JP2015211798A - 生体検知装置及び生体検知方法 - Google Patents

生体検知装置及び生体検知方法 Download PDF

Info

Publication number
JP2015211798A
JP2015211798A JP2014095705A JP2014095705A JP2015211798A JP 2015211798 A JP2015211798 A JP 2015211798A JP 2014095705 A JP2014095705 A JP 2014095705A JP 2014095705 A JP2014095705 A JP 2014095705A JP 2015211798 A JP2015211798 A JP 2015211798A
Authority
JP
Japan
Prior art keywords
living body
target part
detection target
detection
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014095705A
Other languages
English (en)
Other versions
JP6347349B2 (ja
Inventor
前田 忠彦
Tadahiko Maeda
忠彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Original Assignee
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust filed Critical Ritsumeikan Trust
Priority to JP2014095705A priority Critical patent/JP6347349B2/ja
Publication of JP2015211798A publication Critical patent/JP2015211798A/ja
Application granted granted Critical
Publication of JP6347349B2 publication Critical patent/JP6347349B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】 同一人体内の異なる複数の位置での電磁波応答特性を用いることにより、人体内部の組織構造の個人差による誤検知の発生を防止し、生体検知の精度を向上させることができる生体検知装置及び生体検知方法を提供する。【解決手段】 被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する複数の帯域通過フィルタ2と、電磁波を発生させ、検知対象部位及び複数の基準対象部位をそれぞれの帯域通過フィルタ2に近接させた際のそれぞれの電磁波応答特性を測定する測定部3と、検知対象部位による電磁波応答特性の測定値と、複数の基準対象部位によるそれぞれの電磁波応答特性の測定値から得られる相対基準値とを用いて、被検体内での相対評価値を算出する評価値算出部81と、相対評価値に基づいて、検知対象部位が生体であるか否かを判定する生体判定部82とを備える生体検知装置1。【選択図】図1

