printer using a cut sheet has a printing speed of 100 sheets per second or more. A printer has been developed.

しかしながら、このような複写機やプリンターに適用する有機感光体は、例えば100万枚を印刷可能な電子写真特性、即ち、帯電安定性や感度の安定性が求められ、しかも高速の現像に対応するため、現像時に高電位での電位安定性が求められる。   However, an organic photoreceptor applied to such a copying machine or printer is required to have, for example, electrophotographic characteristics capable of printing 1 million sheets, that is, charging stability and stability of sensitivity, and is compatible with high-speed development. Therefore, potential stability at a high potential is required during development.

このような高電位で、安定した電位特性を達成するため、有機感光体の表面層を耐久性の高いバインダー樹脂や硬化型シリコン樹脂等で形成する技術が公開されている(特許文献1及び特許文献2)。   In order to achieve stable potential characteristics at such a high potential, a technique for forming a surface layer of an organic photoreceptor with a highly durable binder resin, curable silicon resin, or the like has been disclosed (Patent Document 1 and Patent). Reference 2).

一方、有機感光体の製造には、バインダー樹脂の溶解性が高いハロゲン溶剤が一般に広く用いられているが、これらハロゲン溶剤は、近年の環境問題への観点から非ハロゲン溶媒に変更されることが望ましい。   On the other hand, halogen solvents with high binder resin solubility are generally widely used in the production of organic photoreceptors. These halogen solvents may be changed to non-halogen solvents from the viewpoint of environmental problems in recent years. desirable.

しかしながら、前記した耐久性の高いバインダー樹脂や硬化型シリコン樹脂等を非ハロゲン溶媒を用いて溶解し、電荷輸送層等の感光層を形成すると、上記した電位安定性が劣化するといった問題が発生している。即ち、ハロゲン溶媒から非ハロゲン溶媒に変更して有機感光体を作製すると、繰り返し使用による残留電位が上昇し、徐々に画像濃度が低下するといった問題や、高温高湿環境下で、同様に残留電位が上昇しやすいと云った問題が発生している。
特開昭60−172044号公報 特開2000−221723号公報
However, if the above-mentioned highly durable binder resin, curable silicone resin, or the like is dissolved using a non-halogen solvent to form a photosensitive layer such as a charge transport layer, the above-described potential stability deteriorates. ing. That is, when an organophotoreceptor is produced by changing from a halogen solvent to a non-halogen solvent, the residual potential increases due to repeated use and the image density gradually decreases. There is a problem that is likely to rise.
Japanese Patent Application Laid-Open No. 60-172044 JP 2000-221723 A

本発明の目的は、秒速400mm以上の高速で電子写真画像を作製できる有機感光体を提供することであり、高速で、且つ100万枚の印刷が可能な有機感光体を提供することであり、又、非ハロゲン溶剤を用いて、高電位の電位特性が安定した有機感光体を提供することであり、該有機感光体を用いた画像形成方法及び画像形成装置を提供することである。   An object of the present invention is to provide an organic photoreceptor capable of producing an electrophotographic image at a high speed of 400 mm or more per second, and to provide an organic photoreceptor capable of printing 1 million sheets at a high speed, Another object of the present invention is to provide an organic photoreceptor having a stable high potential characteristic using a non-halogen solvent, and to provide an image forming method and an image forming apparatus using the organic photoreceptor.

本発明者等は、上記課題について、詳細に検討した結果、非ハロゲン溶剤を用いて、高速で印刷を可能にする、高電位の電位特性が安定した有機感光体を得るためには、有機感光体の内部に残留する溶媒やバインダー樹脂の凝集等に起因して発生する電荷のトラップサイトを無効化することが有効であると考え、電荷輸送層を上下二層で構成し、下層の電荷輸送層は、電荷移動度が速い電荷輸送物質と共に、電荷の注入或いは受け渡しを円滑化する電荷輸送物質を併用して、トラップサイトへの電荷の捕捉を防止し、上層の電荷輸送層は、表面層の機能を持たせるため、電荷輸送物質の濃度を下層の電荷輸送層よりも低くすることにより、高速のプロセススピードで、安定した電位特性を維持できることを見出し、本発明を完成した。即ち、本発明の上記目的は、以下の構成を用いることにより達成される。
(請求項1)
プロセススピードが400mm/sec以上で、有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程での未露光電位(|VH|)が600V〜1000Vの条件で、静電潜像をトナー像に顕像化する画像形成方法に用いる有機感光体おいて、導電性支持体上に電荷発生層及び複数の電荷輸送層を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有し、該電荷輸送層が非ハロゲン溶媒を用いて形成されたことを特徴とする有機感光体。
(請求項2)
前記電荷輸送層が酸化防止剤を含有することを特徴とする請求項1に記載の有機感光体。
(請求項3)
前記有機感光体の電荷移動度(電界強度:3.2×105V/cmにおける)が5.0×10-6cm2/V・sec以上であることを特徴とする請求項1又は2に記載の有機感光体。
(請求項4)
前記電荷発生層が電荷発生物質としてオキシチタニルフタロシアニン顔料を含有することを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。
(請求項5)
前記電荷発生層が電荷発生物質としてペリレン顔料を含有することを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。
(請求項6)
プロセススピードが400mm/sec以上で、有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程での未露光電位(|VH|)が600V〜1000Vの条件で、静電潜像をトナー像に顕像化する画像形成方法において、該有機感光体が導電性支持体上に電荷発生層及び複数の電荷輸送層を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有し、該電荷輸送層が非ハロゲン溶媒を用いて形成されたことを特徴とする画像形成方法。
(請求項7)
プロセススピードが400mm/sec以上であり、有機感光体及び該有機感光体上に均一帯電を付与する帯電器、有機感光体上に静電潜像を形成する像露光器、有機感光体上の未露光電位(|VH|)が600V〜1000Vの条件で、静電潜像をトナー像に顕像化する現像器を有する画像形成装置において、該有機感光体が導電性支持体上に電荷発生層及び複数の電荷輸送層を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有し、該電荷輸送層が非ハロゲン溶媒を用いて形成されたことを特徴とする画像形成装置。
As a result of examining the above problems in detail, the present inventors have found that in order to obtain an organic photoreceptor having a high potential potential stable and capable of printing at high speed using a non-halogen solvent, Considering that it is effective to invalidate the trap site of the charge generated due to the aggregation of the solvent remaining in the body and the binder resin, etc., the charge transport layer is composed of upper and lower two layers, the lower layer charge transport The layer is used in combination with a charge transport material having a high charge mobility and a charge transport material that facilitates charge injection or delivery to prevent trapping of charges at the trap site. Thus, the present inventors have found that stable potential characteristics can be maintained at a high process speed by making the concentration of the charge transport material lower than that of the lower charge transport layer. That is, the above object of the present invention is achieved by using the following configuration.
(Claim 1)
The process speed is 400 mm / sec or more, a uniform charge is imparted to the organic photoreceptor in the charging process, an electrostatic latent image is formed in the image exposure process, and the unexposed potential (| VH |) in the development process is 600 V to An organic photoreceptor used in an image forming method for developing an electrostatic latent image into a toner image under a condition of 1000 V, comprising a charge generation layer and a plurality of charge transport layers on a conductive support, An organic photoreceptor, wherein the charge transport layer adjacent to the substrate contains a plurality of charge transport materials having an ionization potential difference of less than 0.5 eV, and the charge transport layer is formed using a non-halogen solvent.
(Claim 2)
The organophotoreceptor according to claim 1, wherein the charge transport layer contains an antioxidant.
(Claim 3)
3. The charge mobility (electric field strength: at 3.2 × 10 5 V / cm) of the organic photoreceptor is 5.0 × 10 −6 cm 2 / V · sec or more. The organic photoreceptor described in 1.
(Claim 4)
The organophotoreceptor according to claim 1, wherein the charge generation layer contains an oxytitanyl phthalocyanine pigment as a charge generation substance.
(Claim 5)
The organophotoreceptor according to claim 1, wherein the charge generation layer contains a perylene pigment as a charge generation substance.
(Claim 6)
The process speed is 400 mm / sec or more, a uniform charge is imparted to the organic photoreceptor in the charging process, an electrostatic latent image is formed in the image exposure process, and the unexposed potential (| VH |) in the development process is 600 V to In an image forming method in which an electrostatic latent image is visualized as a toner image under a condition of 1000 V, the organic photoreceptor has a charge generation layer and a plurality of charge transport layers on a conductive support, and the charge generation layer includes An image forming method, wherein adjacent charge transport layers contain a plurality of charge transport materials having a difference in ionization potential of less than 0.5 eV, and the charge transport layers are formed using a non-halogen solvent.
(Claim 7)
The process speed is 400 mm / sec or more, an organic photoreceptor, a charger for applying uniform charge on the organic photoreceptor, an image exposure unit for forming an electrostatic latent image on the organic photoreceptor, and an unexposed on the organic photoreceptor. In an image forming apparatus having a developing unit that visualizes an electrostatic latent image into a toner image under an exposure potential (| VH |) of 600 V to 1000 V, the organic photoreceptor is a charge generation layer on a conductive support. And the charge transport layer adjacent to the charge generation layer contains a plurality of charge transport materials having a difference in ionization potential of less than 0.5 eV, the charge transport layer using a non-halogen solvent. An image forming apparatus formed.

