JP2015209405A - Alicyclic monoepoxy-monool compound having bis-spironorbornane structure, and method for producing the same - Google Patents

Alicyclic monoepoxy-monool compound having bis-spironorbornane structure, and method for producing the same Download PDF

Info

Publication number
JP2015209405A
JP2015209405A JP2014092116A JP2014092116A JP2015209405A JP 2015209405 A JP2015209405 A JP 2015209405A JP 2014092116 A JP2014092116 A JP 2014092116A JP 2014092116 A JP2014092116 A JP 2014092116A JP 2015209405 A JP2015209405 A JP 2015209405A
Authority
JP
Japan
Prior art keywords
compound
alicyclic
general formula
monool
monoepoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014092116A
Other languages
Japanese (ja)
Inventor
大輔 渡部
Daisuke Watabe
大輔 渡部
雅貴 野口
Masaki Noguchi
雅貴 野口
松本 隆也
Takanari Matsumoto
隆也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2014092116A priority Critical patent/JP2015209405A/en
Publication of JP2015209405A publication Critical patent/JP2015209405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Epoxy Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel alicyclic monoepoxy-monool compound useful as an intermediate of medicine, an intermediate material for industrial products, and an additive; and to provide a method for producing the same.SOLUTION: Problems are solved through: the synthesis and identification of an alicyclic monoepoxy-monool compound having a cycloalkanone bis-spironorbornane structure represented by the following general formula (1); the review of a production method; and the analysis of a reaction intermediate. In the formula, one of Rand Ris -OH and the other thereof is -H; Rand Rare each independently the one selected from the group consisting of a hydrogen atom, 1-10C alkyl group, and a fluorine atom; and n is an integer of 2 to 5.

Description

本発明は、医薬中間体や工業製品の中間原料及び添加剤として有用な化合物である新規な脂環式モノエポキシ―モノオール化合物とその製造方法に関する。   The present invention relates to a novel alicyclic monoepoxy-monool compound, which is a compound useful as an intermediate raw material and additive for pharmaceutical intermediates and industrial products, and a method for producing the same.

脂環式エポキシ化合物は、高い透明性を有するエポキシ樹脂の原料となる点から、光学用途向けエポキシ樹脂の主成分として使用されている(特許文献1)。また、様々な材料に特定の機能を付与するための添加剤としても使用されている(特許文献2,3)。一方、脂環式アルコール化合物は、アクリル酸誘導体やカーボネート等へ変換し、原料または添加剤として用いることにより、機能性を高めた樹脂を製造することができる。これらの樹脂は光学用素子、光ディスク、光ファイバー等の光学材料としての利用が期待される材料である。例えば、アダマンタノールから誘導される重合体は、光学特性、耐湿性、耐熱性に優れたものである(特許文献4)。   An alicyclic epoxy compound is used as a main component of an epoxy resin for optical applications because it becomes a raw material for an epoxy resin having high transparency (Patent Document 1). Moreover, it is used also as an additive for providing a specific function to various materials (patent documents 2 and 3). On the other hand, an alicyclic alcohol compound can be converted into an acrylic acid derivative, carbonate, or the like, and used as a raw material or additive to produce a resin with improved functionality. These resins are expected to be used as optical materials such as optical elements, optical disks, and optical fibers. For example, a polymer derived from adamantanol has excellent optical properties, moisture resistance, and heat resistance (Patent Document 4).

特開2013−170238号公報JP 2013-170238 A 特開平11−80317号公報Japanese Patent Laid-Open No. 11-80317 特開2003−026882号公報Japanese Patent Laid-Open No. 2003-026882 特開2003−252810号公報JP 2003-252810 A 特開2011−162479号公報JP 2011-162479 A

本発明の目的は、主として、ビススピロノルボルナン骨格を有する脂環式モノエポキシ−モノオール化合物とその製造方法を提供することにある。   An object of the present invention is mainly to provide an alicyclic monoepoxy-monool compound having a bisspironorbornane skeleton and a method for producing the same.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、下記一般式(2)で表されるノルボルネン化合物を出発原料とし、これを下記一般式(3)で示される、ビススピロノルボルナン構造を有する脂環式ジエポキシ化合物に変換し、次いで、エポキシ環の片側のみを選択的に還元させることで、下記一般式(1)で示される、ビススピロノルボルナン構造を有する脂環式モノエポキシーモノオール化合物を製造できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have used a norbornene compound represented by the following general formula (2) as a starting material, and this is a bisspiro represented by the following general formula (3). An alicyclic monoepoxy having a bisspironorbornane structure represented by the following general formula (1) is obtained by converting into an alicyclic diepoxy compound having a norbornane structure and then selectively reducing only one side of the epoxy ring. The inventors have found that a monool compound can be produced and have completed the present invention.

すなわち本発明の第一は、下記一般式(1)で表されるビススピロノルボルナン構造を有する脂環式モノエポキシ−モノオール化合物に関する。

Figure 2015209405
(R、Rのいずれか一方は−OH、他方は−Hであり、R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。) That is, the first of the present invention relates to an alicyclic monoepoxy-monool compound having a bisspirononorbornane structure represented by the following general formula (1).
Figure 2015209405
(One of R 1 and R 2 is —OH, the other is —H, and R 3 and R 4 are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom. And n represents an integer of 2 to 5.)

すなわち本発明の第二は、前記一般式(1)において、n=2または3であることを特徴とする、本発明第一の脂環式モノエポキシ−モノオール化合物に関する。   That is, the second of the present invention relates to the first alicyclic monoepoxy-monool compound of the present invention, wherein n = 2 or 3 in the general formula (1).

