JP2015206737A - analyzer - Google Patents

analyzer Download PDF

Info

Publication number
JP2015206737A
JP2015206737A JP2014088701A JP2014088701A JP2015206737A JP 2015206737 A JP2015206737 A JP 2015206737A JP 2014088701 A JP2014088701 A JP 2014088701A JP 2014088701 A JP2014088701 A JP 2014088701A JP 2015206737 A JP2015206737 A JP 2015206737A
Authority
JP
Japan
Prior art keywords
nucleic acid
pore
acid sample
electrode
nanopore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014088701A
Other languages
Japanese (ja)
Other versions
JP6378924B2 (en
Inventor
耕史 前田
Yasushi Maeda
耕史 前田
剛 大浦
Takeshi Oura
剛 大浦
入江 隆史
Takashi Irie
隆史 入江
田村 輝美
Terumi Tamura
輝美 田村
雅人 石沢
Masahito Ishizawa
雅人 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2014088701A priority Critical patent/JP6378924B2/en
Publication of JP2015206737A publication Critical patent/JP2015206737A/en
Application granted granted Critical
Publication of JP6378924B2 publication Critical patent/JP6378924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve problems that, for example, in a conventional method, for detecting a trace quantity of a nucleic acid with high sensitivity by amplifying the nucleic acid included in a sample in a manner specific to a base sequence, fluorescence dye is used for a flag of the nucleic acid, and change of fluorescence intensity is traced with time for analyzing, so that it is necessary to amplify the nucleic acid until detecting the fluorescence, and the change of fluorescence intensity in which the change of fluorescence intensity is in secular change has to be traced, and consequently, for amplification of the nucleic acid, 1-2 hours are required, and through-put is extremely bad.SOLUTION: A nucleic acid analyzer uses a nanopore-based analysis in detection of the nucleic acid.

Description

本発明は、生体関連物質を分析する分析装置に関し、例えば、核酸を分析する分析装置に関する。   The present invention relates to an analyzer for analyzing a biological substance, for example, an analyzer for analyzing a nucleic acid.

血液や尿等の分析方法として、核酸増幅法が用いられてきた。核酸増幅検査装置としては、回転可能なカローセルと、このカローセルの周方向に沿って搭載される複数の反応容器と、この反応容器に励起光を照射する光源と、この励起光によって前記反応容器内の反応液が発する蛍光を検出する検出器と、前記反応容器内の反応液の温度を所定の温度に設定する温度調節機構と、を有するものが知られている(特許文献1参照)。この検査装置を使用して、例えばPCR(Polymerase Chain Reaction)法に準拠した遺伝子検査が行われる場合には、前記した熱源等によってケーシング内の温度が調節され、カローセルに配置された反応容器内の反応液は、複数の温度間(例えば、95℃と59℃)でPCR処理が繰り返され、前記した検出器によって蛍光検出を行っている。   A nucleic acid amplification method has been used as a method for analyzing blood, urine and the like. The nucleic acid amplification test apparatus includes a rotatable carousel, a plurality of reaction vessels mounted along the circumferential direction of the carousel, a light source for irradiating the reaction vessel with excitation light, and the excitation light in the reaction vessel. One having a detector for detecting fluorescence emitted from the reaction solution and a temperature adjusting mechanism for setting the temperature of the reaction solution in the reaction vessel to a predetermined temperature is known (see Patent Document 1). For example, when a genetic test based on the PCR (Polymerase Chain Reaction) method is performed using this test apparatus, the temperature in the casing is adjusted by the above-described heat source or the like, and the reaction in the reaction vessel disposed in the carousel is performed. The reaction solution is subjected to PCR treatment between a plurality of temperatures (for example, 95 ° C. and 59 ° C.), and fluorescence detection is performed by the above-described detector.

一方で、ナノポアと呼ばれる、ナノメートルサイズの細孔を用いて、DNAや蛋白質などの高分子ポリマーを分析するナノポア式分析方法の開発が進められている(特許文献2)。ナノポア式の分析で高分子を検出する技術には、封鎖電流方式,トンネル電流方式,キャパシタンス方式がある。   On the other hand, development of a nanopore analysis method for analyzing a polymer such as DNA or protein using nanopores called nanopores has been developed (Patent Document 2). Technologies for detecting macromolecules by nanopore analysis include a blocking current method, a tunneling current method, and a capacitance method.