Description

本発明は、検知対象部位が生体であるか否かを判定する生体検知装置及び生体検知方法に関する。
従来から、セキュリティ等のために様々な認証方式がこれまでに提案されている。中でも指紋や静脈等の生体情報を用いて個人の認証を行う生体認証方式は、従来のパスワードやICカードによる認証方式と比べて、ユーザーは認証情報を記憶しておく必要がないため利便性が高く、また認証情報の紛失等の虞がないため、銀行のATMや空港での入国審査等の高いセキュリティ強度が求められる機関で近年多く利用されている。
一方で、このような生体認証方式では、第三者による偽装物を用いた「なりすまし」に対する脆弱性が指摘されている。例えば、従来の指紋認証方式では、一般的に指紋センサで読み取られた指紋パターンを予め登録されている指紋データと照合するだけなので、他人の指紋パターンを模擬した薄い偽装指をシリコン等で作成し、この偽装指を第三者の人体指に貼り付けて、照合を行うことで、登録されている指紋データと一致していると判定されて、誤認識を引き起こす虞があった。近年、このような「なりすまし」行為による脆弱性を解消するために、生体認証方式に加えて、生体と偽装物とを判別するための生体検知手法が利用されている。
生体検知手法としては、人体の表面の歪みを利用する手法(例えば、非特許文献1参照)や生体の発汗を利用する手法(例えば、非特許文献2参照)等の様々な手法が提案されている。しかしながら、これらの生体検知手法では、人体表面の特徴が用いられるため、生体検知を行う際の環境や人体のコンディション等の影響を強く受けてしまう。また、生体検知手法としては、人体内部の電気定数により検知を行うインピーダンス法(例えば、非特許文献3参照)も提案されているが、この手法では、測定時に電極に指を接触させ検知を行っているため、指の電極への押し付け圧力や発汗時の水分による影響を受ける。このようにインピーダンス法では、人体表面の影響が強く現れるため、皮膚の電気定数を持つ媒質に対する脆弱性が問題となる。
これに対して、本発明者らは、近接する媒質の影響を強く受けるCSRR(Complementary Split-Ring Resonator:コンプリメンタリスプリットリング共振器)を配置したBPF(Band-pass Filter:帯域通過フィルタ)を用いた静脈認証用生体検知手法を提案している(例えば、非特許文献4参照)。この非特許文献4の生体検知手法では、各媒質の電気的特性によって生じる通過特性の差異を利用して生体検知を行っている。非特許文献4の生体検知手法は、CSRRに近接した媒質の影響により、フィルタ近傍の電磁界の分布が変化することに起因しているため、近接した媒質の深さ方向に対する電磁界の応答を得ることが可能である。つまり、この生体検知手法は、人体表面部分の電気的特性に加えて、人体の層状構造(皮膚、脂肪、筋肉、骨)の電気的特性を利用するものであるので、第三者による突破を非常に困難なものとすることができる。また、この生体検知手法では、人体表面部分の電気定数に大きく依存しない周波数を用いて検知を行うことで、インピーダンス法で懸念されている測定時のコンディションによる影響を低減することも可能である。
Antonelli A., Cappelli R., Maio D., Maltoni D., "Fake Finger Detection by Skin Distortion Analysis", IEEE Trans. Information Forensics and Security, vol.1, no.3, pp.36−373, Sep. 2006. A.Ross, S.C.Dass, A.K.Jain, "Fingerprint warping using ridge curve correspondences", IEEE Trans. Pattern Anal., vol.28, no.1, pp.19-30, Jan. 2006. O.G.Matinsen, S.Clausen, J.B.Nysaether, S.Grimnes, "Utilizing Characteristic Electrical Properties of the Epidermal Skin Layers to Detect Fake Fingers in Biometric Fingerprint Systems-a Pilot Study", IEEE Trans. Biomed.Eng., vol.54, no.5, pp.891-894, Apr. 2004. 粂澤康司、井口悟、前田忠彦、「広帯域CSRR−BPFを利用した静脈認証用生体検知手法の提案」、信学論(B)、vol.J95-B、no.10、pp.1284-1287、Oct. 2012.
非特許文献4の生体検知手法では、生体検知を行う際に用いる基準データとして、事前に複数の人の指をCSRR−BPF(コンプリメンタリスプリットリング共振器を用いた帯域通過フィルタ)に近接させた場合の通過特性を測定し、その値を平均値化したものと、検知対象となる人の指をCSRR−BPFに近接させた場合の通過特性とを用いて、検知対象となる人の指が生体であるか否かの判定を行っている。しかしながら、個別の人物では、人体内部の組織構造や形状、大きさ等に個人差があるため、生体検知を行う際に用いる基準データが、複数の人の指をCSRR−BPFに近接させた場合の通過特性を平均値化したもの等の予め決められたデータである場合には、人によっては、生体であるのに生体でないと判定される又は生体でないのに生体であると判断されるといった誤検知が発生する虞がある。
本発明は、上記のような課題に鑑みてなされたものであって、同一人体内の異なる複数の位置での電磁波応答特性を用いることにより、人体内部の組織構造の個人差による誤検知の発生を防止し、生体検知の精度を向上させることができる生体検知装置及び生体検知方法を提供することを目的とする。
上記目的を達成するために、請求項1に記載の生体検知装置は、被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する複数の帯域通過フィルタと、電磁波を発生させ、前記検知対象部位及び前記被検体内の前記検知対象部位とは異なる位置である複数の基準対象部位を前記それぞれの帯域通過フィルタに近接又は当接させた際のそれぞれの電磁波応答特性を測定する測定部と、前記測定部によって測定された前記検知対象部位による前記電磁波応答特性の測定値と、前記複数の基準対象部位による前記それぞれの電磁波応答特性の測定値から得られる相対基準値とを用いて、前記被検体内での相対評価値を算出する評価値算出部と、前記評価値算出部によって算出された前記相対評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定部と、を備えることを特徴としている。
請求項2に記載の生体検知装置は、前記測定部によって測定される前記電磁波応答特性が、通過特性又は/及び反射特性であることを特徴としている。
請求項3に記載の生体検知装置は、前記それぞれの帯域通過フィルタが、前記検知対象部位及び前記基準対象部位の形状に沿うように、前記検知対象部位及び前記基準対象部位毎に3次元的に複数配置されていることを特徴としている。
