JP2015209985A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2015209985A
JP2015209985A JP2014089581A JP2014089581A JP2015209985A JP 2015209985 A JP2015209985 A JP 2015209985A JP 2014089581 A JP2014089581 A JP 2014089581A JP 2014089581 A JP2014089581 A JP 2014089581A JP 2015209985 A JP2015209985 A JP 2015209985A
Authority
JP
Japan
Prior art keywords
hot water
water storage
storage tank
heat recovery
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014089581A
Other languages
Japanese (ja)
Other versions
JP6299383B2 (en
Inventor
圭一 天田
Keiichi Amada
圭一 天田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2014089581A priority Critical patent/JP6299383B2/en
Publication of JP2015209985A publication Critical patent/JP2015209985A/en
Application granted granted Critical
Publication of JP6299383B2 publication Critical patent/JP6299383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cogeneration system including a unit in which it is not required to mix surplus low temperature clean water when high temperature hot water is discharged and another unit or the like in which an advantage of operation cost can be sufficiently utilized.SOLUTION: A cogeneration system 1 comprises a power generation unit 2 for generating power; a hot water storage unit 3 having a hot water storage tank 11 for storing hot water; and an exhaust heat recovery circulation circuit 15 for circulating hot water between the power generation unit 2 and the hot water storage unit 3. The hot water storage unit 3 discharges high temperature hot water flowing at the exhaust heat recovery circulation circuit 15 out of the device through a discharging passage 32 when the hot water storage tank 11 is full with hot water, and the most-downstream side of the discharging passage 32 is provided with a mist nozzle 33 capable of discharging the high temperature hot water in its mist form.

Description

本発明はコージェネレーションシステムに関し、特に排熱回収運転時に貯湯タンクが満蓄状態になると貯湯タンクの高温の湯水を外部に排出可能な機能を有するものに関する。   The present invention relates to a cogeneration system, and more particularly to an apparatus having a function capable of discharging hot hot water from a hot water storage tank to the outside when the hot water storage tank becomes full during exhaust heat recovery operation.

従来から、内部熱源機や外部熱源機等の排熱を回収して再利用することで総合エネルギー効率を高めたコージェネレーションシステムが実用に供されている。このコージェネレーションシステムは、熱源機として燃料電池やガスエンジン等を組み合わせた発電装置の排熱を回収する種々のタイプのものが実用化されている。   Conventionally, a cogeneration system has been put to practical use in which the total energy efficiency is improved by collecting and reusing exhaust heat from an internal heat source machine or an external heat source machine. Various types of cogeneration systems have been put into practical use for recovering exhaust heat from a power generation apparatus that combines a fuel cell, a gas engine, or the like as a heat source.

例えば、燃料電池を備えたコージェネレーションシステムは、空気と改質燃料ガス(水素含有ガス)との酸化還元反応によって化学エネルギーを電気エネルギーに変換することで電力を発生させる発電ユニットと、この発電ユニットによる発電の際に副次的に発生する排気の排熱を湯水として回収して貯湯タンクに貯湯する貯湯ユニットと、発電ユニットと貯湯ユニットとの間に湯水を循環させる排熱回収循環回路等から構成されている。   For example, a cogeneration system including a fuel cell includes a power generation unit that generates electric power by converting chemical energy into electric energy by an oxidation-reduction reaction between air and reformed fuel gas (hydrogen-containing gas), and the power generation unit. From a hot water storage unit that collects exhaust heat from the exhaust generated during power generation by hot water as hot water and stores it in a hot water storage tank, and from an exhaust heat recovery circuit that circulates hot water between the power generation unit and the hot water storage unit It is configured.

ところで、貯湯タンクから排熱回収循環回路を介して発電ユニットの排熱回収熱交換器へ流れる湯水の温度は、貯湯タンクの蓄熱状況により上昇し、やがて、貯湯タンクが満蓄状態(高温の湯水で満タンの状態)となると、排熱回収熱交換器への湯水の温度が高くなりすぎて排熱回収が困難になる。発電ユニットの発電継続には水蒸気改質用の純水が必要であるが、この純水は排気ガスを冷却することで回収される凝縮水から生成されるため、湯水が高温となると十分な量の純水を回収できなくなるという問題がある。   By the way, the temperature of the hot water flowing from the hot water storage tank to the exhaust heat recovery heat exchanger of the power generation unit through the exhaust heat recovery circulation circuit rises due to the heat storage status of the hot water storage tank. In the case of full tank), the temperature of the hot water to the exhaust heat recovery heat exchanger becomes too high, and exhaust heat recovery becomes difficult. In order to continue the power generation of the power generation unit, pure water for steam reforming is required, but since this pure water is produced from the condensed water recovered by cooling the exhaust gas, a sufficient amount of hot water becomes high There is a problem that the pure water cannot be collected.

そこで、上記の問題を解決する為に、貯湯タンクの満蓄時には、排熱回収熱交換器を流れる湯水温度を低下させる必要が生じる。従来では、排熱回収循環回路に湯水を冷却する為のラジエータが設置されているので、このラジエータを作動することによって、熱交換器へ供給される湯水の温度を低下させて凝縮水を回収している。   Therefore, in order to solve the above problem, it is necessary to reduce the temperature of hot water flowing through the exhaust heat recovery heat exchanger when the hot water storage tank is fully stored. Conventionally, a radiator for cooling the hot water is installed in the exhaust heat recovery circuit. By operating this radiator, the temperature of the hot water supplied to the heat exchanger is lowered to recover the condensed water. ing.

また、一般にラジエータは複雑な構造で高価なものであるから、排熱回収循環回路にラジエータを設置することは、製作コストの低減及び装置の小型化を図る上で不利であるので、例えば、特許文献1の燃料電池コージェネレーションには、排熱回収熱交換器から戻る高温の湯水を機外に排出し、上水源から低温の上水を導入して排熱回収熱交換器に供給することで、ラジエータを省略可能にした構造が開示されている。   Further, since a radiator is generally a complicated structure and expensive, installing a radiator in an exhaust heat recovery circuit is disadvantageous in terms of reducing manufacturing costs and downsizing the apparatus. In the fuel cell cogeneration of Document 1, high temperature hot water returning from the exhaust heat recovery heat exchanger is discharged outside the machine, and low temperature clean water is introduced from the water source and supplied to the exhaust heat recovery heat exchanger. A structure in which the radiator can be omitted is disclosed.