すなわち本発明の第三は、前記一般式(1)において、n=2であることを特徴とする、本発明第一の脂環式モノエポキシ−モノオール化合物に関する。   That is, the third of the present invention relates to the first alicyclic monoepoxy-monool compound of the present invention, wherein n = 2 in the general formula (1).

すなわち本発明の第四は、下記一般式(2)中の二つの炭素−炭素不飽和結合をエポキシ化して、下記一般式(3)で表される脂環式ジエポキシ化合物を製造し、次いで、当該化合物中の片側のエポキシ基を選択的に還元することにより、前記一般式(1)で表される脂環式モノエポキシ−モノオール化合物を製造する方法に関する。

Figure 2015209405
(R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。)
Figure 2015209405
(R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。)
Figure 2015209405
(R、Rのいずれか一方は−OH、他方は−Hであり、R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。) That is, in the fourth aspect of the present invention, an alicyclic diepoxy compound represented by the following general formula (3) is produced by epoxidizing two carbon-carbon unsaturated bonds in the following general formula (2). The present invention relates to a method for producing an alicyclic monoepoxy-monool compound represented by the general formula (1) by selectively reducing an epoxy group on one side of the compound.
Figure 2015209405
(R 1 and R 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents an integer of 2 to 5)
Figure 2015209405
(R 1 and R 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents an integer of 2 to 5)
Figure 2015209405
(One of R 1 and R 2 is —OH, the other is —H, and R 3 and R 4 are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom. And n represents an integer of 2 to 5.)

すなわち本発明の第五は、前記一般式(1)において、nが2または3であることを特徴とする、本発明第四の脂環式モノエポキシ−モノオール化合物の製造方法に関する。   That is, the fifth of the present invention relates to the fourth method for producing an alicyclic monoepoxy-monool compound of the present invention, wherein n is 2 or 3 in the general formula (1).

すなわち本発明の第六は、前記一般式(1)において、nが2であることを特徴とする、本発明第四の脂環式モノエポキシ−モノオール化合物の製造方法に関する。   That is, the sixth of the present invention relates to the fourth method for producing an alicyclic monoepoxy-monool compound of the present invention, wherein n is 2 in the general formula (1).

本発明により、ビススピロノルボルナン構造を有する脂環式モノエポキシ―モノオール化合物とその製造方法が提供される。当該化合物は医薬中間体や工業製品の中間原料及び添加剤等として有用である。   According to the present invention, an alicyclic monoepoxy-monool compound having a bisspironorbornane structure and a method for producing the same are provided. The compound is useful as an intermediate material and additive for pharmaceutical intermediates and industrial products.

実施例1で得られた化学式(6)で表される脂環式ジエポキシ化合物のIRスペクトルを示すチャートである。2 is a chart showing an IR spectrum of an alicyclic diepoxy compound represented by the chemical formula (6) obtained in Example 1. FIG. 実施例1で得られた化学式(6)で表される脂環式ジエポキシ化合物のH−NMR(CDCl)スペクトルを示すチャートである。2 is a chart showing a 1 H-NMR (CDCl 3 ) spectrum of an alicyclic diepoxy compound represented by the chemical formula (6) obtained in Example 1. FIG. 実施例1で得られた化学式(6)で表される脂環式ジエポキシ化合物の13C−NMR(CDCl)スペクトルを示すチャートである。2 is a chart showing a 13 C-NMR (CDCl 3 ) spectrum of an alicyclic diepoxy compound represented by the chemical formula (6) obtained in Example 1. FIG. 実施例1で得られた化学式(6)で表される脂環式ジエポキシ化合物のFD−MSスペクトルを示すチャートである。2 is a chart showing an FD-MS spectrum of an alicyclic diepoxy compound represented by the chemical formula (6) obtained in Example 1. FIG. 実施例1で得られた化学式(7)で表される脂環式モノエポキシ−モノオール化合物のIRスペクトルを示すチャートである。2 is a chart showing an IR spectrum of an alicyclic monoepoxy-monool compound represented by chemical formula (7) obtained in Example 1. FIG. 実施例1で得られた化学式(7)で表される脂環式モノエポキシ−モノオール化合物のH−NMR(CDCl)スペクトルを示すチャートである。2 is a chart showing a 1 H-NMR (CDCl 3 ) spectrum of an alicyclic monoepoxy-monool compound represented by chemical formula (7) obtained in Example 1. FIG. 実施例1で得られた化学式(7)で表される脂環式モノエポキシ−モノオール化合物の13C−NMR(CDCl)スペクトルを示すチャートである。2 is a chart showing a 13 C-NMR (CDCl 3 ) spectrum of an alicyclic monoepoxy-monool compound represented by chemical formula (7) obtained in Example 1. FIG. 実施例1で得られた化学式(7)で表される脂環式モノエポキシ−モノオール化合物のFD−MSスペクトルを示すチャートである。3 is a chart showing an FD-MS spectrum of an alicyclic monoepoxy-monool compound represented by chemical formula (7) obtained in Example 1. FIG.

(本発明の脂環式モノエポキシ−モノオール化合物の構造)
本発明に係る脂環式モノエポキシ−モノオール化合物は、下記一般式(1)で表される、ビススピロノルボルナン骨格を有する脂環式モノエポキシ−モノオール化合物である。
(Structure of the alicyclic monoepoxy-monool compound of the present invention)
The alicyclic monoepoxy-monool compound according to the present invention is an alicyclic monoepoxy-monool compound having a bisspironorbornane skeleton represented by the following general formula (1).

