JP2015207489A - Secondary battery and manufacturing method of the same - Google Patents

Secondary battery and manufacturing method of the same Download PDF

Info

Publication number
JP2015207489A
JP2015207489A JP2014088257A JP2014088257A JP2015207489A JP 2015207489 A JP2015207489 A JP 2015207489A JP 2014088257 A JP2014088257 A JP 2014088257A JP 2014088257 A JP2014088257 A JP 2014088257A JP 2015207489 A JP2015207489 A JP 2015207489A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
based active
secondary battery
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014088257A
Other languages
Japanese (ja)
Other versions
JP6289986B2 (en
JP2015207489A5 (en
Inventor
小島 亮
Akira Kojima
亮 小島
明秀 田中
Akihide Tanaka
明秀 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014088257A priority Critical patent/JP6289986B2/en
Publication of JP2015207489A publication Critical patent/JP2015207489A/en
Publication of JP2015207489A5 publication Critical patent/JP2015207489A5/ja
Application granted granted Critical
Publication of JP6289986B2 publication Critical patent/JP6289986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery capable of improving cycle characteristics of the secondary battery without exposing an electrode to a high temperature in a manufacturing process and a manufacturing method of the same.SOLUTION: The secondary battery includes a negative electrode having a negative electrode foil 42a and a negative electrode mixture layer 42b. The negative electrode mixture layer 42b contains SiO-based active material particles 1 and a binder 2. Each of the SiO-based active material particles 1 is at least partially covered by a coating layer 3 composed of a resin material containing an imide bond imidized at a temperature higher than a heat-resistant temperature of the binder 2.

Description

本発明は、二次電池およびその製造方法に関する。   The present invention relates to a secondary battery and a method for manufacturing the same.

リチウムイオン二次電池などの非水電解液二次電池では、従来から負極活物質として黒鉛等の炭素材料が用いられている。このような従来の二次電池では、近年の高容量化の要求の高まりに対応することが次第に困難になりつつあり、ケイ素等のより高容量の負極活物質を用いた二次電池の検討が進められている(例えば、下記特許文献1、2を参照)。   In non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, carbon materials such as graphite have been conventionally used as negative electrode active materials. In such a conventional secondary battery, it is becoming increasingly difficult to respond to the increasing demand for higher capacity in recent years, and secondary batteries using a higher capacity negative electrode active material such as silicon have been studied. (For example, see Patent Documents 1 and 2 below).

特許文献1では、ケイ素を負極活物質として用いることにより、炭素材料を用いるよりも高容量の電池とすることができるとされている。また、負極活物質として、特定のシリコン複合体のみを用いること、前記シリコン複合体に、SiOx(0.3≦x≦1.6)で表されるケイ素酸化物からなる粒子、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体などの公知の負極活物質を混合して用いること、などが記載されている。   In patent document 1, it is supposed that it can be set as a battery of a high capacity | capacitance by using silicon as a negative electrode active material rather than using a carbon material. Further, only a specific silicon composite is used as the negative electrode active material, particles made of silicon oxide represented by SiOx (0.3 ≦ x ≦ 1.6), natural graphite, artificial It describes that a known negative electrode active material such as graphite, a fired organic compound such as a phenol resin, or a carbonaceous powder such as coke is mixed and used.

また、特許文献1には、活物質および電極の導電性を高めるために添加される導電助剤を集電体に結着するためのバインダー樹脂として、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、スチレンブタジエンゴム(SBR)等のゴム、ポリイミド等のイミド系ポリマーなどが例示されている。   Patent Document 1 discloses polyvinylidene fluoride (PVDF), polytetrafluoroethylene as a binder resin for binding a conductive additive added to increase the conductivity of the active material and the electrode to the current collector. Examples include fluoropolymers such as (PTFE), rubbers such as styrene butadiene rubber (SBR), and imide polymers such as polyimide.

特許文献2では、サイクル特性に優れた非水電解質二次電池を得ることを課題とし、負極活物質として黒鉛材料とケイ素またはケイ素化合物とを含む活物質を用い、負極バインダーとして、ポリイミドおよびポリビニルピロリドンを用いることを特徴とする非水電解質二次電池が開示されている。   In Patent Document 2, an object is to obtain a non-aqueous electrolyte secondary battery having excellent cycle characteristics, an active material containing a graphite material and silicon or a silicon compound is used as a negative electrode active material, and polyimide and polyvinylpyrrolidone are used as a negative electrode binder. There is disclosed a non-aqueous electrolyte secondary battery characterized by using.

特開2013−234088号公報JP 2013-234088 A 特開2012−160353号公報JP 2012-160353 A

負極活物質としてケイ素を用いる場合、充放電に伴う体積の膨張収縮が従来の炭素材料と比較して大きくなる。そのため、例えば、特許文献1に記載の非水系二次電池において、負極活物質として前記シリコン複合体または該シリコン複合体と公知の負極活物質との混合物を用い、バインダー樹脂として比較的結着力の弱いPVDF、PTFE、SBR等を用いる場合には、前記シリコン複合体が二次電池の充放電に伴って膨張収縮を繰り返して割れる虞がある。前記シリコン複合体に割れが生じた場合、二次電池のサイクル特性が劣化する。   When silicon is used as the negative electrode active material, volume expansion and contraction associated with charge / discharge is increased as compared with conventional carbon materials. Therefore, for example, in the non-aqueous secondary battery described in Patent Document 1, the silicon composite or a mixture of the silicon composite and a known negative electrode active material is used as the negative electrode active material, and the binder resin has a relatively binding force. When weak PVDF, PTFE, SBR or the like is used, there is a possibility that the silicon composite may be repeatedly expanded and contracted as the secondary battery is charged and discharged. When the silicon composite is cracked, the cycle characteristics of the secondary battery are deteriorated.

これに対し、特許文献2に記載の非水電解質二次電池では、負極バインダーとして比較的結着力の強いポリイミドおよびポリビニルピロリドンを用いることで、二次電池のサイクル特性を向上させている。しかし、特許文献2では、ポリイミド樹脂の前駆体をN−メチル−2−ピロリドン(NMP)中に溶解させ、さらにポリビニルピロリドン、黒鉛およびケイ素を混合して調製した負極スラリを、負極集電体としての銅箔の両面上に塗布し、乾燥し、圧延した後、アルゴン雰囲気化で400℃10時間熱処理して、負電極を作成している。このように、負電極の製造過程において負極集電体が長時間に亘って高温に晒されると、負極集電体の強度が低下し、または、集電板等の金属に対する溶接性が低下し、後の二次電池の製造工程に悪影響を及ぼす虞がある。   On the other hand, in the non-aqueous electrolyte secondary battery described in Patent Document 2, the cycle characteristics of the secondary battery are improved by using polyimide and polyvinyl pyrrolidone having a relatively strong binding force as the negative electrode binder. However, in Patent Document 2, a negative electrode slurry prepared by dissolving a precursor of a polyimide resin in N-methyl-2-pyrrolidone (NMP) and further mixing polyvinylpyrrolidone, graphite, and silicon is used as a negative electrode current collector. After applying, drying and rolling on both sides of the copper foil, heat treatment was performed in an argon atmosphere at 400 ° C. for 10 hours to produce a negative electrode. As described above, when the negative electrode current collector is exposed to a high temperature for a long time in the manufacturing process of the negative electrode, the strength of the negative electrode current collector is decreased, or the weldability to a metal such as a current collector plate is decreased. There is a risk of adversely affecting the subsequent manufacturing process of the secondary battery.

本発明は、前記課題に鑑みてなされたものであり、その目的とするところは、二次電池の製造工程において電極を高温に晒すことなく、二次電池のサイクル特性を向上させることにある。   This invention is made | formed in view of the said subject, The place made into the objective is to improve the cycling characteristics of a secondary battery, without exposing an electrode to high temperature in the manufacturing process of a secondary battery.

前記目的を達成すべく、本発明の二次電池は、負極箔と負極合剤層とを有する負電極を備えた二次電池であって、前記負極合剤層は、SiO系活物質粒子と結着剤とを含み、前記SiO系活物質粒子は、前記結着剤の耐熱温度よりも高い温度でイミド化させたイミド結合を含む樹脂材料からなる被覆層によって少なくとも一部が被覆されていることを特徴とする。   In order to achieve the above object, the secondary battery of the present invention is a secondary battery including a negative electrode having a negative electrode foil and a negative electrode mixture layer, wherein the negative electrode mixture layer includes SiO-based active material particles and And the SiO-based active material particles are at least partially coated with a coating layer made of a resin material containing an imide bond imidized at a temperature higher than the heat-resistant temperature of the binder. It is characterized by that.

本発明の二次電池によれば、二次電池の製造工程において電極を高温に晒すことなく、二次電池のサイクル特性を向上させることができる。   According to the secondary battery of the present invention, the cycle characteristics of the secondary battery can be improved without exposing the electrode to a high temperature in the production process of the secondary battery.

実施形態に係る二次電池の斜視図。The perspective view of the secondary battery which concerns on embodiment. 図1に示す二次電池の内部構造を示す分解斜視図。The disassembled perspective view which shows the internal structure of the secondary battery shown in FIG. 図2に示す電極群の分解斜視図。The disassembled perspective view of the electrode group shown in FIG. 図3に示す負電極の拡大断面図。The expanded sectional view of the negative electrode shown in FIG. 図3に示す負電極の製造工程を示すフロー図。The flowchart which shows the manufacturing process of the negative electrode shown in FIG. 実施例に係る二次電池のサイクル数と容量維持率の関係を示すグラフ。The graph which shows the relationship between the cycle number of the secondary battery which concerns on an Example, and a capacity | capacitance maintenance factor. 実施例に係る二次電池のケイ素系材料の被覆率と初回充放電効率との関係を示すグラフ。The graph which shows the relationship between the coverage of the silicon-type material of the secondary battery which concerns on an Example, and initial stage charge / discharge efficiency.