請求項4に記載の生体検知装置は、前記それぞれの帯域通過フィルタ、前記検知対象部位及び前記基準対象部位の形状に沿うように形成されていることを特徴としている。
請求項5に記載の生体検知装置は、前記測定部によって測定された前記被検体とは異なる複数の被検体の検知対象部位をそれぞれ帯域通過フィルタに近接又は当接させた際の複数の電磁波応答特性の測定値から得られる絶対基準値を予め記憶する記憶部を備え、前記評価値算出部は、前記測定部によって測定された前記検知対象部位による前記電磁波応答特性の測定値と、前記記憶部に記憶されている前記絶対基準値とを用いて、絶対評価値を算出し、前記生体判定部は、前記相対評価値及び前記絶対評価値に基づいて、前記検知対象部位が生体であるか否かを判定することを特徴としている。
請求項6に記載の生体検知装置は、前記検知対象部位を近接又は当接させる前記帯域通過フィルタが、複数並べて配置されていることを特徴としている。
請求項7に記載の生体検知方法は、被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する複数の帯域通過フィルタに、電磁波を発生させ、前記検知対象部位及び前記被検体内の前記検知対象部位とは異なる位置である複数の基準対象部位を前記それぞれの帯域通過フィルタに近接又は当接させた際のそれぞれの電磁波応答特性を測定する測定ステップと、前記検知対象部位による前記電磁波応答特性の測定値と、前記複数の基準対象部位による前記それぞれの電磁波応答特性の測定値から得られる相対基準値とを用いて、前記被検体内での相対評価値を算出する評価値算出ステップと、前記相対評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定ステップと、を有することを特徴としている。
請求項1に記載の生体検知装置によれば、被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する複数の帯域通過フィルタに、検知対象部位及び複数の基準対象部位をそれぞれ近接又は当接させた際のそれぞれの電磁波応答特性を測定部によって測定し、測定された検知対象部位による電磁波応答特性の測定値と、複数の基準対象部位によるそれぞれの電磁波応答特性の測定値から得られる相対基準値とを用いて、評価値算出部によって同一被検体内での相対評価値を算出する。そして、生体判定部では、その相対評価値に基づいて、検知対象部位が生体であるか否かを判定するので、人体内部の組織構造の個人差による誤検知が発生することなく、生体検知の精度を向上させることができる。
請求項2に記載の生体検知装置によれば、測定部によって電磁波応答特性として、通過特性又は/及び反射特性を測定するので、通過特性と反射特性の両方の測定値を生体判定に用いた場合には、生体検知の精度をより向上させることができる。
請求項3に記載の生体検知装置によれば、それぞれの帯域通過フィルタは、検知対象部位及び基準対象部位の形状に沿うように、検知対象部位及び基準対象部位毎に3次元的に複数配置されているため、3次元立体構造である被検体の検知対象部位及び基準対象部位から立体的に適切な電磁波応答特性を取得することができるので、多角的な判定を行うことにより、生体検知の高精度化を図ることができる。
請求項4に記載の生体検知装置によれば、それぞれの帯域通過フィルタは、検知対象部位及び基準対象部位の形状に沿うように形成されているため、3次元立体構造である被検体の検知対象部位及び基準対象部位から立体的に適切な電磁波応答特性を効率良く取得することができるので、多角的な判定を行うことにより、生体検知の高精度化を図ることができる。
請求項5に記載の生体検知装置によれば、測定部によって測定された被検体とは異なる複数の被検体の検知対象部位をそれぞれ帯域通過フィルタに近接又は当接させた際の複数の電磁波応答特性の測定値から得られる絶対基準値が予め記憶部に記憶されており、評価値算出部は、測定部によって測定された検知対象部位による電磁波応答特性の測定値と、記憶部に記憶されている絶対基準値とを用いて、絶対評価値を算出し、生体判定部では、その絶対評価値と相対評価値に基づいて、検知対象部位が生体であるか否かを判定するので、生体検知の精度をより向上させることができると共に、検知対象部位だけでなく、基準対象部位にも偽造物を用いた場合でも、検知対象部位が生体であるか否かを適切に判定することができる。
請求項6に記載の生体検知装置によれば、検知対象部位を近接又は当接させる帯域通過フィルタが、複数並べて配置されているので、所定の中心周波数がそれぞれ異なる帯域通過フィルタを用いた場合には、検知対象部位を移動させることで、同一の検知対象部位に対する異なる複数の電磁波応答特性を得ることができ、同一の検知対象部位の異なる深さ方向の情報を取得することができる。また、所定の中心周波数がそれぞれ同一の帯域通過フィルタを用いた場合には、検知対象部位を移動させることで、検知対象部位に対する電磁波応答特性の測定値の平均化等を行うことができ、測定精度を向上させることができる。
請求項7に記載の生体検知方法によれば、被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する複数の帯域通過フィルタに、検知対象部位及び複数の基準対象部位をそれぞれ近接又は当接させた際のそれぞれの電磁波応答特性を測定し、測定された検知対象部位による電磁波応答特性の測定値と、複数の基準対象部位によるそれぞれの電磁波応答特性の測定値から得られる相対基準値とを用いて、同一被検体内での相対評価値を算出し、その相対評価値に基づいて、検知対象部位が生体であるか否かを判定するため、人体内部の組織構造の個人差による誤検知は発生しないので、生体検知の精度を向上させることができる。
本発明の実施形態に係る生体検知装置の一例を示す概略ブロック図である。 人体指の表皮深さを示すグラフである。 CSRR−BPFの一例を示す概略模式図であって、(a)は上面側を示しており、(b)は底面側を示している。 CSRR−BPFの一部を示す拡大模式図であって、(a)は図3における二点鎖線で囲ったA部を示しており、(b)は図3における二点鎖線で囲ったB部を示している。 複数の測定ポイントの一例を示す概略模式図である。 近接させる媒質のモデルの一例を示す概略模式図であって、(a)は人体の人差し指のモデルであり、(b)は人体の人差し指に偽装物を貼り付けた偽装指のモデルである。 CSRR−BPFに媒質を近接させた際の通過特性|S21|の一例を示すグラフである。 本発明の実施形態に係る生体検知装置による処理の流れの一例を示すフローチャートである。 生体判定に評価値として用いる通過特性の平均差と類似度を示すグラフである。 CSRR−BPFを対象部位に3次元的に複数配置した状態の一例を示す概略模式図である。 CSRR−BPFの他の一例を示す概略模式図である。 CSRR−BPFの配置の一例を示す概略模式図である。