Figure 2015209405
(R、Rのいずれか一方は−OH、他方は−Hであり、R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。)
Figure 2015209405
(One of R 1 and R 2 is —OH, the other is —H, and R 3 and R 4 are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom. And n represents an integer of 2 to 5.)

本発明に係る脂環式モノエポキシ−モノオール化合物は、シクロアルカノンの対称位置にノルボルナン環を有し、対称性が強く、かつ、自由回転可能な炭素−炭素結合を持たないビススピロノルボルナン構造を基本構造として有することを特徴とする。現在まで、当該基本構造を有する脂環式モノエポキシ−モノオール化合物の製造例は知られていない。   The alicyclic monoepoxy-monool compound according to the present invention has a norbornane ring at the symmetrical position of the cycloalkanone, has a strong symmetry, and does not have a freely rotatable carbon-carbon bond. As a basic structure. To date, no production examples of alicyclic monoepoxy-monool compounds having the basic structure are known.

なお、前記一般式(1)は、シクロアルカノン環とノルボルナン環、ノルボルナン環とエポキシド環、およびノルボルナン環とヒドロキシ基との立体配座の関係から生じる複数の異性体を一括して表している。   The general formula (1) collectively represents a plurality of isomers generated from the conformational relationship between a cycloalkanone ring and a norbornane ring, a norbornane ring and an epoxide ring, and a norbornane ring and a hydroxy group. .

本発明に係る脂環式モノエポキシ−モノオール化合物の製造には、これらに対応する構造を有するビススピロノルボルネン化合物、すなわち、下記一般式(2)で表さるビススピロノルボルネン化合物を原料とし、当該化合物中の不飽和結合の化学修飾を経て製造することが好ましい。下記一般式(2)の製造方法は、本出願人によって、特許文献5(段落[0119]〜[0132])に開示されている。

Figure 2015209405
(R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。) In the production of the alicyclic monoepoxy-monool compound according to the present invention, a bisspironorbornene compound having a structure corresponding to these, that is, a bisspirononorbornene compound represented by the following general formula (2) is used as a raw material, It is preferable to produce it through chemical modification of the unsaturated bond in the compound. The manufacturing method of the following general formula (2) is disclosed in Patent Document 5 (paragraphs [0119] to [0132]) by the present applicant.
Figure 2015209405
(R 1 and R 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents an integer of 2 to 5)

特許文献5に開示する製造方法によって製造された(後述の実施例も参照)、ビススピロノルボルネン構造を有する化合物は、単離せず、反応混合液をそのまま使用することもできるし、単離・精製してから以降の反応に使用してもよい。
なお、シクロヘプタノン、シクロオクタノンを骨格とするビススピロノルボルネン構造を有する化合物も上記と同様にして合成することができる。
The compound having a bisspirornorbornene structure produced by the production method disclosed in Patent Document 5 (see also the examples described later) is not isolated, and the reaction mixture can be used as it is, or isolated and purified. Then, it may be used for subsequent reactions.
A compound having a bisspirononorbornene structure having cycloheptanone or cyclooctanone as a skeleton can be synthesized in the same manner as described above.

以下、上記ビススピロノルボルネン化合物から、本発明に係る脂環式モノエポキシ−モノオール化合物を製造する方法を述べる。   Hereinafter, a method for producing the alicyclic monoepoxy-monool compound according to the present invention from the bisspironorbornene compound will be described.

本発明に係る脂環式モノエポキシ−モノオール化合物を製造する際には、対応するビススピロノルボルネン化合物を原料として、エポキシ化して脂環式ジエポキシ化合物を得て、次いで、片側のエポキシド環のみを選択的に還元して得ることが好ましい。   When producing the alicyclic monoepoxy-monool compound according to the present invention, using the corresponding bisspirononorbornene compound as a raw material, an alicyclic diepoxy compound is obtained by epoxidation, and then only the epoxide ring on one side is obtained. It is preferably obtained by selective reduction.

(脂環式ジエポキシ化合物の製造方法)
上記ビススピロノルボルネン化合物から、本発明に係る脂環式モノエポキシ−モノオール化合物の製造中間体である脂環式ジエポキシ化合物を製造するには、炭素−炭素二重結合をエポキシ化することが好ましく、これには公知の方法を用いて行うことができる。その中でも、ヘテロポリ酸触媒と過酸の組み合わせが簡便であり、好ましい。
(Method for producing alicyclic diepoxy compound)
In order to produce an alicyclic diepoxy compound, which is an intermediate for producing an alicyclic monoepoxy-monool compound according to the present invention, from the bisspironorbornene compound, it is preferable to epoxidize a carbon-carbon double bond. This can be done using known methods. Among these, a combination of a heteropolyacid catalyst and a peracid is simple and preferable.

過酸では、例えば、過酸化水素水などの無機酸、過ギ酸、過酢酸、過プロピオン酸、過マレイン酸、過安息香酸、m−クロロ過安息香酸、過フタル酸などの有機過酸、及び、それらの酸無水物が挙げられる。これらの中でも、過酸化水素水を用いるのが好ましい。   Peracids include, for example, inorganic acids such as aqueous hydrogen peroxide, performic acid, peracetic acid, perpropionic acid, permaleic acid, perbenzoic acid, m-chloroperbenzoic acid, organic peracids such as perphthalic acid, and , And their acid anhydrides. Among these, it is preferable to use hydrogen peroxide water.