以下、図面を参照して本発明の実施形態に係る二次電池およびその製造方法を説明する。図1は、本発明の実施形態1に係る二次電池100の外観斜視図である。本実施形態の二次電池100は、例えば、リチウムイオン二次電池等の非水電解液二次電池である。   Hereinafter, a secondary battery and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of a secondary battery 100 according to Embodiment 1 of the present invention. The secondary battery 100 of the present embodiment is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery, for example.

本実施形態の二次電池100は、後述する負電極が備える負極合剤層が負極活物質としてSiO系活物質粒子を含み、このSiO系活物質粒子が、結着剤の耐熱温度よりも高い温度でイミド化させたイミド結合を含む樹脂材料からなる被覆層によって、少なくとも一部が被覆されていることを最大の特徴としている。以下、本実施形態の二次電池100の構成を詳細に説明する。   In the secondary battery 100 of this embodiment, a negative electrode mixture layer provided in a negative electrode described later includes SiO-based active material particles as a negative electrode active material, and the SiO-based active material particles are higher than the heat resistant temperature of the binder. The greatest feature is that at least a part of the coating layer is made of a resin material containing an imide bond imidized at a temperature. Hereinafter, the configuration of the secondary battery 100 of the present embodiment will be described in detail.

二次電池100は、例えばアルミニウム合金等の金属材料によって製作された扁平箱形の電池容器10を備えている。電池容器10は、上端面10a、下端面10b、広側面10cおよび狭側面10dを有する扁平な直方体形状の筐体である。電池容器10は、上部が開放された扁平な矩形箱形の電池缶11と、電池缶11の上部を封止する長方形板状の電池蓋12とを有している。電池缶11は、例えば、前記金属材料に深絞り加工を施すことによって、上部に矩形の開口部11aを有する有底角筒状に形成されている。   The secondary battery 100 includes a flat box-shaped battery container 10 made of a metal material such as an aluminum alloy. The battery container 10 is a flat rectangular parallelepiped housing having an upper end surface 10a, a lower end surface 10b, a wide side surface 10c, and a narrow side surface 10d. The battery container 10 includes a flat rectangular box-shaped battery can 11 having an open top, and a rectangular plate-shaped battery lid 12 that seals the top of the battery can 11. The battery can 11 is formed in a bottomed rectangular tube shape having a rectangular opening 11a in the upper portion, for example, by deep drawing the metal material.

電池容器10の幅方向すなわち電池蓋12の長手方向の両端には、電池容器10の外側で電池蓋12の上面に、正極および負極の外部端子20A、20Bが設けられている。外部端子20A、20Bと電池蓋12との間には、絶縁部材24が配置され、外部端子20A、20Bが電池蓋12に対して電気的に絶縁されている。正極の外部端子20Aは、例えばアルミニウムまたはアルミニウム合金によって製作され、負極の外部端子20Bは、例えば銅または銅合金によって製作されている。   Positive and negative external terminals 20 </ b> A and 20 </ b> B are provided outside the battery container 10 and on the upper surface of the battery cover 12 at both ends in the width direction of the battery container 10, that is, in the longitudinal direction of the battery cover 12. An insulating member 24 is disposed between the external terminals 20 </ b> A and 20 </ b> B and the battery lid 12, and the external terminals 20 </ b> A and 20 </ b> B are electrically insulated from the battery lid 12. The positive external terminal 20A is made of, for example, aluminum or an aluminum alloy, and the negative external terminal 20B is made of, for example, copper or a copper alloy.

外部端子20A、20Bは、それぞれ、導電板21と、ボルト22とを備えている。導電板21は、電池容器10の幅方向外側に設けられた貫通孔にボルト22を下方から上方へ挿通させている。ボルト22は、頭部が絶縁部材24と導電板21との間に配置され、導電板21と電気的に接続されている。導電板21は、電池容器10の幅方向内側に設けられた貫通孔に下方から上方へ接続端子23を挿通させている。接続端子23は、先端部が導電板21の上面でかしめられ、拡径するように塑性変形して導電板21に密着することで、導電板21に電気的に接続され、絶縁部材24によって電池蓋12に対して電気的に絶縁されている。   Each of the external terminals 20A and 20B includes a conductive plate 21 and a bolt 22. The conductive plate 21 has a bolt 22 inserted through a through hole provided on the outer side in the width direction of the battery case 10 from below to above. The head of the bolt 22 is disposed between the insulating member 24 and the conductive plate 21 and is electrically connected to the conductive plate 21. The conductive plate 21 has a connection terminal 23 inserted through a through hole provided on the inner side in the width direction of the battery case 10 from below to above. The connection terminal 23 is caulked at the top surface of the conductive plate 21, is plastically deformed so as to expand in diameter and is in close contact with the conductive plate 21, thereby being electrically connected to the conductive plate 21. It is electrically insulated from the lid 12.

電池蓋12の正極および負極の外部端子20A、20Bの間には、ガス排出弁13と注液口14とが設けられている。ガス排出弁13は、例えば電池蓋12を薄肉化して溝部13aを形成することによって設けられ、電池容器10の内部の圧力が所定値を超えて上昇した時に開裂して内部のガスを放出することで、電池容器10の内部の圧力を低下させる。注液口14は、電池容器10の内部に電解液を注入するのに用いられ、例えばレーザ溶接によって注液栓15が溶接されて封止されている。   Between the positive and negative external terminals 20A and 20B of the battery lid 12, a gas discharge valve 13 and a liquid injection port 14 are provided. The gas discharge valve 13 is provided, for example, by thinning the battery lid 12 to form a groove 13a, and is cleaved to release the internal gas when the internal pressure of the battery container 10 exceeds a predetermined value. Thus, the pressure inside the battery container 10 is reduced. The liquid injection port 14 is used for injecting an electrolytic solution into the battery container 10, and the liquid injection plug 15 is welded and sealed by laser welding, for example.

図2は、図1に示す二次電池100の内部構造を示す分解斜視図である。なお、図2では、電池缶11の図示は省略している。電池蓋12の長手方向の両端で、電池容器10の内側となる電池蓋12の下面には、不図示の絶縁部材を介して正極および負極の集電板30A、30Bが固定されている。正極の集電板30Aは、例えば、アルミニウムまたはアルミニウム合金によって製作され、負極の集電板30Bは、例えば、銅または銅合金によって製作されている。集電板30A、30Bは、それぞれ、接続端子23の基端部が接続された基部31と、基部31から電池缶11の底面11bに向けて延びる端子部32と、を有している。   FIG. 2 is an exploded perspective view showing the internal structure of the secondary battery 100 shown in FIG. In FIG. 2, the battery can 11 is not shown. At both ends of the battery lid 12 in the longitudinal direction, positive and negative current collecting plates 30A and 30B are fixed to the lower surface of the battery lid 12 inside the battery container 10 via an insulating member (not shown). The positive current collector 30A is made of, for example, aluminum or an aluminum alloy, and the negative current collector 30B is made of, for example, copper or a copper alloy. The current collecting plates 30 </ b> A and 30 </ b> B each have a base portion 31 to which the base end portion of the connection terminal 23 is connected, and a terminal portion 32 extending from the base portion 31 toward the bottom surface 11 b of the battery can 11.

集電板30A、30Bのそれぞれの基部31に接続された接続端子23は、電池容器10の外方へ向けて延びて電池蓋12を貫通している。接続端子23は、電池蓋12の下面に配された不図示の絶縁部材の貫通孔と、電池蓋12の貫通孔と、電池蓋12の上面に配された絶縁部材24の貫通孔と、導電板21の貫通孔とを貫通し、先端部が導電板21の上面でかしめられている。これにより、集電板30A、30Bのそれぞれの基部31は、接続端子23によって導電板21に電気的に接続されると共に、不図示の絶縁部材を介して電池蓋12の下面に略平行に固定されている。集電板30A、30Bのそれぞれの基部31および接続端子23は、電池蓋12の下面に配された不図示の絶縁部材によって電池蓋12に対して電気的に絶縁されている。   The connection terminals 23 connected to the respective base portions 31 of the current collector plates 30A and 30B extend outward of the battery container 10 and penetrate the battery lid 12. The connection terminal 23 includes a through hole of an insulating member (not shown) disposed on the lower surface of the battery lid 12, a through hole of the battery lid 12, a through hole of the insulating member 24 disposed on the upper surface of the battery lid 12, and conductive The front end of the plate 21 is caulked by the upper surface of the conductive plate 21. Thereby, each base part 31 of current collection board 30A, 30B is electrically connected to the electrically conductive board 21 by the connection terminal 23, and is fixed substantially parallel to the lower surface of the battery cover 12 via an insulating member not shown. Has been. The base portions 31 and the connection terminals 23 of the current collector plates 30 </ b> A and 30 </ b> B are electrically insulated from the battery lid 12 by an insulating member (not shown) disposed on the lower surface of the battery lid 12.

正極および負極の集電板30A、30Bのそれぞれの端子部32は、電池容器10の厚さ方向における基部31の両側から、電池缶11の最大面積の広側面11cに沿って電池缶11の底面11bに向けて延びる板状に形成されている。集電板30A、30Bのそれぞれの端子部32は、後述する電極群40の捲回軸D方向において、基部31の外側の端部から延びて電極群40の端部の集電板接合部41d、42dにそれぞれ接合されている。これにより、正極の集電板30Aが、電極群40の捲回軸D方向の一方の端部に配置されて正電極41(図3参照)に電気的に接続され、負極の集電板30Bが、電極群40の捲回軸D方向の他方の端部に配置されて負電極42(図3参照)に電気的に接続されている。   The terminal portions 32 of the positive and negative current collecting plates 30 </ b> A and 30 </ b> B extend from both sides of the base portion 31 in the thickness direction of the battery container 10 along the wide side surface 11 c of the maximum area of the battery can 11. It is formed in a plate shape extending toward 11b. Each terminal portion 32 of the current collector plates 30A and 30B extends from the outer end portion of the base portion 31 in the winding axis D direction of the electrode group 40, which will be described later, and is a current collector plate joint portion 41d at the end portion of the electrode group 40. , 42d, respectively. Thus, the positive current collector plate 30A is disposed at one end in the winding axis D direction of the electrode group 40 and is electrically connected to the positive electrode 41 (see FIG. 3), and the negative current collector plate 30B. Is disposed at the other end of the electrode group 40 in the winding axis D direction and is electrically connected to the negative electrode 42 (see FIG. 3).