本発明の有機感光体を用いることにより、非ハロゲン溶媒で有機感光体を作製しても、プロセススピードが400mm/sec以上の高速複写機に十分適応できる電位特性を示す有機感光体を提供でき、画像濃度が十分で鮮鋭性が良好な電子写真画像を提供することができ、且つ該有機感光体を用いた画像形成方法及び画像形成装置を提供することができる。   By using the organophotoreceptor of the present invention, it is possible to provide an organophotoreceptor exhibiting potential characteristics that can be sufficiently adapted to a high-speed copying machine having a process speed of 400 mm / sec or more even when the organophotoreceptor is produced with a non-halogen solvent. An electrophotographic image with sufficient image density and good sharpness can be provided, and an image forming method and an image forming apparatus using the organic photoreceptor can be provided.

本発明の有機感光体は、プロセススピードが400mm/sec以上で、有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程での未露光電位(|VH|)が600V〜1000Vの条件で、静電潜像をトナー像に顕像化する画像形成方法に用いる有機感光体であり、導電性支持体上に電荷発生層及び複数の電荷輸送層を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有し、該電荷輸送層が非ハロゲン溶媒を用いて形成されたことを特徴とする。   The organic photoreceptor of the present invention has a process speed of 400 mm / sec or more, imparts uniform charge to the organic photoreceptor in the charging step, forms an electrostatic latent image in the image exposure step, and unexposed potential in the development step. An organic photoreceptor for use in an image forming method for developing an electrostatic latent image into a toner image under a condition of (| VH |) of 600V to 1000V, a charge generation layer and a plurality of charge transport layers on a conductive support. The charge transport layer adjacent to the charge generation layer contains a plurality of charge transport materials having an ionization potential difference of less than 0.5 eV, and the charge transport layer is formed using a non-halogen solvent. Features.

有機感光体が上記のような構成を有することにより、プロセススピードが400mm/sec以上で、有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程での未露光電位(|VH|)が600V〜1000Vの条件で、静電潜像をトナー像に顕像化する画像形成方法に用いたとき、多数枚のプリントやコピーを行なっても、残留電位の上昇が小さく、且つ安定した電位特性を示し、画像濃度や鮮鋭性の初期画像特性が、100万枚のプリントやコピー後も、安定して達成される。   Since the organic photoreceptor has the above-described configuration, the process speed is 400 mm / sec or more, a uniform charge is imparted on the organic photoreceptor in the charging step, an electrostatic latent image is formed in the image exposure step, and development is performed. When used in an image forming method in which an electrostatic latent image is visualized as a toner image under a condition where the unexposed potential (| VH |) in the process is 600V to 1000V, The increase in residual potential is small and stable potential characteristics are exhibited, and the initial image characteristics such as image density and sharpness are stably achieved even after printing and copying 1 million sheets.

以下、本発明の有機感光体の構成を記載する。   Hereinafter, the constitution of the organic photoreceptor of the present invention will be described.

本発明において、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能のいずれか一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。   In the present invention, the organic photoconductor means an electrophotographic photoconductor configured to have an organic compound having either a charge generation function or a charge transport function essential for the configuration of the electrophotographic photoconductor, It contains all known organic electrophotographic photoreceptors such as a photoreceptor composed of a known organic charge generating material or organic charge transport material, a photoreceptor composed of a polymer complex with a charge generating function and a charge transport function.

本発明の有機感光体の層構成は、導電性支持体上に電荷発生層及び電荷輸送層を有し、該電荷輸送層は複数層から形成されることが好ましい。又、導電性支持体と電荷発生層の間には、該支持体からのフリーキャリアの進入をブロックできる中間層を設置することが好ましい。以下、本発明の有機感光体の好ましい構成を示す。   The layer structure of the organic photoreceptor of the present invention preferably has a charge generation layer and a charge transport layer on a conductive support, and the charge transport layer is preferably formed of a plurality of layers. Moreover, it is preferable to provide an intermediate layer between the conductive support and the charge generation layer, which can block the entry of free carriers from the support. Hereinafter, preferred configurations of the organic photoreceptor of the present invention are shown.

導電性支持体
本発明の感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
Conductive Support The conductive support used in the photoreceptor of the present invention may be either a sheet or a cylinder, but in order to design an image forming apparatus in a compact manner, a cylindrical conductive support is used. Is preferred.

円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真円度及び振れの範囲を超えると、良好な画像形成が困難になる。   Cylindrical conductive support means a cylindrical support necessary for forming an endless image by rotating. Conductivity is within a range of 0.1 mm or less in straightness and 0.1 mm or less in deflection. A support is preferred. Exceeding the roundness and shake range makes it difficult to form a good image.

導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。 As the conductive material, a metal drum such as aluminum or nickel, a plastic drum deposited with aluminum, tin oxide, indium oxide or the like, or a paper / plastic drum coated with a conductive substance can be used. The conductive support preferably has a specific resistance of 10 3 Ωcm or less at room temperature.

本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。アルマイト処理は、通常例えばクロム酸、硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸性浴中で行われるが、硫酸中での陽極酸化処理が最も好ましい結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜200g/L、アルミニウムイオン濃度は1〜10g/L、液温は20℃前後、印加電圧は約20Vで行うのが好ましいが、これに限定されるものではない。又、陽極酸化被膜の平均膜厚は、通常20μm以下、特に10μm以下が好ましい。   As the conductive support used in the present invention, one having an alumite film that has been sealed on the surface thereof may be used. The alumite treatment is usually performed in an acidic bath such as chromic acid, sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid, etc., but anodizing treatment in sulfuric acid gives the most preferable result. In the case of anodizing treatment in sulfuric acid, the sulfuric acid concentration is preferably 100 to 200 g / L, the aluminum ion concentration is 1 to 10 g / L, the liquid temperature is about 20 ° C., and the applied voltage is preferably about 20 V. It is not limited. The average film thickness of the anodized film is usually 20 μm or less, particularly preferably 10 μm or less.

中間層
本発明においては導電性支持体と感光層の間に、支持体からのフリーキャリアの進入をブロックできる中間層を設置することが好ましい。
Intermediate Layer In the present invention, it is preferable to provide an intermediate layer that can block the entry of free carriers from the support between the conductive support and the photosensitive layer.

本発明においては導電性支持体と前記感光層のとの接着性改良、或いは該支持体からの電荷注入を防止するために、該支持体と前記感光層の間に中間層(下引層も含む)を設けることもできる。該中間層の材料としては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂並びに、これらの樹脂の繰り返し単位のうちの2つ以上を含む共重合体樹脂が挙げられる。これら下引き樹脂の中で繰り返し使用に伴う残留電位増加を小さくできる樹脂としてはポリアミド樹脂が好ましい。又、これら樹脂を用いた中間層の膜厚は0.01〜0.5μmが好ましい。   In the present invention, in order to improve the adhesion between the conductive support and the photosensitive layer, or to prevent charge injection from the support, an intermediate layer (including an undercoat layer) is provided between the support and the photosensitive layer. Including) can also be provided. Examples of the material for the intermediate layer include polyamide resins, vinyl chloride resins, vinyl acetate resins, and copolymer resins containing two or more of these resin repeating units. Of these subbing resins, a polyamide resin is preferable as a resin capable of reducing the increase in residual potential due to repeated use. The film thickness of the intermediate layer using these resins is preferably 0.01 to 0.5 μm.

又、本発明に好ましく用いられる中間層はシランカップリング剤、チタンカップリング剤等の有機金属化合物を熱硬化させた硬化性金属樹脂を用いた中間層が挙げられる。硬化性金属樹脂を用いた中間層の膜厚は、0.1〜2μmが好ましい。   Examples of the intermediate layer preferably used in the present invention include an intermediate layer using a curable metal resin obtained by thermosetting an organic metal compound such as a silane coupling agent or a titanium coupling agent. As for the film thickness of the intermediate | middle layer using curable metal resin, 0.1-2 micrometers is preferable.

又、本発明に好ましく用いられる中間層は無機粒子をバインダー樹脂中に分散した中間層が挙げられる。無機粒子の平均粒径は0.01〜1μmが好ましい。特に、表面処理をしたN型半導性微粒子をバインダー中に分散した中間層が好ましい。例えばシリカ・アルミナ処理及びシラン化合物で表面処理した平均粒径が0.01〜1μmの酸化チタンをポリアミド樹脂中に分散した中間層が挙げられる。このような中間層の膜厚は、1〜20μmが好ましい。   An intermediate layer preferably used in the present invention includes an intermediate layer in which inorganic particles are dispersed in a binder resin. The average particle diameter of the inorganic particles is preferably 0.01 to 1 μm. In particular, an intermediate layer in which N-type semiconductive fine particles subjected to surface treatment are dispersed in a binder is preferable. For example, an intermediate layer in which titanium oxide having an average particle size of 0.01 to 1 μm, which has been surface-treated with silica / alumina treatment and a silane compound, is dispersed in a polyamide resin. The film thickness of such an intermediate layer is preferably 1 to 20 μm.

N型半導性微粒子とは、導電性キャリアを電子とする性質をもつ微粒子を示す。すなわち、導電性キャリアを電子とする性質とは、該N型半導性微粒子を絶縁性バインダーに含有させることにより、基体からのホール注入を効率的にブロックし、また、感光層からの電子に対してはブロッキング性を示さない性質を有するものをいう。   The N-type semiconducting fine particles are fine particles having the property of using conductive carriers as electrons. That is, the property that the conductive carrier is an electron is that the N-type semiconducting fine particles are contained in an insulating binder to effectively block hole injection from the substrate, and to convert electrons from the photosensitive layer into electrons. On the other hand, it has the property which does not show blocking property.

前記N型半導性微粒子は、具体的には酸化チタン(TiO2)、酸化亜鉛(ZnO)、等の微粒子が挙げられるが、本発明では、特に酸化チタンが好ましく用いられる。 Specific examples of the N-type semiconductive fine particles include fine particles such as titanium oxide (TiO 2 ) and zinc oxide (ZnO). In the present invention, titanium oxide is particularly preferably used.