過酸化水素水は、市販のものをそのまま使用することができる。過酸化水素の使用量は、原料化合物のビススピロノルボルネン化合物中の炭素−炭素不飽和結合に対して2.0〜5.0倍モルの範囲であるのが好ましく、2.2〜3.0倍モルの範囲であるのがより好ましい。2.0倍モルより少ない場合、反応が十分に進行せず、また5.0倍モルを超える場合、生成した脂環式ジエポキシ化合物のエポキシ環の酸化分解などの副反応が進行して収率が低下する傾向となる。   A commercially available hydrogen peroxide solution can be used as it is. The amount of hydrogen peroxide used is preferably in the range of 2.0 to 5.0 moles relative to the carbon-carbon unsaturated bond in the bisspirononorbornene compound of the starting compound, 2.2 to 3.0 More preferably, it is in the range of double mole. When the amount is less than 2.0 times mole, the reaction does not proceed sufficiently. When the amount exceeds 5.0 times mole, side reactions such as oxidative decomposition of the epoxy ring of the produced alicyclic diepoxy compound proceed and the yield. Tends to decrease.

反応温度としては、30〜80℃の範囲であるのが好ましい。30℃未満の場合、反応速度が極めて小さく、反応効率が悪く、80℃を超える場合、原料、および、生成物の分解が生じることがある。   The reaction temperature is preferably in the range of 30 to 80 ° C. When the temperature is lower than 30 ° C, the reaction rate is extremely low and the reaction efficiency is poor. When the temperature exceeds 80 ° C, the raw materials and the product may be decomposed.

ヘテロポリ酸と過酸化水素水のモル比割合は、過酸化水素に対して1:100〜1:400の範囲であるのが好ましく、反応の効率を考慮すれば、1:150〜1:250の範囲であるのがより好ましい。   The molar ratio of the heteropolyacid and the hydrogen peroxide solution is preferably in the range of 1: 100 to 1: 400 with respect to hydrogen peroxide, and considering the reaction efficiency, the molar ratio is 1: 150 to 1: 250. A range is more preferable.

ジエポキシドの片側のエポキシドのみを開環する方法としては、リチウム−ナフタレン錯体を還元剤として用い、次いで水を添加する方法を用いることができる。公知の還元剤を用いた場合、開環反応が進行しない、または、エポキシドの開環だけでなく、シクロアルカノン環のカルボニル基も還元されてしまい、目的生成物を得ることができない。   As a method for opening only the epoxide on one side of the diepoxide, a method in which a lithium-naphthalene complex is used as a reducing agent and then water is added can be used. When a known reducing agent is used, the ring-opening reaction does not proceed, or not only the opening of the epoxide but also the carbonyl group of the cycloalkanone ring is reduced, and the target product cannot be obtained.

本発明に係る脂環式モノエポキシ―モノオール化合物とその製造方法が提供される。当該化合物は医薬中間体や工業製品の中間原料及び添加剤等として有用である。   An alicyclic monoepoxy-monool compound according to the present invention and a method for producing the same are provided. The compound is useful as an intermediate material and additive for pharmaceutical intermediates and industrial products.

以下、実施例を示して本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to a following example.

なお、以下において、各実施例で得られた化合物の分子構造の同定は、IR分光光度計(日本分光株式会社製、商品名:FT/IR−460、FT/IR−4100)、NMR分光測定機(VARIAN社製、商品名:UNITY INOVA−600及び日本電子株式会社製JNM−Lambda500)、及びFD−MS質量分析器(日本電子株式会社製、商品名:JMS−700V)を用いて、IR、NMR、及びFD−MSスペクトルを測定することにより行った。   In addition, in the following, identification of the molecular structure of the compound obtained in each Example is performed using an IR spectrophotometer (manufactured by JASCO Corporation, trade names: FT / IR-460, FT / IR-4100), NMR spectroscopy. IR machine (product name: UNITY INOVA-600 and JEOL Ltd. JNM-Lambda500) and FD-MS mass spectrometer (product of JEOL Ltd., product name: JMS-700V) , NMR, and FD-MS spectra were measured.

(原料「シクロペンタノン型ビススピロシクロノルボルネン」の合成)
(合成例1)
<第一工程>
先ず、1Lの三口フラスコにジメチルアミン塩酸塩を30.86g(378.5mmol)添加した。次に、前記三口フラスコ中に、パラホルムアルデヒド12.3g(385mmol)と、エチレングリコール23.9g(385mmol)と、シクロペンタノン12.95g(154mmol)とを更に添加した。次いで、前記三口フラスコ中に、メチルシクロヘキサン16.2g(165mmol)を添加した後、35質量%塩酸0.4g(HCl:3.85mmol)を添加して第一混合液を得た。なお、前記第一混合液中の酸(HCl)の含有量は、シクロペンタノン中のケトン基に対して0.025モル当量(3.85[HClのモル量]/154[シクロペンタノンのモル量]=0.025)であった。
(Synthesis of raw material "cyclopentanone type bisspirocyclonorbornene")
(Synthesis Example 1)
<First step>
First, 30.86 g (378.5 mmol) of dimethylamine hydrochloride was added to a 1 L three-necked flask. Next, 12.3 g (385 mmol) of paraformaldehyde, 23.9 g (385 mmol) of ethylene glycol, and 12.95 g (154 mmol) of cyclopentanone were further added to the three-necked flask. Next, after adding 16.2 g (165 mmol) of methylcyclohexane to the three-necked flask, 0.4 g of 35 mass% hydrochloric acid (HCl: 3.85 mmol) was added to obtain a first mixed solution. The acid (HCl) content in the first mixed solution is 0.025 molar equivalent (3.85 [mol amount of HCl] / 154 [cyclopentanone] based on the ketone group in cyclopentanone. Molar amount] = 0.025).