電極群40は、端子部32に接合されることで、集電板30A、30Bおよび絶縁部材(図示略)を介して電池蓋12に固定されている。また、外部端子20A、20B、絶縁部材24、電池蓋12の下面の絶縁部材(図示略)、集電板30A、30B、および電極群40が電池蓋12に組み付けられることで、蓋組立体が構成されている。   The electrode group 40 is fixed to the battery cover 12 via the current collector plates 30A and 30B and an insulating member (not shown) by being joined to the terminal portion 32. Further, the external terminals 20A and 20B, the insulating member 24, the insulating member (not shown) on the lower surface of the battery lid 12, the current collecting plates 30A and 30B, and the electrode group 40 are assembled to the battery lid 12, so that the lid assembly is obtained. It is configured.

電池缶11と電極群40との間には、電極群40を覆う絶縁ケース50が配置される。絶縁ケース50は、シート状のシート部51と、ケース状のケース部52とを備えている。なお、絶縁ケース50は、一体に成形してもよい。絶縁ケース50は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン(PFA)、ポリフェニレンサルファイド(PPS)等によって製作されている。   An insulating case 50 that covers the electrode group 40 is disposed between the battery can 11 and the electrode group 40. The insulating case 50 includes a sheet-like sheet portion 51 and a case-like case portion 52. The insulating case 50 may be integrally formed. The insulating case 50 is made of, for example, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), tetrafluoroethylene (PFA), polyphenylene sulfide (PPS), or the like.

シート部51は、電極群40の捲回軸D方向における幅と同等の幅を有し、電極群40の正極の集電板30Aの端子部32が接続された集電板接合部41dに対向する位置から、負極の集電板30Bの端子部が接合された集電板接合部42dに対向する位置まで、電池容器10の幅方向に延在している。また、シート部51は、図1に示す電池容器10の正面側の電池蓋12近傍から、電池容器10の広側面10cに沿って下端面10b近傍まで延び、電池容器10の底面10a対向する電極群40の湾曲部40bを覆うように折り返され、電池容器10の背面側の広側面10cに沿って電池蓋12近傍まで延在している。   The sheet portion 51 has a width equivalent to the width of the electrode group 40 in the winding axis D direction, and faces the current collector plate joint portion 41d to which the terminal portion 32 of the positive current collector plate 30A of the electrode group 40 is connected. The battery container 10 extends in a width direction from a position where the battery container 10 faces to a position facing the current collector plate joining portion 42d to which the terminal portion of the negative current collector plate 30B is joined. Further, the sheet portion 51 extends from the vicinity of the battery lid 12 on the front side of the battery container 10 shown in FIG. 1 to the vicinity of the lower end surface 10b along the wide side surface 10c of the battery container 10 and faces the bottom surface 10a of the battery container 10. It is folded back so as to cover the curved portion 40 b of the group 40 and extends to the vicinity of the battery lid 12 along the wide side surface 10 c on the back side of the battery case 10.

ケース部52は、電極群40の捲回軸D方向の両端に配されて、それぞれ集電板30A、30Bの端子部32が接合された電極群40の集電板接合部41d、42dを覆うように設けられている。ケース部52は、捲回軸D方向の内側の面と、電池蓋12側の面とが開放された直方体の箱形状を有し、集電板30A、30Bの端子部32が接合された電極群40の捲回軸D方向の両端を、電池容器10の下端面10bに垂直な高さ方向の全体に亘って覆っている。   The case portion 52 is disposed at both ends of the electrode group 40 in the winding axis D direction, and covers the current collector plate joint portions 41d and 42d of the electrode group 40 to which the terminal portions 32 of the current collector plates 30A and 30B are joined, respectively. It is provided as follows. The case portion 52 has a rectangular parallelepiped box shape in which the inner surface in the winding axis D direction and the surface on the battery lid 12 side are open, and the electrodes to which the terminal portions 32 of the current collector plates 30A and 30B are joined. Both ends of the group 40 in the winding axis D direction are covered over the entire height direction perpendicular to the lower end surface 10 b of the battery case 10.

二次電池100の製造時に、図2に示す部材からなる前記蓋組立体は、電極群40および集電板30A,30Bと電池缶11との間に絶縁ケース50を配置してこれらの間を電気的に絶縁した状態で、電極群40の下方側の湾曲部40bから、図1に示す電池缶11の開口部11aに挿入される。電極群40は、捲回軸D方向の両側に電池缶11の狭側面11dが位置し、捲回軸D方向が電池缶11の底面11bおよび広側面11cに略平行に沿うように電池缶11内に収容される。   At the time of manufacturing the secondary battery 100, the lid assembly made of the members shown in FIG. 2 has an insulating case 50 disposed between the electrode group 40 and the current collector plates 30A and 30B and the battery can 11, and the space between them. 1 is inserted into the opening 11a of the battery can 11 shown in FIG. 1 from the bent portion 40b on the lower side of the electrode group 40 in an electrically insulated state. In the electrode group 40, the narrow side surface 11 d of the battery can 11 is located on both sides in the winding axis D direction, and the battery can 11 is arranged so that the winding axis D direction is substantially parallel to the bottom surface 11 b and the wide side surface 11 c of the battery can 11. Housed inside.

これにより、電極群40は、一方の湾曲部40bが電池蓋12に対向し、もう一方の湾曲部40bが電池缶11の底面11bに対向し、平坦部40aが広側面11cに対向した状態になる。そして、電池蓋12によって電池缶11の開口部11aを閉塞した状態で、例えば、レーザ溶接によって電池蓋12の全周を電池缶11の開口部11aに接合することで、電池缶11と電池蓋12からなる電池容器10が形成される。   Thus, in the electrode group 40, one curved portion 40b faces the battery lid 12, the other curved portion 40b faces the bottom surface 11b of the battery can 11, and the flat portion 40a faces the wide side surface 11c. Become. Then, in a state where the opening 11a of the battery can 11 is closed by the battery lid 12, for example, by joining the entire circumference of the battery lid 12 to the opening 11a of the battery can 11 by laser welding, the battery can 11 and the battery lid A battery container 10 composed of 12 is formed.

その後、電池蓋12の注液口14を介して電池容器10の内部に非水電解液を注入し、例えば、レーザ溶接によって注液栓15を注液口14に接合して封止することで、電池容器10が密閉されている。電池容器10の内部に注入する非水電解液としては、例えば、エチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中に、6フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いることができる。 Thereafter, a non-aqueous electrolyte is injected into the battery container 10 through the liquid injection port 14 of the battery lid 12 and, for example, the liquid injection plug 15 is joined to the liquid injection port 14 by laser welding and sealed. The battery container 10 is sealed. Examples of the non-aqueous electrolyte injected into the battery container 10 include lithium hexafluorophosphate (LiPF 6 ) in a mixed solution in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 2. Can be used at a concentration of 1 mol / liter.

図3は、図2に示す電極群40の一部を展開した分解斜視図である。電極群40は、セパレータ43、44を介在させて積層させた正負の電極41、42を捲回軸Dに平行な軸心の周りに捲回して扁平形状に成形した捲回電極群である。   FIG. 3 is an exploded perspective view in which a part of the electrode group 40 shown in FIG. 2 is developed. The electrode group 40 is a wound electrode group in which positive and negative electrodes 41 and 42 laminated with separators 43 and 44 interposed therebetween are wound around an axis parallel to the winding axis D and formed into a flat shape.

電極群40は、電池容器10の広側面10cに対向する平坦部40aと上下端面10a、10bに対向する湾曲部40bとを有する扁平形状に成形されている。平坦部40aは、電極41、42とセパレータ43、44が平坦に積層された部分であり、湾曲部40bは、電極41、42とセパレータ43、44が半円筒状に湾曲して積層された部分である。セパレータ43、44は、正電極41と負電極42との間を絶縁すると共に、最外周に捲回された負電極42の外周にもセパレータ44が捲回されている。   The electrode group 40 is formed into a flat shape having a flat portion 40a facing the wide side surface 10c of the battery case 10 and a curved portion 40b facing the upper and lower end surfaces 10a and 10b. The flat portion 40a is a portion where the electrodes 41, 42 and the separators 43, 44 are laminated flat, and the curved portion 40b is a portion where the electrodes 41, 42 and the separators 43, 44 are bent and laminated in a semi-cylindrical shape. It is. The separators 43 and 44 insulate the positive electrode 41 and the negative electrode 42, and the separator 44 is wound around the outer periphery of the negative electrode 42 wound around the outermost periphery.

正電極41は、正極集電体である正極箔41aと、正極箔41aの両面に塗布された正極活物質合剤からなる正極合剤層41bとを有している。正電極41の幅方向の一側は、正極合剤層41bが形成されず、正極箔41aが露出した箔露出部41cとされている。正電極41は、箔露出部41cが負電極42の箔露出部42cと捲回軸D方向の反対側に配置されて、捲回軸Dの周りに捲回されている。   The positive electrode 41 includes a positive electrode foil 41a that is a positive electrode current collector, and a positive electrode mixture layer 41b made of a positive electrode active material mixture applied to both surfaces of the positive electrode foil 41a. One side in the width direction of the positive electrode 41 is a foil exposed portion 41c where the positive electrode mixture layer 41b is not formed and the positive foil 41a is exposed. The positive electrode 41 is wound around the winding axis D such that the foil exposed portion 41 c is disposed on the opposite side of the foil exposed portion 42 c of the negative electrode 42 in the winding axis D direction.