本発明に用いられるN型半導性微粒子の平均粒径は、数平均一次粒径において10nm以上500nm以下の範囲のものが好ましく、より好ましくは10nm〜200nm、特に好ましくは、15nm〜50nmである。   The average particle diameter of the N-type semiconducting fine particles used in the present invention is preferably in the range of 10 nm to 500 nm in the number average primary particle diameter, more preferably 10 nm to 200 nm, and particularly preferably 15 nm to 50 nm. .

数平均一次粒径の値が前記範囲内にあるN型半導性微粒子を用いた中間層は層内での分散を緻密なものとすることができ、十分な電位安定性、及び黒ポチ発生防止機能を有する。   The intermediate layer using N-type semiconducting fine particles whose number average primary particle size is within the above range can be finely dispersed in the layer, has sufficient potential stability, and generates black spots. Has a prevention function.

前記N型半導性微粒子の数平均一次粒径は、例えば酸化チタンの場合、透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によりフェレ径の数平均径として測定される。   For example, in the case of titanium oxide, the number-average primary particle size of the N-type semiconducting fine particles is magnified 10,000 times by observation with a transmission electron microscope, and 100 particles are randomly observed as primary particles. It is measured as the number average diameter.

本発明に用いられるN型半導性微粒子の形状は、樹枝状、針状および粒状等の形状があり、このような形状のN型半導性微粒子は、例えば酸化チタン粒子では、結晶型としては、アナターゼ型、ルチル型及びアモルファス型等があるが、いずれの結晶型のものを用いてもよく、また2種以上の結晶型を混合して用いてもよい。その中でもルチル型のものが最も良い。   The shape of the N-type semiconducting fine particles used in the present invention includes dendritic, needle-like, and granular shapes. For example, in the case of titanium oxide particles, the N-type semiconductive fine particles have a crystalline form. There are anatase type, rutile type and amorphous type, but any crystal type may be used, or two or more crystal types may be mixed and used. Of these, the rutile type is the best.

N型半導性微粒子に行われる疎水化表面処理の1つは、複数回の表面処理を行い、かつ該複数回の表面処理の中で、最後の表面処理が反応性有機ケイ素化合物による表面処理を行うものである。また、該複数回の表面処理の中で、少なくとも1回の表面処理がアルミナ、シリカ、及びジルコニアから選ばれる少なくとも1種類以上の表面処理であり、最後に反応性有機ケイ素化合物の表面処理を行うことが好ましい。   One of the hydrophobizing surface treatments performed on the N-type semiconducting fine particles is a plurality of surface treatments, and the last surface treatment is a surface treatment with a reactive organosilicon compound. Is to do. In addition, at least one of the surface treatments is at least one surface treatment selected from alumina, silica, and zirconia, and finally the surface treatment of the reactive organosilicon compound is performed. It is preferable.

尚、アルミナ処理、シリカ処理、ジルコニア処理とはN型半導性微粒子表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。又、反応性有機ケイ素化合物の表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。   Alumina treatment, silica treatment, and zirconia treatment are treatments for depositing alumina, silica, or zirconia on the surface of the N-type semiconducting fine particles. Alumina, silica, and zirconia deposited on these surfaces include alumina, silica, Zirconia hydrates are also included. The surface treatment of the reactive organosilicon compound means using a reactive organosilicon compound in the treatment liquid.

この様に、酸化チタン粒子の様なN型半導性微粒子の表面処理を少なくとも2回以上行うことにより、N型半導性微粒子表面が均一に表面被覆(処理)され、該表面処理されたN型半導性微粒子を中間層に用いると、中間層内における酸化チタン粒子等のN型半導性微粒子の分散性が良好で、かつ黒ポチ等の画像欠陥を発生させない良好な感光体を得ることができるのである。   In this way, the surface treatment of the N-type semiconductive fine particles such as titanium oxide particles was performed at least twice, so that the surface of the N-type semiconductive fine particles was uniformly coated (treated), and the surface treatment was performed. When N-type semiconducting fine particles are used in the intermediate layer, a good photoconductor having good dispersibility of N-type semiconductive fine particles such as titanium oxide particles in the intermediate layer and causing no image defects such as black spots. You can get it.

感光層
本発明の感光体の感光層構成は導電性支持体上に電荷発生層(CGL)及び複数の電荷輸送層(CTL)を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有し、該電荷輸送層が非ハロゲン溶媒を用いて形成される。
Photosensitive layer The photosensitive layer structure of the photoconductor of the present invention has a charge generation layer (CGL) and a plurality of charge transport layers (CTL) on a conductive support, and the charge transport layer adjacent to the charge generation layer has an ionization potential. A plurality of charge transport materials having a difference of less than 0.5 eV are contained, and the charge transport layer is formed using a non-halogen solvent.

以下、本発明の最も好ましい感光層構成について記載する。   Hereinafter, the most preferred photosensitive layer structure of the present invention will be described.

電荷発生層
電荷発生層:電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
Charge generation layer Charge generation layer: The charge generation layer contains a charge generation material (CGM). Other substances may contain a binder resin and other additives as necessary.

電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる立体、電位構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu−Kα線に対するブラッグ角2θが27.2°に最大ピークを有するチタニルフタロシアニン、同2θが12.4に最大ピークを有するベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。   A known charge generation material (CGM) can be used as the charge generation material (CGM). For example, a phthalocyanine pigment, an azo pigment, a perylene pigment, an azulenium pigment, or the like can be used. Among these, the CGM that can minimize the increase in residual potential due to repeated use has a three-dimensional and potential structure that can form a stable aggregate structure among a plurality of molecules. Specifically, a phthalocyanine having a specific crystal structure. CGM of pigments and perylene pigments. For example, CGMs such as titanyl phthalocyanine having a maximum peak at a Bragg angle 2θ of 27.2 ° with respect to Cu—Kα rays and benzimidazole perylene having a maximum peak at 2θ of 12.4 have little deterioration due to repeated use. Potential increase can be reduced.

電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01μm〜2μmが好ましい。   When a binder is used as the CGM dispersion medium in the charge generation layer, a known resin can be used as the binder, but the most preferred resins include formal resin, butyral resin, silicone resin, silicone-modified butyral resin, phenoxy resin, and the like. Can be mentioned. The ratio of the binder resin to the charge generating material is preferably 20 to 600 parts by mass with respect to 100 parts by mass of the binder resin. By using these resins, the increase in residual potential associated with repeated use can be minimized. The thickness of the charge generation layer is preferably 0.01 μm to 2 μm.

電荷輸送層
本発明に係わる電荷輸送層は、複数の電荷輸送層を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有し、該電荷輸送層が非ハロゲン溶媒を用いて形成される。
Charge transport layer The charge transport layer according to the present invention has a plurality of charge transport layers, the charge transport layer adjacent to the charge generation layer contains a plurality of charge transport materials having a difference in ionization potential of less than 0.5 eV, The charge transport layer is formed using a non-halogen solvent.

電荷輸送物質(CTM)としては公知の電荷輸送物質(CTM)を用いることができる。例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを用いることができる。   A known charge transport material (CTM) can be used as the charge transport material (CTM). For example, a triphenylamine derivative, a hydrazone compound, a styryl compound, a benzidine compound, a butadiene compound, or the like can be used.

上記電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質について記載する。該複数の電荷輸送物質の少なくとも1つは、有機感光体の電荷移動度を高くできる電荷移動度が高い電荷輸送物質(高移動度の電荷輸送物質)が好ましい。又、前記イオン化ポテンシャルの差が0.5V未満であるが、好ましくは0.3eV未満である。   A plurality of charge transport materials in which the charge transport layer adjacent to the charge generation layer has an ionization potential difference of less than 0.5 eV will be described. At least one of the plurality of charge transport materials is preferably a charge transport material having high charge mobility (high mobility charge transport material) that can increase the charge mobility of the organic photoreceptor. The difference in ionization potential is less than 0.5V, preferably less than 0.3 eV.

又、上記高移動度の電荷輸送物質と共に用いる電荷輸送物質としては、高移度の電荷輸送物質とのイオン化ポテンシャルの差が0.5V未満であることが好ましく、0.3eV未満がより好ましい。電荷発生層に隣接する電荷輸送層に、高移動度の電荷輸送物質を用い、且つ該高移動度の電荷輸送物質とのイオン化ポテンシャルの差が0.5V未満の電荷輸送物質を併用することにより、400mm/sec以上の高速プロセスにおいても、残留電位の増加が小さく抑えられ、高濃度で且つ鮮鋭性の良好な電子写真画像を作製することができる。   The charge transport material used together with the high mobility charge transport material preferably has a difference in ionization potential from the high mobility charge transport material of less than 0.5 V, more preferably less than 0.3 eV. By using a charge transport material having a high mobility in the charge transport layer adjacent to the charge generation layer and using a charge transport material having an ionization potential difference of less than 0.5 V with respect to the charge transport material having the high mobility. Even in a high-speed process of 400 mm / sec or more, an increase in residual potential can be suppressed to a small level, and an electrophotographic image with high density and good sharpness can be produced.

尚、電荷発生物質や電荷輸送物質のイオン化ポテンシャル(以後、単にIPとも云う)は、表面分析装置AC−1(理研計器社製)で測定できる。   Incidentally, the ionization potential (hereinafter also simply referred to as IP) of the charge generation material and the charge transport material can be measured with a surface analyzer AC-1 (manufactured by Riken Keiki Co., Ltd.).