以下、本発明に係る生体検知装置の実施形態について、図面を参照しつつ説明する。本発明に係る生体検知装置1は、偽造物による「なりすまし」行為を防止するために、被検体となる人体の検知対象部位が生体であるか否かを判定するためのものであって、主に指紋認証や静脈認証等の生体認証装置と組み合わせて用いられるものである。本発明に係る生体検知装置1は、図1に示すように、CSRR(Complementary Split-Ring Resonator:補対型(相補型)スプリットリング共振器)が配置された複数のBPF(Band-pass Filter:帯域通過フィルタ、以下ではCSRR−BPFとする)2と、検知対象部位及び該検知対象部位とは異なる位置である複数の基準対象部位をそれぞれのCSRR−BPF2に近接させた際のそれぞれの電磁波応答特性を測定する測定部3と、測定部3によって測定された電磁波応答特性を用いて、生体判定のための演算処理等を行うコンピュータ4とを備えている。尚、生体検知装置1に組み合わせて用いられる指紋認証や静脈認証のための機構等は、従来公知のものを利用することができるので、その詳細な説明については省略する。また、本実施形態では、CSRR−BPF2を3つ配置した例を示しているが、CSRR−BPF2の数はこれに限定されるものではなく、電磁波応答特性の測定を行う検知対象部位及び基準対象部位の数に応じて、適宜配置しても良い。
CSRR−BPF2は、被検体(人体)の検知対象部位に応じて、所定の中心周波数に設計されるものであって、近接する媒質の影響を強く受ける補対型スプリットリング共振器(CSRR)を有している。CSRR−BPF2は、近接する媒質の影響により、フィルタ近傍の電磁界の分布が変化することに起因しているため、近接した媒質の深さ方向に対する電磁界の応答を得ることができる。
検知対象部位としては、例えば、指紋認証や静脈認証を行う人体指等がある。人体指の層状構造は、皮膚、脂肪、筋肉、骨で構成されており、各組織の体積比から近似的な均一媒質を想定すると、表皮深さは図2に示すように算出される。静脈認証を想定した偽装物を作成する際、3次元に分布する血管パターンを模擬する必要があるため、人体指全体の特性を活かした構造が好ましいことから、上述した非特許文献4では、人体指の厚さと表皮深さが等しくなる周波数におけるCSRR−BPF2の設計を行っている。CSRR−BPF2に人体指を近接させた際、この条件を満たすことで、人体指の厚さに相当する部分の電気的特性がCSRR−BPF2の特性に大きく影響する。従って、非特許文献4では、人体指の厚さを約10mmと仮定し、その値が表皮深さとなる周波数である6GHzを中心周波数としてCSRR−BPF2の設計を行っている。
一方、本実施形態では、指紋認証用の生体検知を行うために、人体指先端に薄い偽装物を貼り付けることによる「なりすまし」を想定して設計したCSRR−BPF2を図3に示している。図3は、中心周波数を10GHzとして設計を行ったCSRR−BPF2の構造を示すものであって、(a)は上面側から見た状態を示しており、(b)は底面側から見た状態を示している。また、図4は、図3におけるCSRR−BPF2の一部を拡大したものであって、(a)は図3における二点鎖線で囲ったA部を示しており、(b)は図3における二点鎖線で囲ったB部を示している。指紋認証用の生体検知では、静脈認証を想定した場合とは異なり、偽装指は、人体指と薄いフィルムで構成されるため、人体指全体の特性を活かした構造よりも、人体表面の影響を比較的大きく受けつつ、人体指の層状構造を活かした構造が好ましいので、表皮深さが人体指のおおよその厚さの半分である約5mmと仮定し、その値が表皮深さとなる周波数である10GHzを中心周波数としてCSRR−BPF2の設計を行っている。
このCSRR−BPF2では、例えば、基板として非特許文献4の6GHz帯CSRR−BPFと同様にガラス熱硬化性PPO樹脂R−4276(比誘電率εγ=3.4、誘電正接tanδ=0.005、基板厚:1.0mm)を用いることができる。図3及び図4中のハッチングを施している部分は、銅箔であり、ハッチングを施していない部分は、誘電体により構成されている。また、CSRR−BPF2の寸法は、図3及び図4に示すように、a1=26.0mm、a2=19.5mm、a3=10.5mm、a4=1.3mm、a5=9.4mm、a6=0.7mm、a7=0.2mm、a8=0.4mm、a9=1.4mm、a10=1.5mm、a11=0.8mm、a12=0.7mm、a13=1.2mm、b1=9.5mm、b2=10.2mm、b3=0.3mm、b4=0.3mm、b5=3.0mm、b6=0.3mm、b7=1.1mm、b8=0.2mm、b9=2.2mm、b10=0.2mm、b11=0.2mmに形成している。また、CSRR−BPF2の両端に設けられるポートP1,P2には、コネクタ(不図示)がそれぞれ設けられており、図1に示すように、同軸ケーブル5を介して、測定部3に接続されている。尚、図3及び図4では、指紋認証用の生体検知を想定して、中心周波数を10GHzとしたCSRR−BPF2の例を示しているが、CSRR−BPF2の構造はこれに限定されるものではなく、生体か否かの判定を行う検知対象部位の場所等に応じて適宜設計されるものである。また、詳しくは図示しないが、CSRRの平坦化、及び腐食に対する銅箔部の保護のために、CSRR−BPF2上に厚さ0.2mm程度の薄いポリプロピレンフィルムを設置するようにしても良い。
このようなCSRR−BPF2は、人体内の一定の広がりを持つ特定領域、例えば、図5に示すような指の表面や手の平等の複数の位置A1〜A9等で測定を行うことができるように複数配置される。尚、図5では、測定位置として、位置A1〜A9の9箇所の位置を示しているが、これら全ての位置で測定を行う必要はなく、人差し指の指紋認証用の生体検知を行う場合には、例えば、検知対象部位の位置を人指し指の第1関節より上の位置A1とし、その他の位置A2〜A9のうちのいずれか複数の位置を基準対象部位とすれば良い。また、図5は、生体検知を行うための測定位置の一例を示すものであり、測定位置は、位置A1〜A9に限定されるものではなく、これら以外の位置で電磁波応答特性の測定を行うようにしても良い。
測定部3は、例えば、ベクトルネットワークアナライザ等で構成されるものであって、測定のための高周波の電磁波を発生させ、検知対象部位及び複数の基準対象部位をそれぞれのCSRR−BPF2に近接させた際のそれぞれの電磁波応答特性を測定する。電磁波応答特性としては、それぞれのCSRR−BPF2において、ポートP1,P2間の通過特性S21(順方向伝送)及びS12(逆方向伝送)と、反射特性S11(順方向反射)及びS22(逆方向反射)の4つを取得することができる。尚、S21は、CSRR−BPF2のポートP1に入射し、ポートP2へ伝送される通過特性を表わすものであり、S12は、ポートP2に入射し、ポートP1へ伝送される通過特性を表わすものである。また、S11は、ポートP1に入射し、ポートP1から反射される反射特性を表わすものであり、S22は、ポートP2に入射し、ポートP2から反射される反射特性を表わすものである。