正電極41は、例えば、正極活物質に導電材、結着剤および分散溶媒を添加して混練した正極活物質合剤を、幅方向の一側を除いて正極箔41aの両面に塗布し、乾燥、プレス、裁断することによって製作することができる。正極箔41aとしては、例えば、厚さ約20μmのアルミニウム箔を用いることができる。正極箔41aの厚みを含まない正極合剤層41bの厚さは、例えば、約90μmである。   The positive electrode 41, for example, a positive electrode active material mixture kneaded by adding a conductive material, a binder and a dispersion solvent to the positive electrode active material is applied to both surfaces of the positive electrode foil 41a except for one side in the width direction, It can be produced by drying, pressing and cutting. As the positive electrode foil 41a, for example, an aluminum foil with a thickness of about 20 μm can be used. The thickness of the positive electrode mixture layer 41b not including the thickness of the positive electrode foil 41a is, for example, about 90 μm.

正極活物質合剤の材料としては、例えば、正極活物質として100重量部のマンガン酸リチウム(化学式LiMn)を、導電材として10重量部の鱗片状黒鉛を、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を、分散溶媒としてN−メチルピロリドン(以下、NMPという。)を、それぞれ用いることができる。 As a material of the positive electrode active material mixture, for example, 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) is used as the positive electrode active material, 10 parts by weight of flaky graphite as the conductive material, and 10% by weight as the binder. Part of polyvinylidene fluoride (hereinafter referred to as PVDF) and N-methylpyrrolidone (hereinafter referred to as NMP) can be used as a dispersion solvent.

正極活物質は、前記したマンガン酸リチウムに限定されず、例えば、スピネル結晶構造を有する他のマンガン酸リチウム、一部を金属元素で置換またはドープしたリチウムマンガン複合酸化物を用いてもよい。また、正極活物質として、層状結晶構造を有するコバルト酸リチウムやチタン酸リチウム、およびこれらの一部を金属元素で置換またはドープしたリチウム−金属複合酸化物を用いてもよい。   The positive electrode active material is not limited to the above-described lithium manganate. For example, another lithium manganate having a spinel crystal structure, or a lithium manganese composite oxide partially substituted or doped with a metal element may be used. Further, as the positive electrode active material, lithium cobaltate or lithium titanate having a layered crystal structure, or a lithium-metal composite oxide in which a part thereof is substituted or doped with a metal element may be used.

負電極42は、負極集電体である負極箔42aと、負極箔42aの両面に塗布された負極活物質合剤からなる負極合剤層42bとを有している。負電極42の幅方向の一側は、負極合剤層42bが形成されず、負極箔42aが露出した箔露出部42cとされている。負電極42は、その箔露出部42cが正電極41の箔露出部41cと捲回軸D方向の反対側に配置されて、捲回軸D周りに捲回されている。   The negative electrode 42 has a negative electrode foil 42a that is a negative electrode current collector, and a negative electrode mixture layer 42b made of a negative electrode active material mixture applied to both surfaces of the negative electrode foil 42a. One side in the width direction of the negative electrode 42 is a foil exposed portion 42c where the negative electrode mixture layer 42b is not formed and the negative foil 42a is exposed. The negative electrode 42 is wound around the winding axis D such that the foil exposed portion 42 c is disposed on the opposite side of the foil exposed portion 41 c of the positive electrode 41 in the winding axis D direction.

図4は、図3に示す負電極42の断面の一部を拡大した模式的な拡大断面図である。なお、負極合剤層42bは、負極箔42aの両面に形成されているが、図4では、負極箔42aの一方の面の負極合剤層42bのみを図示し、他方の面の負極合剤層42bの図示を省略している。   FIG. 4 is a schematic enlarged cross-sectional view in which a part of the cross section of the negative electrode 42 shown in FIG. 3 is enlarged. The negative electrode mixture layer 42b is formed on both surfaces of the negative electrode foil 42a. In FIG. 4, only the negative electrode mixture layer 42b on one surface of the negative electrode foil 42a is illustrated, and the negative electrode mixture on the other surface is illustrated. Illustration of the layer 42b is omitted.

本実施形態の二次電池100は、負極合剤層42bが、負極活物質としてのSiO系活物質粒子1と結着剤2とを含み、SiO系活物質粒子1は、結着剤2の耐熱温度よりも高い温度でイミド化させたイミド結合を含む樹脂材料からなる被覆層3によって少なくとも一部が被覆されていることを最大の特徴としている。また、本実施形態では、負極合剤層42bは、負極活物質として、例えば、天然黒鉛等の炭素系活物質粒子4を含んでいる。   In the secondary battery 100 of the present embodiment, the negative electrode mixture layer 42 b includes SiO-based active material particles 1 and a binder 2 as a negative electrode active material, and the SiO-based active material particles 1 are formed of the binder 2. The greatest feature is that at least a part of the coating layer 3 is made of a resin material containing an imide bond imidized at a temperature higher than the heat-resistant temperature. In the present embodiment, the negative electrode mixture layer 42b includes, for example, carbon-based active material particles 4 such as natural graphite as the negative electrode active material.

SiO系活物質粒子1は、例えば、化学式SiOx(ただし、0.8<x<1.2)で表されるケイ素系活物質であり、例えば、篩目開き53μ、270メッシュの篩によって粗粒が取り除かれた粒子である。SiO系活物質粒子1は、表面の全体または一部が被覆層3によって覆われている。SiO系活物質粒子1の被覆層3から露出した部分は、充放電に伴うリチウム(Li)イオンの収受を担うサイトとして機能し、Liイオンを吸蔵放出する出入り口となる。   The SiO-based active material particle 1 is, for example, a silicon-based active material represented by a chemical formula SiOx (where 0.8 <x <1.2), and is coarsely formed by, for example, a sieve having a mesh opening of 53 μ, 270 mesh. Are the removed particles. The entire surface or part of the surface of the SiO-based active material particles 1 is covered with the coating layer 3. The portion of the SiO-based active material particle 1 exposed from the coating layer 3 functions as a site responsible for the collection of lithium (Li) ions accompanying charge / discharge, and serves as an entrance / exit for occluding and releasing Li ions.

結着剤2は、被覆層3を有するSiO系活物質粒子1と炭素系活物質粒子4との間に充填され、これらを結着させて負極箔42aの表面に保持している。結着剤2は、例えば、スチレンブタジエンゴム(SBR)によって構成され、導電材として、例えば炭素や鱗片状黒鉛を含んでいる。結着剤2がSBRによって構成される場合には、100℃以下の温度で軟化するため、耐熱温度は100℃以下となる。また、結着剤2がPVDFによって構成される場合には、融点が、例えば、150℃以上180℃以下であるため、耐熱温度は150℃以下となる。結着剤2の耐熱温度とは、結着剤2がその機能を維持することができる温度の上限である。   The binder 2 is filled between the SiO-based active material particles 1 having the coating layer 3 and the carbon-based active material particles 4, and these are bound and held on the surface of the negative electrode foil 42a. The binder 2 is made of, for example, styrene butadiene rubber (SBR), and contains, for example, carbon or scaly graphite as a conductive material. When the binder 2 is composed of SBR, the heat resistance temperature is 100 ° C. or lower because the binder 2 is softened at a temperature of 100 ° C. or lower. Moreover, when the binder 2 is comprised by PVDF, since melting | fusing point is 150 degreeC or more and 180 degrees C or less, for example, the heat-resistant temperature will be 150 degrees C or less. The heat resistant temperature of the binder 2 is the upper limit of the temperature at which the binder 2 can maintain its function.

被覆層3は、SiO系活物質粒子1の表面全体または表面の一部を覆うように、SiO系活物質粒子1の表面に強固に結着している。被覆層3は、例えば、ポリイミド(PI)またはポリアミドイミド(PAI)によって構成することができる。被覆層3を形成する工程におけるイミド化の温度をより低くする観点から、被覆層3は、好ましくはPAIによって構成される。   The coating layer 3 is firmly bonded to the surface of the SiO-based active material particles 1 so as to cover the entire surface of the SiO-based active material particles 1 or a part of the surface. The coating layer 3 can be made of, for example, polyimide (PI) or polyamideimide (PAI). From the viewpoint of lowering the imidization temperature in the step of forming the coating layer 3, the coating layer 3 is preferably made of PAI.

炭素系活物質粒子4の平均粒径は、例えば、SiO系活物質粒子1の平均粒径よりも大きくされている。炭素系活物質粒子4の総重量と、被覆層3を有するSiO系活物質粒子1の総重量との比は、例えば、95:5とされている。炭素系活物質粒子4は、被覆層3を有しておらず、表面に結着剤2が結着している。   The average particle diameter of the carbon-based active material particles 4 is, for example, larger than the average particle diameter of the SiO-based active material particles 1. The ratio of the total weight of the carbon-based active material particles 4 to the total weight of the SiO-based active material particles 1 having the coating layer 3 is, for example, 95: 5. The carbon-based active material particles 4 do not have the coating layer 3, and the binder 2 is bound on the surface.

ここで、図5を参照して、本実施形態の二次電池100の製造工程に含まれる負電極42の製造工程について説明する。図5(a)は、負電極42の製造工程を示すフロー図であり、図5(b)は、図5(a)に示す被覆工程S1の詳細を示すフロー図である。負電極42は、図5(a)に示す被覆工程S1、調製工程S2および塗布乾燥工程S3を経て製造される。   Here, with reference to FIG. 5, the manufacturing process of the negative electrode 42 contained in the manufacturing process of the secondary battery 100 of this embodiment is demonstrated. FIG. 5A is a flowchart showing the manufacturing process of the negative electrode 42, and FIG. 5B is a flowchart showing details of the covering process S1 shown in FIG. 5A. The negative electrode 42 is manufactured through the coating step S1, the preparation step S2, and the coating / drying step S3 shown in FIG.

被覆工程S1は、樹脂材料の前駆体をイミド化させてSiO系活物質粒子1の表面の少なくとも一部にイミド結合を含む前記樹脂材料からなる被覆層3を形成する工程である。被覆工程S1は、図5(b)に示す混合工程S11、乾燥工程S12、粉砕工程S13、重合工程S14、解砕工程S15、および、選別工程S16を有している。   The coating step S1 is a step of imidizing the precursor of the resin material to form the coating layer 3 made of the resin material including an imide bond on at least a part of the surface of the SiO-based active material particles 1. The coating step S1 includes a mixing step S11, a drying step S12, a pulverizing step S13, a polymerization step S14, a pulverizing step S15, and a sorting step S16 shown in FIG.