高移度の電荷輸送物質としては、下記に例示するスチリルトリフェニルアミン系の化合物を用いることが好ましいが、本発明ではこれらの例示化合物に限定されるものではない。   As the high-transport charge transporting material, styryl triphenylamine-based compounds exemplified below are preferably used, but the present invention is not limited to these exemplified compounds.

Figure 2006234925
Figure 2006234925

Figure 2006234925
Figure 2006234925

本発明の有機感光体の電荷移動度(電界強度:3.2×105V/cmにおけるにおける)は、5.0×10-6cm2/V・sec以上であることが好ましい。即ち、有機感光体全体の電荷移動度が5.0×10-6cm2/V・sec以上であることにより、400mm/sec以上の高速プロセスにおいても、残留電位の増加が小さく抑えられ、高濃度で且つ鮮鋭性の良好な電子写真画像を作製することができる。 The charge mobility (at electric field strength: 3.2 × 10 5 V / cm) of the organic photoreceptor of the present invention is preferably 5.0 × 10 −6 cm 2 / V · sec or more. That is, since the charge mobility of the entire organic photoreceptor is 5.0 × 10 −6 cm 2 / V · sec or more, an increase in residual potential is suppressed to a small level even in a high-speed process of 400 mm / sec or more. An electrophotographic image having good density and sharpness can be produced.

上記電荷移動度は、単位電界強度当たりの電荷の移動速度と定義され、該電荷移動度はTOF(タイム・オフ・フライト)法で測定できる。この測定方法は感光層の両面を電極で挟むサンドイッチ構造体で行なわれ、まず、電極間に電圧を印加し、そこに電極を通して、パルス光を試料に照射し、発生した電荷が試料の片面から対抗する面へ移動する課程で、電極間に流れる電流の波形を観察し、波形が鋭く落ち込む点が飛行時間τとなる(該電流波形はオシロスコープで改造し、飛行時間τを求める)。移動度は以下の関係式より求められる。   The charge mobility is defined as the charge transfer rate per unit electric field strength, and the charge mobility can be measured by the TOF (Time Off Flight) method. This measurement method is performed with a sandwich structure in which both sides of the photosensitive layer are sandwiched between electrodes. First, a voltage is applied between the electrodes, and the sample is irradiated with pulsed light through the electrodes, and the generated charges are transferred from one side of the sample. In the process of moving to the opposing surface, the waveform of the current flowing between the electrodes is observed, and the point where the waveform falls sharply becomes the flight time τ (the current waveform is modified with an oscilloscope to obtain the flight time τ). The mobility can be obtained from the following relational expression.

飛行時間τ=(試料膜厚)/(速度)
速度=(移動度)×(電界)
電荷移動度の測定用サンプルは、ポリエチレンフタレートフイルムにアルミ蒸着した導電性支持体上に実施例と同じ、電荷発生層及び複数の電荷輸送層を積層して作製した試料を用いた。測定時の電圧は、電界強度が3.2×105V/cmになるように電圧を印加した後、波長680nmのレーザーダイオードによるパルス光照射を行って電荷発生層から電荷を発生させ、生じた過渡電流波形を高速電流アンプ(keithley428)とデジタルストレージオシロスコープ(ヒューレットパッカード 54111D)を用いて測定した。走行時間(Transit time)の判定には、電流(i)と時刻(t)との関係を対数変換し、得られた波形の折れ曲がり点から求める方法(Scher−Montroll法)を用いた。
Flight time τ = (sample film thickness) / (speed)
Speed = (mobility) x (electric field)
As a sample for measuring the charge mobility, a sample prepared by laminating a charge generation layer and a plurality of charge transport layers similar to those of the example on a conductive support obtained by vapor-depositing aluminum on a polyethylene phthalate film was used. The voltage at the time of measurement is generated by applying a voltage so that the electric field strength is 3.2 × 10 5 V / cm, and then generating a charge from the charge generation layer by irradiating pulsed light with a laser diode having a wavelength of 680 nm. The transient current waveform was measured using a high-speed current amplifier (keithley 428) and a digital storage oscilloscope (Hewlett Packard 54111D). For determination of the transit time, a method (Scher-Control method) in which the relationship between the current (i) and the time (t) is logarithmically converted and obtained from the bending point of the obtained waveform is used.

又、本発明に係わる電荷輸送層には酸化防止剤を含有させることが好ましい。好ましく用いられる酸化防止剤としては、以下のような化合物が挙げられる。   The charge transport layer according to the present invention preferably contains an antioxidant. Examples of the antioxidant preferably used include the following compounds.

Figure 2006234925
Figure 2006234925

Figure 2006234925
Figure 2006234925

Figure 2006234925
Figure 2006234925

Figure 2006234925
Figure 2006234925

本発明に係わる電荷輸送層は上下2層で構成されることが好ましい。電荷輸送層を2層で構成する場合、下層の電荷発生層に隣接する第一電荷輸送層が複数の電荷輸送物質を含有する。又、第一電荷輸送層の電荷輸送物質の含有量はバインダー樹脂100質量部に対し、50〜200質量部と、高濃度で含有させることが好ましい。一方、第二電荷輸送層の電荷輸送物質の含有量は、第一電荷輸送層に比し、低濃度で含有させることが好ましい。該含有量は、バインダー樹脂100質量部に対し、30〜150質量部が好ましい。   The charge transport layer according to the present invention is preferably composed of two upper and lower layers. When the charge transport layer is composed of two layers, the first charge transport layer adjacent to the lower charge generation layer contains a plurality of charge transport materials. The content of the charge transport material in the first charge transport layer is preferably 50 to 200 parts by weight with respect to 100 parts by weight of the binder resin. On the other hand, the content of the charge transport material in the second charge transport layer is preferably lower than that in the first charge transport layer. The content is preferably 30 to 150 parts by mass with respect to 100 parts by mass of the binder resin.

このような2層構成で、電荷輸送層を形成することにより、非ハロゲン溶剤を用いて電荷輸送層を形成した場合の、残留電位上昇や高温高湿での電位変動を改善し、高速適正に優れ、電位特性が安定した有機感光体を構成することができる。   By forming the charge transport layer with such a two-layer structure, when the charge transport layer is formed using a non-halogen solvent, the residual potential rise and potential fluctuation at high temperature and high humidity are improved, and high speed and proper An organic photoreceptor having excellent and stable potential characteristics can be formed.

第一電荷輸送層の膜厚は5〜25μmが好ましく、第二電荷輸送層の膜厚は1〜10μmが好ましい。   The film thickness of the first charge transport layer is preferably 5 to 25 μm, and the film thickness of the second charge transport layer is preferably 1 to 10 μm.

本発明に係わる電荷輸送層を作製する場合、電荷輸送層の分散液を作製する。この電荷輸送層分散液の溶媒としては、環境負荷が小さい非ハロゲン溶媒を用いる。非ハロゲン溶媒としては、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ、等が挙げられる。   When preparing the charge transport layer according to the present invention, a dispersion of the charge transport layer is prepared. As a solvent for the charge transport layer dispersion, a non-halogen solvent having a small environmental load is used. Non-halogen solvents include acetone, methyl ethyl ketone, methyl isopropyl ketone, cyclohexanone, benzene, toluene, xylene, tetrahydrofuran, dioxolane, dioxane, methanol, ethanol, butanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, methyl cellosolve, etc. Can be mentioned.

電荷輸送層分散液の溶媒としては、これらに限定されるものではないが、特に、トルエン、テトラヒドロフラン(THF)、ジオキソラン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。   The solvent for the charge transport layer dispersion is not limited to these, but toluene, tetrahydrofuran (THF), dioxolane and the like are particularly preferably used. These solvents may be used alone or as a mixed solvent of two or more.

本発明の有機感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられるが、感光層の上層側の塗布加工は下層の膜を極力溶解させないため、又、均一塗布加工を達成するためスプレー塗布又は円形量規制型(円形スライドホッパ型がその代表例)塗布等の塗布加工方法を用いるのが好ましい。なお前記スプレー塗布については例えば特開平3−90250号及び特開平3−269238号公報に詳細に記載され、前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。   As a coating processing method for producing the organic photoreceptor of the present invention, a coating processing method such as dip coating, spray coating, circular amount regulation type coating or the like is used, but the upper layer side coating processing of the photosensitive layer is a lower layer film. In order to achieve a uniform coating process, it is preferable to use a coating process method such as spray coating or circular amount regulation type (a circular slide hopper type is a typical example). The spray coating is described in detail in, for example, JP-A-3-90250 and JP-A-3-269238, and the circular amount-regulating coating is described in detail in, for example, JP-A-58-189061. Yes.

以下、この発明に係る画像形成装置の実施形態を添付の図面に基づいて具体的に説明すると共に、実施形態の画像形成装置、現像装置を用いて作像を行なう具体的な実施例を挙げて説明し、本発明の現像方法により、黒ポチやカブリの発生もなく、階調性、画像濃度も十分な良好な画像が得られることを明らかにする。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an image forming apparatus according to the present invention will be specifically described below with reference to the accompanying drawings, and specific examples of forming an image using the image forming apparatus and the developing device of the embodiments will be given. As will be described, it is clarified that the developing method of the present invention can provide a good image with sufficient gradation and image density without black spots and fog.

図1は本発明の画像形成方法の1例としての画像形成装置の断面図である。   FIG. 1 is a cross-sectional view of an image forming apparatus as an example of the image forming method of the present invention.