図7は、図3に示す中心周波数を10GHzとして設計を行ったCSRR−BPF2に媒質を近接させた際の通過特性|S21|をFDTD(Finaite Difference Time Domain)法により計算した結果の一例を示すものである。図7では、人体指の厚さ方向の特性がCSRR−BPF2に与える影響を示すため、層状構造の人体指、皮膚ファントム、及び偽装物を貼り付けた人体指(以下、偽装指とする)をそれぞれCSRR−BPF2に近接させた際の通過特性|S21|を示している。尚、ここでは、人体指及び偽装指として、図6に示すような計算モデルを用いている。この計算モデルの各寸法は、非特許文献3に開示されている各計算モデルの寸法を参考にし、人体指のモデルの寸法は、人体の人差し指を模擬して、x1=22.0mm、y1=14.0mm、z1=10.0mmとし、CSRR−BPF2からの距離が0.2mmとなる位置に設置して、通過特性|S21|を求めている。また、人体指については、各組織(皮膚、脂肪、筋肉、骨)の体積比から寸法を設定し、皮膚を0.8mm、脂肪を1.8mm、筋肉を1.4mm、骨を2.0mmと設定している。一方、偽装指に装着する偽装物は、皮膚の電気定数を模擬した皮膚ファントムを十分に薄い0.5mmの厚さにしたものを用いることとして、通過特性|S21|を求めている。図7に示す結果から、CSRR−BPF2には、人体表面である皮膚の電気的特性だけでなく、皮膚以外の人体組織も影響を与えていることがわかる。また、人体指に対して偽装指の近接時に特性が大きく変化していることが確認でき、これらの媒質の電気的特性によって生じる通過特性の差異を利用して後述する生体検知処理を行うことで、生体検知を高精度に行うことができる。
このように測定部3で測定されるそれぞれの電磁波応答特性の測定値は、コンピュータ4へと入力される。コンピュータ4は、測定部3で測定された電磁波応答特性の測定値を用いて、検知対象部位が生体であるか否かの生体判定のための演算処理等を行うものであり、例えば、CPU(Central Proceessing Unit)6と、ハードディス7と、演算処理部8と、RAM(Random Access Memory:記憶部)9と、表示部10と、操作部11等を備えている。また、これら各部は、図1に示すように、互いにシステムバス12に接続され、このシステムバス12を介して種々のデータ等が入出力されて、CPU6の制御の下、種々の処理が実行される。
ハードディスク7は、測定部3から入力される電磁波応答特性の測定値を用いて、検知対象部位が生体であるか否かの生体判定を行うための処理プログラム等を格納している。尚、本実施形態では、生体判定を行うための処理プログラムをハードディスク7に格納している例を示しているが、これに代えて、コンピュータ読み取り可能な記憶媒体(不図示)に格納しておき、この記録媒体から処理プログラムを読み出すように構成することも可能である。
演算処理部8は、ハードディスク7に格納される処理プログラムに基づいて、CPU6の制御の下、検知対象部位が生体であるか否かの判定を行うための演算処理等を行うものである。RAM9は、ハードディスク7から読み出された処理プログラムを一時的に記憶したり、CPU6の作業領域等として用いられるものである。
また、RAM9では、生体判定を行う被検体(人体)とは異なる複数の人体の検知対象部位をそれぞれCSRR−BPF2へ近接させた際の複数の電磁波応答特性の測定値を事前に測定部3によって取得し、この取得した複数の電磁波応答特性の測定値を演算処理部8によって、例えば、平均値化したものを生体判定に用いるための基準データである絶対基準値として予め記憶している。尚、絶対基準値を生成するために、必要な人体の数は特に限定されるものではないが、絶対基準値の信頼性を高めるために、5名以上の人体を用いることが好ましい。
表示部10は、例えば、液晶ディスプレイ等から構成されるものであって、生体判定結果等を表示するものである。尚、表示部10の代わりに、又は、表示部10と共に音声により生体判定結果を知らせるようにしても良い。操作部11は、マウスやキーボード等で構成されており、操作者が種々のデータ及び操作指令等の入力を行うために使用されるものである。尚、表示部10と操作部11をタッチパネルとして、一体的に構成しても良い。
以下、この生体検知装置1による検知対象部位の生体検知処理の流れについて図1及び図8のフローチャートを用いながら説明する。尚、ここでは、検知対象部位を図5に示す人差し指の第1関節より上の部分である位置A1とし、基準対象部位を中指の第1関節より上の部分である位置A2及び薬指の第1関節より上の部分である位置A3とした場合を例に説明する。
まず、生体検知装置1では、図8に示すように、検知対象となる被験者が、検知対象部位A1及び基準対象部位A2、A3をそれぞれのCSRR−BPF2に近接させた際のそれぞれの電磁波応答特性を測定部(ベクトルネットワークアナライザ)3によって測定する(S101)。ここでは、ベクトルネットワークアナライザ3は、5GHzから12GHzの周波数の電磁波を発生させ、検知対象部位A1及び基準対象部位A2、A3をそれぞれのCSRR−BPF2に近接させた際のそれぞれの電磁波応答特性として5GHzから12GHzにおける通過特性|S21|を測定する。そして、ベクトルネットワークアナライザ3によって取得されたこれらの通過特性は、コンピュータ4へと入力される。
演算処理部8の評価値算出部81では、ベクトルネットワークアナライザ3によって取得された基準対象部位A2、A3による通過特性の測定値を平均値化したものを相対基準値|S21|として算出する(S102)。このように相対基準値は、同一人体内から算出されるものである。尚、相対基準値は、基準対象部位の通過特性を平均値化したものに限定されるものではなく、基準対象部位の通過特性の中央値等、その他の統計値を相対基準値として用いても良い。
次に、評価値算出部81では、ベクトルネットワークアナライザ3によって取得された検知対象部位の通過特性|S21|と、相対基準値|S21|とを用いて、相対評価値を算出する(S103)。ここでは、相対評価値として、通過特性の平均差と類似度との2つの相対評価値を算出する。通過特性の平均差は、S102で算出された5GHzから12GHzにおける相対基準値|S21|と、S101で取得された検知対象部位の5GHzから12GHzにおける通過特性|S21|とを比較することにより算出する。また、類似度(similarity)については、下記の数式(1)を用いて算出する。但し、数式(1)中のN〜Mは、使用する周波数の範囲である。使用する周波数は、平均差と同様である。尚、類似度を算出する式は、これに限定されるものではなく、従来公知の他の類似度の算出式を用いても良い。また、数式(1)を使用周波数毎に重み付けするようにしても良い。
Figure 2015211798
図9では、被験者16名(20代)に生体検知を行って、平均差及び類似度を算出した結果の一例を示している。図9は、横軸に通過特性の平均差、縦軸に類似度をとった2次元平面グラフであり、評価値算出部81で算出した相対評価値である平均差と類似度の値に対応する2次元平面上の位置にプロットを施している。図9中の中抜きのプロットは、検知対象部位が生体である人体指を示すものであり、黒塗りされているプロットは、検知対象部位が偽装物を装着した偽装指を示すものである。図9に示すように、同一人体内の相対評価値である平均差と類似度の値を用いることにより、生体である人体指と、偽装部を装着した偽装指とが良好に判別されていることがわかる。