特開2013−12381号公報JP2013-12381A

しかし、上記の特許文献1の排熱回収熱交換器から戻る高温の湯水(例えば80℃)を機外に排出し、低温の上水を補給して湯水の温度を低下させる技術においては、水道法上により、高温の湯水はそのまま機外に排出できないので、低温の上水と混合して湯水温度を45℃以下に低下させてから機外に排出する必要がある。つまり、高温の湯水の排出時に、低温の上水を無駄に消費してしまうので、無駄なコストが発生し、コージェネレーションシステムの運転コストの利点を十分に活用できないという問題が生じる。また、高温の湯水をそのまま機外に排出できないので、低温の上水との混合部を設ける必要があり、構造上に無駄が生じるという問題もある。   However, in the technique of discharging high temperature hot water (for example, 80 ° C.) returning from the exhaust heat recovery heat exchanger of the above-mentioned Patent Document 1 to the outside of the apparatus and replenishing low temperature clean water to lower the temperature of the hot water, According to the law, hot hot water cannot be discharged out of the machine as it is, so it is necessary to mix it with low temperature tap water to lower the hot water temperature to 45 ° C. or lower before discharging it out of the machine. That is, when hot hot water is discharged, low temperature clean water is consumed wastefully, resulting in a wasteful cost and a problem that the advantages of the operation cost of the cogeneration system cannot be fully utilized. Moreover, since hot hot water cannot be discharged out of the apparatus as it is, it is necessary to provide a mixing section with low temperature clean water, and there is a problem that waste is generated in the structure.

本発明の目的は、コージェネレーションシステムにおいて、高温の湯水を排出する際に余分な低温の上水を混合する必要のないもの、運転コストの利点を十分に活用することができるもの、等を提供することである。   The object of the present invention is to provide a cogeneration system that does not need to mix extra low temperature clean water when discharging hot hot water, and that can fully utilize the advantages of operating costs. It is to be.

請求項1のコージェネレーションシステムは、発電を行う発電ユニットと、湯水を貯湯する貯湯タンクを有する貯湯ユニットと、前記発電ユニットと前記貯湯ユニットとの間に湯水を循環させる排熱回収循環回路とを備えたコージェネレーションシステムにおいて、前記貯湯ユニットは、前記貯湯タンクが満蓄状態になった場合、前記排熱回収循環回路を流れる高温の湯水又は前記貯湯タンク内に貯留された高温の湯水を、排出通路を介して機外に排出するように構成され、前記排出通路の最下流部には、前記高温の湯水をミスト状に排出可能なミストノズルが設けられたことを特徴としている。   The cogeneration system according to claim 1 includes a power generation unit for generating power, a hot water storage unit having a hot water storage tank for storing hot water, and an exhaust heat recovery and circulation circuit for circulating hot water between the power generation unit and the hot water storage unit. In the provided cogeneration system, the hot water storage unit discharges hot hot water flowing through the exhaust heat recovery circuit or hot hot water stored in the hot water storage tank when the hot water storage tank becomes full. It is configured to discharge to the outside through the passage, and a mist nozzle capable of discharging the hot hot water in a mist form is provided at the most downstream portion of the discharge passage.

請求項2のコージェネレーションシステムは、請求項1の発明において、前記排出通路は、前記排熱回収循環回路の前記発電ユニットの排熱回収熱交換器の下流側で且つ前記貯湯タンクの上流側から分岐されたことを特徴としている。   The cogeneration system according to a second aspect is the invention according to the first aspect, wherein the exhaust passage is from a downstream side of the exhaust heat recovery heat exchanger of the power generation unit of the exhaust heat recovery circuit and from an upstream side of the hot water storage tank. It is characterized by being branched.

請求項1の発明によれば、コージェネレーションシステムにおいて、貯湯タンクが満蓄状態になった場合には、排熱回収循環回路を流れる高温の湯水又は貯湯タンク内に貯留された高温の湯水を、排出通路を介して機外に排出することができ、このとき、排出通路を流れる高温の湯水は、排出通路の最下流部に設けられたミストノズルによってミスト状になって排出される。   According to the invention of claim 1, in the cogeneration system, when the hot water storage tank is fully stored, the hot hot water flowing in the exhaust heat recovery circuit or the hot hot water stored in the hot water storage tank, It can be discharged out of the machine via the discharge passage. At this time, hot hot water flowing through the discharge passage is discharged in the form of a mist by a mist nozzle provided at the most downstream portion of the discharge passage.

従って、高温の湯水をミストノズルから放出する際に、高温の湯水がミスト状になることで、外気と接触する表面積が増加して湯水温度の低下が促進されるので、高温の湯水の排出時に余分な低温の上水を混合する必要がなくなり、無駄なコストの発生を防止することで、コージェネレーションシステムの設置による運転コストの利点を十分に活用可能になる。   Therefore, when discharging hot water from the mist nozzle, the hot water becomes mist, which increases the surface area in contact with the outside air and promotes a decrease in hot water temperature. It is not necessary to mix extra low-temperature clean water, and it is possible to fully utilize the advantages of operating costs by installing a cogeneration system by preventing the generation of unnecessary costs.

請求項2の発明によれば、排出通路は、排熱回収循環回路の発電ユニットの排熱回収熱交換器の下流側で且つ貯湯タンクの上流側から分岐されたので、貯湯タンクが満蓄状態になった場合でも貯湯タンク内の湯水を排水せずに維持することができる。   According to the invention of claim 2, since the exhaust passage is branched downstream of the exhaust heat recovery heat exchanger of the power generation unit of the exhaust heat recovery circuit and from the upstream side of the hot water storage tank, the hot water storage tank is fully charged. Even if it becomes, it can maintain the hot water in the hot water storage tank without draining.