混合工程S11では、まず、平均粒径が約5μmのSiOx(ただし、0.8<x<1.2)の粒子であるSiO系活物質粒子1の集合体である粉末に対して約5%の炭素を担持させる。また、例えば、PI、PAI等の樹脂材料を、例えば、NMP等の溶媒に溶解させ、樹脂材料の前駆体の溶液を用意する。そして、これらをプラネタリミキサに投入して、例えば約20分程度、混合および撹拌する。これにより、SiO系活物質粒子1と樹脂材料の前駆体との混合物を得る。   In the mixing step S11, first, about 5% of the powder which is an aggregate of SiO-based active material particles 1 which are particles of SiOx (however, 0.8 <x <1.2) having an average particle diameter of about 5 μm. Of carbon. In addition, for example, a resin material such as PI or PAI is dissolved in a solvent such as NMP to prepare a precursor solution of the resin material. Then, these are put into a planetary mixer and mixed and stirred, for example, for about 20 minutes. As a result, a mixture of the SiO-based active material particles 1 and the precursor of the resin material is obtained.

なお、本実施形態では、樹脂材料の前駆体をイミド化重合させることによって形成される被覆層3の総重量が、SiO系活物質粒子1の総重量の1%以上かつ5%以下となるように、各材料の重量を調整している。   In the present embodiment, the total weight of the coating layer 3 formed by imidizing the precursor of the resin material is 1% or more and 5% or less of the total weight of the SiO-based active material particles 1. The weight of each material is adjusted.

乾燥工程S12では、混合工程S11で得られた混合物をプラネタリミキサから取り出し、例えばアルミニウム等の金属箔上に載置し、例えば空気中で約80℃の温度で約1時間乾燥させて溶媒を蒸発させる。さらに、乾燥させた混合物を、例えば真空中で約100℃の温度で約2時間乾燥させ、溶媒を完全に蒸発させる。これによりSiO系活物質粒子1と樹脂材料の前駆体とを含む塊状物を得る。   In the drying step S12, the mixture obtained in the mixing step S11 is taken out of the planetary mixer, placed on a metal foil such as aluminum, and dried in, for example, air at a temperature of about 80 ° C. for about 1 hour to evaporate the solvent. Let Furthermore, the dried mixture is dried, for example in a vacuum at a temperature of about 100 ° C. for about 2 hours to completely evaporate the solvent. Thereby, a lump containing the SiO-based active material particles 1 and the precursor of the resin material is obtained.

粉砕工程S13では、乾燥工程S12で得られた塊状物を、例えば、乳鉢で粗く解砕した後、ミルで砂粒状になるまで10分以上粉砕して、SiO系活物質粒子1と樹脂材料の前駆体とを含む粉体を得る。   In the pulverization step S13, the lump obtained in the drying step S12 is crushed roughly in a mortar, for example, and then pulverized for 10 minutes or more until it becomes sandy with a mill, and the SiO-based active material particles 1 and the resin material A powder containing the precursor is obtained.

重合工程S14では、樹脂材料の前駆体をSiO系活物質粒子1と共に250℃以上かつ350℃以下の温度に加熱してイミド化させる。本実施形態では、重合工程において、粉砕工程S13で得られた粉体を、例えばアルミニウム等の金属箔上に載置し、例えば300℃の温度で真空乾燥して加熱し、樹脂材料の前駆体を重合させてイミド化させる。これにより、SiO系活物質粒子1の表面に、例えばPIまたはPAI等のイミド結合を含む樹脂材料を強固に結着させる。   In the polymerization step S14, the resin material precursor is imidized by heating to a temperature of 250 ° C. or higher and 350 ° C. or lower together with the SiO-based active material particles 1. In the present embodiment, in the polymerization step, the powder obtained in the pulverization step S13 is placed on a metal foil such as aluminum, vacuum dried at a temperature of, for example, 300 ° C. and heated, and the precursor of the resin material Is polymerized to be imidized. As a result, a resin material containing an imide bond such as PI or PAI is firmly bound to the surface of the SiO-based active material particles 1.

解砕工程S15では、重合工程S14で得られたSiO系活物質粒子1と例えばPIまたはPAI等のイミド結合を含む樹脂材料からなる塊状物を室温まで降温させた後、例えば、乳鉢およびミルで5分以上解砕する。これにより、少なくとも一部がPIまたはPAI等のイミド結合を含む樹脂材料からなる被覆層3に被覆されたSiO系活物質粒子1の粉末を得る。   In the pulverization step S15, the mass of the SiO-based active material particles 1 obtained in the polymerization step S14 and a mass made of a resin material containing an imide bond such as PI or PAI is cooled to room temperature, and then, for example, in a mortar and mill Disintegrate for more than 5 minutes. Thereby, the powder of the SiO type | system | group active material particle | grains 1 with which at least one part was coat | covered with the coating layer 3 which consists of resin materials containing imide bonds, such as PI or PAI, is obtained.

選別工程S16では、解砕工程S15で得られた粉末を、例えば、篩目開き53μm、270メッシュの篩に掛けて粗粒を取り除き、所定の範囲の粒径を有し、表面の少なくとも一部が被覆層3に被覆されたSiO系活物質粒子1の粉末を得る。以上により、図5(a)に示す被覆工程S1が終了する。   In the sorting step S16, for example, the powder obtained in the crushing step S15 is passed through a sieve having a sieve opening of 53 μm and a 270 mesh to remove coarse particles, and has a particle size in a predetermined range, and at least a part of the surface. Thus, a powder of the SiO-based active material particles 1 coated with the coating layer 3 is obtained. Thus, the covering step S1 shown in FIG.

図5(a)に示す調製工程S2では、被覆工程S1で得られた被覆層3を有するSiO系活物質粒子1と、結着剤2とを含むスラリを調製する。本実施形態では、調製工程S2において、負極活物質として、被覆層3を有するSiO系活物質粒子1だけでなく炭素系活物質粒子4をも含むスラリを調整する。具体的には、炭素系活物質粒子4の総重量と、被覆層3を有するSiO系活物質粒子1の総重量との比が、例えば、95:5から95:3までの範囲となるように混合してプラネタリミキサで乾式混合する。   In the preparation step S2 shown in FIG. 5A, a slurry containing the SiO-based active material particles 1 having the coating layer 3 obtained in the coating step S1 and the binder 2 is prepared. In the present embodiment, in the preparation step S2, a slurry containing not only the SiO-based active material particles 1 having the coating layer 3 but also the carbon-based active material particles 4 is prepared as the negative electrode active material. Specifically, the ratio of the total weight of the carbon-based active material particles 4 to the total weight of the SiO-based active material particles 1 having the coating layer 3 is, for example, in the range from 95: 5 to 95: 3. And dry-mix with a planetary mixer.

その後、この混合物に、増粘剤として例えばカルボキシメチルセルロース(CMC)を加えて撹拌し、粘度を調整することで適切な粘度のスラリを得る。このスラリに、結着剤として例えばスチレンブタジエンゴム(SBR)を加えて混練することで、負極活物質および結着剤を含むスラリが得られる。CMCとSBRは、例えば、98重量部の負極活物質に対して2重量部を加えることができる。増粘剤、結着剤の分散溶媒およびスラリの粘度調整には、例えばイオン交換水を用いることができる。   Thereafter, for example, carboxymethylcellulose (CMC) is added to the mixture as a thickener and stirred to adjust the viscosity to obtain a slurry having an appropriate viscosity. By adding and kneading, for example, styrene butadiene rubber (SBR) as a binder to this slurry, a slurry containing a negative electrode active material and a binder can be obtained. For example, 2 parts by weight of CMC and SBR can be added to 98 parts by weight of the negative electrode active material. For example, ion-exchanged water can be used to adjust the viscosity of the thickener, the binder dispersion solvent, and the slurry.

図5(a)に示す塗布乾燥工程S3では、調製工程S2で得られたスラリを、負極箔42aの両面に幅方向の一側を除いて塗布し、乾燥させて結着剤を溶融または軟化させ、その後、降温させてプレス、裁断する。本実施形態において、塗布乾燥工程S3における乾燥温度は、被覆工程S1においてSiO系活物質粒子1を被覆する被覆層3の樹脂材料の前駆体を重合させる温度よりも低く、例えば120℃以下であり、好ましくは100℃以下とされる。負極箔42aとしては、例えば、厚さ約10μmの銅箔を用いることができる。   In the coating / drying step S3 shown in FIG. 5 (a), the slurry obtained in the preparing step S2 is applied to both surfaces of the negative electrode foil 42a except for one side in the width direction, and dried to melt or soften the binder. And then press down and cut. In this embodiment, the drying temperature in the coating and drying step S3 is lower than the temperature at which the precursor of the resin material of the coating layer 3 that coats the SiO-based active material particles 1 in the coating step S1 is, for example, 120 ° C. or less. The temperature is preferably 100 ° C. or lower. As the negative electrode foil 42a, for example, a copper foil having a thickness of about 10 μm can be used.

これにより、図4に示すように、被覆層3を有するSiO系活物質粒子1間に結着剤2が形成され、負極箔42aの表面に負極合剤層42bが形成される。本実施形態では、結着剤2の層は、被覆層3を有するSiO系活物質粒子1と炭素系活物質粒子4との間、および炭素系活物質粒子4間にも形成される。負極箔42aの厚みを含まない負極合剤層42bの厚さは、例えば、約70μmである。以上により、負極活物質の粒子間に結着剤2を含む負極合剤層42bを備えた負電極42を製造することができる。   Thereby, as shown in FIG. 4, the binder 2 is formed between the SiO-based active material particles 1 having the coating layer 3, and the negative electrode mixture layer 42b is formed on the surface of the negative electrode foil 42a. In the present embodiment, the layer of the binder 2 is also formed between the SiO-based active material particles 1 having the coating layer 3 and the carbon-based active material particles 4 and between the carbon-based active material particles 4. The thickness of the negative electrode mixture layer 42b not including the thickness of the negative electrode foil 42a is, for example, about 70 μm. As described above, the negative electrode 42 including the negative electrode mixture layer 42b including the binder 2 between the particles of the negative electrode active material can be manufactured.