封鎖電流方式とは、高分子がナノポアの開口部を部分的に封鎖することによる影響を検出する方式である。具体的な構造としては、ナノポアを有する膜によって空間を2つに分離し、それぞれの空間にイオンを含む液体を充填し、且つ、電極を配置する。電極に一定の電圧を印加すると、イオンがナノポアを通って移動し、イオン通過電流と呼ばれる電流が流れる。帯電した高分子が存在する場合、その高分子も電位差により、片側へ引き寄せられ、ナノポアを通る。その際、ナノポアの開口部が部分的に封鎖されるので、イオンが流れ難くなりイオン通過電流の大きさが低下する。この電流値低下を検出することにより、高分子の存在や成分を分析する方法である。イオンの流れにくさは、開口面積に加え、高分子の荷電状態やナノポア壁面との相互作用からの影響を受ける。   The blocking current method is a method for detecting the influence of the polymer partially blocking the opening of the nanopore. As a specific structure, the space is separated into two by a film having nanopores, each space is filled with a liquid containing ions, and electrodes are arranged. When a constant voltage is applied to the electrode, ions move through the nanopore, and a current called ion passing current flows. When a charged polymer is present, the polymer is also drawn to one side by the potential difference and passes through the nanopore. At that time, since the opening of the nanopore is partially blocked, ions hardly flow, and the magnitude of the ion passing current is reduced. This is a method of analyzing the presence and components of a polymer by detecting this decrease in current value. In addition to the opening area, the difficulty of ion flow is affected by the charge state of the polymer and the interaction with the nanopore wall surface.

トンネル電流方式とは、高分子がナノポアを通過する際、ナノポア近辺に設けられたトンネル電流用電極と高分子とのわずかな隙間にトンネル電流が流れ、それを検出することで、高分子の存在や成分を分析する方法である。   The tunnel current method means that when a polymer passes through a nanopore, the tunnel current flows through a small gap between the tunnel current electrode and the polymer near the nanopore, and the presence of the polymer is detected. It is a method of analyzing ingredients.

キャパシタンス方式とは、高分子がナノポアを通過する際、ナノポアが部分的に封鎖されるため、ナノポアを有する膜のキャパシタが変化し、それを検出することで、高分子の存在や成分を分析する方法である。   Capacitance method means that when the polymer passes through the nanopore, the nanopore is partially blocked, so the capacitor of the membrane having the nanopore changes, and the presence and components of the polymer are analyzed by detecting it. Is the method.

移動制御技術には、電位差移動方式,酵素移動方式,力学的移動方式がある。   The movement control technology includes a potential difference transfer method, an enzyme transfer method, and a mechanical transfer method.

電位差移動方式とは、上記、封鎖電流方式で出てきたように、ナノポアを有する膜によって分離された2つの空間に電極を配置し、電極に電圧を印加することで、帯電した高分子を電場の勾配にしたがって移動させる方法であり、利点として、単純な構造で実現可能である、高分子に余分な付加がかからないなどが挙げられる。
電位差を生み出す電極は、ナノポア式分析装置の必須構成要素である。
The potential difference transfer method is a method in which an electrode is placed in two spaces separated by a membrane having a nanopore and a voltage is applied to the electrode to generate an electric field. As an advantage, it can be realized with a simple structure, and no extra addition is applied to the polymer.
An electrode that generates a potential difference is an essential component of a nanopore analyzer.

従来のナノポア式分析装置には、ナノポアを有する膜を隔てて2つの空間がある。各空間には、試料や電気伝導の担体となるイオンを含んだ溶液を導入するための流入路と流出路が必要である。また、各空間には、試料やイオンを移動させる電位差を生み出すための電極が必要である。   A conventional nanopore type analyzer has two spaces across a membrane having nanopores. Each space requires an inflow path and an outflow path for introducing a sample and a solution containing ions serving as a carrier for electrical conduction. Each space requires an electrode for generating a potential difference for moving the sample and ions.