図1に於いて50は像担持体である感光体ドラム(感光体)で、有機感光層をドラム上に塗布した本発明の感光体で、接地されて時計方向に駆動回転される。52はスコロトロンの帯電器で、感光体ドラム50周面に対し一様な帯電をコロナ放電によって与えられる。この帯電器52による帯電に先だって、前画像形成での感光体の履歴をなくすために発光ダイオード等を用いた帯電前露光部51による露光を行って感光体周面の除電をしてもよい。   In FIG. 1, reference numeral 50 denotes a photosensitive drum (photosensitive member) which is an image bearing member, and is a photosensitive member of the present invention in which an organic photosensitive layer is coated on the drum, which is grounded and rotated clockwise. Reference numeral 52 denotes a scorotron charger, which uniformly charges the circumferential surface of the photosensitive drum 50 by corona discharge. Prior to the charging by the charger 52, the peripheral surface of the photosensitive member may be discharged by performing exposure by the pre-charging exposure unit 51 using a light emitting diode or the like in order to eliminate the history of the photosensitive member in the previous image formation.

感光体への一様帯電の後、像露光器53により画像信号に基づいた像露光が行われる。この図の像露光器53は図示しないレーザーダイオードを露光光源とする。回転するポリゴンミラー531、fθレンズ等を経て反射ミラー532により光路を曲げられた光により感光体ドラム上の走査がなされ、静電潜像が形成される。   After uniform charging of the photoreceptor, image exposure based on the image signal is performed by the image exposure unit 53. The image exposure unit 53 in this figure uses a laser diode (not shown) as an exposure light source. Scanning on the photosensitive drum is performed by the light whose optical path is bent by the reflection mirror 532 through the rotating polygon mirror 531 and the fθ lens, and an electrostatic latent image is formed.

ここで、本発明の感光体の未露光部電位とは帯電器52により、感光体表面を一様に帯電し、像露光が行われない領域の感光体表面電位を意味する。又、露光部電位とは像露光が行われた領域の感光体表面電位を意味する。電位測定は電位センサー547を図1のように現像位置に設けて行う。   Here, the unexposed portion potential of the photoreceptor of the present invention means the photoreceptor surface potential in a region where the surface of the photoreceptor is uniformly charged by the charger 52 and image exposure is not performed. The exposed portion potential means the photoreceptor surface potential in a region where image exposure has been performed. The potential is measured by providing a potential sensor 547 at the development position as shown in FIG.

その静電潜像は次いで現像工程で現像器54を用いて現像される。感光体ドラム50周縁にはトナーとキャリアとから成る現像剤を内蔵した現像器54が設けられていて、マグネットを内蔵し現像剤を保持して回転する現像スリーブ541によって現像が行われる。現像器54内部は現像剤攪拌搬送部材544、543、搬送量規制部材542等から構成されており、現像剤は攪拌、搬送されて現像スリーブに供給されるが、その供給量は該搬送量規制部材542により制御される。該現像剤の搬送量は適用される有機電子写真感光体の線速及び現像剤比重によっても異なるが、一般的には20〜200mg/cm2の範囲である。 The electrostatic latent image is then developed using a developing device 54 in a development process. A developing device 54 containing a developer composed of toner and carrier is provided on the periphery of the photosensitive drum 50, and development is performed by a developing sleeve 541 that contains a magnet and rotates while holding the developer. The inside of the developing device 54 is composed of developer agitating / conveying members 544 and 543, a conveying amount regulating member 542, and the like, and the developer is agitated and conveyed and supplied to the developing sleeve. Controlled by member 542. The amount of the developer transported varies depending on the linear velocity of the applied organic electrophotographic photosensitive member and the specific gravity of the developer, but is generally in the range of 20 to 200 mg / cm 2 .

現像剤は、例えば前述のフェライトをコアとしてそのまわりに絶縁性樹脂をコーティングしたキャリアと、前述のスチレンアクリル系樹脂を主材料としてカーボンブラック等の着色剤と荷電制御剤と本発明の低分子量ポリオレフィンからなる着色粒子に、シリカ、酸化チタン等を外添したトナーとからなるもので、現像剤は搬送量規制部材によって層厚を規制されて現像域へと搬送され、現像が行われる。この時通常は現像スリーブ541に直流バイアス電圧、必要に応じて交流バイアス電圧をかけて現像が行われる。また、現像剤は感光体に対して接触あるいは非接触の状態で現像される。   The developer includes, for example, a carrier in which the above ferrite is used as a core and an insulating resin is coated around the carrier, a colorant such as carbon black, a charge control agent, and the low molecular weight polyolefin of the present invention, which is mainly composed of the above styrene acrylic resin. The developer is made up of a toner obtained by externally adding silica, titanium oxide or the like to the colored particles, and the developer is transported to the development zone with the layer thickness regulated by the transport amount regulating member, and development is performed. At this time, development is usually performed by applying a DC bias voltage to the developing sleeve 541 and, if necessary, an AC bias voltage. Further, the developer is developed in contact with or not in contact with the photoreceptor.

記録紙Pは画像形成後、転写のタイミングの整った時点で給紙ローラー57の回転作動により転写域へと給紙される。   The recording paper P is fed to the transfer area by the rotation operation of the paper feed roller 57 when the transfer timing is ready after the image formation.

転写域においては転写のタイミングに同期して感光体ドラム50の周面に転写電極(転写器)58が圧接され、給紙された記録紙Pを挟着して転写される。   In the transfer area, a transfer electrode (transfer device) 58 is pressed against the peripheral surface of the photosensitive drum 50 in synchronization with the transfer timing, and the fed recording paper P is sandwiched and transferred.

次いで記録紙Pは転写ローラーとほぼ同時に圧接状態とされた分離電極(分離器)59によって除電がなされ、感光体ドラム50の周面により分離して定着装置60に搬送され、熱ローラー601と圧着ローラー602の加熱、加圧によってトナーを溶着したのち排紙ローラー61を介して装置外部に排出される。なお前記の転写電極58及び分離電極59は記録紙Pの通過後感光体ドラム50の周面より退避離間して次なるトナー像の形成に備える。   Next, the recording paper P is neutralized by a separation electrode (separator) 59 brought into a pressure contact state almost simultaneously with the transfer roller, separated by the peripheral surface of the photosensitive drum 50, conveyed to the fixing device 60, and pressure-bonded to the heat roller 601. After the toner is welded by heating and pressurizing the roller 602, the toner is discharged to the outside of the apparatus via the discharge roller 61. The transfer electrode 58 and the separation electrode 59 are retracted away from the peripheral surface of the photosensitive drum 50 after the recording paper P has passed to prepare for the next toner image formation.

一方記録紙Pを分離した後の感光体ドラム50は、クリーニング器62のブレード621の圧接により残留トナーを除去・清掃し、再び帯電前露光部51による除電と帯電器52による帯電を受けて次なる画像形成のプロセスに入る。   On the other hand, after the recording paper P is separated, the photosensitive drum 50 is subjected to removal and cleaning of residual toner by pressure contact of the blade 621 of the cleaning device 62, and after receiving charge removal by the pre-charge exposure unit 51 and charging by the charger 52 again. The image forming process is entered.

尚、70は感光体、帯電器、転写器、分離器及びクリーニング器が一体化されている着脱可能なプロセスカートリッジである。   Reference numeral 70 denotes a detachable process cartridge in which a photoconductor, a charger, a transfer device, a separator, and a cleaning device are integrated.

図2は前記図1の感光体ドラム50の帯電電位制御の構成を拡大した図である。   FIG. 2 is an enlarged view of the configuration of charge potential control of the photosensitive drum 50 of FIG.

以下に、未露光部電位の測定法と未露光部電位の修正を目的とした帯電電位調整プロセスを図2を用いて説明する。   Hereinafter, a method of measuring the unexposed portion potential and a charging potential adjustment process for the purpose of correcting the unexposed portion potential will be described with reference to FIG.

まず、感光体50上に帯電器(帯電工程)52により一様に帯電する。帯電された感光体上にレーザーダイオードの像露光器(像露光工程)53によりデジタル露光されない未露光領域を形成する。該未露光領域の表面電位(未露光部電位)を電位センサー547により検出し、この検出された電位信号は図2中のプロセス制御部63に伝達する。プロセス制御部63は電位センサー547からの電位信号に基づいて帯電極を制御するプロセス制御器である。該制御器は電位センサーからの電位信号と目標電位信号とを比較し、その差を修正し、目標電位を達成する修正信号を決定する。高圧制御ユニット64はプロセス制御部63の制御信号を受け帯電器52に電流、電圧を供給する高圧制御ユニットである。前記決定された修正信号に基づきプロセス制御器から帯電電流、帯電グリット電圧の修正信号が高圧制御ユニットに出され、続いて高圧制御ユニットから帯電器52のコロナワイヤー521、スコロトロングリット522へそれぞれ修正された帯電電流、帯電グリット電圧が出力される。このプロセスを数回繰り返すことにより、電位センサー位置の感光体電位(未露光部電位)を目標電位に修正する事ができる。   First, the photosensitive member 50 is uniformly charged by a charger (charging step) 52. An unexposed area that is not digitally exposed is formed on the charged photosensitive member by an image exposure device (image exposure step) 53 of a laser diode. The surface potential (unexposed portion potential) of the unexposed region is detected by the potential sensor 547, and the detected potential signal is transmitted to the process control unit 63 in FIG. The process control unit 63 is a process controller that controls the band electrode based on the potential signal from the potential sensor 547. The controller compares the potential signal from the potential sensor with the target potential signal, corrects the difference, and determines a correction signal that achieves the target potential. The high-voltage control unit 64 is a high-voltage control unit that receives a control signal from the process control unit 63 and supplies current and voltage to the charger 52. Based on the determined correction signal, a correction signal for charging current and charging grit voltage is output from the process controller to the high voltage control unit, and then corrected from the high voltage control unit to the corona wire 521 and scorotron grit 522 of the charger 52, respectively. The charged current and charged grit voltage are output. By repeating this process several times, the photosensitive member potential (unexposed portion potential) at the potential sensor position can be corrected to the target potential.