次いで、前記三口フラスコの内部を窒素置換し、常圧(0.1MPa)で前記三口フラスコ内の温度を85℃にして、前記第一混合液を8時間加熱攪拌して、下記化学式(5):

Figure 2015209405
で表されるマンニッヒ塩基を含有する反応液を得た。 Next, the inside of the three-necked flask was purged with nitrogen, the temperature in the three-necked flask was set at 85 ° C. at normal pressure (0.1 MPa), and the first mixed solution was heated and stirred for 8 hours to obtain the following chemical formula (5) :
Figure 2015209405
The reaction liquid containing the Mannich base represented by this was obtained.

<第二工程>
次に、前記三口フラスコ中の前記反応液を50℃に冷却した後、前記三口フラスコ中の前記反応液に対してメタノール(250ml)と、50質量%ジメチルアミン水溶液4.17g(ジメチルアミン:46.2mmol)と、シクロペンタジエン30.5g(461.5mmol)とを添加し、第二混合液を得た。次いで、前記三口フラスコの内部を窒素置換し、常圧(0.1MPa)で前記三口フラスコ内の温度を65℃にして、前記第二混合液を65℃で5時間加熱撹拌して化合物を生成させた。
<Second step>
Next, after cooling the reaction solution in the three-necked flask to 50 ° C., methanol (250 ml) and 4.17 g of a 50 mass% dimethylamine aqueous solution (dimethylamine: 46) with respect to the reaction solution in the three-necked flask. 0.2 mmol) and 30.5 g (461.5 mmol) of cyclopentadiene were added to obtain a second mixed solution. Next, the inside of the three-necked flask is replaced with nitrogen, the temperature in the three-necked flask is set to 65 ° C. at normal pressure (0.1 MPa), and the second mixed solution is heated and stirred at 65 ° C. for 5 hours to form a compound. I let you.

次いで、前記三口フラスコ内の前記第二混合液を、メチルシクロヘキサンとメタノールとの共沸により濃縮し、前記第二混合液から液体を100mL除去した。なお、このような液体100mLの除去により、前記第二混合液からメチルシクロヘキサンの大部分(濃縮前の前記第二混合液中のメチルシクロへキサンの全量に対して75質量%)が除去された。次に、このようなメチルシクロヘキサン除去後の前記第二混合液を−20℃の温度条件で12時間冷却して結晶を析出させた後、減圧濾過して結晶を得た。このようにして得られた結晶に対して、−20℃のメタノール20mLを用いて洗浄する工程を3回施した後、蒸発させることによりメタノールを除去し、生成物を17.4g(収率47%)得た。   Next, the second mixed liquid in the three-necked flask was concentrated by azeotropic distillation of methylcyclohexane and methanol, and 100 mL of the liquid was removed from the second mixed liquid. By removing 100 mL of such liquid, most of methylcyclohexane (75% by mass with respect to the total amount of methylcyclohexane in the second mixed solution before concentration) was removed from the second mixed solution. Next, after the said 2nd liquid mixture after methylcyclohexane removal was cooled on -20 degreeC temperature conditions for 12 hours, the crystal | crystallization was deposited, Then, it filtered under reduced pressure and the crystal | crystallization was obtained. The crystal thus obtained was washed three times with 20 mL of -20 ° C. methanol, and then evaporated to remove the methanol to obtain 17.4 g (yield 47) of the product. %)Obtained.

このようにして得られた化合物の構造を確認するために、IR及びNMR(H−NMR及び13C−NMR)測定を行ったところ、下記化学式(5):

Figure 2015209405
で表される5−ノルボルネン−2−スピロ−2’−シクロペンタノン−5’−スピロ−2’’−5’’−ノルボルネンであることが確認された。 In order to confirm the structure of the compound thus obtained, IR and NMR ( 1 H-NMR and 13 C-NMR) measurements were performed. The following chemical formula (5):
Figure 2015209405
It was confirmed that it was 5-norbornene-2-spiro-2′-cyclopentanone-5′-spiro-2 ″ -5 ″ -norbornene represented by