本発明の実施例に係るコージェネレーションシステムの発電ユニットの概略構成図である。It is a schematic block diagram of the electric power generation unit of the cogeneration system which concerns on the Example of this invention. 貯湯ユニットの概略構成図である。It is a schematic block diagram of a hot water storage unit. 部分変更形態に係る貯湯ユニットの概略構成図である。It is a schematic block diagram of the hot water storage unit which concerns on a partial change form.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

先ず、本発明のコージェネレーションシステム1の全体構成について説明する。
図1,図2に示すように、コージェネレーションシステム1は、発電を行う発電ユニット2と、湯水を貯湯する貯湯タンク11を有する貯湯ユニット3と、発電ユニット2と貯湯ユニット3との間に湯水を循環させる排熱回収循環回路15等を備え、発電ユニット2の排気と貯湯タンク11内の湯水とを熱交換させる排熱回収に伴い排気中の水分を回収する機能を有するものである。
First, the overall configuration of the cogeneration system 1 of the present invention will be described.
As shown in FIGS. 1 and 2, the cogeneration system 1 includes hot water between a power generation unit 2 that generates power, a hot water storage unit 3 having a hot water storage tank 11 for storing hot water, and the power generation unit 2 and the hot water storage unit 3. The exhaust heat recovery circuit 15 and the like for circulating the heat are provided, and has a function of recovering moisture in the exhaust gas in accordance with exhaust heat recovery for exchanging heat between the exhaust of the power generation unit 2 and the hot water in the hot water storage tank 11.

次に、発電ユニット2について説明する。
図1に示すように、発電ユニット2は、発電モジュール4と、カソード空気ブロア5aと、燃料ガス昇圧ブロア5bと、燃料改質空気ブロア5cと、排気排出通路6と、排熱回収熱交換器7と、水処理装置8と、インバータ9等を備え、これらの各種器具が外装ケース10に収納されて構成されている。発電モジュール4にて発電された直流電力は、インバータ9を介して交流電力に変換されて外部に出力される。
Next, the power generation unit 2 will be described.
As shown in FIG. 1, the power generation unit 2 includes a power generation module 4, a cathode air blower 5a, a fuel gas booster blower 5b, a fuel reforming air blower 5c, an exhaust discharge passage 6, and an exhaust heat recovery heat exchanger. 7, a water treatment device 8, an inverter 9, and the like, and these various instruments are housed in an outer case 10. The DC power generated by the power generation module 4 is converted into AC power via the inverter 9 and output to the outside.

発電モジュール4は、燃料電池セルスタック4aと、蒸発器4bと、燃料改質器4cと、オフガス燃焼室4d等を備え、燃料改質器4cによって改質された改質燃料ガス及び酸化剤としての空気を燃料電池セルスタック4aで化学反応させることで発電を行うものでる。   The power generation module 4 includes a fuel cell stack 4a, an evaporator 4b, a fuel reformer 4c, an off-gas combustion chamber 4d, etc., and as reformed fuel gas and oxidant reformed by the fuel reformer 4c. Is generated by a chemical reaction of the air in the fuel cell stack 4a.

排熱回収熱交換器7は、排気排出通路6の内部に設けられ、排熱回収循環回路15の一部を構成する熱交換通路部7aを備えている。この排熱回収熱交換器7において、発電モジュール4から排出される排気を、熱交換通路部7aを流れる湯水との間で熱交換させて、排気中に含まれる水蒸気は冷却され凝縮されて凝縮水となる。   The exhaust heat recovery heat exchanger 7 includes a heat exchange passage portion 7 a that is provided inside the exhaust exhaust passage 6 and constitutes a part of the exhaust heat recovery circulation circuit 15. In the exhaust heat recovery heat exchanger 7, the exhaust discharged from the power generation module 4 is heat-exchanged with hot water flowing through the heat exchange passage 7a, and the water vapor contained in the exhaust is cooled, condensed and condensed. It becomes water.

水処理装置8は、排熱回収熱交換器7にて凝縮された凝縮水を、回収通路8aを介して回収し、処理タンクのイオン交換樹脂により不純物を取り除いた水を、貯留タンクに一時的に貯留し、送水ポンプの駆動により、貯留タンク内の水を、水供給通路8bを介して発電モジュール4の蒸発器4bに供給するものである。   The water treatment device 8 collects the condensed water condensed in the exhaust heat recovery heat exchanger 7 through the collection passage 8a, and temporarily removes the water from which impurities are removed by the ion exchange resin of the treatment tank to the storage tank. The water in the storage tank is supplied to the evaporator 4b of the power generation module 4 through the water supply passage 8b by driving the water pump.

次に、貯湯ユニット3について説明する。
図2に示すように、貯湯ユニット3は、排気の熱を湯水として蓄熱する為の貯湯タンク11と、補助熱源機12と、給水通路13と、給湯通路14と、排熱回収循環回路15と、混合弁16と、三方弁17と、制御ユニット18等を備え、これら大部分は外装ケース20内に一体的に収納されている。
Next, the hot water storage unit 3 will be described.
As shown in FIG. 2, the hot water storage unit 3 includes a hot water storage tank 11 for storing exhaust heat as hot water, an auxiliary heat source unit 12, a water supply passage 13, a hot water supply passage 14, and an exhaust heat recovery circulation circuit 15. The mixing valve 16, the three-way valve 17, the control unit 18, and the like are provided, and most of them are integrally stored in the outer case 20.

貯湯タンク11は、発電ユニット2で加熱された高温の湯水(例えば、65〜90℃)を貯留可能な密閉タンクで構成され、貯留された湯水の放熱を防ぐ為にタンク周囲は断熱材で覆われている。貯湯タンク11の外周部には、下側から上側に向かって等間隔に複数の温度センサ21a〜21dが順に設けられ、これら複数の温度センサ21a〜21dにより貯湯タンク11内の複数の貯留層の湯水温度が検出される。   The hot water storage tank 11 is composed of a sealed tank capable of storing high-temperature hot water (for example, 65 to 90 ° C.) heated by the power generation unit 2, and the tank periphery is covered with a heat insulating material in order to prevent heat dissipation of the stored hot water. It has been broken. A plurality of temperature sensors 21 a to 21 d are provided in order at equal intervals from the lower side to the upper side on the outer periphery of the hot water storage tank 11, and a plurality of storage layers in the hot water storage tank 11 are formed by the plurality of temperature sensors 21 a to 21 d. Hot water temperature is detected.

補助熱源機12は、バーナーや熱交換器等を内蔵した公知のガス給湯器で構成されている。補助熱源機12は、貯湯タンク11内の湯水温度が低下した場合等の特別な場合に限り、制御ユニット18から指令が送信されて燃焼作動され、湯水を加熱するものである。   The auxiliary heat source unit 12 is composed of a known gas water heater that incorporates a burner, a heat exchanger, and the like. The auxiliary heat source unit 12 is heated in response to a command transmitted from the control unit 18 only in a special case such as when the hot water temperature in the hot water storage tank 11 is lowered, and heats the hot water.