生体判定部82では、このような同一人体内の相対評価値である平均差と類似度の値に基づいて、検知対象部位が生体であるか否かの判定を行う(S104)。生体判定部82では、例えば、通過特性の平均差及び類似度に対して、それぞれしきい値を設定しておき、それぞれのしきい値内に平均差と類似度が入っているか否かを判定することにより生体であるか否かを判定する。つまり、評価値算出部81で算出された平均差と類似度が共にしきい値内にある場合には、検知対象部位が生体であると判定し、それ以外の場合には、検知対象部位は生体でないと判定する。このように生体判定部82では、同一人体内の相対評価値である平均差と類似度の値を用いることにより、個人差による影響を低減し、生体である人体指と、偽装部を装着した偽装指とを精度良く検知することができる。尚、生体判定部82では、通過特性の平均差と類似度の一方だけを相対評価値として用いて、生体判定を行うようにしても良いが、より検知精度を高めるために、通過特性の平均差と類似度等の2つの相対評価値を用いることが好ましい。
また、本実施形態では、生体判定部82が、同一人体内の相対評価値である平均差と類似度の値を用いて、検知対象部位の生体判定を行う場合について説明したが、RAM9に予め記憶されている絶対基準値|S21H1|を更に用いて、絶対評価値を算出して、生体判定を行うようにしても良い。この場合には、S103において、評価値算出部81は、相対評価値及び絶対評価値の双方を算出する。評価値算出部81では、ベクトルネットワークアナライザ3によって取得された検知対象部位の通過特性|S21|と、絶対基準値|S21H1|とを用いて、絶対評価値を算出する。ここでは、絶対評価値として、相対評価値と同様に、通過特性の平均差と類似度との2つの絶対評価値を算出する。通過特性の平均差は、予め算出してRAM9に記憶している5GHzから12GHzにおける絶対基準値|S21H1|と、S101で取得された検知対象部位の5GHzから12GHzにおける通過特性|S21|とを比較することにより算出する。また、類似度(similarity)についても、相対評価値と同様に、下記の数式(2)を用いて算出する。尚、絶対評価値についても類似度を算出する式は、これに限定されるものではなく、従来公知の他の類似度の算出式を用いても良い。また、数式(2)を使用周波数毎に重み付けするようにしても良い。
Figure 2015211798
そして、S104において、生体判定部82では、例えば、相対評価値である平均差と類似度の値に基づいて、検知対象部位が生体であるか否かの判定が行われ、生体であると判定されたものに対して、更に絶対評価値である平均差と類似度の値に基づいて、検知対象部位が生体であるか否かの判定を行う。生体判定部82では、絶対評価値である通過特性の平均差及び類似度に対して、それぞれしきい値を設定しておき、それぞれのしきい値内に平均差と類似度が入っているか否かを判定することにより生体であるか否かを判定する。これにより、検知対象部位だけでなく、基準対象部位にも偽造物を用いたような場合でも、検知対象部位が生体であるか否かを適切に判定することができるので、生体検知の精度を更に向上させることができる。
また、本実施形態では、生体検知に電磁波応答特性として、通過特性|S21|を用いる場合を例に説明しているが、ベクトルネットワークアナライザ3によって検知対象部位及び基準対象部位の反射特性|S11|や、その他の通過特性|S12|及び反射特性|S22|を用いるようにしても良い。また、これらの電磁波応答特性の複数を用いて、生体判定を行うようにしても良い。
また、本実施形態では、検知対象部位A1及び基準対象部位A2、A3にそれぞれ1つのCSRR−BPF2を配置した例を示しているが、図10に示すように、検知対象部位A1及び基準対象部位A2、A3の形状に沿うように、それぞれCSRR−BPF2を3次元的に複数配置するように構成しても良い。図10では、3つのCSRR−BPF2を配置した例を示して折り、この場合には、それぞれの対象部位A1〜A3毎に計6つのポートを用いることができるので、6×6=36の電磁波応答特性を得ることができる。従って、これらの複数の電磁波応答特性を用いて、生体検知を行うことにより生体検知の精度を更に向上させることができる。
また、図11に示すように、CSRR−BPF2を検知対象部位A1及び基準対象部位A2、A3の形状に沿うような3次元形状に形成するようにしても良い。この場合も、CSRR−BPF2に複数のポートP1〜P5(図11では5つ)を設けておくことにより、5×5=25の電磁波応答特性を得ることができる。従って、図10の場合と同様に数の電磁波応答特性を用いて、生体検知を行うことにより生体検知の精度を更に向上させることができる。また、CSRR−BPF2を検知対象部位A1及び基準対象部位A2、A3の形状に沿うような3次元形状に形成しておくことにより、押し付け圧力等による誤差が生じることも軽減することができるので、高精度に生体検知を行うことができる。
また、図12に示すように、検知対象部位A1を近接又は当接させるCSRR−BPF2を複数並べて配置するようにしても良い。これらのCSRR−BPF2は、中心周波数がそれぞれ異なるように設計されたものであっても、同一の中心周波数に設計されたものであっても良い。このように並べて配置された複数のCSRR−BPF2に対して、例えば、検知対象部位A1を図12中の矢印で示す方向へと移動(スライド)させることにより、中心周波数がそれぞれ異なるCSRR−BPF2を用いた場合には、同一の検知対象部位A1に対する異なる複数の電磁波応答特性を得ることができ、同一の検知対象部位A1の異なる深さ方向の情報を取得することができる。また、中心周波数がそれぞれ同一のCSRR−BPF2を用いた場合には、検知対象部位A1を移動させることで、検知対象部位A1に対する電磁波応答特性の測定値を複数得ることができ、それらの平均値等を用いることで、測定精度を向上させることができる。
尚、CSRR−BPF2を複数並べて配置する構成は、検知対象部位A1だけでなく、基準対象部位A2、A3に対してもそれぞれ適用するようにしても良い。また、検知対象部位A1や基準対象部位A2、A3を移動させてそれぞれのCSRR−BPF2に近接又は当接させるのではなく、検知対象部位A1や基準対象部位A2、A3を固定した状態で、CSRR−BPF2を従来公知の移動機構等を用いて全体的に移動させることにより、それぞれ検知対象部位A1や基準対象部位A2、A3に自動的に近接又は当接させるようにして電磁波応答特性を得るように構成しても良い。また、CSRR−BPF2の並べ方は、図12に示すような直線的に並べられることに限定されるものではなく、検知対象部位A1や基準対象部位A2、A3をそれぞれのCSRR−BPF2に対して容易に近接又は当接させることができるよう並べて配置されていれば良い。
尚、本発明の実施の形態は上述の形態に限るものではなく、本発明の思想の範囲を逸脱しない範囲で適宜変更することができる。
本発明に係る生体検知装置及び生体検知方法は、例えば、指紋認証や静脈認証等の個人生体認証技術に組み合わせて用いることで、信頼性が高い情報セキュリティ技術として有効に利用することができる。
1 生体検知装置
2、2a スプリットリング共振器を有する帯域通過フィルタ(CSRR−BPF)
3 測定部(ベクトルネットワークアナライザ)
81 評価値算出部
82 生体判定部
9 RAM(記憶部)

