JP2015206908A - Antireflection film and optical component having the same - Google Patents

Antireflection film and optical component having the same Download PDF

Info

Publication number
JP2015206908A
JP2015206908A JP2014087377A JP2014087377A JP2015206908A JP 2015206908 A JP2015206908 A JP 2015206908A JP 2014087377 A JP2014087377 A JP 2014087377A JP 2014087377 A JP2014087377 A JP 2014087377A JP 2015206908 A JP2015206908 A JP 2015206908A
Authority
JP
Japan
Prior art keywords
refractive index
film
layer
antireflection film
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014087377A
Other languages
Japanese (ja)
Other versions
JP6314627B2 (en
Inventor
秀雄 藤井
Hideo Fujii
秀雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2014087377A priority Critical patent/JP6314627B2/en
Publication of JP2015206908A publication Critical patent/JP2015206908A/en
Application granted granted Critical
Publication of JP6314627B2 publication Critical patent/JP6314627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antireflection film of an eleven layer structure with low reflectance ratio.SOLUTION: An antireflection film is obtained by alternatively laminating, by ten layers, a high refractive index film and a low refractive index film having a refractive index lower than that of the high refractive index film, and further laminating an ultra-low refractive index film having a refractive index further lower than that of the low refractive index film on the laminated ten layers.

Description

本発明はテレビカメラ、ビデオカメラ、デジタルカメラ、車載カメラ、顕微鏡、望遠鏡等に使用される可視域の光に対する反射防止膜、及びこの反射防止膜を有する光学部品に関する。   The present invention relates to an antireflection film for light in the visible range used for a television camera, a video camera, a digital camera, an in-vehicle camera, a microscope, a telescope, and the like, and an optical component having the antireflection film.

写真用カメラや放送用カメラ等に広く用いられている高性能なズームレンズは、多層枚からなるレンズ群の鏡等構成を有している。一般的にこのようなズームレンズは10〜40枚程度のレンズで構成される。これらレンズ等の光学部品の表面には、基板の屈折率と異なる大小の屈折率を持った誘電体膜を組み合せ、各誘電体膜の膜厚が中心波長λに対して、1/2λや1/4λであるような干渉効果を利用した多層膜による反射防止処理が施されている。   A high-performance zoom lens widely used for a photographic camera, a broadcast camera, and the like has a configuration of a mirror of a lens group composed of multiple layers. In general, such a zoom lens is composed of about 10 to 40 lenses. On the surface of these optical components such as lenses, a dielectric film having a refractive index different from the refractive index of the substrate is combined, and the thickness of each dielectric film is 1 / 2λ or 1 with respect to the center wavelength λ. Antireflection treatment by a multilayer film using an interference effect such as / 4λ is performed.

近年、このような反射防止膜の反射率低減の要望が大きくなっており、可視域400〜700 nmの反射率が0.02〜0.05%に低減された反射防止膜が既に知られている。   In recent years, there has been a great demand for reducing the reflectance of such an antireflection film, and an antireflection film in which the reflectance in the visible region of 400 to 700 nm is reduced to 0.02 to 0.05% is already known.

例えば、特開2007-94150号(特許文献1)は、可視域400〜700 nmの反射防止効果を高める目的で、屈折率1.85〜2.45の高屈折率膜と屈折率1.30〜1.65の低屈折率膜を基板上に4層又は5層形成し、屈折率1.05〜1.30の超低屈折率膜を最表面に形成した5層又は6層構成の反射防止膜を開示している。特許文献1は、屈折率1.95の基板に対して、波長400〜700 nmにおける反射率が0.02%程度の6層構成の反射防止膜を例示している。   For example, JP 2007-94150 (Patent Document 1) discloses a high refractive index film having a refractive index of 1.85 to 2.45 and a low refractive index having a refractive index of 1.30 to 1.65 for the purpose of enhancing the antireflection effect in the visible range of 400 to 700 nm. An antireflection film having a five-layer or six-layer structure in which four or five films are formed on a substrate and an ultra-low refractive index film having a refractive index of 1.05 to 1.30 is formed on the outermost surface is disclosed. Patent Document 1 exemplifies a six-layer antireflection film having a reflectance of about 0.02% at a wavelength of 400 to 700 nm with respect to a substrate having a refractive index of 1.95.

特開2009-8901号(特許文献2)は、可視域430〜670 nmの反射防止効果を高める目的で、屈折率NH≧2の高屈折率膜と屈折率NM≦1.70の低屈折率膜を7層〜9層形成し、屈折率NL≦1.30の超低屈折率膜を最表面に形成した8層〜10層構成の反射防止膜を開示している。特許文献2は、屈折率1.519の基板に対して、波長400〜700 nmにおける反射率が0.03%程度の10層構成の反射防止膜を例示している。 JP-A-2009-8901 (Patent Document 2) discloses a high refractive index film having a refractive index N H ≧ 2 and a low refractive index having a refractive index N M ≦ 1.70 for the purpose of enhancing the antireflection effect in the visible region of 430 to 670 nm. An antireflection film of 8 to 10 layers is disclosed in which 7 to 9 layers are formed and an ultra-low refractive index film having a refractive index N L ≦ 1.30 is formed on the outermost surface. Patent Document 2 exemplifies an antireflection film having a 10-layer structure in which a reflectance at a wavelength of 400 to 700 nm is about 0.03% with respect to a substrate having a refractive index of 1.519.

特開2013-250295号(特許文献3)は、可視から赤外域400〜1600 nmの反射防止効果を高める目的で、高屈折率膜を1、3、5、7、9、11層に、低屈折率膜を2、4、6、8、10層に形成し、屈折率1.2〜1.29の超低屈折率膜を最表面に形成した12層構成の反射防止膜を開示している。特許文献3は、屈折率1.70と1.81の基板に対して、波長400〜1600 nmにおける反射率が1.0%程度の12層構成の反射防止膜を例示しており、この反射防止膜は、可視域400〜700 nmにおいて1.0%程度の反射率を示す。   JP-A-2013-250295 (Patent Document 3) is designed to reduce the high refractive index film to 1, 3, 5, 7, 9, 11 layers for the purpose of enhancing the antireflection effect in the visible to infrared range of 400 to 1600 nm. An antireflection film having a 12-layer structure in which a refractive index film is formed in 2, 4, 6, 8, and 10 layers and an ultra-low refractive index film having a refractive index of 1.2 to 1.29 is formed on the outermost surface is disclosed. Patent Document 3 exemplifies a 12-layer antireflection film having a reflectance of about 1.0% at a wavelength of 400 to 1600 nm with respect to substrates having a refractive index of 1.70 and 1.81, and this antireflection film has a visible region. A reflectance of about 1.0% is exhibited at 400 to 700 nm.

しかしながら、特許文献1、特許文献2及び特許文献3に記載された反射防止膜は、撮影画面内に強い光源が入らない限りは良好な光学性能が保たれるが、撮影画面内に強い光源が入る場合には可視域のフレアやゴーストが発生してコントラストの低下を招くという問題を有しており、さらなる改良が望まれている。   However, the antireflection films described in Patent Document 1, Patent Document 2 and Patent Document 3 maintain good optical performance unless a strong light source enters the photographing screen, but a strong light source exists in the photographing screen. When entering, there is a problem that flare and ghost in the visible range occur and the contrast is lowered, and further improvement is desired.

特開2007-94150号公報Japanese Unexamined Patent Publication No. 2007-94150 特開2009-8901号公報JP 2009-8901 特開2013-250295号公報JP 2013-250295 A

従って、本発明の目的は、11層で反射率の低い反射防止膜を提供することである。   Accordingly, an object of the present invention is to provide an antireflection film having 11 layers and a low reflectance.

上記目的に鑑み鋭意研究の結果、本発明者は、高屈折率膜と、前記高屈折率膜より低い屈折率を有する低屈折率膜とを交互に10層積層し、その上にさらに、前記低屈折率膜よりさらに低い屈折率を有する超低屈折率膜を積層してなる反射防止膜が、可視域400〜700 nmの反射率が0.01%以下の反射防止性能を有することを見出し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventor alternately laminated 10 layers of a high refractive index film and a low refractive index film having a refractive index lower than that of the high refractive index film. It was found that an antireflection film formed by laminating an ultra-low refractive index film having a refractive index lower than that of a low refractive index film has an antireflection performance with a reflectance in the visible range of 400 to 700 nm of 0.01% or less. I came up with the invention.

すなわち、本発明の反射防止膜は、基板上に、第1層〜第11層を順に積層してなる可視域波長400〜700 nmに対する反射防止膜であって、
第1層〜第10層は、高屈折率膜と、前記高屈折率膜より低い屈折率を有する低屈折率膜とを交互に積層してなり、第11層は、前記低屈折率膜よりさらに低い屈折率を有する超低屈折率膜を積層してなることを特徴とする。
That is, the antireflection film of the present invention is an antireflection film for visible wavelengths of 400 to 700 nm obtained by sequentially laminating a first layer to an eleventh layer on a substrate,
The first to tenth layers are formed by alternately laminating a high refractive index film and a low refractive index film having a lower refractive index than the high refractive index film, and the eleventh layer is formed from the low refractive index film. Further, it is characterized in that an ultra-low refractive index film having a lower refractive index is laminated.

第1層は低屈折率膜で構成するのが好ましい。   The first layer is preferably composed of a low refractive index film.

前記基板の屈折率は1.43〜2.01であり、前記低屈折率膜の屈折率は1.37〜1.51であり、前記高屈折率膜の屈折率は1.9〜2.5であるのが好ましい。   Preferably, the refractive index of the substrate is 1.43 to 2.01, the refractive index of the low refractive index film is 1.37 to 1.51, and the refractive index of the high refractive index film is 1.9 to 2.5.