特開2010−151665号公報JP 2010-151665 A 特表2011−527191号公報Special table 2011-527191 gazette

従来は検体中に含まれる核酸を塩基配列特異的に増幅することで微量の核酸を高感度に検出するためには、核酸標識に蛍光色素を使用し、蛍光強度変化を経時的に追跡することで解析を行っているため、蛍光を検出できるまで核酸増幅を行い、かつ、蛍光強度変化を経時変化している蛍光強度変化を追跡する必要があったため、核酸増幅に1〜2時間要し、スループットが非常に悪かった。   Conventionally, in order to detect a very small amount of nucleic acid with high sensitivity by amplifying nucleic acid contained in a sample in a base sequence-specific manner, a fluorescent dye is used for nucleic acid labeling, and the change in fluorescence intensity is followed over time. Since it was necessary to follow the fluorescence intensity change that has changed over time, the nucleic acid amplification took 1-2 hours. The throughput was very bad.

一方で、ナノポア式分析において核酸の濃度を計測するためには、電流遮断の持続時間および程度によって計測していた。しかし、細孔への核酸の通過は規則性がなく、一定時間における電流遮断の持続時間及び程度を計測したとしても、それが必ずしも正確に核酸濃度の情報を反映しているとは限らない。   On the other hand, in order to measure the concentration of nucleic acid in nanopore analysis, it was measured by the duration and degree of current interruption. However, the passage of nucleic acids through the pores is not regular, and even if the duration and degree of current interruption at a certain time are measured, they do not always accurately reflect the information on the nucleic acid concentration.

そのため、増幅した核酸試料のほぼ全てを細孔に通過させて、核酸濃度を把握する必要がある。しかしながら、従来のナノポア検出機構をそのまま用いると、仮に増幅した核酸試料の濃度が高すぎる場合には、細孔への通過が長時間に及ぶ。   Therefore, it is necessary to grasp the nucleic acid concentration by allowing almost all of the amplified nucleic acid sample to pass through the pores. However, if the conventional nanopore detection mechanism is used as it is, if the concentration of the amplified nucleic acid sample is too high, the passage through the pores takes a long time.

本発明の目的は、PCR法による核酸増幅時間を最小限にし、増幅された核酸をナノポア式分析方法によって、高感度に検出する核査分析装置および核酸分析方法を提供することにある。   An object of the present invention is to provide a nuclear inspection analyzer and a nucleic acid analysis method for minimizing nucleic acid amplification time by PCR and detecting amplified nucleic acid with high sensitivity by a nanopore analysis method.

本発明の核酸分析装置は、
核酸試料を温調する温調部と、ナノメートルサイズの細孔と1対の電極を有し、電気泳動により細孔を通過した核酸試料を検出するナノポア検出部と、温調部からナノポア検出部へ核酸試料を搬送する搬送部とを有し、
温調部により増幅した核酸試料が細孔を通過した回数をカウントし、核酸試料の濃度を測定することを特徴とする。
The nucleic acid analyzer of the present invention comprises:
A temperature control unit for controlling the temperature of a nucleic acid sample, a nanopore detection unit that has a nanometer-size pore and a pair of electrodes, detects a nucleic acid sample that has passed through the pore by electrophoresis, and a nanopore detection from the temperature control unit A transport unit for transporting the nucleic acid sample to the unit,
The nucleic acid sample amplified by the temperature control unit is counted, and the concentration of the nucleic acid sample is measured.

本発明により、従来の蛍光による検出方法よりも高スループットを図り、高い検体処理効率を得ることができる。また、ナノポア分析方法としても、従来よりも高感度に分析することができ、DNA濃度を算出することができる。   According to the present invention, it is possible to achieve higher throughput and higher specimen processing efficiency than the conventional fluorescence detection method. Also, as a nanopore analysis method, analysis can be performed with higher sensitivity than before, and the DNA concentration can be calculated.