Claims (7)

  1. 被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する複数の帯域通過フィルタと、
    電磁波を発生させ、前記検知対象部位及び前記被検体内の前記検知対象部位とは異なる位置である複数の基準対象部位を前記それぞれの帯域通過フィルタに近接又は当接させた際のそれぞれの電磁波応答特性を測定する測定部と、
    前記測定部によって測定された前記検知対象部位による前記電磁波応答特性の測定値と、前記複数の基準対象部位による前記それぞれの電磁波応答特性の測定値から得られる相対基準値とを用いて、前記被検体内での相対評価値を算出する評価値算出部と、
    前記評価値算出部によって算出された前記相対評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定部と、を備えることを特徴とする生体検知装置。
  2. 前記測定部によって測定される前記電磁波応答特性は、通過特性又は/及び反射特性であることを特徴とする請求項1に記載の生体検知装置。
  3. 前記それぞれの帯域通過フィルタは、前記検知対象部位及び前記基準対象部位の形状に沿うように、前記検知対象部位及び前記基準対象部位毎に3次元的に複数配置されていることを特徴とする請求項1又は2に記載の生体検知装置。
  4. 前記それぞれの帯域通過フィルタは、前記検知対象部位及び前記基準対象部位の形状に沿うように形成されていることを特徴とする請求項1又は2に記載の生体検知装置。
  5. 前記測定部によって測定された前記被検体とは異なる複数の被検体の検知対象部位をそれぞれ帯域通過フィルタに近接又は当接させた際の複数の電磁波応答特性の測定値から得られる絶対基準値を予め記憶する記憶部を備え、
    前記評価値算出部は、前記測定部によって測定された前記検知対象部位による前記電磁波応答特性の測定値と、前記記憶部に記憶されている前記絶対基準値とを用いて、絶対評価値を算出し、
    前記生体判定部は、前記相対評価値及び前記絶対評価値に基づいて、前記検知対象部位が生体であるか否かを判定することを特徴とする請求項1乃至4のいずれかに記載の生体検知装置。
  6. 前記検知対象部位を近接又は当接させる前記帯域通過フィルタは、複数並べて配置されていることを特徴とする請求項1乃至5のいずれかに記載の生体検知装置。
  7. 被検体の検知対象部位に応じて所定の中心周波数に設計されたスプリットリング共振器を有する複数の帯域通過フィルタに、電磁波を発生させ、前記検知対象部位及び前記被検体内の前記検知対象部位とは異なる位置である複数の基準対象部位を前記それぞれの帯域通過フィルタに近接又は当接させた際のそれぞれの電磁波応答特性を測定する測定ステップと、
    前記検知対象部位による前記電磁波応答特性の測定値と、前記複数の基準対象部位による前記それぞれの電磁波応答特性の測定値から得られる相対基準値とを用いて、前記被検体内での相対評価値を算出する評価値算出ステップと、
    前記相対評価値に基づいて、前記検知対象部位が生体であるか否かを判定する生体判定ステップと、を有することを特徴とする生体検知方法。
JP2014095705A 2014-05-07 2014-05-07 生体検知装置及び生体検知方法 Active JP6347349B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014095705A JP6347349B2 (ja) 2014-05-07 2014-05-07 生体検知装置及び生体検知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014095705A JP6347349B2 (ja) 2014-05-07 2014-05-07 生体検知装置及び生体検知方法