給水通路13は、上水源から低温の上水を貯湯タンク11等に供給するものであり、上流給水通路部13a、下流給水通路部13bを有し、上流端が上水源に接続され、下流端が貯湯タンク11の下部に接続されている。上流給水通路部13aと下流給水通路部13bとの間から給湯通路14に接続するバイパス通路23が分岐されている。上流給水通路部13aには、温度センサ21eと減圧弁24が設けられている。   The water supply passage 13 supplies low temperature clean water from a water supply source to the hot water storage tank 11 and the like. The water supply passage 13 has an upstream water supply passage portion 13a and a downstream water supply passage portion 13b, and has an upstream end connected to the water supply source and a downstream end. Is connected to the lower part of the hot water storage tank 11. A bypass passage 23 connected to the hot water supply passage 14 is branched from between the upstream water supply passage portion 13a and the downstream water supply passage portion 13b. A temperature sensor 21e and a pressure reducing valve 24 are provided in the upstream water supply passage 13a.

給湯通路14は、貯湯タンク11に貯湯された湯水を風呂等の所望の給湯先に供給するものであり、上流給湯通路部14a、下流給湯通路部14bを有し、上流端が貯湯タンク11に接続され、下流端が給湯栓25に接続されている。上流給湯通路部14aには、流量センサ22aと温度センサ21fが設けられ、下流給湯通路部14bには、流量センサ22bと温度センサ21gが設けられている。上流給湯通路部14aの途中部から分岐してドレン放出部25に接続される排出通路26が設けられ、この排出通路26に圧力リリーフ弁27が設けられている。   The hot water supply passage 14 supplies hot water stored in the hot water storage tank 11 to a desired hot water supply destination such as a bath, and has an upstream hot water supply passage portion 14a and a downstream hot water supply passage portion 14b. The downstream end is connected to the hot water tap 25. The upstream hot water supply passage 14a is provided with a flow rate sensor 22a and a temperature sensor 21f, and the downstream hot water supply passage 14b is provided with a flow rate sensor 22b and a temperature sensor 21g. A discharge passage 26 branched from the middle portion of the upstream hot water supply passage portion 14 a and connected to the drain discharge portion 25 is provided, and a pressure relief valve 27 is provided in the discharge passage 26.

上流給湯通路部14aと下流給湯通路部14bとの間には、混合弁16が設けられ、この混合弁16に給水通路13から分岐したバイパス通路23が接続されている。混合弁16は、出湯温度が目標給湯設定温度になるように低温の上水と高温の湯水の混合比を制御するものである。   A mixing valve 16 is provided between the upstream hot water supply passage portion 14a and the downstream hot water supply passage portion 14b, and a bypass passage 23 branched from the water supply passage 13 is connected to the mixing valve 16. The mixing valve 16 controls the mixing ratio of the low temperature tap water and the high temperature hot water so that the tapping temperature becomes the target hot water supply set temperature.

下流給湯通路部14bの途中部には、補助熱源機12が設置されている。上流給水通路部13aから分岐した分岐通路28が、下流給湯通路部14bの補助熱源機12の上流側に接続され、分岐通路28には、高温出湯回避用の電磁弁29が設けられている。   An auxiliary heat source machine 12 is installed in the middle of the downstream hot water supply passage 14b. A branch passage 28 branched from the upstream water supply passage portion 13a is connected to the upstream side of the auxiliary heat source unit 12 in the downstream hot water supply passage portion 14b, and an electromagnetic valve 29 for avoiding high-temperature hot water is provided in the branch passage 28.

図1,図2に示すように、排熱回収循環回路15は、貯湯タンク11と発電ユニット2との間に湯水を循環させて発電ユニット2の排熱を回収する閉回路であり、低温側循環通路部15a、高温側循環通路部15b等を有し、上流端が貯湯タンク11の下部に接続され、下流端が貯湯タンク11の上部に接続されている。低温側循環通路部15aと高温側循環通路部15bとの間には、排熱回収熱交換器7の熱交換通路部7aが接続されている。尚、低温側循環通路部15aの上流端と下流給水通路部13bの下流端は、共通の通路部で構成されている。   As shown in FIGS. 1 and 2, the exhaust heat recovery circuit 15 is a closed circuit that recovers exhaust heat from the power generation unit 2 by circulating hot water between the hot water storage tank 11 and the power generation unit 2. A circulation passage portion 15 a, a high temperature side circulation passage portion 15 b, and the like are provided, and an upstream end is connected to a lower portion of the hot water storage tank 11 and a downstream end is connected to an upper portion of the hot water storage tank 11. The heat exchange passage portion 7a of the exhaust heat recovery heat exchanger 7 is connected between the low temperature side circulation passage portion 15a and the high temperature side circulation passage portion 15b. In addition, the upstream end of the low temperature side circulation channel | path part 15a and the downstream end of the downstream water supply channel | path part 13b are comprised by the common channel | path part.

低温側循環通路部15aには、温度センサ21hが設けられ、高温側循環通路部15bには、温度センサ21iが設けられている。貯湯ユニット3の出口付近(発電ユニット2の入口付近)の低温側循環通路部15a内の湯水の温度が、温度センサ21hにより検出され、貯湯ユニット3の入口付近(発電ユニット2の出口付近)の高温側循環通路部15b内の湯水の温度が、温度センサ21iにより検出される。   The low temperature side circulation passage portion 15a is provided with a temperature sensor 21h, and the high temperature side circulation passage portion 15b is provided with a temperature sensor 21i. The temperature of hot water in the low temperature side circulation passage portion 15a near the outlet of the hot water storage unit 3 (near the inlet of the power generation unit 2) is detected by the temperature sensor 21h, and near the inlet of the hot water storage unit 3 (near the outlet of the power generation unit 2). The temperature of hot water in the high temperature side circulation passage portion 15b is detected by the temperature sensor 21i.

循環ポンプ31は、排熱回収循環回路15に湯水を循環させる為の循環ポンプであり、低温側循環通路部15aの発電ユニット2側に設けられている(図1参照)。尚、循環ポンプ31は、低温側循環通路部15aの貯湯ユニット3側に設けられても良い。   The circulation pump 31 is a circulation pump for circulating hot water in the exhaust heat recovery circuit 15 and is provided on the power generation unit 2 side of the low temperature side circulation passage portion 15a (see FIG. 1). The circulation pump 31 may be provided on the hot water storage unit 3 side of the low temperature side circulation passage portion 15a.