本発明の核酸分析装置の概要を示す図である。It is a figure which shows the outline | summary of the nucleic acid analyzer of this invention. 検体試料導入時に実行される検査処理を説明する図。The figure explaining the test | inspection process performed at the time of sample sample introduction. 核酸検査装置のナノポア分析機構の構成例1を説明する図。The figure explaining the structural example 1 of the nanopore analysis mechanism of a nucleic acid test | inspection apparatus. 構成例1において、ナノポア分析機構の検出処理を説明する図。The figure explaining the detection process of a nanopore analysis mechanism in the structural example 1. FIG. 核酸検査装置のナノポア分析機構の構成例2を説明する図。The figure explaining the structural example 2 of the nanopore analysis mechanism of a nucleic acid test | inspection apparatus. 構成例2において、ナノポア分析機構の検出処理を説明する図。The figure explaining the detection process of a nanopore analysis mechanism in the structural example 2. FIG. ナノポア分析機構によってプライマーを有さないDNA試料の測定概念図Conceptual diagram of measurement of DNA sample without primer by nanopore analysis mechanism ナノポア分析機構によってプライマーを有するDNA試料の測定概念図Conceptual diagram of measurement of DNA sample with primer by nanopore analysis mechanism

図1に本実施例の核酸分析装置の概要を示す。本実施例の核酸分析装置は抽出部1、調製部2、測定部3の大きく3つの構成から成り立っている。これら3つの構成は搬送機構4によってつながっている。図2に検体試料導入時に実行される検査処理を説明する図を示す。   FIG. 1 shows an outline of the nucleic acid analyzer of this example. The nucleic acid analyzer of the present embodiment is composed of three main components: an extraction unit 1, a preparation unit 2, and a measurement unit 3. These three configurations are connected by the transport mechanism 4. FIG. 2 shows a diagram for explaining a test process executed at the time of introducing the specimen sample.

抽出部1は検体試料を検体試料導入部5から導入でき、検体試料を溶解して検体試料中の核酸を抽出可能であればいかなる構成でもよい。検体試料とは、例えば血清、血漿、尿、糞便、喀痰等の核酸抽出前である。検体試料導入部5は、例えば検体試料を封入した容器(例えば採血管)を架設及び導入できる機構である。核酸抽出機構141において、例えば核酸結合担体をフィルタ状に詰めたカラムに溶解した検体試料を通液し、核酸を抽出する(S1)。通液方式には、遠心機を用いる方式、シリンジで加圧する方式がある。核酸結合担体には、シリカをコーティングした磁性粒子と当該磁性粒子を磁石で集磁する方式等がある。抽出部1おいて検体試料から核酸が抽出された核酸試料は、搬送機構4によって調製部2に搬送される。   The extraction unit 1 may have any configuration as long as the sample can be introduced from the sample sample introduction unit 5 and the sample can be dissolved to extract the nucleic acid in the sample. The specimen sample is, for example, before extraction of nucleic acids such as serum, plasma, urine, stool, sputum and the like. The specimen sample introduction unit 5 is a mechanism that can construct and introduce a container (for example, a blood collection tube) in which a specimen sample is sealed. In the nucleic acid extraction mechanism 141, for example, a specimen sample dissolved in a column packed with a nucleic acid binding carrier is passed through, and nucleic acid is extracted (S1). As the liquid passing method, there are a method using a centrifuge and a method of pressurizing with a syringe. Nucleic acid binding carriers include magnetic particles coated with silica and a method of collecting the magnetic particles with a magnet. The nucleic acid sample from which the nucleic acid is extracted from the specimen sample in the extraction unit 1 is transported to the preparation unit 2 by the transport mechanism 4.