(実施例1)
(脂環式ジエポキシ化合物の合成)
還流管を装着した1Lの二口フラスコに、セチルピリジニウムクロライド(467mg、1.37mmol)と5−ノルボルネン−2−スピロ−2’−シクロペンタノン−5’−スピロ−2’’−5’’−ノルボルネン(10。0g、41.6mmol)とクロロホルム400mLを加え、室温で攪拌した。また、還流管を装着した200mLのナスフラスコにH3PW12O40(1.32g、0.458mmol)と過酸化水素水(濃度30wt%、21.1g、94.0mmol)を加え、60℃に加熱して30分間攪拌し、室温まで冷やすことで黄色の溶液を得た。この溶液を1Lの二口ナスフラスコに加え、40℃に加熱しながら攪拌した。反応の進行を確認するために、途中で反応溶液を一部採取し、H−NMRを測定した。その結果、中間体のモノエポキシドと生成物のジエポキシドの生成を確認したので、反応を継続した。加熱開始から4.5時間後、反応の終了を確認できたので、攪拌を止めて室温まで放冷した。溶液を分液ロートに移し、分液操作を行って、水層を除いた。次に、濃度10wt%のチオ硫酸ナトリウム水溶液50mLを調製した。これを有機層に加えて、分液操作を行い、水層を除いた。次に、濃度5wt%の炭酸ナトリウム水溶液50mLを調製した。これを有機層に加えて分液操作を行い、水層を捨てた。次に、有機層に純水100mLを加えて分液操作を行い、水層を捨てた。有機層を1L三角フラスコに移し、無水硫酸ナトリウムを加えて乾燥し、ろ過を行い、ろ液を濃縮すると、淡黄色の粉状粗生成物を得た。これを再結晶操作(使用溶媒はメタノール)により精製することで、白色生成物を7.38g得た(収率65.1%)。
Example 1
(Synthesis of alicyclic diepoxy compounds)
A 1 L two-necked flask equipped with a reflux tube was charged with cetylpyridinium chloride (467 mg, 1.37 mmol) and 5-norbornene-2-spiro-2′-cyclopentanone-5′-spiro-2 ″ -5 ″. -Norbornene (10.0 g, 41.6 mmol) and 400 mL of chloroform were added and stirred at room temperature. In addition, H3PW12O40 (1.32 g, 0.458 mmol) and hydrogen peroxide (concentration 30 wt%, 21.1 g, 94.0 mmol) were added to a 200 mL eggplant flask equipped with a reflux tube, heated to 60 ° C., and heated to 30 ° C. Stir for minutes and cool to room temperature to give a yellow solution. This solution was added to a 1 L two-neck eggplant flask and stirred while heating to 40 ° C. In order to confirm the progress of the reaction, a part of the reaction solution was collected on the way, and 1 H-NMR was measured. As a result, it was confirmed that the intermediate monoepoxide and the product diepoxide were formed, and the reaction was continued. After 4.5 hours from the start of heating, the completion of the reaction could be confirmed, so stirring was stopped and the mixture was allowed to cool to room temperature. The solution was transferred to a separatory funnel, and a liquid separation operation was performed to remove the aqueous layer. Next, 50 mL of a sodium thiosulfate aqueous solution having a concentration of 10 wt% was prepared. This was added to the organic layer, and a liquid separation operation was performed to remove the aqueous layer. Next, 50 mL of a sodium carbonate aqueous solution having a concentration of 5 wt% was prepared. This was added to the organic layer for liquid separation, and the aqueous layer was discarded. Next, 100 mL of pure water was added to the organic layer to perform a liquid separation operation, and the aqueous layer was discarded. The organic layer was transferred to a 1 L Erlenmeyer flask, dried by adding anhydrous sodium sulfate, filtered, and the filtrate was concentrated to obtain a pale yellow powdery crude product. This was purified by recrystallization operation (the solvent used was methanol) to obtain 7.38 g of a white product (yield 65.1%).

このようにして得られた化合物の構造を確認するために、IR、NMR(H−NMR及び13C−NMR)およびMS測定を行った。このようにして得られた化合物のIRスペクトル、H−NMR(CDCl)スペクトルを測定し、FD−MSスペクトルを測定して化合物を同定した。その結果から、得られた化合物は下記化学式(6)で表される化合物であることが確認された。

Figure 2015209405
In order to confirm the structure of the compound thus obtained, IR, NMR ( 1 H-NMR and 13 C-NMR) and MS measurements were performed. The IR spectrum and 1 H-NMR (CDCl 3 ) spectrum of the compound thus obtained were measured, and the FD-MS spectrum was measured to identify the compound. From the results, it was confirmed that the obtained compound was a compound represented by the following chemical formula (6).
Figure 2015209405

(リチウムナフタレン錯体の合成)
以下の作業はアルゴン雰囲気下のグローブボックスの中で行った。100mLナスフラスコにナフタレン(12.8g、99.8mmol)と脱水THF(50mL)を加えて均一の溶液とした。次に、金属リチウム(粒状、578.5mg)を少しずつ加え、室温で攪拌した。この際、金属リチウムが徐々に溶解し、深緑色の溶液になることを確認した。
不安定な化合物のため、NMR等機器分析による確認は不可能である。尚、この化合物は公知である。
(Synthesis of lithium naphthalene complex)
The following operations were performed in a glove box under an argon atmosphere. Naphthalene (12.8 g, 99.8 mmol) and dehydrated THF (50 mL) were added to a 100 mL eggplant flask to make a uniform solution. Next, metallic lithium (granular, 578.5 mg) was added little by little and stirred at room temperature. At this time, it was confirmed that the lithium metal was gradually dissolved to become a dark green solution.
Since it is an unstable compound, confirmation by instrumental analysis such as NMR is impossible. This compound is known.

(脂環式モノエポキシド−モノオールの合成)
50mLナスフラスコに原料のエポキシ化合物(200mg、0.734mmol)を入れ、窒素置換した。窒素を流しながら、脱水THF(5.1mL)を加えて均一の溶液とした。この溶液を−78℃(ドライアイス/アセトン冷媒を使用)に冷却し、リチウム−ナフタレン錯体の溶液(5.9mL)を加え、−78℃で3時間攪拌した。その後、脱気した純水(2mL)を加え、徐々に室温に戻しながら攪拌を6時間継続した。次に、溶液を100mL分液ロートに移し、水(10mL)と酢酸エチル(5mL)を加え分液操作を行い、水層を除いた。有機層に5%塩酸(10mL)を加えて分液操作を行い、水層を除いた。有機層を100mL三角フラスコに移し、無水硫酸ナトリウムを加えて乾燥処理を行った。ろ過を行い、ろ液を濃縮することで粗生成物を得た。これをカラムクロマトグラフィー(固定相:富士シリシア製シリカゲル、移動相:ヘキサン/酢酸エチル=1/2)にて精製を行い、目的生成物を得た。目的生成物のIR(図1参照)、H−NMR(図2参照),13C−NMR(図3参照)およびFD−MS測定(図4参照)を実施したところ、片方のエポキシド環のみが還元された、下記一般式(7)で表される化合物であることが確認された。