通常の排熱回収運転時には、貯湯タンク11から循環ポンプ31の駆動を介して湯水が、低温側循環通路部15aを通り排熱回収熱交換器7の熱交換通路部7aに送られ、排熱回収熱交換器7で加熱された湯水は、高温側循環通路部15bを流れて貯湯タンク11に戻されて貯留される。給湯運転時には、貯湯タンク11に貯留された高温の湯水(例えば、65〜90℃)は、給湯通路14に供給される。   During normal exhaust heat recovery operation, hot water is sent from the hot water storage tank 11 through the driving of the circulation pump 31 to the heat exchange passage portion 7a of the exhaust heat recovery heat exchanger 7 through the low temperature side circulation passage portion 15a. The hot water heated by the recovery heat exchanger 7 flows through the high temperature side circulation passage portion 15b, returns to the hot water storage tank 11, and is stored. During the hot water supply operation, hot hot water (for example, 65 to 90 ° C.) stored in the hot water storage tank 11 is supplied to the hot water supply passage 14.

次に、本発明に関連する排出通路32について説明する。
図2に示すように、排出通路32は、貯湯タンク11が満蓄状態になった場合に排熱回収循環回路15を流れる高温の湯水を、ドレン放出部25を介して機外に排出するものであり、排熱回収循環回路15のうちの排熱回収熱交換器7の熱交換通路部7aより下流側で且つ貯湯タンク11より上流側である高温側循環通路部15bから分岐してドレン放出部25に延びるように設けられている。
Next, the discharge passage 32 related to the present invention will be described.
As shown in FIG. 2, the discharge passage 32 discharges hot hot water flowing through the exhaust heat recovery circulation circuit 15 to the outside through the drain discharge part 25 when the hot water storage tank 11 is fully stored. In the exhaust heat recovery circulation circuit 15, the water is branched from the high temperature side circulation passage portion 15 b that is downstream from the heat exchange passage portion 7 a of the exhaust heat recovery heat exchanger 7 and upstream from the hot water storage tank 11. A portion 25 is provided so as to extend.

排出通路32の下流端部分は、下方に延びるように設置され、この排出通路32の最下流部には、高温の湯水をミスト状に排出可能なミストノズル33が設けられている。このミストノズル33は、高温の湯水をミスト状に放出可能な公知のミストノズルで構成されている。具体的に、ミストノズル33は、例えば、排出通路32を流れる65〜90℃の湯水を給水圧によってミスト状にすることで45℃以下に低下するように構成されている。ミストノズル33から放出される際に温度低下した湯水は、ドレン放出部25を介して機外に排出される。   A downstream end portion of the discharge passage 32 is installed to extend downward, and a mist nozzle 33 capable of discharging hot hot water in a mist form is provided at the most downstream portion of the discharge passage 32. The mist nozzle 33 is a known mist nozzle that can discharge hot hot water in a mist form. Specifically, the mist nozzle 33 is configured to be lowered to 45 ° C. or less by, for example, making 65 to 90 ° C. hot water flowing through the discharge passage 32 into a mist shape by the supply water pressure. The hot water whose temperature has dropped when discharged from the mist nozzle 33 is discharged to the outside through the drain discharge portion 25.

高温側循環通路部15bは、上流通路部15c、下流通路部15dを有し、上流通路部15cと下流通路部15dとの間の排出通路32が分岐する分岐部には、三方弁17が設けられている。上流通路部15cの下流端が三方弁17(ポートA)に接続され、排出通路32の上流端が三方弁17(ポートB)に接続され、下流通路部15dの上流端が三方弁17(ポートC)に接続され、この三方弁17により上流通路部15cが下流通路部15dと排出通路32の何れかに択一的に接続される。   The high temperature side circulation passage portion 15b has an upstream passage portion 15c and a downstream passage portion 15d, and a three-way valve 17 is provided at a branch portion where the discharge passage 32 between the upstream passage portion 15c and the downstream passage portion 15d branches. Is provided. The downstream end of the upstream passage portion 15c is connected to the three-way valve 17 (port A), the upstream end of the discharge passage 32 is connected to the three-way valve 17 (port B), and the upstream end of the downstream passage portion 15d is connected to the three-way valve 17 ( The three-way valve 17 selectively connects the upstream passage portion 15c to either the downstream passage portion 15d or the discharge passage 32.

このように、貯湯ユニット3は、貯湯タンク11が満蓄状態になった場合、三方弁17を切り換えることで、排熱回収循環回路15を流れる高温の湯水を、排出通路32を介して機外に排出するように構成されている。   As described above, when the hot water storage tank 11 becomes full, the hot water storage unit 3 switches the three-way valve 17 so that hot hot water flowing through the exhaust heat recovery circulation circuit 15 is discharged from the outside of the machine via the discharge passage 32. It is configured to discharge.

貯湯ユニット3は、制御ユニット18によって制御される。各種のセンサの検出信号が制御ユニット18に送信され、この制御ユニット18により、貯湯ユニット3の動作、各種のポンプの作動・停止、各種の弁の開閉状態の切り換え及び開度調整等を制御し、各種運転(排熱回収運転、上水導入運転、給湯運転等)を実行する。   The hot water storage unit 3 is controlled by the control unit 18. Detection signals of various sensors are transmitted to the control unit 18, and the control unit 18 controls the operation of the hot water storage unit 3, the operation / stop of various pumps, the switching of the open / close states of various valves, and the opening adjustment. Various operations (exhaust heat recovery operation, water supply introduction operation, hot water supply operation, etc.) are executed.

制御ユニット18は、ユーザーが操作可能な操作リモコンとの間でデータ通信可能であり、操作リモコンのスイッチ操作により各種の運転が設定されると、その指令信号が操作リモコンから制御ユニット18に送信される。例えば、操作リモコンのスイッチ操作により目標給湯設定温度が設定されると、その目標給湯設定温度データが操作リモコンから制御ユニット18に送信される。   The control unit 18 can perform data communication with an operation remote controller that can be operated by the user. When various operations are set by operating the operation remote controller, a command signal is transmitted from the operation remote controller to the control unit 18. The For example, when the target hot water set temperature is set by operating the switch of the operation remote controller, the target hot water set temperature data is transmitted from the operation remote controller to the control unit 18.