感光体の現像位置での未露光部電位を正確に測定する為には、上記電位センサーの位置を現像位置に取り付けて(必要により現像器を外して)測定するのが好ましいが、電位センサーの取り付け位置が現像位置から離れている場合は、電位センサーから現像位置までの感光体の電位暗減衰量を計算し、その分を補正すればよい。   In order to accurately measure the unexposed portion potential at the development position of the photosensitive member, it is preferable to measure the potential sensor by attaching the potential sensor to the development position (with the developing device removed if necessary). When the attachment position is away from the development position, the potential dark attenuation amount of the photoconductor from the potential sensor to the development position may be calculated and corrected accordingly.

ここで、現像位置とは、現像工程で感光体上の潜像が現像剤により現像される位置を示すが、具体的には感光体と現像スリーブが最も接近した位置を現像位置の中心と見なす。即ち、本発明では現像位置の未露光部電位とは感光体が現像スリーブに最も接近した時の未露光部表面電位を示す。   Here, the development position indicates a position where the latent image on the photoreceptor is developed by the developer in the development process. Specifically, the position where the photoreceptor and the development sleeve are closest to each other is regarded as the center of the development position. . That is, in the present invention, the unexposed portion potential at the developing position indicates the surface potential of the unexposed portion when the photoreceptor is closest to the developing sleeve.

前記未露光部目標電位の設定には種々の方法があるが、本発明に用いられる反転現像方法では次に述べるような未露光部目標電位の設定方法(図3を用いて説明する)が好ましく用いられる。   Although there are various methods for setting the unexposed portion target potential, the reversal development method used in the present invention is preferably the following unexposed portion target potential setting method (described with reference to FIG. 3). Used.

即ち、図3に示すように、プリンターや複写機の毎日の使用開始時、或いは所定のプリント枚数毎に感光体に帯電、像露光を行い、像露光後の露光部電位(VL)を電位センサーにより検知する。該VLを基準にして、画像濃度を支配する現像バイアス電位、次に現像バイアス電位を基準として、カブリの発生を防止する為の未露光部目標電位(VH)を設定する。   That is, as shown in FIG. 3, the photosensitive member is charged and image exposed at the start of daily use of the printer or copying machine or every predetermined number of prints, and the exposed portion potential (VL) after image exposure is measured by a potential sensor. Detect by. The unexposed portion target potential (VH) for preventing the occurrence of fogging is set with reference to the development bias potential that controls the image density and then the development bias potential with reference to the VL.

本発明の反転現像の条件は感光体の現像位置での未露光部電位(|VH|)が絶対値で600〜1000Vである。VHと現像スリーブにかかる直流バイアス電位(|VDC|)の差(現像バイアス)は50〜300V、より好ましくは70〜280Vである。このような高電圧を印加した条件でも、本発明の感光体を用いて反転現像を行うと、反転現像に特有の黒ポチの発生が少なく、高濃度、高階調性の良好な画像が達成される。|VH|が600Vより低いと、階調性が低くなりやすく、1000Vを超えると、感光層の静電破壊が発生しやく、黒ポチ等の画像欠陥が発生しやすい。又|VH|−|VDC|の差が50Vより小さいと、黒ポチ等の画像欠陥が発生しやすく、300Vを超えると、弱帯電性トナーの付着やキャリア付着の発生が増加する。   The reversal development conditions of the present invention are such that the unexposed portion potential (| VH |) at the development position of the photoreceptor is 600 to 1000 V in absolute value. The difference (development bias) between the DC bias potential (| VDC |) applied to VH and the developing sleeve is 50 to 300V, more preferably 70 to 280V. Even when such a high voltage is applied, when reversal development is performed using the photoconductor of the present invention, black spots peculiar to reversal development are few, and an image with high density and high gradation is achieved. The When | VH | is lower than 600V, the gradation is liable to be lowered, and when it exceeds 1000V, electrostatic breakdown of the photosensitive layer is likely to occur, and image defects such as black spots are likely to occur. If the difference of | VH | − | VDC | is smaller than 50V, image defects such as black spots are likely to occur, and if it exceeds 300V, the occurrence of weakly charged toner and carrier adhesion increases.

本発明においては有機感光体と該現像剤を担持する現像スリーブとの距離(Dsd)は350〜800μm、感光体と現像スリーブの線速比は1:1〜1:3.5の範囲が好ましい。前記Dsdが800μmを越えると現像電界が弱くなり、現像性が低下する。   In the present invention, the distance (Dsd) between the organic photoreceptor and the developing sleeve carrying the developer is preferably 350 to 800 μm, and the linear speed ratio between the photoreceptor and the developing sleeve is preferably in the range of 1: 1 to 1: 3.5. . When the Dsd exceeds 800 μm, the developing electric field becomes weak and the developability deteriorates.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。但し、下記文中の「部」は「質量部」を示す。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this. However, “part” in the following text indicates “part by mass”.

実施例
以下のようにして、評価に用いる感光体を作製した。
Examples Photoconductors used for evaluation were produced as follows.

感光体1の作製
中間層
洗浄済み円筒状アルミニウム基体(切削加工によりJISB−0601規定の十点表面粗さRz:0.81μmに加工した)上に、下記中間層塗布液を浸漬塗布法で塗布し、120℃30分で乾燥し、乾燥膜厚1.0μmの中間層を形成した。
Preparation of photoreceptor 1 Intermediate layer The following intermediate layer coating solution is applied by a dip coating method onto a cleaned cylindrical aluminum substrate (10-point surface roughness Rz defined by JISB-0601 by cutting): 0.81 μm) And dried at 120 ° C. for 30 minutes to form an intermediate layer having a dry film thickness of 1.0 μm.

下記中間層分散液を同じ混合溶媒にて二倍に希釈し、一夜静置後に濾過(フィルター;日本ポール社製リジメッシュフィルター公称濾過精度:5ミクロン、圧力;50kPa)し、中間層塗布液を作製した。   The following intermediate layer dispersion is diluted twice with the same mixed solvent, and is allowed to stand overnight and then filtered (filter; rigesh mesh filter made by Nippon Pole Co., Ltd., nominal filtration accuracy: 5 microns, pressure: 50 kPa). Produced.

(中間層分散液の作製)
バインダー樹脂:(例示ポリアミドN−1) 1部(1.00体積部)
ルチル形酸化チタンA1(一次粒径35nm;メチルハイドロジェンシロキサンとジメチルシロキサンの共重合体(モル比1:1)を用い、酸化チタン全質量の5質量%の量で表面処理したもの) 3.5部(1.0体積部)
エタノール/n−プロピルアルコール/THF(=45/20/30質量比)10部
上記成分を混合し、サンドミル分散機を用い、10時間、バッチ式にて分散して、中間層分散液を作製した。
(Preparation of intermediate layer dispersion)
Binder resin: (Exemplary polyamide N-1) 1 part (1.00 volume part)
2. Rutile-type titanium oxide A1 (primary particle size 35 nm; a surface treatment using a copolymer of methylhydrogensiloxane and dimethylsiloxane (molar ratio 1: 1) in an amount of 5% by mass of the total mass of titanium oxide) 5 parts (1.0 part by volume)
Ethanol / n-propyl alcohol / THF (= 45/20/30 mass ratio) 10 parts The above components were mixed and dispersed in a batch system for 10 hours using a sand mill disperser to prepare an intermediate layer dispersion. .

電荷発生層
下記成分を混合し、サンドミル分散機を用いて分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、前記中間層の上に乾燥膜厚0.3μmの電荷発生層を形成した。
Charge generation layer The following components were mixed and dispersed using a sand mill disperser to prepare a charge generation layer coating solution. This coating solution was applied by a dip coating method to form a charge generation layer having a dry film thickness of 0.3 μm on the intermediate layer.

チタニルフタロシアニン顔料(Cu−Kαの特性X線回折スペクトルのブラッグ角(2θ±0.2°)において、少なくとも27.3°に最大回折ピークを有するチタニルフタロシアニン顔料) 20部
シリコーン変性ポリビニルブチラール 10部
4−メトキシ−4−メチル−2−ペンタノン 700部
t−ブチルアセテート 300部
〈電荷輸送層1(CTL1)〉
電荷輸送物質A(CT−4) 33部
電荷輸送物質B(CT−7) 67部
ポリカーボネート(Z300:三菱ガス化学社製) 100部
酸化防止剤(例示化合物AO2−1) 6部
THF/トルエン(質量比:7/3) 1000部
シリコンオイル(KF−54:信越化学社製) 1部
を混合し、溶解して電荷輸送層塗布液1を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、110℃70分の乾燥を行い、乾燥膜厚18.0μmの電荷輸送層1を形成した。
Titanyl phthalocyanine pigment (a titanyl phthalocyanine pigment having a maximum diffraction peak at 27.3 ° at the Bragg angle (2θ ± 0.2 °) of the characteristic X-ray diffraction spectrum of Cu-Kα) 20 parts Silicone-modified polyvinyl butyral 10 parts 4 -Methoxy-4-methyl-2-pentanone 700 parts t-butyl acetate 300 parts <Charge transport layer 1 (CTL1)>
Charge transport material A (CT-4) 33 parts Charge transport material B (CT-7) 67 parts Polycarbonate (Z300: manufactured by Mitsubishi Gas Chemical Company) 100 parts Antioxidant (exemplary compound AO2-1) 6 parts THF / toluene ( Mass ratio: 7/3) 1000 parts Silicon oil (KF-54: manufactured by Shin-Etsu Chemical Co., Ltd.) 1 part was mixed and dissolved to prepare a charge transport layer coating solution 1. This coating solution was applied onto the charge generation layer by a dip coating method and dried at 110 ° C. for 70 minutes to form a charge transport layer 1 having a dry film thickness of 18.0 μm.