調製部2に核酸試料が導入される経路には2種類あり、抽出部1から搬送機構4によって導入される経路と、核酸試料導入部6より導入され経路がある。調製部2における反応液調製は、測定部3での核酸増幅方法によって調製方法は異なる。核酸増幅方法は、PCR法(Polymerase Chain Reaction)、TMA法(Transcription Mediated Amplification)、NASBA法(Nucleic Acid Sequence-Based Amplification)、LCR法(Ligase Chain Reaction)などを含み、核酸増幅方法の違いが本明細書で提案する発明を限定するものではない。本実施例では、測定部3での核酸増幅方法は、PCR法を例にして説明する。反応液調製機構15は、PCR反応液を調製する(S2)。調製した反応液は、搬送機構4によって測定部3に搬送される。反応液調製機構15は、図示しない、反応容器調製機構および消耗品架設機構を備えている。   There are two types of routes through which the nucleic acid sample is introduced into the preparation unit 2. There are a route through which the nucleic acid sample is introduced from the extraction unit 1 by the transport mechanism 4 and a route through which the nucleic acid sample introduction unit 6 introduces the route. The preparation method of the reaction solution in the preparation unit 2 differs depending on the nucleic acid amplification method in the measurement unit 3. Nucleic acid amplification methods include PCR (Polymerase Chain Reaction), TMA (Transcription Mediated Amplification), NASBA (Nucleic Acid Sequence-Based Amplification), LCR (Ligase Chain Reaction), etc. The invention proposed in the specification is not limited. In this embodiment, the nucleic acid amplification method in the measurement unit 3 will be described using the PCR method as an example. The reaction solution preparation mechanism 15 prepares a PCR reaction solution (S2). The prepared reaction liquid is transported to the measuring unit 3 by the transport mechanism 4. The reaction solution preparation mechanism 15 includes a reaction container preparation mechanism and a consumables erection mechanism (not shown).

測定部3は、主に、増幅機構7とナノポア検出機構8から成り立っている。増幅機構7は、核酸増幅を行う(S4)。当該核酸増幅がPCRの場合、そのPCRサイクル数は1コピーの核酸分子が検出可能なサイクル数で良い。より具体的には、1コピーを増幅後に後述するナノポア検出機構内の複数に区分けされた最大のチャンバに統計学的に有意な数が存在するようにサイクルすればよく、例えば、統計学的に有意な数をXコピーと設定し、PCRの増幅効率を100%とした場合、その必要なサイクル数nは以下の式で表される。
(PCR増幅液量/最大チャンバ内の増幅液量)×X = 2n
本式によれば、PCR増幅液量50uL、最大チャンバ内の増幅液量5uLで、Xを30コピーと設定した場合は、n=8.23であり10サイクル以下のサイクル数で増幅液中の1コピーが定量的に検出可能となる。また、1コピーを定性的に検出できれば良い場合はXはポワソン分布から5コピーと設定でき、この場合はn=5.645で検出可能である。これにより、従来40サイクル以上を必要としていたリアルタイムPCR測定と比較して測定時間を短縮できる。更にサイクル数を最小限に抑えることで、過剰な増幅を抑えて後述するナノポア検出時間を短縮できる。
The measurement unit 3 mainly includes an amplification mechanism 7 and a nanopore detection mechanism 8. The amplification mechanism 7 performs nucleic acid amplification (S4). When the nucleic acid amplification is PCR, the number of PCR cycles may be the number of cycles in which one copy of nucleic acid molecule can be detected. More specifically, one copy may be cycled after amplification so that there is a statistically significant number in the largest chamber divided into a plurality of nanopore detection mechanisms described later, for example, statistically When a significant number is set as X copy and the PCR amplification efficiency is 100%, the necessary number of cycles n is expressed by the following equation.
(PCR amplification volume / maximum amplification volume in the chamber) x X = 2 n
According to this equation, if the PCR amplification volume is 50uL, the amplification volume in the maximum chamber is 5uL, and X is set to 30 copies, n = 8.23 and 1 copy in the amplification liquid with the number of cycles of 10 cycles or less. Can be detected quantitatively. If one copy can be detected qualitatively, X can be set to 5 copies from the Poisson distribution. In this case, n can be detected at 5.645. Thereby, measurement time can be shortened compared with the real-time PCR measurement which conventionally required 40 cycles or more. Furthermore, by suppressing the number of cycles to a minimum, excessive amplification can be suppressed and the nanopore detection time described later can be shortened.

PCR増幅された増幅液はナノポア検出機構8に運ばれ(S4)、ナノポア検出機構8は増幅された核酸の検出を行う(S5)。また、ナノポア検出機構は図示しない増幅液から核酸試料を精製する精製流路を具備する構成でもよい。その後、図示しない表示部において、測定の結果を表示する(S6)。   The amplified solution amplified by PCR is carried to the nanopore detection mechanism 8 (S4), and the nanopore detection mechanism 8 detects the amplified nucleic acid (S5). Further, the nanopore detection mechanism may be configured to have a purification channel for purifying a nucleic acid sample from an amplification solution (not shown). Thereafter, the measurement result is displayed on a display unit (not shown) (S6).