Publications (2)

Publication Number Publication Date
JP2015211798A true JP2015211798A (ja) 2015-11-26
JP6347349B2 JP6347349B2 (ja) 2018-06-27

Family

ID=54696473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014095705A Active JP6347349B2 (ja) 2014-05-07 2014-05-07 生体検知装置及び生体検知方法

Country Status (1)

Country Link
JP (1) JP6347349B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019037664A (ja) * 2017-08-28 2019-03-14 学校法人立命館 生体検知装置
CN112966557A (zh) * 2021-02-03 2021-06-15 南京信息工程大学 一种用于生物体检测的超材料传感器及其检测方法
CN114660365A (zh) * 2020-12-23 2022-06-24 安徽师范大学 一种基于双互补开环的表面传感器的5g双频段介电常数无损测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641305A (en) * 1987-06-24 1989-01-05 Matsushita Electric Ind Co Ltd Filter
JP2000172833A (ja) * 1998-12-10 2000-06-23 Omron Corp 指紋照合装置
JP2003111749A (ja) * 2001-10-09 2003-04-15 Bmf:Kk ヒューマン判定装置
JP2011258015A (ja) * 2010-06-09 2011-12-22 Sony Corp 静脈認証装置
JP2012503511A (ja) * 2008-09-26 2012-02-09 ハンスキャン アイピー ビーブイ 生きている生物有機体の存在を検出するための光学システム、方法、及びコンピュータプログラム
JP2013061946A (ja) * 2012-10-01 2013-04-04 Hitachi Ltd 指静脈認証装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641305A (en) * 1987-06-24 1989-01-05 Matsushita Electric Ind Co Ltd Filter
JP2000172833A (ja) * 1998-12-10 2000-06-23 Omron Corp 指紋照合装置
JP2003111749A (ja) * 2001-10-09 2003-04-15 Bmf:Kk ヒューマン判定装置
JP2012503511A (ja) * 2008-09-26 2012-02-09 ハンスキャン アイピー ビーブイ 生きている生物有機体の存在を検出するための光学システム、方法、及びコンピュータプログラム
JP2011258015A (ja) * 2010-06-09 2011-12-22 Sony Corp 静脈認証装置
JP2013061946A (ja) * 2012-10-01 2013-04-04 Hitachi Ltd 指静脈認証装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
粂澤康司、井口悟、前田忠彦: "広帯域CSRR−BPFを利用した静脈認証用生体検知手法の提案", 電子情報通信学会論文誌 B, vol. 95, no. 10, JPN7018001151, October 2012 (2012-10-01), JP, pages 1284 - 1287, ISSN: 0003777177 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019037664A (ja) * 2017-08-28 2019-03-14 学校法人立命館 生体検知装置
JP2022002730A (ja) * 2017-08-28 2022-01-11 学校法人立命館 生体検知装置
JP7168259B2 (ja) 2017-08-28 2022-11-09 学校法人立命館 生体検知装置
CN114660365A (zh) * 2020-12-23 2022-06-24 安徽师范大学 一种基于双互补开环的表面传感器的5g双频段介电常数无损测量方法
CN112966557A (zh) * 2021-02-03 2021-06-15 南京信息工程大学 一种用于生物体检测的超材料传感器及其检测方法
CN112966557B (zh) * 2021-02-03 2023-06-27 南京信息工程大学 一种用于生物体检测的超材料传感器及其检测方法

Also Published As

Publication number Publication date
JP6347349B2 (ja) 2018-06-27

Similar Documents

Publication Publication Date Title
US9053308B2 (en) Multi electro-biometric user recognition
JP7168259B2 (ja) 生体検知装置
KR101019838B1 (ko) 전기-생체 신원 인식 방법 및 장치
Lourenço et al. Unveiling the biometric potential of finger‐based ECG signals
US20160352727A1 (en) System and method for asset authentication and management
US10614280B2 (en) System and method for fingerprint validation
US20050281439A1 (en) Method and apparatus for electro-biometric identity recognition
Moqadam et al. Cancer detection based on electrical impedance spectroscopy: A clinical study
US20140120876A1 (en) Ecg measuring device and method thereof
Islam et al. Biometric template extraction from a heartbeat signal captured from fingers
Pal et al. ECG biometric recognition
Cornelius et al. Who Wears Me? Bioimpedance as a Passive Biometric.
KR101828800B1 (ko) 반사파를 이용한 위·변조 지문 검증 방법 및 장치
JP6347349B2 (ja) 生体検知装置及び生体検知方法
Alotaiby et al. ECG‐Based Subject Identification Using Statistical Features and Random Forest
JP2013150806A (ja) 電子バイオメトリック識別認識のための方法及び装置
Kang et al. Measurement and analysis of human body channel response for biometric recognition
Srivastva et al. Statistical independence of ECG for biometric authentication
KR101705200B1 (ko) 초음파를 이용한 손가락혈관 패턴인식 장치
KR20160001081A (ko) 뇌파를 기반으로 하는 군집 감성 분석 장치, 방법 및 이를 수행하기 위한 기록 매체
Rahman et al. PPGSign: Handwritten signature authentication using wearable PPG sensor
Geng et al. A noncontact method for locating radial artery above radial styloid process in thermal image
Lu et al. Pulse waveform analysis for pregnancy diagnosis based on machine learning
Cornelius et al. A SURVEY OF BIOMETRICS FOR WEARABLE DEVICES.
WO2012087332A1 (en) Systems and methods for remote long standoff biometric identification using microwave cardiac signals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6347349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250