第1層の屈折率が1.37〜1.51及び光学膜厚が4〜90 nmであり、
第2層の屈折率が1.9〜2.5及び光学膜厚が4〜130 nmであり、
第3層の屈折率が1.37〜1.51及び光学膜厚が20〜120 nmであり、
第4層の屈折率が1.9〜2.5及び光学膜厚が30〜100 nmであり、
第5層の屈折率が1.37〜1.51及び光学膜厚が20〜70 nmであり、
第6層の屈折率が1.9〜2.5及び光学膜厚が80〜160 nmであり、
第7層の屈折率が1.37〜1.51及び光学膜厚が4〜40 nmであり、
第8層の屈折率が1.9〜2.5及び光学膜厚が50〜190 nmであり、
第9層の屈折率が1.37〜1.51及び光学膜厚が40〜140 nmであり、
第10層の屈折率が1.9〜2.5及び光学膜厚が4〜50 nmであり、
第11層の屈折率が1.05〜1.3及び光学膜厚が130〜150 nmであるのが好ましい。
The refractive index of the first layer is 1.37 to 1.51 and the optical film thickness is 4 to 90 nm,
The refractive index of the second layer is 1.9 to 2.5 and the optical film thickness is 4 to 130 nm,
The third layer has a refractive index of 1.37 to 1.51 and an optical film thickness of 20 to 120 nm,
The refractive index of the fourth layer is 1.9 to 2.5 and the optical film thickness is 30 to 100 nm,
The refractive index of the fifth layer is 1.37 to 1.51 and the optical film thickness is 20 to 70 nm,
The refractive index of the sixth layer is 1.9 to 2.5 and the optical film thickness is 80 to 160 nm,
The refractive index of the seventh layer is 1.37 to 1.51 and the optical film thickness is 4 to 40 nm,
The refractive index of the eighth layer is 1.9 to 2.5 and the optical film thickness is 50 to 190 nm,
The refractive index of the ninth layer is 1.37 to 1.51 and the optical film thickness is 40 to 140 nm,
The refractive index of the tenth layer is 1.9 to 2.5 and the optical film thickness is 4 to 50 nm,
The eleventh layer preferably has a refractive index of 1.05 to 1.3 and an optical film thickness of 130 to 150 nm.

前記低屈折率膜はMgF2、SiO2、SiO2とAl2O3の混合物、フッ素樹脂からなる群から選ばれた材料からなる膜であり、
前記高屈折率膜はTiO2、Nb2O5、TiO2とNb2O5の混合物、Ta2O5、ZrO2、HfO2、CeO2、La2O3、ZnO、SnO2、In2O3、ZnS、In2O3とSnO2の混合物、ZnOとAl2O3の混合物、ZnOとGa2O3の混合物、TiO2とLa2O3の混合物からなる群から選ばれた材料からなる膜であり、
前記超低屈折率膜はMgF2、SiO2、Al2O3及びフッ素樹脂からなる群から選ばれた材料からなるナノ多孔質膜又はナノ粒子膜であるのが好ましい。
The low refractive index film is a film made of a material selected from the group consisting of MgF 2 , SiO 2 , a mixture of SiO 2 and Al 2 O 3 , a fluororesin,
The high refractive index film is a mixture of TiO 2, Nb 2 O 5, TiO 2 and Nb 2 O 5, Ta 2 O 5, ZrO 2, HfO 2, CeO 2, La 2 O 3, ZnO, SnO 2, In 2 A material selected from the group consisting of O 3 , ZnS, a mixture of In 2 O 3 and SnO 2, a mixture of ZnO and Al 2 O 3, a mixture of ZnO and Ga 2 O 3, and a mixture of TiO 2 and La 2 O 3 A membrane consisting of
The ultra-low refractive index film is preferably a nanoporous film or a nanoparticle film made of a material selected from the group consisting of MgF 2 , SiO 2 , Al 2 O 3 and a fluororesin.

前記第1層の屈折率が前記基板の屈折率より低いのが好ましい。   The refractive index of the first layer is preferably lower than the refractive index of the substrate.

本発明の光学部品は、前記反射防止膜を有することを特徴とする。   The optical component of the present invention has the antireflection film.

本発明の反射防止膜は、11層で低反射率を発揮するので、撮影画面内に強い光源が入る場合でも可視光のフレアやゴーストが発生せず、コントラストの高い良好な光学性能を達成できる。   Since the antireflection film of the present invention exhibits low reflectance with 11 layers, even when a strong light source enters the photographing screen, visible light flare and ghost do not occur, and high optical performance with high contrast can be achieved. .

基板上に形成された本発明の反射防止膜の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the antireflection film of this invention formed on the board | substrate. 実施例1の反射防止膜の5°入射分光反射率を示すグラフである。4 is a graph showing 5 ° incident spectral reflectance of the antireflection film of Example 1. 実施例2の反射防止膜の5°入射分光反射率を示すグラフである。6 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Example 2. 実施例3の反射防止膜の5°入射分光反射率を示すグラフである。6 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Example 3. 実施例4の反射防止膜の5°入射分光反射率を示すグラフである。6 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Example 4. 実施例5の反射防止膜の5°入射分光反射率を示すグラフである。10 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Example 5. 実施例6の反射防止膜の5°入射分光反射率を示すグラフである。10 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Example 6. 実施例7の反射防止膜の5°入射分光反射率を示すグラフである。10 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Example 7. 実施例8の反射防止膜の5°入射分光反射率を示すグラフである。10 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Example 8. 実施例9の反射防止膜の5°入射分光反射率を示すグラフである。10 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Example 9. 実施例10の反射防止膜の5°入射分光反射率を示すグラフである。10 is a graph showing 5 ° incident spectral reflectance of the antireflection film of Example 10. 実施例11の反射防止膜の5°入射分光反射率を示すグラフである。14 is a graph showing 5 ° incident spectral reflectance of the antireflection film of Example 11. 実施例12の反射防止膜の5°入射分光反射率を示すグラフである。14 is a graph showing 5 ° incident spectral reflectance of the antireflection film of Example 12. 比較例1の反射防止膜の5°入射分光反射率を示すグラフである。5 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Comparative Example 1. 比較例2の反射防止膜の5°入射分光反射率を示すグラフである。6 is a graph showing 5 ° incident spectral reflectance of an antireflection film of Comparative Example 2. 実施例及び比較例で用いた膜材料の波長350〜750 nmの屈折率分散を示すグラフである。It is a graph which shows the refractive index dispersion | distribution of wavelength 350-750 nm of the film | membrane material used by the Example and the comparative example. 比較例3の反射防止膜1及び2の5°入射分光反射率を示すグラフである。5 is a graph showing 5 ° incident spectral reflectances of antireflection films 1 and 2 of Comparative Example 3. 比較例3の反射防止膜2の5°入射分光反射率を示すグラフである。10 is a graph showing 5 ° incident spectral reflectance of an antireflection film 2 of Comparative Example 3.

[1]反射防止膜
(1)構成
本発明の反射防止膜は、図1に示すように、所定の屈折率及び光学膜厚[屈折率(n)×物理膜厚(d)]を有する第1層101から第11層111までの薄膜を基板3の表面に積層してなる。第1層〜第10層は、高屈折率膜と、前記高屈折率膜より低い屈折率を有する低屈折率膜とが交互に積層され、第11層は、前記低屈折率膜よりさらに低い屈折率を有する超低屈折率膜である。前記第1層〜第10層は、第1層を低屈折率膜で構成する、すなわち基数層を低屈折率膜で構成し、偶数層を高屈折率膜で構成するのが好ましい。さらに、第1層の屈折率が、前記基板の屈折率より低いのが好ましい。
[1] Antireflection film
(1) Configuration As shown in FIG. 1, the antireflection film of the present invention has a predetermined refractive index and optical film thickness [refractive index (n) × physical film thickness (d)] from the first layer 101 to the eleventh layer. A thin film up to the layer 111 is laminated on the surface of the substrate 3. The first to tenth layers are alternately laminated with a high refractive index film and a low refractive index film having a lower refractive index than the high refractive index film, and the eleventh layer is lower than the low refractive index film. It is an ultra-low refractive index film having a refractive index. In the first to tenth layers, it is preferable that the first layer is composed of a low refractive index film, that is, the radix layer is composed of a low refractive index film, and the even layer is composed of a high refractive index film. Furthermore, the refractive index of the first layer is preferably lower than the refractive index of the substrate.

第1層の屈折率を低屈折率膜で構成し、さらに基板の屈折率より低く設定することにより、可視域の波長400〜700 nmにおける反射率(入射角0〜10°)をより大きく低減させることができる。特に屈折率の高い基板の反射率を低減する効果が大きい。屈折率の高い基板の場合、基板そのもの(未コートの)の反射率が高いので、屈折率が低い基板より反射率を下げるのが難しい。例えば、屈折率が高い2.00ぐらいの基板を用いた場合、第1層として、屈折率1.9〜2.5の高屈折率膜を付与しても、大きな干渉効果が得られず、高い反射防止効果が得られない。そのため、屈折率の高い基板では、第1層を低屈折率膜で構成する方が高い反射防止効果が得られ有利である。   By configuring the refractive index of the first layer with a low refractive index film and setting it lower than the refractive index of the substrate, the reflectance (incident angle of 0 to 10 °) in the visible wavelength range of 400 to 700 nm is greatly reduced. Can be made. In particular, the effect of reducing the reflectance of a substrate having a high refractive index is great. In the case of a substrate having a high refractive index, since the reflectance of the substrate itself (uncoated) is high, it is more difficult to lower the reflectance than a substrate having a low refractive index. For example, when a substrate having a high refractive index of about 2.00 is used, even if a high refractive index film having a refractive index of 1.9 to 2.5 is provided as the first layer, a large interference effect is not obtained, and a high antireflection effect is obtained. I can't. Therefore, in the case of a substrate having a high refractive index, it is advantageous to form the first layer with a low refractive index film because a high antireflection effect is obtained.

本発明の反射防止膜は、さらに好ましくは、波長400〜700 nmの間にある任意の波長において、屈折率が1.43〜2.1の基板上に、基板表面から順に、
屈折率が1.37〜1.51であり、光学膜厚が4〜90 nmの第1層101、
屈折率が1.9〜2.5であり、光学膜厚が4〜130 nmの第2層102、
屈折率が1.37〜1.51であり、光学膜厚が20〜120 nmの第3層103、
屈折率が1.9〜2.5であり、光学膜厚が30〜100 nmの第4層104、
屈折率が1.37〜1.51であり、光学膜厚が20〜70 nmの第5層105、
屈折率が1.9〜2.5であり、光学膜厚が80〜160 nmの第6層106、
屈折率が1.37〜1.51であり、光学膜厚が4〜40 nmの第7層107、
屈折率が1.9〜2.5であり、光学膜厚が50〜190 nmの第8層108、
屈折率が1.37〜1.51であり、光学膜厚が40〜140 nmの第9層109、
屈折率が1.9〜2.5であり、光学膜厚が4〜50 nmの第10層110、及び
屈折率が1.05〜1.3であり、光学膜厚が130〜150 nmの第11層111を積層してなる。
The antireflection film of the present invention is more preferably an arbitrary wavelength between 400 to 700 nm on a substrate having a refractive index of 1.43 to 2.1 in order from the substrate surface.
A first layer 101 having a refractive index of 1.37 to 1.51 and an optical film thickness of 4 to 90 nm;
A second layer 102 having a refractive index of 1.9 to 2.5 and an optical film thickness of 4 to 130 nm,
A third layer 103 having a refractive index of 1.37 to 1.51 and an optical film thickness of 20 to 120 nm,
A fourth layer 104 having a refractive index of 1.9 to 2.5 and an optical film thickness of 30 to 100 nm,
A fifth layer 105 having a refractive index of 1.37 to 1.51 and an optical film thickness of 20 to 70 nm,
A sixth layer 106 having a refractive index of 1.9 to 2.5 and an optical thickness of 80 to 160 nm,
A seventh layer 107 having a refractive index of 1.37 to 1.51 and an optical thickness of 4 to 40 nm;
An eighth layer 108 having a refractive index of 1.9 to 2.5 and an optical thickness of 50 to 190 nm;
A ninth layer 109 having a refractive index of 1.37 to 1.51 and an optical thickness of 40 to 140 nm,
A tenth layer 110 having a refractive index of 1.9 to 2.5 and an optical film thickness of 4 to 50 nm and an eleventh layer 111 having a refractive index of 1.05 to 1.3 and an optical film thickness of 130 to 150 nm are laminated. Become.