次に、本発明のコージェネレーションシステム1の作用及び効果について説明する。
このコージェネレーションシステム1は、水処理装置8の貯留タンク内の水の貯留状態と貯湯タンク11の湯水の貯湯状態等に応じて、貯湯タンク11内の湯水を排熱回収循環回路15に循環させて排熱回収熱交換器7で排気と熱交換する通常の排熱回収運転と、貯湯タンク11内の湯水を使用せずに上水源から低温の上水を導入して排熱回収熱交換器7で排気と熱交換する上水導入運転を有する。
Next, the operation and effect of the cogeneration system 1 of the present invention will be described.
The cogeneration system 1 circulates hot water in the hot water storage tank 11 to the exhaust heat recovery circuit 15 according to the storage state of water in the storage tank of the water treatment device 8 and the hot water storage state of the hot water storage tank 11. Normal exhaust heat recovery operation for exchanging heat with exhaust gas in the exhaust heat recovery heat exchanger 7, and introducing low temperature clean water from a water source without using hot water in the hot water storage tank 11, and a heat recovery heat exchanger 7 has a water supply operation for exchanging heat with the exhaust.

通常の排熱回収運転においては、三方弁17をポートA−ポートC間を接続する開弁状態に設定する。つまり、三方弁17は、排出通路32を閉止して排熱回収循環回路15を循環状態になるように制御される。循環ポンプ31の駆動により貯湯タンク11の下端部から低温側循環通路部15aを経て熱交換通路部7aに流入した湯水は、オフガス燃焼室4dから排出された排気と熱交換し、この湯水を暖め、加熱された湯水が高温側循環通路部15bを通って貯湯タンク11に貯留され、この運転を繰り返すことで貯湯タンク11に高温の湯水が貯留される。   In the normal exhaust heat recovery operation, the three-way valve 17 is set to an open state in which the port A and the port C are connected. That is, the three-way valve 17 is controlled so that the exhaust passage 32 is closed and the exhaust heat recovery circuit 15 is in a circulation state. The hot water flowing into the heat exchange passage portion 7a from the lower end portion of the hot water storage tank 11 through the low temperature side circulation passage portion 15a by driving the circulation pump 31 exchanges heat with the exhaust discharged from the offgas combustion chamber 4d, and warms the hot water. The heated hot water is stored in the hot water storage tank 11 through the high temperature side circulation passage portion 15b, and hot water is stored in the hot water storage tank 11 by repeating this operation.

一方、発電ユニット2においては、排熱回収熱交換器7で排気に含まれる水蒸気が冷却されて凝縮水を発生し、この凝縮水は、回収通路8aを介して水処理装置8の処理タンクに送られ、処理タンク内で凝縮水の不純物を除去し、この浄化された水を貯留タンクに送り一時的に貯留する。その後、この貯留タンクに貯留された水は、水供給通路8bを介して発電モジュール4の蒸発器4bに送られ、改質用の水として再利用される。   On the other hand, in the power generation unit 2, the water vapor contained in the exhaust gas is cooled by the exhaust heat recovery heat exchanger 7 to generate condensed water, and this condensed water is supplied to the treatment tank of the water treatment device 8 through the recovery passage 8a. Then, impurities in the condensed water are removed in the treatment tank, and the purified water is sent to the storage tank and temporarily stored. Thereafter, the water stored in the storage tank is sent to the evaporator 4b of the power generation module 4 through the water supply passage 8b and reused as reforming water.

しかし、貯湯タンク11から低温側循環通路部15aを介して排熱回収熱交換器7へ送られる湯水の温度は、貯湯タンク11の蓄熱状況によって徐々に上昇し、やがて、貯湯タンク11が満蓄状態となり、排熱回収循環回路15を循環する湯水が排熱回収熱交換器7における露点近傍の温度に達する。すると、排気の温度低下が小さくなり、排熱回収熱交換器7で発生する凝縮水の量が低減して十分な量の凝縮水を回収できなくなり、改質用の純水の供給が不足するので、以下に説明する上水導入運転に切り換える。   However, the temperature of the hot water sent from the hot water storage tank 11 to the exhaust heat recovery heat exchanger 7 via the low temperature side circulation passage portion 15a gradually increases depending on the heat storage state of the hot water storage tank 11, and eventually the hot water storage tank 11 is fully stored. The hot water circulating in the exhaust heat recovery circuit 15 reaches a temperature near the dew point in the exhaust heat recovery heat exchanger 7. Then, the temperature drop of the exhaust gas is reduced, the amount of condensed water generated in the exhaust heat recovery heat exchanger 7 is reduced, and a sufficient amount of condensed water cannot be recovered, and the supply of reforming pure water is insufficient. Therefore, the operation is switched to the water supply operation described below.

この上水導入運転においては、循環ポンプ31の駆動を停止して、貯湯ユニット3の三方弁17のポートA−ポートB間を接続する開弁状態に設定する。つまり、貯湯タンク11内の湯水の温度が所定の設定温度以上且つ貯留タンク内の水が所定の設定水位に低下時には、三方弁17を介して貯湯タンク11への湯水の循環を停止して排出通路32を開放することによって、排熱回収循環回路15から高温の湯水を排出するとともに、給水通路13から低温の上水を、給水圧を利用して低温側循環通路部15aへ導入する。   In this clean water introduction operation, the driving of the circulation pump 31 is stopped, and the valve is set in an open state in which the port A and the port B of the three-way valve 17 of the hot water storage unit 3 are connected. That is, when the temperature of the hot water in the hot water storage tank 11 is equal to or higher than the predetermined set temperature and the water in the storage tank drops to the predetermined set water level, the hot water circulation to the hot water storage tank 11 is stopped and discharged via the three-way valve 17. By opening the passage 32, hot hot water is discharged from the exhaust heat recovery circulation circuit 15, and low temperature clean water from the water supply passage 13 is introduced into the low temperature side circulation passage portion 15a using the water supply pressure.

低温側循環通路部15aを経て熱交換通路部7aに流入した低温の上水は、オフガス燃焼室4dから排出された排気に含まれる水蒸気と熱交換し、この上水を暖め、加熱された湯水が高温側循環通路部15bと排出通路32とを通ってドレン放出部25に排出される。尚、排出通路32から高温の湯水を排出する際には、高温の湯水は、排出通路32の最下流部に設けられたミストノズル33によってミスト状の水滴となってドレン放出部25に放出され、ドレン放出部25を介して機外へ排出される。   The low temperature clean water that has flowed into the heat exchange passage 7a through the low temperature side circulation passage 15a exchanges heat with water vapor contained in the exhaust gas discharged from the offgas combustion chamber 4d, warming the clean water, and heated hot water. Is discharged to the drain discharge portion 25 through the high temperature side circulation passage portion 15 b and the discharge passage 32. When discharging hot hot water from the discharge passage 32, the hot hot water is discharged into the drain discharge portion 25 as mist-like water droplets by the mist nozzle 33 provided at the most downstream portion of the discharge passage 32. Then, it is discharged to the outside through the drain discharge part 25.