なお、抽出部1は、分注アーム9と分注ユニット11を備えている。また、調製部2は、分注アーム10と分注ユニット12を備えている。分注ユニット11は分注アーム9に沿って、分注ユニット12は分注アーム10に沿って移動する。また、分注アーム9および分注アーム10は、分注アーム搬送機構13に沿って移動する。   The extraction unit 1 includes a dispensing arm 9 and a dispensing unit 11. The preparation unit 2 includes a dispensing arm 10 and a dispensing unit 12. The dispensing unit 11 moves along the dispensing arm 9 and the dispensing unit 12 moves along the dispensing arm 10. In addition, the dispensing arm 9 and the dispensing arm 10 move along the dispensing arm transport mechanism 13.

測定部3のナノポア検出機構8は、PCR増幅された溶液中のDNA濃度を検出する。   The nanopore detection mechanism 8 of the measurement unit 3 detects the DNA concentration in the PCR-amplified solution.

特許文献2においては、「電流の変動が発生する頻度によって、細孔内で結合するヌクレオチドの濃度が判明する。ヌクレオチドの本性は、その特徴的な電流シグネチャ、特に電流遮断の持続時間および程度によって判明する」との記載がある。しかし、本発明者らの鋭意検討の結果、核酸試料の細孔への通過は、ランダムであることが分かった。通過がランダムだとすると、たとえある一定時間における単位時間当たりの電流遮断の持続時間及び程度を計測したとしても、それが必ずしも正確に核酸濃度の情報を反映しているとは限らない。   In Patent Document 2, “the frequency of current fluctuations determines the concentration of nucleotides bound in the pore. The nature of the nucleotide depends on its characteristic current signature, particularly the duration and extent of current interruption. Will be found ". However, as a result of intensive studies by the present inventors, it was found that the nucleic acid sample passed through the pores was random. If the passage is random, even if the duration and degree of current interruption per unit time at a certain time is measured, it does not necessarily accurately reflect the nucleic acid concentration information.

そのため、増幅した核酸試料のほぼ全てを細孔に通過させて、核酸濃度を把握する必要がある。しかしながら、従来のナノポア検出機構をそのまま用いると、仮に増幅した核酸試料の濃度が高すぎる場合には、細孔への通過が長時間に及ぶため、ナノポア技術での検出を用いたとしても検査速度迅速化が図れない。   Therefore, it is necessary to grasp the nucleic acid concentration by allowing almost all of the amplified nucleic acid sample to pass through the pores. However, if the conventional nanopore detection mechanism is used as it is, if the concentration of the amplified nucleic acid sample is too high, the passage through the pores takes a long time, so even if detection with nanopore technology is used, the inspection speed It cannot be speeded up.

そこで、本実施例は、細孔の上部にチャンバ内の空間よりもさらに小さい区画を作成し、その区画の近傍にさらに電極を設ける構成である。この構成により、仮に増幅した核酸試料の濃度が高すぎる場合であっても、その区画の大きさが元々のチャンバよりも小さいため、元々のチャンバに存在する増幅した核酸試料のほぼ全てを細孔に通過させる時間に比べて、新たに設けた区画に存在する増幅した核酸試料のほぼ全てを細孔に通過させる時間は短い。新たに設けた区画に存在する増幅した核酸試料が細孔を通過する総通過回数から核酸濃度を推定する。   Therefore, in this embodiment, a section smaller than the space in the chamber is created above the pores, and an electrode is further provided in the vicinity of the section. With this configuration, even if the concentration of the amplified nucleic acid sample is too high, since the size of the compartment is smaller than the original chamber, almost all of the amplified nucleic acid sample present in the original chamber is pored. Compared to the time required to pass through, the time required to pass almost all of the amplified nucleic acid sample present in the newly provided section through the pore is short. The nucleic acid concentration is estimated from the total number of times that the amplified nucleic acid sample existing in the newly provided section passes through the pores.