さらに、波長400〜700 nmにおいて良好な反射防止効果を得るためには、波長587.56 nmにおいて、
第1層の屈折率は好ましくは1.38〜1.50、光学膜厚は好ましくは5〜89 nmであり、
第2層の屈折率は好ましくは1.91〜2.49、光学膜厚は好ましくは5〜129 nmであり、
第3層の屈折率は好ましくは1.38〜1.50、光学膜厚は好ましくは21〜119 nmであり、
第4層の屈折率は好ましくは1.91〜2.49、光学膜厚は好ましくは31〜99 nmであり、
第5層の屈折率は好ましくは1.38〜1.50、光学膜厚は好ましくは21〜69 nmであり、
第6層の屈折率は好ましくは1.91〜2.49、光学膜厚は好ましくは81〜159 nmであり、
第7層の屈折率は好ましくは1.38〜1.50、光学膜厚は好ましくは5〜39 nmであり、
第8層の屈折率は好ましくは1.91〜2.49、光学膜厚は好ましくは51〜189 nmであり、
第9層の屈折率は好ましくは1.38〜1.50、光学膜厚は好ましくは41〜139 nmであり、
第10層の屈折率は好ましくは1.91〜2.49、光学膜厚は好ましくは5〜49 nmであり、
第11層の屈折率は好ましくは1.06〜1.29、光学膜厚は好ましくは131〜149 nmである。
Furthermore, in order to obtain a good antireflection effect at a wavelength of 400 to 700 nm, at a wavelength of 587.56 nm,
The refractive index of the first layer is preferably 1.38 to 1.50, the optical film thickness is preferably 5 to 89 nm,
The refractive index of the second layer is preferably 1.91 to 2.49, the optical film thickness is preferably 5 to 129 nm,
The refractive index of the third layer is preferably 1.38 to 1.50, the optical film thickness is preferably 21 to 119 nm,
The refractive index of the fourth layer is preferably 1.91 to 2.49, the optical film thickness is preferably 31 to 99 nm,
The refractive index of the fifth layer is preferably 1.38 to 1.50, the optical film thickness is preferably 21 to 69 nm,
The refractive index of the sixth layer is preferably 1.91 to 2.49, the optical film thickness is preferably 81 to 159 nm,
The refractive index of the seventh layer is preferably 1.38 to 1.50, the optical film thickness is preferably 5 to 39 nm,
The refractive index of the eighth layer is preferably 1.91 to 2.49, the optical film thickness is preferably 51 to 189 nm,
The refractive index of the ninth layer is preferably 1.38 to 1.50, the optical film thickness is preferably 41 to 139 nm,
The refractive index of the tenth layer is preferably 1.91 to 2.49, the optical film thickness is preferably 5 to 49 nm,
The refractive index of the eleventh layer is preferably 1.06 to 1.29, and the optical film thickness is preferably 131 to 149 nm.

(2)材料
前記屈折率1.37〜1.51の層を構成する低屈折率膜は、MgF2、SiO2、SiO2とAl2O3の混合物、フッ素樹脂からなる群から選ばれた材料からなる膜である。フッ素樹脂としては、四フッ化エチレン樹脂(PTFE)、三フッ化塩化メチレン樹脂(PCTFE)、フッ化ビニル樹脂(PVF)、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、フッ化ビニリデン樹脂などが利用できる。
(2) Material The low refractive index film constituting the layer having a refractive index of 1.37 to 1.51 is a film made of a material selected from the group consisting of MgF 2 , SiO 2 , a mixture of SiO 2 and Al 2 O 3 , and a fluororesin. It is. Fluororesin includes tetrafluoroethylene resin (PTFE), trifluorinated methylene chloride resin (PCTFE), vinyl fluoride resin (PVF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), fluoride Vinylidene resin can be used.

前記屈折率1.9〜2.5の層を構成する高屈折率膜は、TiO2、Nb2O5、TiO2とNb2O5の混合物、Ta2O5、ZrO2、HfO2、CeO2、La2O3、ZnO、SnO2、In2O3、ZnS、In2O3とSnO2の混合物、ZnOとAl2O3の混合物、ZnOとGa2O3の混合物、TiO2とLa2O3の混合物からなる群から選ばれた材料からなる膜である。 High refractive index film constituting the layer of the refractive index 1.9 to 2.5 is, TiO 2, Nb 2 O 5 , a mixture of TiO 2 and Nb 2 O 5, Ta 2 O 5, ZrO 2, HfO 2, CeO 2, La 2 O 3 , ZnO, SnO 2 , In 2 O 3 , ZnS, a mixture of In 2 O 3 and SnO 2, a mixture of ZnO and Al 2 O 3, a mixture of ZnO and Ga 2 O 3 , TiO 2 and La 2 O 3 is a film made of a material selected from the group consisting of 3 mixtures.

前記屈折率1.05〜1.3の層を構成する超低屈折率膜は、MgF2、SiO2、Al2O3及びフッ素樹脂からなる群から選ばれた材料からなナノ多孔質膜又はナノ粒子膜である。ナノ多孔質膜又はナノ粒子膜としては、国際公開第2002/018982号に記載のフッ化マグネシウム等の微粒子を含むゾル溶液を用いて得られる多孔質膜、国際公開第2006/030848号に記載のMgF2粒子と、MgF2粒子間に存在する非晶質酸化ケイ素系バインダーとを備えるMgF2多孔質光学薄膜、特開2006-3562号、特開2006-215542号、特開2007-94150号(特許文献1)、特開2008-225210号及び特開2008-233403号に記載のシリカエアロゲル膜、「ジャーナル・オブ・ゾルゲル・サイエンス・アンド・テクノロジー(Journal of Sol-Gel Science and Technology)」,2000年,第18巻,219〜224頁に記載のナノポーラスシリカ膜等が挙げられる。 The ultra-low refractive index film constituting the layer having a refractive index of 1.05 to 1.3 is a nanoporous film or a nanoparticle film made of a material selected from the group consisting of MgF 2 , SiO 2 , Al 2 O 3 and fluororesin. is there. As the nanoporous film or nanoparticle film, a porous film obtained by using a sol solution containing fine particles such as magnesium fluoride described in International Publication No. 2002/018982, described in International Publication No. 2006/030848 and MgF 2 particles MgF 2 porous optical thin film and an amorphous silicon oxide-based binder present between MgF 2 particles JP 2006-3562, JP 2006-215542, JP 2007-94150 ( Patent Document 1), silica airgel film described in JP2008-225210A and JP2008-233403, "Journal of Sol-Gel Science and Technology", 2000 Year, Vol. 18, pp. 219-224, and the like.

第8層はシリカを主成分とするナノポーラス膜であるのが好ましく、特に前記シリカエアロゲル膜、又は前記ナノポーラスシリカ膜からなるのが好ましい。シリカエアロゲル膜又はナノポーラスシリカ膜からなる層は低い屈折率を有するため、この層を基材から一番遠い位置に設けることにより、優れた反射防止機能を発揮することができる。多孔質層の細孔径は0.005〜0.2μmであるのが好ましく、空孔率は20〜60%であるのが好ましい。   The eighth layer is preferably a nanoporous film mainly composed of silica, and is particularly preferably composed of the silica airgel film or the nanoporous silica film. Since a layer made of a silica airgel film or a nanoporous silica film has a low refractive index, an excellent antireflection function can be exhibited by providing this layer at a position farthest from the substrate. The pore diameter of the porous layer is preferably 0.005 to 0.2 μm, and the porosity is preferably 20 to 60%.

(3) 基板
基板3は、波長400〜700 nmのある波長において屈折率が1.43〜2.1であり、好ましくは1.435〜2.005である。屈折率がこのような値の基板3を用いて反射防止膜を形成することにより、前記波長領域において光学性能を良好に改善することができる。
(3) Substrate The substrate 3 has a refractive index of 1.43 to 2.1, preferably 1.435 to 2.005, at a wavelength of 400 to 700 nm. By forming the antireflection film using the substrate 3 having such a refractive index, the optical performance can be satisfactorily improved in the wavelength region.

基板3の材料としては、BaSF2、SF5、LaF2、LaSF09、LaSF01、LaSF016、LAK7、LAK14等の光学ガラスやルミセラ(登録商標)等のセラミックスが挙げられる。   Examples of the material of the substrate 3 include optical glass such as BaSF2, SF5, LaF2, LaSF09, LaSF01, LaSF016, LAK7, and LAK14, and ceramics such as Lumicera (registered trademark).

[2]製造方法
(1) 第1層〜第10層の形成方法
反射防止膜の第1層〜第10層は、物理成膜法で形成するのが好ましい。物理成膜法としては、例えば、真空蒸着法、イオンアシスト蒸着法、イオンプレーティング法、スパッタリング法などが挙げられる。中でも特に製造コスト、加工精度の面においてスパッタリング法が好ましい。
[2] Manufacturing method
(1) Formation method of the first layer to the tenth layer The first layer to the tenth layer of the antireflection film are preferably formed by a physical film formation method. Examples of the physical film forming method include a vacuum vapor deposition method, an ion assist vapor deposition method, an ion plating method, and a sputtering method. Among these, the sputtering method is particularly preferable in terms of manufacturing cost and processing accuracy.