一方、発電ユニット2においては、低温の上水が導入されることで、排熱回収熱交換器7の冷却能力が増すので、通常の排熱回収運転の場合と比較して多めの凝縮水が発生し、この凝縮水を、回収通路8aを介して水処理装置8の処理タンクに送られ、処理タンク内で処理した後に貯留タンクに貯留することができる。   On the other hand, in the power generation unit 2, since the cooling capacity of the exhaust heat recovery heat exchanger 7 is increased by introducing low temperature clean water, a larger amount of condensed water than in the case of normal exhaust heat recovery operation is generated. The condensed water is generated and sent to the treatment tank of the water treatment device 8 through the recovery passage 8a, and can be stored in the storage tank after being treated in the treatment tank.

このように、満蓄状態となった貯湯タンク11内の湯水に代えて低温の上水を熱交換に利用する事で、水蒸気との間の熱交換を促進し、十分な量の凝縮水を回収することができ、改質用の水不足による異常運転を回避することができる。その後、貯留タンクの水位が設定水位以上に回復した場合や貯湯タンク11内の湯水の温度が所定の設定温度より低下した場合は、上水源からの上水の導入を停止して、通常の排熱回収運転に切り換える。   In this way, by using low temperature clean water for heat exchange instead of hot water in the hot water storage tank 11 which has become fully charged, heat exchange with water vapor is promoted, and a sufficient amount of condensed water is obtained. It can be recovered, and abnormal operation due to lack of water for reforming can be avoided. After that, when the water level of the storage tank recovers to the set water level or higher, or when the temperature of the hot water in the hot water storage tank 11 falls below the predetermined set temperature, the introduction of the clean water from the clean water source is stopped and the normal drainage is stopped. Switch to heat recovery operation.

以上説明したように、コージェネレーションシステム1において、貯湯タンク11が満蓄状態になった場合には、排熱回収循環回路15を流れる高温の湯水を、排出通路32を介して機外に排出することができる。このとき、排出通路32を流れる高温の湯水は、排出通路32の最下流部に設けられたミストノズル33によってミスト状になって排出される。   As described above, in the cogeneration system 1, when the hot water storage tank 11 is fully stored, the hot hot water flowing through the exhaust heat recovery circuit 15 is discharged to the outside through the discharge passage 32. be able to. At this time, hot hot water flowing through the discharge passage 32 is discharged in a mist form by the mist nozzle 33 provided at the most downstream portion of the discharge passage 32.

従って、高温の湯水をミストノズル33から放出する際に、高温の湯水がミスト状になることで、外気と接触する表面積が増加して湯水温度の低下が促進されるので、高温の湯水の排出時に余分な低温の上水を混合する必要がなくなり、無駄なコストの発生を防止することで、コージェネレーションシステム1の設置による運転コストの利点を十分に活用可能になる。   Accordingly, when the hot water is discharged from the mist nozzle 33, the high temperature hot water becomes a mist, which increases the surface area in contact with the outside air and promotes a decrease in the hot water temperature. By eliminating the need to sometimes mix extra low temperature clean water, it is possible to fully utilize the advantages of operating costs due to the installation of the cogeneration system 1.

また、排出通路32は、排熱回収循環回路15の発電ユニット2の排熱回収熱交換器7の下流側で且つ貯湯タンク11の上流側から分岐されたので、貯湯タンク11が満蓄状態になった場合でも貯湯タンク11内の湯水を排水せずに維持することができる。   Further, since the exhaust passage 32 is branched from the downstream side of the exhaust heat recovery heat exchanger 7 of the power generation unit 2 of the exhaust heat recovery circuit 15 and from the upstream side of the hot water storage tank 11, the hot water storage tank 11 is fully charged. Even if it becomes, the hot water in the hot water storage tank 11 can be maintained without draining.

次に、前記実施例を部分的に変更した形態について説明する。
[1]図3に示すように、上流通路部15cと下流通路部15dとの間の分岐部に三方弁17を設けた構造に代えて、排出通路32の途中部に開閉弁41を設けた構造であっても良い。この構造の場合、上水導入運転時に、開閉弁41を開弁状態に切り換えると、排熱回収循環回路15を流れる高温の湯水は、排出通路32を介して機外に排出されると共に、高温の湯水の一部が貯湯タンク11に戻される。
Next, a mode in which the above embodiment is partially changed will be described.
[1] As shown in FIG. 3, an opening / closing valve 41 is provided in the middle of the discharge passage 32 instead of the structure in which the three-way valve 17 is provided at the branch portion between the upstream passage portion 15 c and the downstream passage portion 15 d. The structure may be different. In the case of this structure, when the on-off valve 41 is switched to the open state at the time of water supply introduction operation, hot hot water flowing through the exhaust heat recovery circuit 15 is discharged outside the apparatus through the discharge passage 32 and is also hot. A part of the hot water is returned to the hot water storage tank 11.

[2]前記実施例において、排熱回収循環回路15から分岐する排出通路32に代えて、給湯通路14の上流給湯通路部14aから分岐する排出通路を設け、この排出通路の途中部に開閉弁を設け、排出通路の最下流部にミストノズル33を設けた構造であっても良い。この構造の場合、上水導入運転時に、循環ポンプ31を駆動させた状態で開閉弁を開弁状態に切り換えると、排熱回収循環回路15から貯湯タンク11に戻った高温の湯水を、上流給湯通路部14aから排出通路に流して機外に排出することができる。 [2] In the above embodiment, instead of the discharge passage 32 branched from the exhaust heat recovery circuit 15, a discharge passage branched from the upstream hot water supply passage portion 14a of the hot water supply passage 14 is provided, and an open / close valve is provided in the middle of the discharge passage. And a structure in which the mist nozzle 33 is provided in the most downstream portion of the discharge passage. In the case of this structure, when the open / close valve is switched to the open state while the circulation pump 31 is driven during the water supply operation, the hot water returned to the hot water storage tank 11 from the exhaust heat recovery circuit 15 is supplied to the upstream hot water supply. It can flow from the passage portion 14a to the discharge passage and be discharged out of the machine.