本実施形態において、負極活物質は、SiO系活物質粒子1と炭素系活物質粒子4の双方を含んでいる。しかし、負極活物質としてSiO系活物質粒子1のみを用いてもよい。また、炭素系活物質粒子4は、前記したリチウムイオンを挿入、脱離可能な天然黒鉛に限定されず、非晶質炭素、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi等)、またはそれらの複合材料を用いてもよい。負極活物質の粒子形状についても特に限定されず、鱗片状、球状、繊維状または塊状等の粒子形状を適宜選択することができる。 In the present embodiment, the negative electrode active material includes both the SiO-based active material particles 1 and the carbon-based active material particles 4. However, only the SiO-based active material particles 1 may be used as the negative electrode active material. Further, the carbon-based active material particles 4 are not limited to the above-described natural graphite into which lithium ions can be inserted and removed, and carbonaceous materials such as amorphous carbon, various artificial graphite materials, coke, Si, Sn, etc. These compounds (for example, SiO, TiSi 2 etc.) or a composite material thereof may be used. The particle shape of the negative electrode active material is not particularly limited, and a particle shape such as a scale shape, a spherical shape, a fiber shape, or a lump shape can be appropriately selected.

また、前記した正極および負極の合剤層41b、42bに用いる結着材は、PVDF、SBRに限定されない。前記した結着材として、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いてもよい。   The binder used for the positive electrode and negative electrode mixture layers 41b and 42b is not limited to PVDF and SBR. Examples of the binder include polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, and vinylidene fluoride. Polymers such as propylene fluoride, chlorochloroprene, and acrylic resins, and mixtures thereof may be used.

また、図3に示すセパレータ43、44を介在させて正電極41および負電極42を重ねて捲回する際の軸芯は、例えば、正極箔41a、負極箔42a、セパレータ43、44のいずれよりも曲げ剛性の高い樹脂シートを捲回したものを用いることができる。   Further, the axis when winding the positive electrode 41 and the negative electrode 42 with the separators 43 and 44 shown in FIG. 3 interposed therebetween is, for example, any of the positive foil 41a, the negative foil 42a, and the separators 43 and 44. Alternatively, a resin sheet having a high bending rigidity can be used.

電極群40の捲回軸D方向において、負電極42の負極合剤層42bの幅は、正電極41の正極合剤層41bの幅よりも広くなっている。また、電極群40の最内周と最外周には負電極42が捲回されている。これにより、正極合剤層41bは、電極群40の最内周から最外周まで負極合剤層42bの間に挟まれている。   In the winding axis D direction of the electrode group 40, the width of the negative electrode mixture layer 42 b of the negative electrode 42 is wider than the width of the positive electrode mixture layer 41 b of the positive electrode 41. A negative electrode 42 is wound around the innermost and outermost circumferences of the electrode group 40. Thus, the positive electrode mixture layer 41b is sandwiched between the negative electrode mixture layer 42b from the innermost periphery to the outermost periphery of the electrode group 40.

正電極41および負電極42の箔露出部41c、42cはそれぞれ電極群40の平坦部40aで束ねられて前記した集電板接合部41d、42d(図2参照)が形成される。正電極41および負電極42のそれぞれの集電板接合部41d、42dは、例えば超音波溶接等によって、正極および負極の集電板30A、30Bのそれぞれの端子部32に接合される。これにより、正極側および負極側において、外部端子20A、20Bが、それぞれ集電板30A、30Bを介して、電極群40を構成する正負の電極41、42とそれぞれ電気的に接続される。   The foil exposed portions 41c and 42c of the positive electrode 41 and the negative electrode 42 are bundled by the flat portion 40a of the electrode group 40 to form the current collector plate joint portions 41d and 42d (see FIG. 2). The current collector plate joints 41d and 42d of the positive electrode 41 and the negative electrode 42 are joined to the terminal portions 32 of the positive and negative current collector plates 30A and 30B, for example, by ultrasonic welding or the like. Thereby, on the positive electrode side and the negative electrode side, the external terminals 20A and 20B are electrically connected to the positive and negative electrodes 41 and 42 constituting the electrode group 40 via the current collector plates 30A and 30B, respectively.

なお、電極群40の捲回軸D方向において、セパレータ43、44の幅は負極合剤層42bの幅よりも広いが、正電極41および負電極42の箔露出部41c、42cは、それぞれセパレータ43、44の幅方向端部よりも幅方向外側に突出している。したがって、セパレータ43、44は、箔露出部41c、42cを束ねて溶接する際の支障にはならない。   In addition, in the winding axis D direction of the electrode group 40, the width of the separators 43 and 44 is wider than the width of the negative electrode mixture layer 42b, but the foil exposed portions 41c and 42c of the positive electrode 41 and the negative electrode 42 are separators, respectively. Projecting outward in the width direction from the ends in the width direction of 43 and 44. Therefore, the separators 43 and 44 do not hinder the foil exposed portions 41c and 42c from being bundled and welded.

以下、本実施形態の二次電池100およびその製造方法の作用について説明する。   Hereinafter, the operation of the secondary battery 100 and the manufacturing method thereof according to the present embodiment will be described.

本実施形態の二次電池100は、例えば、図1に示す外部端子20A、20Bのボルト22に不図示のバスバーを締結して他の二次電池100の外部端子20A、20Bと接続することにより、組電池として用いられる。二次電池100は、外部端子20A、20Bを介して外部から供給された電力を、図2に示す接続端子23および集電板30A、30Bを介して電極群40に蓄積する。また、電極群40に蓄積した電力を、集電板30A、30Bおよび接続端子23を介して外部端子20A、20Bから外部へ供給する。   The secondary battery 100 of the present embodiment is connected to the external terminals 20A and 20B of other secondary batteries 100 by fastening a bus bar (not shown) to the bolts 22 of the external terminals 20A and 20B shown in FIG. Used as an assembled battery. The secondary battery 100 stores electric power supplied from the outside via the external terminals 20A and 20B in the electrode group 40 via the connection terminal 23 and the current collector plates 30A and 30B shown in FIG. Further, the electric power stored in the electrode group 40 is supplied to the outside from the external terminals 20A and 20B via the current collector plates 30A and 30B and the connection terminal 23.

二次電池100の充放電に伴って、図4に示す負極合剤層42bに含まれるSiO系活物質粒子1と炭素系活物質粒子4は膨脹収縮を繰り返すが、SiO系活物質粒子1の体積の変化は、炭素系活物質粒子4よりも大きくなる。そのため、バインダー樹脂、すなわち結着剤2として、比較的結着力が弱いPVDF、SBR等を用いた従来の二次電池では、繰り返しの膨張収縮によってSiO系活物質粒子1に割れを生じ、二次電池のサイクル特性が低下する虞があった。また、負極バインダー、すなわち結着剤2としてポリイミド(PI)およびポリビニルピロリドン(PVP)を用いた従来の二次電池では、PIをイミド化させて結着剤2を形成する際に、負極箔42aが高温に晒されて強度および溶接性が低下し、二次電池100の製造工程に悪影響を及ぼす虞があった。   As the secondary battery 100 is charged and discharged, the SiO-based active material particles 1 and the carbon-based active material particles 4 included in the negative electrode mixture layer 42b shown in FIG. The change in volume becomes larger than that of the carbon-based active material particles 4. Therefore, in the conventional secondary battery using PVDF, SBR or the like having a relatively weak binding force as the binder resin, that is, the binder 2, the SiO-based active material particles 1 are cracked due to repeated expansion and contraction. There was a possibility that the cycle characteristics of the battery would deteriorate. In the conventional secondary battery using polyimide (PI) and polyvinylpyrrolidone (PVP) as the negative electrode binder, that is, the binder 2, the negative electrode foil 42a is formed when the binder 2 is formed by imidizing PI. When exposed to high temperatures, the strength and weldability are reduced, which may adversely affect the manufacturing process of the secondary battery 100.

これに対し、本実施形態の二次電池100では、SiO系活物質粒子1は、結着剤2の耐熱温度よりも高い温度でイミド化させたイミド結合を含む樹脂材料からなる被覆層3によって少なくとも一部が被覆されている。これにより、SiO系活物質粒子1の膨張収縮時の体積変化を、結着剤2よりも結着力の高い強靭な樹脂材料からなる被覆層3によって低減させ、または、SiO系活物質粒子1の表面で起こる電解液の還元分解などの副反応を抑制し、SiO系活物質粒子1の割れを抑制することができる。   On the other hand, in the secondary battery 100 of the present embodiment, the SiO-based active material particles 1 are formed by the coating layer 3 made of a resin material containing an imide bond imidized at a temperature higher than the heat resistance temperature of the binder 2. At least a portion is coated. Thereby, the volume change at the time of expansion and contraction of the SiO-based active material particles 1 is reduced by the coating layer 3 made of a tough resin material having a binding force higher than that of the binder 2, or the SiO-based active material particles 1 Side reactions such as reductive decomposition of the electrolytic solution occurring on the surface can be suppressed, and cracking of the SiO-based active material particles 1 can be suppressed.

また、本実施形態の二次電池100は、負電極42の製造時に、負極箔42aに結着剤2を形成する塗布乾燥工程S3の前に、SiO系活物質粒子1の表面にPIまたはPAI等のイミド結合を含む樹脂材料からなる被覆層3を形成する被覆工程S1を有している。また、塗布乾燥工程S3における乾燥温度は、被覆工程S1において被覆層3の樹脂材料の前駆体をイミド化させて重合させる温度よりも低くなっている。そのため、負極箔42aを、イミド化重合に必要な高温に晒さらすことを回避できる。   In addition, the secondary battery 100 of the present embodiment has a PI or PAI formed on the surface of the SiO-based active material particles 1 before the coating and drying step S3 in which the binder 2 is formed on the negative electrode foil 42a when the negative electrode 42 is manufactured. It has coating process S1 which forms the coating layer 3 which consists of resin materials containing imide bonds, such as. The drying temperature in the coating / drying step S3 is lower than the temperature at which the precursor of the resin material of the coating layer 3 is imidized and polymerized in the coating step S1. Therefore, it can avoid exposing the negative electrode foil 42a to the high temperature required for imidation polymerization.