(2) 第11層の形成方法
第11層のナノ多孔質膜又はナノ粒子膜は、国際公開第2002/018982号、国際公開第2006/030848号、特開2006-3562号、特開2006-215542号、特開2007-94150号(特許文献1)、特開2008-225210号、特開2008-233403号、「ジャーナル・オブ・ゾルゲル・サイエンス・アンド・テクノロジー(Journal of Sol-Gel Science and Technology)」,2000年,第18巻,219〜224頁等に記載の方法により得ることができる。シリカを主成分とする多孔質層は、湿式法により形成するのが好ましく、特にゾル-ゲル法が好ましい。すなわち、アルコキシシラン等のシリカ骨格形成化合物からなる湿潤ゲルを、必要に応じて有機修飾し、バインダーとして紫外線硬化性の樹脂を混合し、得られた塗工液を塗布、乾燥及び焼成することにより形成する。以下に、「ジャーナル・オブ・ゾルゲル・サイエンス・アンド・テクノロジー(Journal of Sol-Gel Science and Technology)」,2000年,第18巻,219〜224頁に記載のアルカリ及び酸を用いた2段階反応によるナノポーラスシリカ膜の形成方法について詳細に説明するが、本発明はこれに限定されるものではない。
(2) Formation method of the eleventh layer The nanoporous film or nanoparticle film of the eleventh layer is WO 2002/018982, WO 2006/030848, JP 2006-3562, JP 2006- 215542, JP 2007-94150 (Patent Document 1), JP 2008-225210, JP 2008-233403, “Journal of Sol-Gel Science and Technology” ”, 2000, Vol. 18, pp. 219-224, etc. The porous layer containing silica as a main component is preferably formed by a wet method, and particularly preferably a sol-gel method. That is, a wet gel composed of a silica skeleton-forming compound such as alkoxysilane is organically modified as necessary, an ultraviolet curable resin is mixed as a binder, and the obtained coating liquid is applied, dried and baked. Form. The following is a two-step reaction using an alkali and an acid described in “Journal of Sol-Gel Science and Technology”, 2000, Vol. 18, pp. 219-224. The method for forming a nanoporous silica film according to the present invention will be described in detail, but the present invention is not limited thereto.

2段階反応によるナノポーラスシリカ膜の形成は、(i)アルコキシシランを塩基性触媒下で加水分解及び縮重合して調製したアルカリ性ゾルに、さらに酸性触媒を添加して第一のゾルを得る工程、(ii) 第一のゾルにアルコキシシランと水の混合物を添加し、さらに加水分解及び縮重合を進め第二のゾルを調製する工程、(iii)得られた第二のゾルを基板上に塗布及び乾燥(熱処理)する工程、(iv)アルカリ処理工程、及び(vi)洗浄工程により行う。   The nanoporous silica film is formed by a two-step reaction. (I) A step of adding an acidic catalyst to an alkaline sol prepared by hydrolysis and polycondensation of alkoxysilane under a basic catalyst to obtain a first sol; (ii) adding a mixture of alkoxysilane and water to the first sol and further proceeding hydrolysis and condensation polymerization to prepare a second sol; (iii) applying the obtained second sol on the substrate And a drying (heat treatment) step, (iv) an alkali treatment step, and (vi) a washing step.

(i) 第一のゾルを調製する工程
(a) アルコキシシラン
第一のゾルを生成するためのアルコキシシランはテトラアルコキシシランのモノマー又はオリゴマー(縮重合物)が好ましい。4官能のアルコキシシランを用いた場合、比較的大きな粒径を有するコロイド状シリカ粒子のゾルを得ることができる。テトラアルコキシシランは、Si(OR)4[Rは炭素数1〜5のアルキル基(メチル、エチル、プロピル、ブチル等)、又は炭素数1〜4のアシル基(アセチル等)]により表されるものが好ましい。テトラアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、ジエトキシジメトキシシラン等が挙げられる。中でもテトラメトキシシラン及びテトラエトキシシランが好ましい。本発明の効果を阻害しない範囲で、テトラアルコキシシランに少量の3官能以下のアルコキシシランを配合しても良い。
(i) Step of preparing the first sol
(a) Alkoxysilane The alkoxysilane for producing the first sol is preferably a tetraalkoxysilane monomer or oligomer (condensation product). When a tetrafunctional alkoxysilane is used, a sol of colloidal silica particles having a relatively large particle size can be obtained. Tetraalkoxysilane is represented by Si (OR) 4 [R is an alkyl group having 1 to 5 carbon atoms (methyl, ethyl, propyl, butyl, etc.) or an acyl group having 1 to 4 carbon atoms (acetyl etc.)]. Those are preferred. Specific examples of tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, diethoxydimethoxysilane and the like. Of these, tetramethoxysilane and tetraethoxysilane are preferred. A small amount of trifunctional or lower functional alkoxysilane may be added to the tetraalkoxysilane as long as the effects of the present invention are not impaired.

(b) 塩基性触媒の存在下での加水分解及び縮重合
アルコキシシランに有機溶媒、塩基性触媒及び水を添加することにより、加水分解及び縮重合が進行する。有機溶媒としては、メタノール、エタノール、n-プロパノール、i-プロパノール、ブタノール等のアルコールが好ましく、メタノール又はエタノールがより好ましい。塩基性触媒としては、アンモニア、アミン、NaOH又はKOHが好ましい。好ましいアミンは、アルコールアミン又はアルキルアミン(メチルアミン、ジメチルアミン、トリメチルアミン、n-ブチルアミン、n-プロピルアミン等)である。
(b) Hydrolysis and polycondensation in the presence of a basic catalyst Hydrolysis and polycondensation proceed by adding an organic solvent, a basic catalyst and water to the alkoxysilane. As the organic solvent, alcohols such as methanol, ethanol, n-propanol, i-propanol, and butanol are preferable, and methanol or ethanol is more preferable. As the basic catalyst, ammonia, amine, NaOH or KOH is preferable. Preferred amines are alcohol amines or alkyl amines (methylamine, dimethylamine, trimethylamine, n-butylamine, n-propylamine, etc.).

有機溶媒とアルコキシシランとの量比は、アルコキシシランの濃度がSiO2換算で0.1〜10質量%(シリカ濃度)となるように設定するのが好ましい。シリカ濃度が10質量%超であると、得られるゾル中のシリカ粒子の粒径は大きくなり過ぎる。一方シリカ濃度が0.1未満であると、得られるゾル中のシリカ粒子の粒径は小さくなり過ぎる。なお有機溶媒/アルコキシシランのモル比としては5×102〜5×104の範囲が好ましい。 The amount ratio between the organic solvent and the alkoxysilane is preferably set so that the concentration of the alkoxysilane is 0.1 to 10% by mass (silica concentration) in terms of SiO 2 . When the silica concentration is more than 10% by mass, the particle size of the silica particles in the obtained sol becomes too large. On the other hand, when the silica concentration is less than 0.1, the particle size of the silica particles in the obtained sol becomes too small. The molar ratio of organic solvent / alkoxysilane is preferably in the range of 5 × 10 2 to 5 × 10 4 .

塩基性触媒/アルコキシシランのモル比は1×10-4〜1にするのが好ましく、1×10-4〜0.8にするのがより好ましく、3×10-4〜0.5にするのが特に好ましい。塩基性触媒/アルコキシシランのモル比が1×10-4未満であると、アルコキシシランの加水分解反応が十分に起こらない。一方モル比が1を超えて塩基を添加しても触媒効果は飽和する。 The basic catalyst / alkoxysilane molar ratio is preferably 1 × 10 −4 to 1, more preferably 1 × 10 −4 to 0.8, and particularly preferably 3 × 10 −4 to 0.5. . If the molar ratio of basic catalyst / alkoxysilane is less than 1 × 10 −4 , hydrolysis reaction of alkoxysilane does not occur sufficiently. On the other hand, even if the molar ratio exceeds 1 and the base is added, the catalytic effect is saturated.

水/アルコキシシランのモル比は1〜40が好ましい。水/アルコキシシランのモル比が40超であると、加水分解反応が速く進行し過ぎるため反応の制御が難しく、均一なシリカエアロゲル膜が得られにくくなる。一方1未満であると、アルコキシシランの加水分解が十分に起こらない。   The water / alkoxysilane molar ratio is preferably 1-40. If the water / alkoxysilane molar ratio is more than 40, the hydrolysis reaction proceeds too quickly, making it difficult to control the reaction, making it difficult to obtain a uniform silica airgel film. On the other hand, when it is less than 1, hydrolysis of alkoxysilane does not occur sufficiently.

塩基性触媒及び水を含有するアルコキシシランの溶液は、15〜25℃で約30分〜10時間静置又はゆっくり撹拌することにより熟成させるのが好ましい。熟成により加水分解及び縮重合が進行し、アルカリ性ゾルが生成する。アルカリ性ゾルは、コロイド状シリカ粒子の分散液の他、コロイド状シリカ粒子がクラスター状に凝集した分散液も含む。   The alkoxysilane solution containing the basic catalyst and water is preferably aged by standing at 15 to 25 ° C. for about 30 minutes to 10 hours or by slowly stirring. By aging, hydrolysis and condensation polymerization proceed, and an alkaline sol is generated. The alkaline sol includes, in addition to a dispersion of colloidal silica particles, a dispersion in which colloidal silica particles are aggregated in a cluster.

(c) 酸性触媒の存在下での加水分解及び縮重合
得られたアルカリ性ゾルに酸性触媒、並びに必要に応じて水及び有機溶媒を添加し、pHを約1まで下げ、酸性状態で加水分解及び縮重合をさらに進行させる。酸性触媒としては、塩酸、硝酸、硫酸、燐酸、酢酸等が挙げられる。有機溶媒は上記と同じものを使用できる。有機溶媒/アルコキシシランのモル比及び水/アルコキシシランのモル比は上記と同じで良い。酸性触媒を含有するゾルは10〜90℃で約15分〜24時間静置又はゆっくり撹拌して熟成するのが好ましい。熟成により加水分解及び縮重合が進行し、第一のゾルが生成する。
(c) Hydrolysis and polycondensation in the presence of an acidic catalyst Add an acidic catalyst and water and an organic solvent as necessary to the obtained alkaline sol, lower the pH to about 1, and perform hydrolysis and condensation in an acidic state. The condensation polymerization is further advanced. Examples of the acidic catalyst include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid and the like. The same organic solvent as above can be used. The organic solvent / alkoxysilane molar ratio and the water / alkoxysilane molar ratio may be the same as described above. The sol containing the acidic catalyst is preferably aged by standing at 10 to 90 ° C. for about 15 minutes to 24 hours or slowly stirring. By aging, hydrolysis and condensation polymerization proceed to produce a first sol.

第一のゾル中のシリカ粒子のメジアン径は100 nm以下であり、好ましくは10〜50 nmである。メジアン径は動的光散乱法により測定する。   The median diameter of the silica particles in the first sol is 100 nm or less, preferably 10 to 50 nm. The median diameter is measured by a dynamic light scattering method.