〈電荷輸送層2(CTL2)〉
電荷輸送物質(CT−4) 25部
ポリカーボネート(Z300:三菱ガス化学社製) 50部
酸化防止剤(例示化合物AO1−1) 2部
THF/トルエン(質量比:7/3) 1200部
シリコンオイル(KF−54:信越化学社製) 4部
を混合し、溶解して電荷輸送層塗布液2を調製した。この塗布液を前記電荷輸送層1の上に円形スライドホッパ型塗布機で塗布し、110℃70分の乾燥を行い、乾燥膜厚7.0μmの電荷輸送層2(表面層)を形成し、感光体1を作製した。
<Charge transport layer 2 (CTL2)>
Charge transport material (CT-4) 25 parts Polycarbonate (Z300: manufactured by Mitsubishi Gas Chemical Company) 50 parts Antioxidant (Exemplary Compound AO1-1) 2 parts THF / Toluene (mass ratio: 7/3) 1200 parts Silicon oil ( KF-54: manufactured by Shin-Etsu Chemical Co., Ltd.) 4 parts were mixed and dissolved to prepare a charge transport layer coating solution 2. This coating solution is applied onto the charge transport layer 1 with a circular slide hopper type coater, dried at 110 ° C. for 70 minutes to form a charge transport layer 2 (surface layer) having a dry film thickness of 7.0 μm, Photoconductor 1 was produced.

感光体2〜14の作製
電荷輸送層1、2の電荷輸送物質の種類と添加量等を表1のように変化させた以外は感光体1と同様にして感光体2〜14を作製した。
Production of Photoconductors 2 to 14 Photoconductors 2 to 14 were produced in the same manner as Photoreceptor 1 except that the types and addition amounts of the charge transport materials in charge transport layers 1 and 2 were changed as shown in Table 1.

Figure 2006234925
Figure 2006234925

表1中、CT−11及びCT−12は下記の化合物を表す。   In Table 1, CT-11 and CT-12 represent the following compounds.

Figure 2006234925
Figure 2006234925

《評価1》
上記感光体を図1及び図2の構造を基本的に有するデジタル複写機Konica「Sitios」7085((コニカミノルタビジネステクノロジーズ(株)社製)スコロトロン帯電器、半導体レーザー像露光器、反転現像手段を有する)に設定し、複写実験を行った。この実験においては図2のプロセス制御部のメモリー中に未露光部目標電位のプログラムを組み込み、自動的に現像位置の未露光部目標電位が設定されるようにデジタル複写機を改造した。この複写実験の画像形成に際し、前記電位センサーにより未露光部電位を測定し、目標値の未露光部電位が得られていない場合は、制御部を通して、未露光部目標電位を達成するために、帯電手段の出力値を制御した。
<< Evaluation 1 >>
A digital copying machine Konica “Sitos” 7085 (manufactured by Konica Minolta Business Technologies, Inc.) having a structure as shown in FIG. 1 and FIG. A copy experiment was conducted. In this experiment, the program of the unexposed portion target potential was incorporated in the memory of the process control portion of FIG. 2, and the digital copying machine was modified so that the unexposed portion target potential at the development position was automatically set. In the image formation of this copying experiment, the unexposed portion potential is measured by the potential sensor, and when the unexposed portion potential of the target value is not obtained, to achieve the unexposed portion target potential through the control unit, The output value of the charging means was controlled.

《画像評価》
上記デジタル複写機に各感光体を取り付け、複写スタート時に、現像位置の未露光部電位(|VH|)を表2のようにし、高温高湿(30℃、80%RH)環境でA4紙、100万枚の文字画像、白べた画像、黒べた画像を有するオリジナル画像の複写を行い、スタート時及び10万枚コピー毎に複写画像を取り出し、下記の画像評価を行った。
《Image evaluation》
Each photoconductor is attached to the digital copying machine, and at the start of copying, the unexposed area potential (| VH |) at the development position is set as shown in Table 2, and A4 paper is used in a high temperature and high humidity (30 ° C., 80% RH) environment. An original image having 1 million character images, white solid images, and black solid images was copied, and the copied images were taken out at the start and every 100,000 copies, and the following image evaluation was performed.

画像形成のその他の条件
プロセススピード:420mm/sec
現像剤:キャリア及びトナーを含有する二成分現像剤を用いた。
Other conditions for image formation Process speed: 420 mm / sec
Developer: A two-component developer containing carrier and toner was used.

(画像濃度)
複写画像の黒ベタ画像をマクベス社製RD−918を使用して測定。紙の反射濃度を「0」とした相対反射濃度で測定した
(画像濃度)
◎:スタートから100万枚まで、黒ベタ画像濃度が1.3以上で画像濃度が高い。
(Image density)
A black solid image of a copied image was measured using a Macbeth RD-918. Measured with relative reflection density with paper reflection density set to “0” (Image density)
A: From the start to 1 million sheets, the black solid image density is 1.3 or higher and the image density is high.

○:スタートから100万枚まで、黒ベタ画像濃度が1.0以上で実用的に十分な画像濃度である。   ○: From the start to 1 million sheets, the black solid image density is 1.0 or more, which is a practically sufficient image density.

△:スタートから100万枚までの間に、黒ベタ画像濃度が0.7〜1.0未満が発生(実用性には、再検討要)
×:スタートから100万枚までの間に、黒ベタ画像濃度が0.7未満が発生(実用性には、問題有り)
(カブリ)
マクベス反射濃度計「RD−918」を用いて、複写用紙(白紙)の濃度を20カ所、絶対画像濃度で測定し、その平均値を白紙濃度とする。次に、複写画像の白べた画像を同様に20カ所、絶対画像濃度で測定し、その平均濃度から前記白紙濃度を引いた値をカブリ濃度として評価した。
Δ: Black solid image density of 0.7 to less than 1.0 occurred between 1 million sheets from the start (re-examination required for practical use)
×: Black solid image density of less than 0.7 occurs between 1 million sheets from the start (There is a problem in practical use)
(Fog)
Using a Macbeth reflection densitometer “RD-918”, the density of copy paper (white paper) is measured at 20 locations at absolute image density, and the average value is defined as the white paper density. Next, 20 white solid images of the copied image were similarly measured at the absolute image density, and the value obtained by subtracting the white paper density from the average density was evaluated as the fog density.

◎:スタートから100万枚まで、白ベタ画像濃度が0.005以下(良好)
○:スタートから100万枚まで、白ベタ画像濃度が、0.01以下(実用上問題ないレベル)
×:スタートから100万枚までの間に、白ベタ画像濃度が0.01より大のカブリ発生(明らかに、実用上問題あり)
(鮮鋭性)
鮮鋭性は、文字画像で評価した。複写画像の3ポイント、5ポイントの漢字文字画像を用いて、下記の判断基準で評価した。
A: From the start to 1 million sheets, white solid image density is 0.005 or less (good)
○: From the start to 1 million sheets, the white solid image density is 0.01 or less (a level that is not a problem for practical use)
×: fogging with a solid white image density greater than 0.01 between the start and 1 million sheets (obviously, there is a practical problem)
(Sharpness)
Sharpness was evaluated with a character image. Evaluation was made according to the following criteria using 3 point and 5 point kanji character images of the copied image.

◎:スタートから100万枚まで、3ポイント、5ポイントとも明瞭であり、容易に判読可能(良好)
○:スタートから100万枚までの間に、3ポイントは一部判読不能の複写画像が発生するが、5ポイントは明瞭であり、容易に判読可能(実用上問題ないレベル)
×:スタートから100万枚までの間に、3ポイントは殆ど判読不能し、5ポイントも一部あるいは全部が判読不能が発生した(明らかに、実用上問題あり)。
◎: From the start to 1 million sheets, 3 points and 5 points are clear and easy to read (good)
○: Between 1 million sheets from the start, 3 points are partially illegible copy images, but 5 points are clear and easily readable (practically acceptable level)
X: Between the start and 1 million sheets, 3 points were almost unreadable and 5 points were partially or completely unreadable (apparently, there was a practical problem).

Figure 2006234925
Figure 2006234925

表2中、VLは露光部電位、ΔVH、ΔVLはそれぞれ、VH、VLの100万枚後の電位増大値(−符号は減少値)を示す。又、表2中の感光体の電荷移動度、CTM−AとCTM−Bのイオン化ポテンシャル差は、前記した方法で測定した値である。   In Table 2, VL represents an exposure portion potential, and ΔVH and ΔVL represent potential increase values after 1 million sheets of VH and VL (a minus sign indicates a decrease value), respectively. In Table 2, the charge mobility of the photoconductor and the difference in ionization potential between CTM-A and CTM-B are values measured by the method described above.