したがって、本実施形態の二次電池100およびその製造方法によれば、製造工程において負電極42を高温に晒すことなく、二次電池100のサイクル特性を向上させることができる。   Therefore, according to the secondary battery 100 and the manufacturing method thereof of the present embodiment, the cycle characteristics of the secondary battery 100 can be improved without exposing the negative electrode 42 to a high temperature in the manufacturing process.

また、被覆層3の樹脂材料がPAIである場合には、イミド化重合に必要な温度をPIの場合よりも低下させ、二次電池100の製造工程の簡略化および製造コストの低減に寄与する。また、結着剤2がSBRを含む場合には、結着剤2の柔軟性を向上させて負極合剤層42bの耐久性を向上させることができる。また、負極合剤層42bが、炭素系活物質粒子4を含むことで、負極合剤層42bが負極活物質としてSiO系活物質粒子1のみを含む場合と比較して、負極合剤層42bの膨張収縮を抑制することができる。   Moreover, when the resin material of the coating layer 3 is PAI, the temperature required for imidation polymerization is lowered as compared with the case of PI, which contributes to simplification of the manufacturing process of the secondary battery 100 and reduction of manufacturing cost. . Moreover, when the binder 2 contains SBR, the softness | flexibility of the binder 2 can be improved and durability of the negative mix layer 42b can be improved. In addition, the negative electrode mixture layer 42b includes the carbon-based active material particles 4, so that the negative electrode mixture layer 42b includes only the SiO-based active material particles 1 as the negative electrode active material. Expansion and contraction can be suppressed.

また、被覆工程S1は、被覆層3の樹脂材料の前駆体をSiO系活物質粒子1と共に250℃以上かつ350℃以下の温度に加熱してイミド化させる重合工程S14を有している。これにより、SiO系活物質粒子1の表面に強固に結着したPIまたはPAI等のイミド結合を含む樹脂材料からなる強靭な被覆層3を形成することができる。   Further, the coating step S1 includes a polymerization step S14 in which the precursor of the resin material of the coating layer 3 is imidized by heating to a temperature of 250 ° C. or higher and 350 ° C. or lower together with the SiO-based active material particles 1. Thereby, the tough coating layer 3 made of a resin material containing an imide bond such as PI or PAI firmly bound to the surface of the SiO-based active material particles 1 can be formed.

また、被覆工程S1は、重合工程S14の前に、混合工程S11と乾燥工程S12と粉砕工程S13とを有している。これにより、重合工程S14において、粉体とされた被覆層3の樹脂材料の前駆体とSiO系活物質粒子1とを加熱することができる。したがって、重合工程S14において、被覆層3の樹脂材料の前駆体とSiO系活物質粒子1とが塊状である場合と比較して、SiO系活物質粒子1の表面により均一かつ緻密な被覆層3を形成することが可能になる。   Moreover, coating process S1 has mixing process S11, drying process S12, and grinding | pulverization process S13 before superposition | polymerization process S14. Thereby, in polymerization process S14, the precursor of the resin material of the coating layer 3 made into powder and the SiO type | system | group active material particle 1 can be heated. Accordingly, in the polymerization step S14, the coating layer 3 is more uniform and denser on the surface of the SiO-based active material particles 1 than in the case where the precursor of the resin material of the coating layer 3 and the SiO-based active material particles 1 are massive. Can be formed.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。例えば、前述の実施形態および実施例では、本発明を角形二次電池に適用する例について説明したが、本発明は、角形二次電池に限られず、例えば円筒形やラミネート型等、非水電解液二次電池の負極全般に適用することが可能である。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention. For example, in the above-described embodiments and examples, the example in which the present invention is applied to the prismatic secondary battery has been described. However, the present invention is not limited to the prismatic secondary battery, and for example, non-aqueous electrolysis such as a cylindrical shape or a laminate type. It can be applied to all negative electrodes of liquid secondary batteries.

[実施例]
以下、本発明の二次電池およびその製造方法の実施例について説明する。
[Example]
Examples of the secondary battery and the manufacturing method thereof according to the present invention will be described below.

前述の実施形態で説明した製造方法に基づき、実施例1、2および比較例1の負電極を製作した。実施例1、2の負電極では、それぞれ、SiO系活物質粒子の総重量に対する被覆層の樹脂材料としてのPAIの総重量を3%、および5%とした。一方、比較例1の負電極では、SiO系活物質粒子の総重量に対する被覆層の樹脂材料としてのPAIの総重量を0%(被覆層なし)とした。なお、実施例1、2および比較例1の負電極において、炭素系活物質粒子の総重量と、被覆層を有するSiO系活物質粒子の総重量との比は、95:3とした。これらの負電極を、それぞれセパレータを介して正電極と重ね、実施例1、2および3の小型セルを作製し、初期サイクル特性を測定した。なお、各小型セルの充放電方法は、以下の通りである。   The negative electrodes of Examples 1 and 2 and Comparative Example 1 were manufactured based on the manufacturing method described in the above embodiment. In the negative electrodes of Examples 1 and 2, the total weight of PAI as the resin material of the coating layer was 3% and 5% with respect to the total weight of the SiO-based active material particles, respectively. On the other hand, in the negative electrode of Comparative Example 1, the total weight of PAI as the resin material of the coating layer with respect to the total weight of the SiO-based active material particles was 0% (no coating layer). In the negative electrodes of Examples 1 and 2 and Comparative Example 1, the ratio of the total weight of the carbon-based active material particles to the total weight of the SiO-based active material particles having the coating layer was 95: 3. These negative electrodes were overlapped with positive electrodes through separators, respectively, to produce small cells of Examples 1, 2 and 3, and the initial cycle characteristics were measured. In addition, the charging / discharging method of each small cell is as follows.

充電:0.5C定電流定電圧充電、定電圧値4.2V、0.01C終止
放電:0.5C定電流、2.7V終止
Charge: 0.5C constant current constant voltage charge, constant voltage value 4.2V, 0.01C termination Discharge: 0.5C constant current, 2.7V termination

図6は、横軸を充放電のサイクル数(cycle)、縦軸を各セルの容量維持率(%)として実施例1、2および比較例1の小型セルのサイクル数と容量維持率との関係を示すグラフである。   FIG. 6 shows the number of cycles and capacity maintenance rate of the small cells of Examples 1 and 2 and Comparative Example 1 with the horizontal axis as the number of charge / discharge cycles (cycle) and the vertical axis as the capacity maintenance rate (%) of each cell. It is a graph which shows a relationship.

図6中、実施例1(PAI:3%)の小型セルの測定結果を白抜きの三角印および破線で、実施例2(PAI:5%)の小型セルの測定結果を白抜きの丸印および実線で、比較例1(PAI:0%)の小型セルの測定結果を黒の四角印および一点鎖線で示している。以上の結果から、実施例1および2の被覆層を有するSiO系活物質粒子を用いた小型セルでは、比較例1の被覆層を有しないSiO系活物質粒子を用いた小型セルよりもサイクル特性が向上することが確認された。   In FIG. 6, the measurement result of the small cell of Example 1 (PAI: 3%) is indicated by a white triangle mark and a broken line, and the measurement result of the small cell of Example 2 (PAI: 5%) is indicated by a white circle. The measurement result of the small cell of Comparative Example 1 (PAI: 0%) is indicated by a black square mark and an alternate long and short dash line. From the above results, in the small cell using the SiO-based active material particles having the coating layers of Examples 1 and 2, the cycle characteristics are more than in the small cell using the SiO-based active material particles having no coating layer of Comparative Example 1. Has been confirmed to improve.

次に、前述の実施例1、2および比較例1の負電極を製作すると共に、SiO系活物質粒子の総重量に対する被覆層の樹脂材料としてのPAIの総重量(PAI被覆量)を1%とした実施例3の負電極を同様に製作した。なお、各負電極においては、炭素系活物質粒子の総重量と、被覆層を有するSiO系活物質粒子の総重量と、結着剤および増粘剤からなるバインダーの総重量との比が95:3:2となるようにスラリを調整して負極箔に塗布した。これらの負電極を用いて金属リチウムを対極としたハーフセルを作製し、負極の初回充放電効率を計測した。以下の条件で充電、放電を行ったときの放電容量を充電容量で除した値を図7に示す。   Next, the negative electrodes of Examples 1 and 2 and Comparative Example 1 described above were manufactured, and the total weight (PAI coating amount) of PAI as the resin material of the coating layer with respect to the total weight of the SiO-based active material particles was 1%. The negative electrode of Example 3 was manufactured in the same manner. In each negative electrode, the ratio of the total weight of the carbon-based active material particles, the total weight of the SiO-based active material particles having the coating layer, and the total weight of the binder composed of the binder and the thickener is 95. The slurry was adjusted so as to be 3: 2 and applied to the negative electrode foil. Using these negative electrodes, a half cell having metallic lithium as a counter electrode was prepared, and the initial charge / discharge efficiency of the negative electrode was measured. FIG. 7 shows a value obtained by dividing the discharge capacity when charging and discharging are performed under the following conditions by the charge capacity.