(ii) 第二のゾルを調製する工程
(a) アルコキシシラン
第一のゾルにアルコキシシラン及び水の混合物を添加し、加水分解及び縮重合をさらに進行させ、第二のゾルを調製する。アルコキシシランとしてはSi(OR1)x(R2)4-x[xは2〜4の整数である。]により表される2〜4官能のものを用いるのが好ましい。R1は炭素数1〜5のアルキル基(メチル、エチル、プロピル、ブチル等)、又は炭素数1〜4のアシル基(アセチル等)が好ましい。R2は炭素数1〜10の有機基が好ましく、例えばメチル、エチル、プロピル、ブチル、ヘキシル、シクロヘキシル、オクチル、デシル、フェニル、ビニル、アリル等の炭化水素基、及びγ-クロロプロピル、CF3CH2-、CF3CH2CH2-、C2F5CH2CH2-、C3F7CH2CH2CH2-、CF3OCH2CH2CH2-、C2F5OCH2CH2CH2-、C3F7OCH2CH2CH2-、(CF3)2CHOCH2CH2CH2-、C4F9CH2OCH2CH2CH2-、3-(パーフルオロシクロヘキシルオキシ)プロピル、H(CF2)4CH2OCH2CH2CH2-、H(CF2)4CH2CH2CH2-、γ-グリシドキシプロピル、γ-メルカプトプロピル、3,4-エポキシシクロヘキシルエチル、γ-メタクリロイルオキシプロピル等の置換炭化水素基が挙げられる。
(ii) Step of preparing the second sol
(a) Alkoxysilane A mixture of alkoxysilane and water is added to the first sol, and hydrolysis and condensation polymerization are further advanced to prepare a second sol. As the alkoxysilane, Si (OR 1 ) x (R 2 ) 4-x [x is an integer of 2 to 4. It is preferable to use a bifunctional to tetrafunctional compound represented by R 1 is preferably an alkyl group having 1 to 5 carbon atoms (methyl, ethyl, propyl, butyl or the like) or an acyl group having 1 to 4 carbon atoms (acetyl or the like). R 2 is preferably an organic group having 1 to 10 carbon atoms, for example, a hydrocarbon group such as methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, decyl, phenyl, vinyl, allyl, and γ-chloropropyl, CF 3 CH 2- , CF 3 CH 2 CH 2- , C 2 F 5 CH 2 CH 2- , C 3 F 7 CH 2 CH 2 CH 2- , CF 3 OCH 2 CH 2 CH 2- , C 2 F 5 OCH 2 CH 2 CH 2- , C 3 F 7 OCH 2 CH 2 CH 2- , (CF 3 ) 2 CHOCH 2 CH 2 CH 2- , C 4 F 9 CH 2 OCH 2 CH 2 CH 2- , 3- (perfluoro (Cyclohexyloxy) propyl, H (CF 2 ) 4 CH 2 OCH 2 CH 2 CH 2- , H (CF 2 ) 4 CH 2 CH 2 CH 2- , γ-glycidoxypropyl, γ-mercaptopropyl, 3,4 -Substituted hydrocarbon groups such as epoxycyclohexylethyl and γ-methacryloyloxypropyl.

2官能のアルコキシシランの具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のジメチルジアルコキシシランが挙げられる。3官能のアルコキシシランの具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン等のメチルトリアルコキシシラン、及びフェニルトリエトキシシラン等のフェニルトリアルコキシシランが挙げられる。4官能のアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、ジエトキシジメトキシシラン等が挙げられる。アルコキシシランは3官能以上が好ましく、メチルトリアルコキシシラン及びテトラアルコキシシランがより好ましい。   Specific examples of the bifunctional alkoxysilane include dimethyldialkoxysilane such as dimethyldimethoxysilane and dimethyldiethoxysilane. Specific examples of the trifunctional alkoxysilane include methyltrialkoxysilane such as methyltrimethoxysilane and methyltriethoxysilane, and phenyltrialkoxysilane such as phenyltriethoxysilane. Examples of the tetrafunctional alkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and diethoxydimethoxysilane. The alkoxysilane is preferably trifunctional or more, more preferably methyltrialkoxysilane and tetraalkoxysilane.

水/アルコキシシランのモル比は、1〜5が好ましい。アルコキシシラン及び水の混合物を第一のゾルに添加後、15〜25℃で約1〜20日間静置又ゆっくり撹拌することにより熟成させる。熟成により加水分解及び縮重合がさらに進行し、第二のゾルが生成する。熟成時間が20日を超えると、ゾル中のシリカ粒子のメジアン径が大きくなり過ぎる。   The water / alkoxysilane molar ratio is preferably 1-5. After the mixture of alkoxysilane and water is added to the first sol, it is aged by standing at 15-25 ° C. for about 1-20 days or stirring slowly. By aging, hydrolysis and polycondensation further proceed to produce a second sol. When the aging time exceeds 20 days, the median diameter of the silica particles in the sol becomes too large.

第二のゾル中のコロイド状シリカ粒子のメジアン径は1〜100 nmであり、好ましくは10〜50 nmである。   The median diameter of the colloidal silica particles in the second sol is 1 to 100 nm, preferably 10 to 50 nm.

(iii) 塗布及び乾燥工程
(a) 塗布
第二のゾルを基材の表面に塗布する方法としては、ディップコート法、スプレーコート法、スピンコート法、印刷法等が挙げられる。レンズのような三次元構造物に塗布する場合、ディッピング法が好ましい。ディッピング法における引き上げ速度は約0.1〜3 mm/秒であるのが好ましい。
(iii) Application and drying process
(a) Application Examples of methods for applying the second sol to the surface of the substrate include dip coating, spray coating, spin coating, and printing. When applying to a three-dimensional structure such as a lens, a dipping method is preferred. The pulling speed in the dipping method is preferably about 0.1 to 3 mm / second.

第二のゾルの濃度及び流動性を調整し塗布適性を高めるため、分散媒として前記有機溶媒を加えても良い。塗布時の第二のゾル中のシリカの濃度は0.1〜20質量%が好ましい。必要に応じて、第二のゾルを超音波処理しても良い。超音波処理によってコロイド粒子の凝集を防止できる。超音波の周波数は10〜30 kHzが好ましく、出力は300〜900 Wが好ましく、処理時間は5〜120分間が好ましい。   The organic solvent may be added as a dispersion medium in order to adjust the concentration and fluidity of the second sol and improve the coating suitability. The concentration of silica in the second sol at the time of application is preferably 0.1 to 20% by mass. If necessary, the second sol may be sonicated. Aggregation of colloidal particles can be prevented by ultrasonic treatment. The ultrasonic frequency is preferably 10 to 30 kHz, the output is preferably 300 to 900 W, and the treatment time is preferably 5 to 120 minutes.

(b) 乾燥(熱処理)
塗布膜の乾燥条件は基材の耐熱性に応じて適宜選択する。縮重合反応を促進するために、水の沸点未満の温度で15分〜24時間熱処理した後、100〜200℃の温度で15分〜24時間熱処理しても良い。熱処理することによりナノポーラスシリカ膜は高い耐擦傷性を発揮する。
(b) Drying (heat treatment)
The drying conditions for the coating film are appropriately selected according to the heat resistance of the substrate. In order to promote the polycondensation reaction, heat treatment may be performed at a temperature below the boiling point of water for 15 minutes to 24 hours, and then at a temperature of 100 to 200 ° C. for 15 minutes to 24 hours. By performing the heat treatment, the nanoporous silica film exhibits high scratch resistance.

(iv) アルカリ処理工程
ナノポーラスシリカ膜をアルカリで処理することにより耐擦傷性がいっそう向上する。アルカリ処理は、アルカリ溶液を塗布、又はアンモニア雰囲気中に放置することにより行うのが好ましい。アルカリ溶液の溶媒はアルカリに応じて適宜選択でき、水、アルコール等が好ましい。アルカリ溶液の濃度は、1×10-4〜20 Nが好ましく、1×10-3〜15 Nがより好ましい。
(iv) Alkali treatment step The scratch resistance is further improved by treating the nanoporous silica membrane with an alkali. The alkali treatment is preferably performed by applying an alkali solution or leaving it in an ammonia atmosphere. The solvent of the alkaline solution can be appropriately selected according to the alkali, and water, alcohol and the like are preferable. The concentration of the alkaline solution is preferably 1 × 10 −4 to 20 N, and more preferably 1 × 10 −3 to 15 N.

前記アルカリとして、水酸化ナトリウム、水酸化カリウム、アンモニア等の無機アルカリ;炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウム等の無機アルカリ塩;モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、n-プロピルアミン、ジ-n-プロピルアミン、n-ブチルアミン、ジ-n-ブチルアミン、n-アミルアミン、n-ヘキシルアミン、ラウリルアミン、エチレンジアミン、ヘキサメチレンジアミン、アニリン、メチルアニリン、エチルアニリン、シクロヘキシルアミン、ジシクロヘキシルアミン、ピロリジン、ピリジン、イミダゾール、グアニジン、テトラメチルアンモニウムハイドロオキサイド、テトラエチルアンモニウムハイドロオキサイド、テトラブチルアンモニウムハイドロオキサイド、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、コリン等の有機アルカリ;蟻酸アンモニウム、酢酸アンモニウム、蟻酸モノメチルアミン、酢酸ジメチルアミン、酢酸アニリン、乳酸ピリジン、グアニジノ酢酸等の有機酸アルカリ塩等を用いることができる。   Examples of the alkali include inorganic alkalis such as sodium hydroxide, potassium hydroxide, and ammonia; inorganic alkali salts such as sodium carbonate, sodium bicarbonate, ammonium carbonate, and ammonium bicarbonate; monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, Triethylamine, n-propylamine, di-n-propylamine, n-butylamine, di-n-butylamine, n-amylamine, n-hexylamine, laurylamine, ethylenediamine, hexamethylenediamine, aniline, methylaniline, ethylaniline, Cyclohexylamine, dicyclohexylamine, pyrrolidine, pyridine, imidazole, guanidine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, Organic alkalis such as trabutylammonium hydroxide, monoethanolamine, diethanolamine, triethanolamine, choline; organic acid alkali salts such as ammonium formate, ammonium acetate, monomethylamine formate, dimethylamine acetate, aniline acetate, pyridine lactate, guanidinoacetic acid Etc. can be used.