Figure 2015209405
(R、Rのいずれか一方は−OH、他方は−Hである。) (Synthesis of alicyclic monoepoxide-monool)
The raw material epoxy compound (200 mg, 0.734 mmol) was placed in a 50 mL eggplant flask and purged with nitrogen. While flowing nitrogen, dehydrated THF (5.1 mL) was added to obtain a homogeneous solution. This solution was cooled to −78 ° C. (using a dry ice / acetone refrigerant), a lithium-naphthalene complex solution (5.9 mL) was added, and the mixture was stirred at −78 ° C. for 3 hours. Thereafter, degassed pure water (2 mL) was added, and stirring was continued for 6 hours while gradually returning to room temperature. Next, the solution was transferred to a 100 mL separatory funnel, and water (10 mL) and ethyl acetate (5 mL) were added for liquid separation, and the aqueous layer was removed. 5% hydrochloric acid (10 mL) was added to the organic layer to perform a liquid separation operation, and the aqueous layer was removed. The organic layer was transferred to a 100 mL Erlenmeyer flask, and dried by adding anhydrous sodium sulfate. Filtration was performed, and the filtrate was concentrated to obtain a crude product. This was purified by column chromatography (stationary phase: silica gel manufactured by Fuji Silysia, mobile phase: hexane / ethyl acetate = 1/2) to obtain the desired product. When IR (see FIG. 1), 1 H-NMR (see FIG. 2), 13 C-NMR (see FIG. 3) and FD-MS measurement (see FIG. 4) of the target product were carried out, only one epoxide ring was observed. Was confirmed to be a compound represented by the following general formula (7).
Figure 2015209405
(One of R 1 and R 2 is —OH, and the other is —H.)

(シクロヘキサノン型ビススピロノルボルネンの合成):
特許文献7(段落[0126]〜[0132])に記載の実施例2に従って合成された(収率56%)。
(Synthesis of cyclohexanone type bisspironorbornene):
It was synthesized according to Example 2 described in Patent Document 7 (paragraphs [0126] to [0132]) (yield 56%).

(脂環式モノエポキシ−モノオール化合物の合成):
上記シクロヘキサノン型のビススピロノルボルネンを原料として、上記の方法と同様にして、シクロヘキサノン型のビススピロノルボルナン構造を有する脂環式ジエポキシドが合成される。IR、H−NMR、13C−NMR、MSスペクトルによって、生成物は下記化学式(8)で表されるシクロヘキサノン型脂環式ジエポキシ化合物構造であることが確認できる。
(Synthesis of alicyclic monoepoxy-monool compound):
An alicyclic diepoxide having a cyclohexanone type bisspironorbornane structure is synthesized using the cyclohexanone type bisspironorbornene as a raw material in the same manner as described above. From IR, 1 H-NMR, 13 C-NMR, and MS spectrum, it can be confirmed that the product has a cyclohexanone type alicyclic diepoxy compound structure represented by the following chemical formula (8).

Figure 2015209405
Figure 2015209405

シクロヘキサノン型脂環式ジエポキシ化合物を、片側のエポキシ環のみを選択的に還元して以下の化学式(9)で表されるシクロヘキサノン型脂環式モノエポキシ−モノオール化合物が得られる。IR、H−NMR、13C−NMR、MSスペクトルによって、生成物は下記化学式(8)で表される脂環式モノエポキシ−モノオール構造であることが確認できる。 A cyclohexanone type alicyclic monoepoxy-monool compound represented by the following chemical formula (9) is obtained by selectively reducing only one epoxy ring of the cyclohexanone type alicyclic diepoxy compound. It can be confirmed by IR, 1 H-NMR, 13 C-NMR, and MS spectrum that the product has an alicyclic monoepoxy-monool structure represented by the following chemical formula (8).

Figure 2015209405
(R、Rのいずれかは−OH、他方は−Hである。)
Figure 2015209405
(One of R 1 and R 2 is —OH, and the other is —H.)

(その他の脂環式モノエポキシ−モノオール化合物の合成):
一般式(1)において、シクロアルカノン環のn=4(シクロヘプタノン),5(シクロオクタノン)の場合も、上記の方法と同様にして、シクロヘプタノン型、シクロオクタノン型のビススピロノルボルナン構造を有する化合物を用い、各々脂環式ジエポキシ化合物を経て、対応する脂環式モノエポキシ−モノオール化合物が合成される。
(Synthesis of other alicyclic monoepoxy-monool compounds):
In the general formula (1), when n = 4 (cycloheptanone) and 5 (cyclooctanone) on the cycloalkanone ring, the cycloheptanone type and cyclooctanone type bis are formed in the same manner as the above method. The corresponding alicyclic monoepoxy-monool compound is synthesized through each alicyclic diepoxy compound using a compound having a spironobornane structure.

本発明に係る脂環式モノエポキシ−モノオール化合物は医薬中間体や工業製品の中間原料及び添加剤等として有用である。   The alicyclic monoepoxy-monool compounds according to the present invention are useful as intermediates and additives for pharmaceutical intermediates and industrial products.