一方、増幅した核酸試料の濃度が低すぎる場合には、新たに設けた区画で検出したときには、核酸試料がその区画に存在しない場合か、または、その区画に存在する核酸試料の数が極端に少ない場合に、核酸試料が一つも通過しない可能性がある。これらの場合は、元々の大きい方のチャンバを使うことにより、核酸濃度を推定することができる。   On the other hand, when the concentration of the amplified nucleic acid sample is too low, when the detection is performed in a newly provided section, the nucleic acid sample is not present in the section or the number of nucleic acid samples present in the section is extremely small. When the amount is small, there is a possibility that no nucleic acid sample passes. In these cases, the nucleic acid concentration can be estimated by using the original larger chamber.

以下、具体的な核酸分析装置のナノポア分析機構実施形態について図を用いて説明する。   Hereinafter, embodiments of a nanopore analysis mechanism of a specific nucleic acid analyzer will be described with reference to the drawings.

図3にナノポア検出機構の一構成について示す。ナノポア検出機構は、基板210を隔てて第1のチャンバ204および第2のチャンバ205の領域に分かれている。基板210は、第2のチャンバ205側のベース202、膜203、および第1のチャンバ204側のコーティング層(不図示)により構成され、材質に関しては、ベース202はシリコン、膜203は窒化シリコン,酸化シリコン、あるいは、炭化シリコン,コーティング層は酸化シリコンからなる。   FIG. 3 shows one configuration of the nanopore detection mechanism. The nanopore detection mechanism is divided into regions of the first chamber 204 and the second chamber 205 across the substrate 210. The substrate 210 includes a base 202 on the second chamber 205 side, a film 203, and a coating layer (not shown) on the first chamber 204 side. Regarding the materials, the base 202 is silicon, the film 203 is silicon nitride, Silicon oxide, silicon carbide, or the coating layer is made of silicon oxide.

膜203には、ナノメートルサイズの細孔201が設けられている。細孔201のサイズは、1nm〜100nmが望ましい。細孔201の作成方法は、Focused Ion Beamを用いた方法,電子線を用いた方法などにより実施される。膜203は酸化シリコンでもよい。コーティング層は、絶縁,強度増大,親水性付加の機能を有し、膜203自身で機能を代替することもできる。   The membrane 203 is provided with nanometer-size pores 201. The size of the pore 201 is desirably 1 nm to 100 nm. The method of creating the pores 201 is implemented by a method using Focused Ion Beam, a method using an electron beam, or the like. The film 203 may be silicon oxide. The coating layer has functions of insulation, strength increase, and hydrophilicity addition, and the function can be substituted by the film 203 itself.

PCR増幅液が搬送される側を上流とした場合、第1のチャンバ204の上流側に第1の電極207および第2のチャンバ205の下流側に第2の電極206がそれぞれ配置される。第1のチャンバ204内に、小さい測定区画を細孔201の近傍に設ける。当該測定区画は、区画形成部材209により形成されている。この区画形成部材209の上に第3の電極208が裁置されており、この第3の電極208は、例えば、円筒形状の金属(金属パイプ)により構成されている。金属パイプは、一般的に電気化学の分野で用いられる銀/塩化銀で構成される。あるいは、ステンレス、白金、金、で構成されていても良い。金属パイプは、一部が直接的にイオン溶液と接し、通電していればよい。従って、パイプ内面は高分子ポリマーなどの有機物が吸着しないようにフッ化エチレンなどでコーティングされていることが望ましい。   When the side where the PCR amplification solution is transported is upstream, the first electrode 207 is disposed upstream of the first chamber 204 and the second electrode 206 is disposed downstream of the second chamber 205. A small measurement section is provided in the vicinity of the pore 201 in the first chamber 204. The measurement section is formed by a section forming member 209. A third electrode 208 is disposed on the partition forming member 209, and the third electrode 208 is made of, for example, a cylindrical metal (metal pipe). Metal pipes are composed of silver / silver chloride, which is commonly used in the field of electrochemistry. Or you may be comprised with stainless steel, platinum, and gold | metal | money. A part of the metal pipe may be in direct contact with the ionic solution and energized. Therefore, it is desirable that the inner surface of the pipe is coated with fluorinated ethylene or the like so as not to adsorb organic substances such as a polymer.