アルカリ溶液の塗布によりアルカリ処理する場合、ナノポーラスシリカ膜1cm2当たり10〜200 mL塗布するのが好ましい。塗布はナノポーラスシリカ膜を塗布する場合と同様の方法ででき、スピンコート法が好ましい。スピンコート法における基材回転速度は、1,000〜15,000 rpm程度にするのが好ましい。アルカリ溶液を塗布後の膜は、好ましくは1〜40℃、より好ましくは10〜30℃で保存する。保存時間は、0.1〜10時間が好ましく、0.2〜1時間がより好ましい。 When alkali treatment is performed by application of an alkaline solution, it is preferable to apply 10 to 200 mL per 1 cm 2 of the nanoporous silica film. The application can be performed by the same method as that for applying the nanoporous silica film, and the spin coating method is preferred. The substrate rotation speed in the spin coating method is preferably about 1,000 to 15,000 rpm. The film after applying the alkaline solution is preferably stored at 1 to 40 ° C, more preferably at 10 to 30 ° C. The storage time is preferably 0.1 to 10 hours, more preferably 0.2 to 1 hour.

アンモニア雰囲気中に放置してアルカリ処理する場合、1×10-1〜1×105 Paのアンモニアガス分圧中で処理するのが好ましい。処理温度は、1〜40℃が好ましく、10〜30℃がより好ましい。処理時間は、1〜170時間が好ましく、5〜80時間がより好ましい。 When the alkali treatment is performed in an ammonia atmosphere, the treatment is preferably carried out in an ammonia gas partial pressure of 1 × 10 −1 to 1 × 10 5 Pa. The treatment temperature is preferably 1 to 40 ° C, more preferably 10 to 30 ° C. The treatment time is preferably 1 to 170 hours, more preferably 5 to 80 hours.

必要に応じて、アルカリ処理したナノポーラスシリカ膜を乾燥する。乾燥は、100〜200℃の温度で15分〜24時間行うのが好ましい。   If necessary, the alkali-treated nanoporous silica film is dried. Drying is preferably performed at a temperature of 100 to 200 ° C. for 15 minutes to 24 hours.

(v) 洗浄工程
アルカリ処理後のナノポーラスシリカ膜は、必要に応じて洗浄してもよい。洗浄は、水及び/又はアルコールに浸漬する方法、シャワーする方法、又はこれらの組み合わせにより行うのが好ましい。浸漬しながら超音波処理してもよい。洗浄の温度は1〜40℃が好ましく、時間は0.2〜15分が好ましい。ナノポーラスシリカ膜1 cm2当たり0.01〜1,000 mLの水及び/又はアルコールで洗浄するのが好ましい。洗浄後のナノポーラスシリカ膜は、100〜200℃の温度で15分〜24時間乾燥するのが好ましい。アルコールとしてはメタノール、エタノール、イソプロピルアルコールが好ましい。
(v) Cleaning Step The nanoporous silica film after the alkali treatment may be cleaned as necessary. Washing is preferably performed by a method of immersing in water and / or alcohol, a method of showering, or a combination thereof. You may ultrasonically treat, immersing. The washing temperature is preferably 1 to 40 ° C., and the time is preferably 0.2 to 15 minutes. The nanoporous silica film is preferably washed with 0.01 to 1,000 mL of water and / or alcohol per 1 cm 2 . The nanoporous silica film after washing is preferably dried at a temperature of 100 to 200 ° C. for 15 minutes to 24 hours. As alcohol, methanol, ethanol, and isopropyl alcohol are preferable.

[3]光学部品
本発明の反射防止膜を前述の基板に施すことにより、400〜700 nmの可視光帯域において、反射率が約0.01%以下の反射防止効果を有する光学部品が得られる。本発明の光学部品は、テレビカメラ、ビデオカメラ、デジタルカメラ、車載カメラ、顕微鏡、望遠鏡等の光学機器に搭載されるレンズ、プリズム、回折素子等に好適である。特にカメラの交換レンズに好適である。
[3] Optical component By applying the antireflection film of the present invention to the above-mentioned substrate, an optical component having an antireflection effect having a reflectance of about 0.01% or less in a visible light band of 400 to 700 nm can be obtained. The optical component of the present invention is suitable for a lens, a prism, a diffraction element, and the like mounted on an optical device such as a television camera, a video camera, a digital camera, an in-vehicle camera, a microscope, and a telescope. Particularly suitable for an interchangeable lens of a camera.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例1
S-FPL53基板(株式会社オハラ製、nd=1.440)上に、表1に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.481のSiO2膜と屈折率2.455のTiO2膜とを交互にスパッタリング法により形成し、第11層として波長587.56 nmにおいて屈折率1.150のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図2に示す。
Example 1
On the S-FPL53 substrate (manufactured by OHARA, Inc., nd = 1.440), as shown in Table 1, as a first layer to a tenth layer, a SiO 2 film having a refractive index of 1.481 and a TiO having a refractive index of 2.455 at a wavelength of 587.56 nm. Two films were alternately formed by a sputtering method, and a silica airgel film having a refractive index of 1.150 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 2 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

実施例2
S-LAL10基板(株式会社オハラ製、nd=1.720)上に、表2に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.481のSiO2膜と屈折率2.455のTiO2膜とを交互にスパッタリング法により形成し、第11層として波長587.56 nmにおいて屈折率1.150のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図3に示す。
Example 2
On the S-LAL10 substrate (manufactured by OHARA, Inc., nd = 1.720), with the structure shown in Table 2, as the first to tenth layers, a SiO 2 film having a refractive index of 1.481 and a TiO having a refractive index of 2.455 at a wavelength of 587.56 nm Two films were alternately formed by a sputtering method, and a silica airgel film having a refractive index of 1.150 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 3 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

実施例3
TAFD40基板(HOYA株式会社製、nd=2.000)上に、表3に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.481のSiO2膜と屈折率2.455のTiO2膜とを交互にスパッタリング法により形成し、第11層として波長587.56 nmにおいて屈折率1.150のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図4に示す。
Example 3
On the TAFD40 substrate (made by HOYA Corporation, nd = 2.000), with the structure shown in Table 3, as a first layer to a tenth layer, a SiO 2 film having a refractive index of 1.481 and a TiO 2 film having a refractive index of 2.455 at a wavelength of 587.56 nm Were alternately formed by a sputtering method, and a silica airgel film having a refractive index of 1.150 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 4 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

実施例4
S-FPL53基板(株式会社オハラ製、nd=1.440)上に、表4に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.481のSiO2膜と屈折率2.455のTiO2膜とを交互にスパッタリング法により形成し、第11層として波長587.56 nmにおいて屈折率1.200のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図5に示す。
Example 4
On the S-FPL53 substrate (manufactured by OHARA, Inc., nd = 1.440), a SiO 2 film having a refractive index of 1.481 and a TiO having a refractive index of 2.455 at a wavelength of 587.56 nm as the first to tenth layers in the configuration shown in Table 4 Two films were alternately formed by a sputtering method, and a silica airgel film having a refractive index of 1.200 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. The 5 ° incident spectral reflectance of this antireflection film is shown in FIG.

Figure 2015206908
Figure 2015206908

実施例5
S-LAL10基板(株式会社オハラ製、nd=1.720)上に、表5に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.481のSiO2膜と屈折率2.455のTiO2膜とを交互にスパッタリング法により形成し、第11層として波長587.56 nmにおいて屈折率1.1200のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図6に示す。
Example 5
An SiO 2 film having a refractive index of 1.481 and a TiO having a refractive index of 2.455 on a S-LAL10 substrate (manufactured by OHARA INC., Nd = 1.720) and having the structure shown in Table 5 and having a refractive index of 1.481 at a wavelength of 587.56 nm as the first to tenth layers. Two films were alternately formed by a sputtering method, and a silica airgel film having a refractive index of 1.1200 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 6 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

実施例6
TAFD40基板(HOYA株式会社製、nd=2.000)上に、表6に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.481のSiO2膜と屈折率2.455のTiO2膜とを交互にスパッタリング法により形成し、第11層として波長587.56 nmにおいて屈折率1.200のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図7に示す。
Example 6
On the TAFD40 substrate (HOYA Co., Ltd., nd = 2.000), with the structure shown in Table 6, as the first to tenth layers, a SiO 2 film with a refractive index of 1.481 and a TiO 2 film with a refractive index of 2.455 at a wavelength of 587.56 nm Were alternately formed by a sputtering method, and a silica airgel film having a refractive index of 1.200 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 7 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

実施例7
S-FPL53基板(株式会社オハラ製、nd=1.440)上に、表7に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.481のSiO2膜と屈折率2.455のTiO2膜とを交互にスパッタリング法により形成し、第11層として波長587.56 nmにおいて屈折率1.100のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図8に示す。
Example 7
On the S-FPL53 substrate (manufactured by OHARA, Inc., nd = 1.440), as shown in Table 7, as a first layer to a tenth layer, a SiO 2 film having a refractive index of 1.481 and a TiO having a refractive index of 2.455 at a wavelength of 587.56 nm. Two films were alternately formed by a sputtering method, and a silica airgel film having a refractive index of 1.100 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. The 5 ° incident spectral reflectance of this antireflection film is shown in FIG.

Figure 2015206908
Figure 2015206908

実施例8
S-LAL10基板(株式会社オハラ製、nd=1.720)上に、表8に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.481のSiO2膜と屈折率2.455のTiO2膜とを交互にスパッタリング法により形成し、第11層として波長587.56 nmにおいて屈折率1.100のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図9に示す。
Example 8
On the S-LAL10 substrate (manufactured by OHARA, Inc., nd = 1.720), with the structure shown in Table 8, as a first layer to a tenth layer, a SiO 2 film having a refractive index of 1.481 and a TiO having a refractive index of 2.455 at a wavelength of 587.56 nm Two films were alternately formed by a sputtering method, and a silica airgel film having a refractive index of 1.100 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 9 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

実施例9
TAFD40基板(HOYA株式会社製、nd=2.000)上に、表9に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.481のSiO2膜と屈折率2.455のTiO2膜とを交互にスパッタリング法により形成し、第11層として波長587.56 nmにおいて屈折率1.100のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図10に示す。
Example 9
On the TAFD40 substrate (made by HOYA, nd = 2.000), the SiO 2 film having a refractive index of 1.481 and the TiO 2 film having a refractive index of 2.455 at a wavelength of 587.56 nm as the first layer to the tenth layer in the configuration shown in Table 9 Were alternately formed by a sputtering method, and a silica airgel film having a refractive index of 1.100 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 10 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

実施例10
S-FPL53基板(株式会社オハラ製、nd=1.440)上に、表10に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.388のMgF2膜と屈折率1.936のHfO2膜とを交互に真空蒸着法により形成し、第11層として波長587.56 nmにおいて屈折率1.150のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図11に示す。
Example 10
On the S-FPL53 substrate (manufactured by OHARA, Inc., nd = 1.440), MgF 2 film having a refractive index of 1.388 and HfO having a refractive index of 1.936 at a wavelength of 587.56 nm as a first layer to a tenth layer in the configuration shown in Table 10 The two films were alternately formed by a vacuum deposition method, and a silica airgel film having a refractive index of 1.150 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 11 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