Claims (6)

下記一般式(1)で表される脂環式モノエポキシ−モノオール化合物。
Figure 2015209405
(R、Rのいずれか一方は−OH、他方は−Hであり、R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。)
An alicyclic monoepoxy-monool compound represented by the following general formula (1).
Figure 2015209405
(One of R 1 and R 2 is —OH, the other is —H, and R 3 and R 4 are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom. And n represents an integer of 2 to 5.)
前記一般式(1)において、n=2または3であることを特徴とする、請求項1記載の脂環式モノエポキシ−モノオール化合物。   The alicyclic monoepoxy-monool compound according to claim 1, wherein n = 2 or 3 in the general formula (1). 前記一般式(1)において、n=2であることを特徴とする、請求項1記載の脂環式モノエポキシ−モノオール化合物。   The alicyclic monoepoxy-monool compound according to claim 1, wherein n = 2 in the general formula (1). 下記一般式(2)で表されるノルボルネン化合物を原料とし、当該化合物中の二つの炭素−炭素不飽和結合をエポキシ化して、下記一般式(3)で表される脂環式ジエポキシ化合物を製造し、次いで、当該化合物中の片側のエポキシ基を選択的に還元することにより、下記一般式(1)で表される脂環式モノエポキシ−モノオール化合物を製造することを特徴とする、下記一般式(1)で表される脂環式モノエポキシ−モノオール化合物の製造方法。
Figure 2015209405
(R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。)
Figure 2015209405
(R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。)
Figure 2015209405
(R、Rのいずれか一方は−OH、他方は−Hであり、R、Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、nは2〜5の整数を示す。)
A norbornene compound represented by the following general formula (2) is used as a raw material, and two carbon-carbon unsaturated bonds in the compound are epoxidized to produce an alicyclic diepoxy compound represented by the following general formula (3). Then, an alicyclic monoepoxy-monool compound represented by the following general formula (1) is produced by selectively reducing an epoxy group on one side of the compound. The manufacturing method of the alicyclic monoepoxy-monool compound represented by General formula (1).
Figure 2015209405
(R 1 and R 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents an integer of 2 to 5)
Figure 2015209405
(R 1 and R 2 each independently represent one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom, and n represents an integer of 2 to 5)
Figure 2015209405
(One of R 1 and R 2 is —OH, the other is —H, and R 3 and R 4 are each independently selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom. And n represents an integer of 2 to 5.)
前記一般式(1)において、n=2または3であることを特徴とする、請求項4記載の脂環式モノエポキシ−モノオール化合物の製造方法。   In the said General formula (1), it is n = 2 or 3, The manufacturing method of the alicyclic monoepoxy-monool compound of Claim 4 characterized by the above-mentioned. 前記一般式(1)において、n=2であることを特徴とする、請求項4記載の脂環式モノエポキシ−モノオール化合物の製造方法。   In the said General formula (1), it is n = 2, The manufacturing method of the alicyclic monoepoxy-monool compound of Claim 4 characterized by the above-mentioned.
JP2014092116A 2014-04-25 2014-04-25 Alicyclic monoepoxy-monool compound having bis-spironorbornane structure, and method for producing the same Pending JP2015209405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092116A JP2015209405A (en) 2014-04-25 2014-04-25 Alicyclic monoepoxy-monool compound having bis-spironorbornane structure, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092116A JP2015209405A (en) 2014-04-25 2014-04-25 Alicyclic monoepoxy-monool compound having bis-spironorbornane structure, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2015209405A true JP2015209405A (en) 2015-11-24

Family

ID=54611887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092116A Pending JP2015209405A (en) 2014-04-25 2014-04-25 Alicyclic monoepoxy-monool compound having bis-spironorbornane structure, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2015209405A (en)

Similar Documents

Publication Publication Date Title
JP6818741B2 (en) Method for preparing 1,4-bis (ethoxymethyl) cyclohexane
JP5894144B2 (en) Production process of divinylarene dioxide
JPWO2017209199A1 (en) Method for producing alicyclic tetracarboxylic dianhydride
JP2015209405A (en) Alicyclic monoepoxy-monool compound having bis-spironorbornane structure, and method for producing the same
EP1719769B1 (en) Process for producing alicyclic oxetane compound
EP3135677B1 (en) Alicyclic diepoxy compound having bis-spironorbornane structure, method for producing same, and use for same
TW201429962A (en) Epoxy compound, production method therefor, and curable epoxy resin composition
JP3905772B2 (en) New multifunctional epoxy compounds
US6677464B2 (en) Process for preparation of 7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid derivatives
JP2009215173A (en) Novel alicyclic compound and its manufacturing method
EP2020407B1 (en) 2-oxetanone derivative and process for production thereof
JP4903956B2 (en) Process for producing 7-oxabicyclo [2.2.1] hept-5-ene-2-carboxylic acid derivative
JP2007056024A (en) Method for producing norbornene derivative
JP6047884B2 (en) Compound
Singh et al. Investigations on photochemistry of o-allyloxy-/crotyloxyacetophenones: formation of unexpected intramolecular arene–olefin addition products on n–π∗ excitation of ketones
JP2016196449A (en) Novel fluorene compound and method for producing the same
KR20230059118A (en) A manufacturing method of cycloaliphatic epoxy compound
JP2015209402A (en) Alicyclic amine compound obtained by dimerization and trimerization of alicyclic diol having bis-spironorbornane structure, and method for producing the same
JP2015209403A (en) Alicyclic triketone compound having bis-spironorbornane structure, and method for producing the same
Chen et al. Study on the Reaction of Electron‐deficient Cyclopropane Derivatives with Arsonium Ylides
JP2015209404A (en) Alicyclic diamine compound having bis-spironorbornane structure, method for producing the same, and use thereof
KR100570279B1 (en) Intermediates of coenzyme qn and process for the preparation thereof
JP3902849B2 (en) Epoxy resin composition containing bisepoxy-1,5,7,11-tetraoxaspiro [5.5] undecane derivative
JP6306419B2 (en) Monoglycidyl ether compound and monoallyl ether compound
JP4490152B2 (en) 1,1-dialkyl-3- (4-phenanthrenyl) -2-propyn-1-ol derivative