[3]前記実施例において、発電ユニット2として燃料電池について説明したが、これに限定する必要はなく、ガスエンジン等を採用しても良いし、これら以外にも種々の公知なものを採用可能である。 [3] Although the fuel cell has been described as the power generation unit 2 in the above-described embodiment, it is not necessary to limit to this, and a gas engine or the like may be employed, and various other known ones may be employed. It is.

[4]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例の種々の変更を付加した形態で実施可能で、本発明はそのような変更形態を包含するものである。 [4] In addition, those skilled in the art can implement the present invention by adding various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. is there.

1 コージェネレーションシステム
2 発電ユニット
3 貯湯ユニット
7 排熱回収熱交換器
11 貯湯タンク
15 排熱回収循環回路
32 排出通路
33 ミストノズル
DESCRIPTION OF SYMBOLS 1 Cogeneration system 2 Power generation unit 3 Hot water storage unit 7 Waste heat recovery heat exchanger 11 Hot water storage tank 15 Waste heat recovery circulation circuit 32 Discharge passage 33 Mist nozzle

Claims (2)

発電を行う発電ユニットと、湯水を貯湯する貯湯タンクを有する貯湯ユニットと、前記発電ユニットと前記貯湯ユニットとの間に湯水を循環させる排熱回収循環回路とを備えたコージェネレーションシステムにおいて、
前記貯湯ユニットは、前記貯湯タンクが満蓄状態になった場合、前記排熱回収循環回路を流れる高温の湯水又は前記貯湯タンク内に貯留された高温の湯水を、排出通路を介して機外に排出するように構成され、
前記排出通路の最下流部には、前記高温の湯水をミスト状に排出可能なミストノズルが設けられたことを特徴とするコージェネレーションシステム。
In a cogeneration system comprising a power generation unit for generating power, a hot water storage unit having a hot water storage tank for storing hot water, and an exhaust heat recovery circulation circuit for circulating hot water between the power generation unit and the hot water storage unit,
When the hot water storage tank becomes full, the hot water storage unit is configured to pass hot hot water flowing through the exhaust heat recovery circuit or hot hot water stored in the hot water storage tank through the discharge passage. Configured to discharge,
A cogeneration system characterized in that a mist nozzle capable of discharging the high-temperature hot water in a mist form is provided at the most downstream portion of the discharge passage.
前記排出通路は、前記排熱回収循環回路の前記発電ユニットの排熱回収熱交換器の下流側で且つ前記貯湯タンクの上流側から分岐されたことを特徴とする請求項1に記載のコージェネレーションシステム。

2. The cogeneration system according to claim 1, wherein the exhaust passage is branched from a downstream side of an exhaust heat recovery heat exchanger of the power generation unit of the exhaust heat recovery circuit and from an upstream side of the hot water storage tank. system.

JP2014089581A 2014-04-23 2014-04-23 Cogeneration system Active JP6299383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014089581A JP6299383B2 (en) 2014-04-23 2014-04-23 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014089581A JP6299383B2 (en) 2014-04-23 2014-04-23 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2015209985A true JP2015209985A (en) 2015-11-24
JP6299383B2 JP6299383B2 (en) 2018-03-28

Family

ID=54612316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014089581A Active JP6299383B2 (en) 2014-04-23 2014-04-23 Cogeneration system

Country Status (1)

Country Link
JP (1) JP6299383B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004224A (en) * 2016-07-07 2018-01-11 大阪瓦斯株式会社 Electrothermal cogeneration system and hot water supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349225A (en) * 2005-06-14 2006-12-28 Rinnai Corp Control method for hot water heating system
JP2008500449A (en) * 2004-05-21 2008-01-10 エクソンモービル・ケミカル・パテンツ・インク Process and apparatus for removing coke formed during steam pyrolysis of hydrocarbon feedstock containing residual oil
JP2008267755A (en) * 2007-04-24 2008-11-06 Toto Ltd Bathroom air conditioner
JP2010182484A (en) * 2009-02-04 2010-08-19 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and method for operating the same
JP2013012381A (en) * 2011-06-29 2013-01-17 Noritz Corp Fuel cell cogeneration system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500449A (en) * 2004-05-21 2008-01-10 エクソンモービル・ケミカル・パテンツ・インク Process and apparatus for removing coke formed during steam pyrolysis of hydrocarbon feedstock containing residual oil
JP2006349225A (en) * 2005-06-14 2006-12-28 Rinnai Corp Control method for hot water heating system
JP2008267755A (en) * 2007-04-24 2008-11-06 Toto Ltd Bathroom air conditioner
JP2010182484A (en) * 2009-02-04 2010-08-19 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and method for operating the same
JP2013012381A (en) * 2011-06-29 2013-01-17 Noritz Corp Fuel cell cogeneration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004224A (en) * 2016-07-07 2018-01-11 大阪瓦斯株式会社 Electrothermal cogeneration system and hot water supply system

Also Published As

Publication number Publication date
JP6299383B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
US20060150652A1 (en) Cooling/heating apparatus using waste heat from fuel cell
JP2008251554A (en) Fuel cell system
JP5760749B2 (en) Fuel cell cogeneration system
JP4661063B2 (en) Fuel cell cogeneration system
WO2011052233A1 (en) Fuel cell cogeneration system
JP2013105612A (en) Fuel cell system and method for controlling fuel cell system
JP2017068913A (en) Fuel battery system
JP5063189B2 (en) Fuel cell device
JP4981468B2 (en) Hot water storage water heater
JP2008300058A (en) Fuel cell device
JP5361125B2 (en) Fuel cell device
JP6299383B2 (en) Cogeneration system
JP5388463B2 (en) Fuel cell device
JP5593808B2 (en) Fuel cell hot water supply system
JP3780714B2 (en) Fuel cell power generator
JP2006294535A (en) Fuel cell system
JP4926298B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP4986424B2 (en) Power generator
JP5153177B2 (en) Fuel cell device
JP2013206657A (en) Fuel cell power generation system
JP5178020B2 (en) Fuel cell device
JP5919939B2 (en) Hot water storage heater
JP2016207581A (en) Fuel cell cogeneration system
JP2003163023A (en) Fuel cell system
JP2020184455A (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R150 Certificate of patent or registration of utility model

Ref document number: 6299383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250