実施例11
S-LAL10基板(株式会社オハラ製、nd=1.720)上に、表11に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.388のMgF2膜と屈折率1.936のHfO2膜とを交互に真空蒸着法により形成し、第11層として波長587.56 nmにおいて屈折率1.150のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図12に示す。
Example 11
On the S-LAL10 substrate (manufactured by OHARA, Inc., nd = 1.720), the composition shown in Table 11 is used. As the first to tenth layers, an MgF 2 film having a refractive index of 1.388 and a HfO having a refractive index of 1.936 at a wavelength of 587.56 nm. The two films were alternately formed by a vacuum deposition method, and a silica airgel film having a refractive index of 1.150 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 12 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

実施例12
TAFD40基板(HOYA株式会社製、nd=2.000)上に、表12に示す構成で、第1層〜第10層として、波長587.56 nmにおいて屈折率1.388のMgF2膜と屈折率1.936のHfO2膜とを交互に真空蒸着法により形成し、第11層として波長587.56 nmにおいて屈折率1.150のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図13に示す。
Example 12
On the TAFD40 substrate (HOYA Co., Ltd., nd = 2.000), with the configuration shown in Table 12, as the first to tenth layers, an MgF 2 film having a refractive index of 1.388 and a HfO 2 film having a refractive index of 1.936 at a wavelength of 587.56 nm Were alternately formed by a vacuum deposition method, and a silica airgel film having a refractive index of 1.150 at a wavelength of 587.56 nm was formed as an eleventh layer by a sol-gel method to produce an antireflection film. FIG. 13 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

比較例1
特許文献1(特開2007-94150号)の実施例1を参考に、S-FPL53基板(株式会社オハラ製、nd=1.440)上に、表13に示す構成で、第1層〜第4層として、波長587.56 nmにおいて屈折率2.250のTa2O5膜と屈折率1.485のSiO2膜とを交互にイオンプレーティング法により形成し、第5層として波長587.56 nmにおいて屈折率1.150のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図14に示す。
Comparative Example 1
With reference to Example 1 of Patent Document 1 (Japanese Patent Laid-Open No. 2007-94150), on the S-FPL53 substrate (manufactured by OHARA, Inc., nd = 1.440), the first to fourth layers are configured as shown in Table 13. As a fifth layer, a silica airgel film having a refractive index of 1.150 at a wavelength of 587.56 nm is formed by alternately forming a Ta 2 O 5 film having a refractive index of 2.250 and a SiO 2 film having a refractive index of 1.485 at a wavelength of 587.56 nm. Was formed by a sol-gel method to prepare an antireflection film. FIG. 14 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

比較例2
特許文献1(特開2007-94150号)の実施例2を参考に、S-LAL7基板(株式会社オハラ製、nd=1.652)上に、表14に示す構成で、第1層〜第5層として、波長587.56 nmにおいて屈折率2.250のTa2O5膜と屈折率1.485のSiO2膜とを交互にイオンプレーティング法により形成し、第6層として波長587.56 nmにおいて屈折率1.150のシリカエアロゲル膜をゾルゲル法により形成し、反射防止膜を作製した。この反射防止膜の5°入射分光反射率を図15に示す。
Comparative Example 2
With reference to Example 2 of Patent Document 1 (Japanese Patent Laid-Open No. 2007-94150), on the S-LAL7 substrate (manufactured by OHARA, Inc., nd = 1.652), the structure shown in Table 14 and the first layer to the fifth layer As a sixth layer, a silica airgel film having a refractive index of 1.150 at a wavelength of 587.56 nm is formed by alternately forming a Ta 2 O 5 film having a refractive index of 2.250 and a SiO 2 film having a refractive index of 1.485 at a wavelength of 587.56 nm. Was formed by a sol-gel method to prepare an antireflection film. FIG. 15 shows the 5 ° incident spectral reflectance of this antireflection film.

Figure 2015206908
Figure 2015206908

比較例1及び2の反射防止膜は、可視域400〜700 nmの光に対する5°入射の分光反射率が0.01%を越えているのに対し、本発明の実施例1〜12の反射防止膜は、可視域400〜700 nmの光に対する5°入射の分光反射率が0.01%以下であり、優れた低反射特性を有することが分かる。   The antireflection films of Comparative Examples 1 and 2 have a spectral reflectance of 5 ° incidence with respect to light in the visible range of 400 to 700 nm exceeding 0.01%, whereas the antireflection films of Examples 1 to 12 of the present invention Indicates that the spectral reflectance at 5 ° incidence with respect to light in the visible range of 400 to 700 nm is 0.01% or less, and has excellent low reflection characteristics.

実施例1〜12及び比較例1〜2で用いた材料の350〜750 nmの屈折率分散の代表値を図16に示す。シリカエアロゲルについては、波長350〜750 nmの屈折率分散が無視できるほど小さいので省略した。これらの屈折率分散から分かるように、屈折率は可視域の短波長側で高くなる傾向にある。なお図16における屈折率分散カーブは、その膜材料についての単層コーティング膜を実測した平均値を代表値としてプロットしたものである。   FIG. 16 shows representative values of refractive index dispersion at 350 to 750 nm of the materials used in Examples 1 to 12 and Comparative Examples 1 and 2. The silica airgel was omitted because the refractive index dispersion at a wavelength of 350 to 750 nm was negligibly small. As can be seen from these refractive index dispersions, the refractive index tends to increase on the short wavelength side in the visible region. The refractive index dispersion curve in FIG. 16 is obtained by plotting, as a representative value, an average value obtained by actually measuring a single layer coating film for the film material.

比較例3
特許文献3(特開2013−250295号)の12層構成の反射防止膜をさらに最適化することにより、可視域の波長400〜700 nmにおいて反射率が0.01%以下の反射防止膜が得られるかどうかを確認した。S-LAH53基板(株式会社オハラ製、nd=1.806)上に、特許文献3の実施例3と同じ層構成(表15の反射防止膜1)で、Ta2O5(屈折率2.22)、SiO2(屈折率1.45)、及び超低屈折率膜(屈折率1.25)からなる12層反射防止膜を構成した。その5°入射分光反射率の計算結果を図17-1に実線で示す。これに対して、波長390〜710 nmにおける反射率をできるだけ低くするように、各層の光学膜厚を傾斜勾配法によって最適化した12層反射防止膜(表15の反射防止膜2)を構成した。その5°入射分光反射率の計算結果を図17-1と図17-2に鎖線にて示す。
Comparative Example 3
Is it possible to obtain an antireflection film having a reflectance of 0.01% or less at a wavelength of 400 to 700 nm in the visible region by further optimizing the antireflection film having a 12-layer structure disclosed in Patent Document 3 (JP 2013-250295)? I confirmed. On the S-LAH53 substrate (manufactured by OHARA, Inc., nd = 1.806), Ta 2 O 5 (refractive index: 2.22), SiO 2 with the same layer configuration (antireflection film 1 in Table 15) as Example 3 of Patent Document 3. A 12-layer antireflection film composed of 2 (refractive index 1.45) and an ultra-low refractive index film (refractive index 1.25) was constructed. The calculation result of the 5 ° incident spectral reflectance is shown by a solid line in Fig. 17-1. On the other hand, a 12-layer antireflection film (antireflection film 2 in Table 15) in which the optical film thickness of each layer was optimized by the gradient gradient method was configured so that the reflectance at a wavelength of 390 to 710 nm was as low as possible. . The calculation results of the 5 ° incident spectral reflectance are shown by chain lines in FIGS. 17-1 and 17-2.

Figure 2015206908
Figure 2015206908

図17-1及び図17-2から明らかなように、特許文献3(特開2013−250295号)の12層反射防止膜の光学膜厚を単純に調整し最適化しても、本含実施例のように波長400〜700 nmにて反射率0.01%以下の反射防止膜を得ることはできなかった。   As is clear from FIGS. 17-1 and 17-2, the present embodiment can be achieved by simply adjusting and optimizing the optical film thickness of the 12-layer antireflection film of Japanese Patent Application Laid-Open No. 2013-250295. Thus, an antireflection film having a reflectance of 0.01% or less at a wavelength of 400 to 700 nm could not be obtained.

1・・・反射防止膜
101・・・第1層
102・・・第2層
103・・・第3層
104・・・第4層
105・・・第5層
106・・・第6層
107・・・第7層
108・・・第8層
109・・・第9層
110・・・第10層
111・・・第11層
2・・・基板
1. Antireflection film
101 ... 1st layer
102 ... 2nd layer
103 ... 3rd layer
104 ... 4th layer
105 ... 5th layer
106 ・ ・ ・ 6th layer
107 ... 7th layer
108 ・ ・ ・ 8th layer
109 ... 9th layer
110 ... 10th layer
111 ... 11th layer 2 ... Substrate

Claims (7)