充電:0.5C定電流定電圧充電、定電圧値0.01V vs Li金属、0.01C終止
放電:0.5C定電流、1.5V vs Li金属終止
Charge: 0.5C constant current constant voltage charge, constant voltage value 0.01V vs Li metal, 0.01C termination Discharge: 0.5C constant current, 1.5V vs Li metal termination

図7は、縦軸を初回充放電効率(%)、横軸をPAI被覆量(wt%)として、初回充放電効率とPAI被覆量との関係を示すグラフである。実施例1(PAI被覆量:3wt%)、実施例2(PAI被覆量:5wt%)および実施例3(PAI被覆量:1wt%)と、比較例1(PAI被覆量:0wt%)とを比較すると、実施例1から3のいずれの小型セルも比較例1の小型セルよりも高い初回充放電効率を示すことが確認された。   FIG. 7 is a graph showing the relationship between the initial charge / discharge efficiency and the PAI coverage, with the vertical axis representing the initial charge / discharge efficiency (%) and the horizontal axis representing the PAI coverage (wt%). Example 1 (PAI coating amount: 3 wt%), Example 2 (PAI coating amount: 5 wt%) and Example 3 (PAI coating amount: 1 wt%) and Comparative Example 1 (PAI coating amount: 0 wt%) In comparison, it was confirmed that any of the small cells of Examples 1 to 3 showed higher initial charge / discharge efficiency than the small cell of Comparative Example 1.

また、各実施例の小型セルの初回充放電効率は、実施例3(PAI被覆量:1wt%)の小型セルが最も高く、実施例2(PAI被覆量:5wt%)の小型セルが最も低かった。すなわち、被覆層の総重量は、SiO系活物質粒子の総重量の1%以上かつ5%以下であれば、被覆層を有しない場合よりも高い初回充放電効率が得られるが、SiO系活物質粒子の総重量の1%以上かつ3%以下であれば、より高い初回充放電効率が得られることが確認された。   In addition, the initial charge / discharge efficiency of the small cells of each example is the highest in the small cell of Example 3 (PAI coating amount: 1 wt%), and the lowest in the small cell of Example 2 (PAI coating amount: 5 wt%). It was. That is, if the total weight of the coating layer is 1% or more and 5% or less of the total weight of the SiO-based active material particles, higher initial charge / discharge efficiency can be obtained than when the coating layer is not provided. It was confirmed that a higher initial charge / discharge efficiency could be obtained if the total weight of the substance particles was 1% or more and 3% or less.

1…SiO系活物質粒子、2…結着剤、3…被覆層、4…炭素系活物質粒子、42…負電極、42a…負極箔、42b…負極合剤層、100…二次電池 DESCRIPTION OF SYMBOLS 1 ... SiO type | system | group active material particle, 2 ... Binder, 3 ... Coating layer, 4 ... Carbon type active material particle, 42 ... Negative electrode, 42a ... Negative electrode foil, 42b ... Negative electrode mixture layer, 100 ... Secondary battery

Claims (11)

負極箔と負極合剤層とを有する負電極を備えた二次電池であって、
前記負極合剤層は、SiO系活物質粒子と結着剤とを含み、
前記SiO系活物質粒子は、前記結着剤の耐熱温度よりも高い温度でイミド化させたイミド結合を含む樹脂材料からなる被覆層によって少なくとも一部が被覆されていることを特徴とする二次電池。
A secondary battery comprising a negative electrode having a negative electrode foil and a negative electrode mixture layer,
The negative electrode mixture layer includes SiO-based active material particles and a binder,
The secondary particles characterized in that the SiO-based active material particles are at least partially covered with a coating layer made of a resin material containing an imide bond imidized at a temperature higher than the heat resistance temperature of the binder. battery.
前記樹脂材料は、ポリアミドイミドであることを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the resin material is polyamideimide. 前記結着剤は、スチレンブタジエンゴムを含むことを特徴とする請求項2に記載の二次電池。   The secondary battery according to claim 2, wherein the binder includes styrene butadiene rubber. 前記被覆層の総重量は、前記SiO系活物質粒子の総重量の1%以上かつ5%以下であることを特徴とする請求項2に記載の二次電池。   The secondary battery according to claim 2, wherein a total weight of the coating layer is 1% or more and 5% or less of a total weight of the SiO-based active material particles. 前記負極合剤層は、炭素系活物質粒子を含むことを特徴とする請求項2に記載の二次電池。   The secondary battery according to claim 2, wherein the negative electrode mixture layer includes carbon-based active material particles. 負極箔と負極合剤層とを有する負電極を備えた二次電池の製造方法であって、
樹脂材料の前駆体をイミド化させてSiO系活物質粒子の表面の少なくとも一部にイミド結合を含む前記樹脂材料からなる被覆層を形成する被覆工程と、
前記被覆層を有する前記SiO系活物質粒子と結着剤とを含むスラリを調製する調製工程と、
前記負極箔に前記スラリを塗布して乾燥させることで前記結着剤を含む前記負極合剤層を形成する塗布乾燥工程と、を含み、
前記塗布乾燥工程における乾燥温度は、前記被覆工程において前記前駆体をイミド化させる温度よりも低いことを特徴とする二次電池の製造方法。
A method for manufacturing a secondary battery including a negative electrode having a negative electrode foil and a negative electrode mixture layer,
A coating step of imidizing a precursor of a resin material to form a coating layer made of the resin material including an imide bond on at least a part of the surface of the SiO-based active material particles;
A preparation step of preparing a slurry containing the SiO-based active material particles having the coating layer and a binder;
Coating and drying step of forming the negative electrode mixture layer containing the binder by applying the slurry to the negative electrode foil and drying it,
The method for producing a secondary battery, wherein a drying temperature in the coating drying step is lower than a temperature at which the precursor is imidized in the coating step.
前記被覆工程は、前記前駆体を前記SiO系活物質粒子と共に250℃以上かつ350℃以下の温度に加熱してイミド化させる重合工程を含むことを特徴とする請求項6に記載の二次電池の製造方法。   The secondary battery according to claim 6, wherein the covering step includes a polymerization step in which the precursor is imidized by heating to a temperature of 250 ° C. or more and 350 ° C. or less together with the SiO-based active material particles. Manufacturing method. 前記被覆工程は、
前記重合工程の前に、前記SiO系活物質粒子と前記前駆体の溶液との混合物を得る混合工程と、該混合物を乾燥させて前記SiO系活物質粒子と前記前駆体とを含む塊状物を得る乾燥工程と、該塊状物を粉砕して前記SiO系活物質粒子と前記前駆体とを含む粉体を得る粉砕工程と、を有し、
前記重合工程において、前記粉体を加熱することを特徴とする請求項7に記載の二次電池の製造方法。
The coating step includes
Before the polymerization step, a mixing step of obtaining a mixture of the SiO-based active material particles and the precursor solution, and a lump containing the SiO-based active material particles and the precursor by drying the mixture A drying step to obtain, and a pulverizing step to obtain a powder containing the SiO-based active material particles and the precursor by pulverizing the lump.
The method for manufacturing a secondary battery according to claim 7, wherein the powder is heated in the polymerization step.
前記被覆工程は、前記重合工程の後に、前記SiO系活物質粒子と前記樹脂材料からなる塊状物を解砕して少なくとも一部が前記被覆層に被覆された前記SiO系活物質粒子を得る解砕工程と、該粉末を篩に掛ける選別工程と、を有することを特徴とする請求項7に記載の二次電池の製造方法。   In the coating step, after the polymerization step, the SiO-based active material particles and the resin material are crushed to obtain the SiO-based active material particles at least partially coated on the coating layer. The method for producing a secondary battery according to claim 7, further comprising a crushing step and a selection step of sieving the powder on a sieve. 前記塗布乾燥工程における前記乾燥温度は、120℃以下であることを特徴とする請求項7に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 7, wherein the drying temperature in the coating and drying step is 120 ° C. or lower. 前記調製工程において、炭素系活物質粒子を含む前記スラリを調整することを特徴とする請求項7に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 7, wherein in the preparation step, the slurry containing carbon-based active material particles is adjusted.
JP2014088257A 2014-04-22 2014-04-22 Secondary battery and manufacturing method thereof Active JP6289986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088257A JP6289986B2 (en) 2014-04-22 2014-04-22 Secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088257A JP6289986B2 (en) 2014-04-22 2014-04-22 Secondary battery and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018019753A Division JP6858144B2 (en) 2018-02-07 2018-02-07 Secondary battery and its manufacturing method

Publications (3)

Publication Number Publication Date
JP2015207489A true JP2015207489A (en) 2015-11-19
JP2015207489A5 JP2015207489A5 (en) 2016-12-22
JP6289986B2 JP6289986B2 (en) 2018-03-07

Family

ID=54604135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088257A Active JP6289986B2 (en) 2014-04-22 2014-04-22 Secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6289986B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224239A (en) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd Electrode for battery
JP2012519948A (en) * 2009-03-16 2012-08-30 エルジー・ケム・リミテッド Secondary battery electrode binder and secondary battery using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224239A (en) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd Electrode for battery
JP2012519948A (en) * 2009-03-16 2012-08-30 エルジー・ケム・リミテッド Secondary battery electrode binder and secondary battery using the same

Also Published As

Publication number Publication date
JP6289986B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
JP4726896B2 (en) Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP4623786B2 (en) Non-aqueous secondary battery
CN106415896B (en) Electrical part
JP5257700B2 (en) Lithium secondary battery
US9147870B2 (en) Rechargeable battery
JP5717461B2 (en) Battery electrode and method for manufacturing the same, non-aqueous electrolyte battery, battery pack and active material
CN101740799A (en) Secondary battery
JP2013016265A (en) Nonaqueous secondary battery
JP2008041504A (en) Nonaqueous electrolyte battery
JP2012212600A (en) Bipolar type secondary battery
JP2022100395A (en) Lithium ion secondary battery and method for manufacturing the same
JP5432746B2 (en) Lithium ion secondary battery
US20080199764A1 (en) Safer high energy battery
JP6858144B2 (en) Secondary battery and its manufacturing method
JP4403447B2 (en) Non-aqueous secondary battery
WO2020065834A1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP6289986B2 (en) Secondary battery and manufacturing method thereof
JP6562726B2 (en) Rectangular secondary battery and manufacturing method thereof
JP6944998B2 (en) Rechargeable battery
JP2002245991A (en) Non-aqueous secondary battery
JP7054479B2 (en) Power storage element
JP5165875B2 (en) Non-aqueous electrolyte battery
WO2013168585A1 (en) Rectangular cell
JP6216203B2 (en) Winding type secondary battery
JP6978500B2 (en) Secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6289986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250