表2から明らかなように、電荷輸送層を非ハロゲン溶媒を用いて形成しても、本発明の条件を満たした、即ち、電荷発生層及び複数の電荷輸送層を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有した感光体1〜11は、100万枚の複写画像後も電位変動が小さく、その結果、画像濃度、カブリ、鮮鋭性のいずれの評価も良好な結果を得ているが、イオン化ポテンシャルの差が0.5eVの感光体12では、VHが低下し、その結果、カブリが発生し、鮮鋭性も劣化している。又、電荷発生層に隣接する電荷輸送層が単一の電荷輸送物質で構成された感光体13や14では、VLの増大が大きく、画像濃度の低下が発生し、鮮鋭性も劣化し、プロセススピードが420mm/sec以上での高速性に適合していない。   As is apparent from Table 2, even when the charge transport layer is formed using a non-halogen solvent, the conditions of the present invention are satisfied, that is, the charge generation layer has a charge generation layer and a plurality of charge transport layers. Photoreceptors 1 to 11 containing a plurality of charge transport materials whose adjacent charge transport layers have an ionization potential difference of less than 0.5 eV have a small potential fluctuation even after 1 million copies have been printed. Both evaluations of fog and sharpness have obtained good results. However, in the photoconductor 12 having a difference in ionization potential of 0.5 eV, VH decreases, resulting in fogging and deterioration of sharpness. ing. Further, in the photoreceptors 13 and 14 in which the charge transport layer adjacent to the charge generation layer is composed of a single charge transport material, the increase in VL is large, the image density is lowered, and the sharpness is deteriorated. It is not suitable for high speed when the speed is 420 mm / sec or more.

《評価2》
評価1の条件で、プロセススピード:420mm/secから350mm/secに変更した以外は同様の条件で評価を行なった。
<< Evaluation 2 >>
Evaluation was performed under the same conditions as in Evaluation 1, except that the process speed was changed from 420 mm / sec to 350 mm / sec.

その結果、感光体12、13、14でも、電位変動が小さくなり、感光体1〜11との差が小さくない、画像濃度の低下やカブリの発生も見られなかった。   As a result, even in the photoconductors 12, 13, and 14, the potential fluctuation was small, the difference from the photoconductors 1 to 11 was not small, and no reduction in image density or occurrence of fog was observed.

本発明の画像形成方法の1例としての画像形成装置の断面図。1 is a cross-sectional view of an image forming apparatus as an example of an image forming method of the present invention. 図1の感光体ドラムの帯電電位制御の構成を拡大した図。FIG. 2 is an enlarged view of a configuration of charge potential control of the photosensitive drum in FIG. 1. 未露光部目標電位の設定方法を説明する図。The figure explaining the setting method of an unexposed part target electric potential.

符号の説明Explanation of symbols

50 感光体ドラム(又は感光体)
51 帯電前露光部
52 帯電器
53 像露光器
54 現像器
541 現像スリーブ
542 搬送量規制部材
543 現像剤攪拌搬送部材
544 現像剤攪拌搬送部材
547 電位センサー
57 給紙ローラー
58 転写電極
59 分離電極(分離器)
60 定着装置
61 排紙ローラー
62 クリーニング器
70 プロセスカートリッジ
50 photoconductor drum (or photoconductor)
DESCRIPTION OF SYMBOLS 51 Pre-charge exposure part 52 Charging device 53 Image exposure device 54 Developer 541 Development sleeve 542 Conveyance amount regulating member 543 Developer agitation conveyance member 544 Developer agitation conveyance member 547 Potential sensor 57 Feed roller 58 Transfer electrode 59 Separation electrode (separation) vessel)
60 Fixing device 61 Paper discharge roller 62 Cleaning device 70 Process cartridge

Claims (7)

プロセススピードが400mm/sec以上で、有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程での未露光電位(|VH|)が600V〜1000Vの条件で、静電潜像をトナー像に顕像化する画像形成方法に用いる有機感光体おいて、導電性支持体上に電荷発生層及び複数の電荷輸送層を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有し、該電荷輸送層が非ハロゲン溶媒を用いて形成されたことを特徴とする有機感光体。 The process speed is 400 mm / sec or more, a uniform charge is imparted to the organic photoreceptor in the charging process, an electrostatic latent image is formed in the image exposure process, and the unexposed potential (| VH |) in the development process is 600 V to An organic photoreceptor used in an image forming method for developing an electrostatic latent image into a toner image under a condition of 1000 V, comprising a charge generation layer and a plurality of charge transport layers on a conductive support, An organic photoreceptor, wherein the charge transport layer adjacent to the substrate contains a plurality of charge transport materials having an ionization potential difference of less than 0.5 eV, and the charge transport layer is formed using a non-halogen solvent. 前記電荷輸送層が酸化防止剤を含有することを特徴とする請求項1に記載の有機感光体。 The organophotoreceptor according to claim 1, wherein the charge transport layer contains an antioxidant. 前記有機感光体の電荷移動度(電界強度:3.2×105V/cmにおける)が5.0×10-6cm2/V・sec以上であることを特徴とする請求項1又は2に記載の有機感光体。 3. The charge mobility (electric field strength: at 3.2 × 10 5 V / cm) of the organic photoreceptor is 5.0 × 10 −6 cm 2 / V · sec or more. The organic photoreceptor described in 1. 前記電荷発生層が電荷発生物質としてオキシチタニルフタロシアニン顔料を含有することを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。 The organophotoreceptor according to claim 1, wherein the charge generation layer contains an oxytitanyl phthalocyanine pigment as a charge generation substance. 前記電荷発生層が電荷発生物質としてペリレン顔料を含有することを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。 The organophotoreceptor according to claim 1, wherein the charge generation layer contains a perylene pigment as a charge generation substance. プロセススピードが400mm/sec以上で、有機感光体上に帯電工程で均一帯電を付与し、像露光工程で静電潜像を形成し、現像工程での未露光電位(|VH|)が600V〜1000Vの条件で、静電潜像をトナー像に顕像化する画像形成方法において、該有機感光体が導電性支持体上に電荷発生層及び複数の電荷輸送層を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有し、該電荷輸送層が非ハロゲン溶媒を用いて形成されたことを特徴とする画像形成方法。 The process speed is 400 mm / sec or more, a uniform charge is imparted to the organic photoreceptor in the charging process, an electrostatic latent image is formed in the image exposure process, and the unexposed potential (| VH |) in the development process is 600 V to In an image forming method in which an electrostatic latent image is visualized as a toner image under a condition of 1000 V, the organic photoreceptor has a charge generation layer and a plurality of charge transport layers on a conductive support, and the charge generation layer includes An image forming method, wherein adjacent charge transport layers contain a plurality of charge transport materials having a difference in ionization potential of less than 0.5 eV, and the charge transport layers are formed using a non-halogen solvent. プロセススピードが400mm/sec以上であり、有機感光体及び該有機感光体上に均一帯電を付与する帯電器、有機感光体上に静電潜像を形成する像露光器、有機感光体上の未露光電位(|VH|)が600V〜1000Vの条件で、静電潜像をトナー像に顕像化する現像器を有する画像形成装置において、該有機感光体が導電性支持体上に電荷発生層及び複数の電荷輸送層を有し、電荷発生層に隣接する電荷輸送層がイオン化ポテンシャルの差が0.5eV未満の複数の電荷輸送物質を含有し、該電荷輸送層が非ハロゲン溶媒を用いて形成されたことを特徴とする画像形成装置。 The process speed is 400 mm / sec or more, an organic photoreceptor, a charger for applying uniform charge on the organic photoreceptor, an image exposure unit for forming an electrostatic latent image on the organic photoreceptor, and an unexposed on the organic photoreceptor. In an image forming apparatus having a developing unit that visualizes an electrostatic latent image into a toner image under an exposure potential (| VH |) of 600 V to 1000 V, the organic photoreceptor is a charge generation layer on a conductive support. And the charge transport layer adjacent to the charge generation layer contains a plurality of charge transport materials having a difference in ionization potential of less than 0.5 eV, the charge transport layer using a non-halogen solvent. An image forming apparatus formed.
JP2005045758A 2005-02-22 2005-02-22 Organic photoreceptor, and image forming method and apparatus Pending JP2006234925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045758A JP2006234925A (en) 2005-02-22 2005-02-22 Organic photoreceptor, and image forming method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045758A JP2006234925A (en) 2005-02-22 2005-02-22 Organic photoreceptor, and image forming method and apparatus

Publications (1)

Publication Number Publication Date
JP2006234925A true JP2006234925A (en) 2006-09-07

Family

ID=37042682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045758A Pending JP2006234925A (en) 2005-02-22 2005-02-22 Organic photoreceptor, and image forming method and apparatus

Country Status (1)

Country Link
JP (1) JP2006234925A (en)

Similar Documents

Publication Publication Date Title
JP6333629B2 (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP6426490B2 (en) Method of manufacturing electrophotographic photosensitive member
JP2007108482A (en) Organic photoreceptor, image forming method, image forming apparatus and process cartridge
JP2006154753A (en) Image forming method, image forming apparatus and organic photoreceptor
JP5719886B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP2005017579A (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP3988685B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005017580A (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP3991929B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2009048176A (en) Color image forming apparatus and color image forming method
JP5718413B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP2006234924A (en) Organic photoreceptor, image forming method and image forming apparatus
JP4114578B2 (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2006234925A (en) Organic photoreceptor, and image forming method and apparatus
JP2003280223A (en) Organophotoreceptor, image forming method, image forming apparatus and process cartridge
JP3815292B2 (en) Reversal development method, image forming method, and image forming apparatus
JP2004347854A (en) Electrophotographic photoreceptor, processing cartridge and image forming apparatus
JP2007011253A (en) Organophotoreceptor, image forming method and apparatus, and process cartridge
JP2007114649A (en) Organic photoreceptor, image forming method, image forming apparatus and process cartridge
JP2007010958A (en) Organophotoreceptor, image forming method and apparatus, and process cartridge
JP3952833B2 (en) Organic photoconductor, image forming method, image forming apparatus, and process cartridge
US20210026259A1 (en) Electrophotographic photoconductor, method of manufacturing the same, and electrophotographic device including the same
JP2007017876A (en) Electrophotographic apparatus
JP2007010961A (en) Organophotoreceptor, image forming method and apparatus, and process cartridge
JP2007010960A (en) Organophotoreceptor, image forming method and apparatus, and process cartridge