基板上に、第1層〜第11層を順に積層してなる可視域波長400〜700 nmに対する反射防止膜であって、
第1層〜第10層は、高屈折率膜と、前記高屈折率膜より低い屈折率を有する低屈折率膜とを交互に積層してなり、第11層は、前記低屈折率膜よりさらに低い屈折率を有する超低屈折率膜を積層してなることを特徴とする反射防止膜。
An antireflection film for a visible wavelength of 400 to 700 nm formed by sequentially laminating a first layer to an eleventh layer on a substrate,
The first to tenth layers are formed by alternately laminating a high refractive index film and a low refractive index film having a lower refractive index than the high refractive index film, and the eleventh layer is formed from the low refractive index film. An antireflection film comprising an ultra-low refractive index film having a lower refractive index.
請求項1に記載の反射防止膜において、前記第1層を低屈折率膜で構成したことを特徴とする反射防止膜。   2. The antireflection film according to claim 1, wherein the first layer is composed of a low refractive index film. 請求項1又は2に記載の反射防止膜において、前記基板の屈折率が1.43〜2.01であり、前記低屈折率膜の屈折率が1.37〜1.51であり、前記高屈折率膜の屈折率が1.9〜2.5であることを特徴とする反射防止膜。   3. The antireflection film according to claim 1, wherein the substrate has a refractive index of 1.43 to 2.01, the low refractive index film has a refractive index of 1.37 to 1.51, and the high refractive index film has a refractive index of 1.9. An antireflection film characterized by being -2.5. 請求項1〜3のいずれかに記載の反射防止膜において、
第1層の屈折率が1.37〜1.51及び光学膜厚が4〜90 nmであり、
第2層の屈折率が1.9〜2.5及び光学膜厚が4〜130 nmであり、
第3層の屈折率が1.37〜1.51及び光学膜厚が20〜120 nmであり、
第4層の屈折率が1.9〜2.5及び光学膜厚が30〜100 nmであり、
第5層の屈折率が1.37〜1.51及び光学膜厚が20〜70 nmであり、
第6層の屈折率が1.9〜2.5及び光学膜厚が80〜160 nmであり、
第7層の屈折率が1.37〜1.51及び光学膜厚が4〜40 nmであり、
第8層の屈折率が1.9〜2.5及び光学膜厚が50〜190 nmであり、
第9層の屈折率が1.37〜1.51及び光学膜厚が40〜140 nmであり、
第10層の屈折率が1.9〜2.5及び光学膜厚が4〜50 nmであり、
第11層の屈折率が1.05〜1.3及び光学膜厚が130〜150 nmである
ことを特徴とする反射防止膜。
In the antireflection film according to any one of claims 1 to 3,
The refractive index of the first layer is 1.37 to 1.51 and the optical film thickness is 4 to 90 nm,
The refractive index of the second layer is 1.9 to 2.5 and the optical film thickness is 4 to 130 nm,
The third layer has a refractive index of 1.37 to 1.51 and an optical film thickness of 20 to 120 nm,
The refractive index of the fourth layer is 1.9 to 2.5 and the optical film thickness is 30 to 100 nm,
The refractive index of the fifth layer is 1.37 to 1.51 and the optical film thickness is 20 to 70 nm,
The refractive index of the sixth layer is 1.9 to 2.5 and the optical film thickness is 80 to 160 nm,
The refractive index of the seventh layer is 1.37 to 1.51 and the optical film thickness is 4 to 40 nm,
The refractive index of the eighth layer is 1.9 to 2.5 and the optical film thickness is 50 to 190 nm,
The refractive index of the ninth layer is 1.37 to 1.51 and the optical film thickness is 40 to 140 nm,
The refractive index of the tenth layer is 1.9 to 2.5 and the optical film thickness is 4 to 50 nm,
An antireflection film, wherein the eleventh layer has a refractive index of 1.05 to 1.3 and an optical film thickness of 130 to 150 nm.
請求項1〜4に記載の反射防止膜において、
前記低屈折率膜がMgF2、SiO2、SiO2とAl2O3の混合物、フッ素樹脂からなる群から選ばれた材料からなる膜であり、
前記高屈折率膜がTiO2、Nb2O5、TiO2とNb2O5の混合物、Ta2O5、ZrO2、HfO2、CeO2、La2O3、ZnO、SnO2、In2O3、ZnS、In2O3とSnO2の混合物、ZnOとAl2O3の混合物、ZnOとGa2O3の混合物、TiO2とLa2O3の混合物からなる群から選ばれた材料からなる膜であり、
前記超低屈折率膜がMgF2、SiO2、Al2O3及びフッ素樹脂からなる群から選ばれた材料からなるナノ多孔質膜又はナノ粒子膜であることを特徴とする反射防止膜。
The antireflection film according to claim 1,
The low refractive index film is a film made of a material selected from the group consisting of MgF 2 , SiO 2 , a mixture of SiO 2 and Al 2 O 3 , a fluororesin,
Mixtures of the high refractive index film is TiO 2, Nb 2 O 5, TiO 2 and Nb 2 O 5, Ta 2 O 5, ZrO 2, HfO 2, CeO 2, La 2 O 3, ZnO, SnO 2, In 2 A material selected from the group consisting of O 3 , ZnS, a mixture of In 2 O 3 and SnO 2, a mixture of ZnO and Al 2 O 3, a mixture of ZnO and Ga 2 O 3, and a mixture of TiO 2 and La 2 O 3 A membrane consisting of
An antireflection film, wherein the ultra-low refractive index film is a nanoporous film or a nanoparticle film made of a material selected from the group consisting of MgF 2 , SiO 2 , Al 2 O 3 and a fluororesin.
請求項1〜5のいずれかに記載の反射防止膜において、前記第1層の屈折率が、前記基板の屈折率より低いことを特徴とする反射防止膜。   6. The antireflection film according to claim 1, wherein the refractive index of the first layer is lower than the refractive index of the substrate. 請求項1〜6のいずれかに記載の反射防止膜を有することを特徴とする光学部品。   An optical component comprising the antireflection film according to claim 1.
JP2014087377A 2014-04-21 2014-04-21 Antireflection film and optical component having the same Active JP6314627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087377A JP6314627B2 (en) 2014-04-21 2014-04-21 Antireflection film and optical component having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087377A JP6314627B2 (en) 2014-04-21 2014-04-21 Antireflection film and optical component having the same

Publications (2)

Publication Number Publication Date
JP2015206908A true JP2015206908A (en) 2015-11-19
JP6314627B2 JP6314627B2 (en) 2018-04-25

Family

ID=54603743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087377A Active JP6314627B2 (en) 2014-04-21 2014-04-21 Antireflection film and optical component having the same

Country Status (1)

Country Link
JP (1) JP6314627B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607158A (en) * 2016-01-04 2016-05-25 重庆京东方光电科技有限公司 Substrate, substrate manufacturing method, touch screen, and display device
JP2017187729A (en) * 2016-03-31 2017-10-12 キヤノン株式会社 Optical element, optical system, imaging apparatus and lens device
JP2018017930A (en) * 2016-07-28 2018-02-01 キヤノン株式会社 Optical element and optical system and imaging apparatus having the same
WO2018147666A1 (en) * 2017-02-10 2018-08-16 주식회사 케이씨씨 Low-reflection coating glass
WO2019169140A1 (en) * 2018-03-01 2019-09-06 Newport Corporation Optical components having hybrid nano-textured anti-reflective coatings and methods of manufacture
EP3605154A1 (en) * 2018-07-31 2020-02-05 Kunio Yoshida Thin film forming method and porous thin film
CN115298576A (en) * 2020-03-31 2022-11-04 日本电产株式会社 Optical component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233622A (en) * 2007-03-22 2008-10-02 Fujinon Corp Antireflection film, optical element and optical system
JP2012078597A (en) * 2010-10-01 2012-04-19 Pentax Ricoh Imaging Co Ltd Reflection prevention film and optical member having reflection prevention film
JP2012141594A (en) * 2010-12-14 2012-07-26 Canon Inc Antireflection film and optical element
JP2013205805A (en) * 2012-03-29 2013-10-07 Hoya Corp Optical member
US20130271843A1 (en) * 2012-04-11 2013-10-17 Carl Zeiss Jena Gmbh Process for producing a reflection-reducing interference layer system as well as reflection-reducing interference layer system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233622A (en) * 2007-03-22 2008-10-02 Fujinon Corp Antireflection film, optical element and optical system
JP2012078597A (en) * 2010-10-01 2012-04-19 Pentax Ricoh Imaging Co Ltd Reflection prevention film and optical member having reflection prevention film
JP2012141594A (en) * 2010-12-14 2012-07-26 Canon Inc Antireflection film and optical element
JP2013205805A (en) * 2012-03-29 2013-10-07 Hoya Corp Optical member
US20130271843A1 (en) * 2012-04-11 2013-10-17 Carl Zeiss Jena Gmbh Process for producing a reflection-reducing interference layer system as well as reflection-reducing interference layer system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607158A (en) * 2016-01-04 2016-05-25 重庆京东方光电科技有限公司 Substrate, substrate manufacturing method, touch screen, and display device
CN105607158B (en) * 2016-01-04 2018-07-06 重庆京东方光电科技有限公司 A kind of substrate, manufacture of substrates, touch screen and display device
US10175799B2 (en) 2016-01-04 2019-01-08 Boe Technology Group Co., Ltd. Substrate, method for manufacturing the same, touch screen and display device
JP2017187729A (en) * 2016-03-31 2017-10-12 キヤノン株式会社 Optical element, optical system, imaging apparatus and lens device
JP2018017930A (en) * 2016-07-28 2018-02-01 キヤノン株式会社 Optical element and optical system and imaging apparatus having the same
WO2018147666A1 (en) * 2017-02-10 2018-08-16 주식회사 케이씨씨 Low-reflection coating glass
US11261128B2 (en) 2017-02-10 2022-03-01 Kcc Glass Corporation Low-reflection coating glass
WO2019169140A1 (en) * 2018-03-01 2019-09-06 Newport Corporation Optical components having hybrid nano-textured anti-reflective coatings and methods of manufacture
CN111886521A (en) * 2018-03-01 2020-11-03 新港公司 Optical element with hybrid nano-textured anti-reflection coating and method of making the same
EP3605154A1 (en) * 2018-07-31 2020-02-05 Kunio Yoshida Thin film forming method and porous thin film
CN115298576A (en) * 2020-03-31 2022-11-04 日本电产株式会社 Optical component

Also Published As

Publication number Publication date
JP6314627B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6314627B2 (en) Antireflection film and optical component having the same
JP5375247B2 (en) Method for forming antireflection film and optical element
JP5614214B2 (en) Antireflection film and optical member having antireflection film
JP2016080857A (en) Anti-reflection film, optical member using the same, and optical apparatus
JP2009075583A (en) Production method of silica aerogel film, anti-reflection coating and optical element
JP2006215542A (en) Anti-reflection coating and optical element having such anti-reflection coating for imaging system
JP4951500B2 (en) Antireflection film, optical component having the same, interchangeable lens, and imaging device
JP5640504B2 (en) Optical member having a three-layer antireflection film
US9581733B2 (en) Anti-reflection coating and optical member comprising same
KR20090071417A (en) Anti-reflection coating, optical member, exchange lens unit and imaging device
JP2010038948A (en) Antireflection coating, optical member comprising the same, exchange lens and imaging device
JP5375204B2 (en) Antireflection film manufacturing method, antireflection film and optical element
JP5096933B2 (en) Antireflection film, optical component having the same, interchangeable lens, and imaging device
JP2010250069A (en) Antireflective film and optical element having the same
JP5347145B2 (en) Antireflection film, optical component having the same, interchangeable lens and imaging device having the optical component
JP2009015310A (en) Method of manufacturing optical element, and optical element
JP4977631B2 (en) Antireflection film, optical component having the same, interchangeable lens, and imaging device
JP6672657B2 (en) Manufacturing method of antireflection film
JP2013217977A (en) Antireflection film and optical element
JP2011046595A (en) Method for producing magnesium fluoride coating, antireflection coating, and optical element
JP5154971B2 (en) Antireflection film, optical component having the same, interchangeable lens, and imaging device
JP4974910B2 (en) Antireflection film, optical component having the same, interchangeable lens, and imaging device
JP2016212193A (en) Optical functional film and manufacturing method therefor
JP2017167271A (en) Optical member and manufacturing method for optical member
JP6877866B2 (en) An optical member having an antireflection film and a method for manufacturing the antireflection film.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6314627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250