あるいは、半導体プロセスにより流路を作成し、絶縁層を挟んで、表面に導電性のコーティングを行い、電極を有する流路を形成できる。例えば、材質をシリコンとした場合、シリコンの異方性エッチング,ボッシュプロセスなどの半導体プロセスにより流路を形成する。次に、絶縁層として酸化シリコンを表面に蒸着し、最後に、金、白金、チタンなどを表面にコーティングすることで、電極を有する流路が形成される。   Alternatively, a flow path having electrodes can be formed by creating a flow path by a semiconductor process, sandwiching an insulating layer, and conducting a conductive coating on the surface. For example, when the material is silicon, the flow path is formed by a semiconductor process such as anisotropic etching of silicon or a Bosch process. Next, silicon oxide is vapor-deposited on the surface as an insulating layer, and finally, gold, platinum, titanium, or the like is coated on the surface to form a channel having electrodes.

電極と流路の一体化による利点は、配置スペースの削減が可能となる点、チャンバ外部との接続が集約できるため、密閉性を高めやすい点、が挙げられる。さらに、電極と流入口が同じ位置に配置できるので、ナノポアへ近づけることができ、試料が拡散する影響を防ぎ、高精度の分析が可能である。   Advantages of the integration of the electrode and the flow path include that the arrangement space can be reduced, and that the connection with the outside of the chamber can be concentrated, so that the hermeticity can be easily improved. Further, since the electrode and the inlet can be arranged at the same position, the electrode can be brought close to the nanopore, and the influence of the diffusion of the sample can be prevented and high-precision analysis is possible.

ナノポア検出機構では、PCR増幅液中の核酸が細孔を通る際の物理的変化を検出することで、核酸濃度を分析する。図4にナノポア検出機構のフローを示す。具体的なフローの説明として、PCR増幅液中の核酸がDNAの場合について説明する。流路もしくは分注によってPCR増幅液をナノポア検出機構に導入し、PCR増幅液の調整を行う(S1)。次に調整されたPCR増幅液をナノポア検出機構の第1のチャンバ204に導入する。次に電極206、207、208に電圧を印加する(S2)。   In the nanopore detection mechanism, the nucleic acid concentration is analyzed by detecting a physical change when the nucleic acid in the PCR amplification solution passes through the pores. FIG. 4 shows a flow of the nanopore detection mechanism. As a specific flow description, a case where the nucleic acid in the PCR amplification solution is DNA will be described. The PCR amplification solution is introduced into the nanopore detection mechanism by a flow path or dispensing to adjust the PCR amplification solution (S1). Next, the adjusted PCR amplification solution is introduced into the first chamber 204 of the nanopore detection mechanism. Next, a voltage is applied to the electrodes 206, 207, and 208 (S2).

このとき、第1のチャンバ204側の第1の電極207、第3の電極208はマイナスに、第2のチャンバ205側の第2の電極206はプラスとなるように電圧を印加する。第3の電極の電圧(V3)≦第1の電極の電圧(V1)<第2の電極の電圧(V2)とすることが好ましい。より好ましくは、V3<V1<V2とする。この電位差により、溶液中のイオンやPCR増幅液中のDNAは移動する。DNAはマイナスに帯電しているため、プラス側に引き寄せられる。そのため、電極208、207、206に印加する電圧をV3<V1<V2とすることで、測定区画に存在するDNAは、第2のチャンバ205側に存在する第2の電極206に引き寄せられ、細孔201を通過する。この際に、細孔201の開口部を塞ぎ、開口面積を減少させるので、液体中のその他のイオンが流れ難くなる。イオンの流れ難さは、電流値の減少として検出される(図7bご参照。なお、図7aは検出対象のDNAが通過していない時の電流波形である。)。そのため、電流値の減少回数から、DNAが細孔を通過した総通過回数がわかる。そのため、測定区画に存在するDNAの細孔201への通過を検出し、通過が確認された場合(S3)、検出ありと判断し、総通過回数からDNA濃度を推定する(S5)。また、DNA濃度が低く、測定区画にDNAがほとんど存在しない場合、つまり、所定の時間内にDNAの検出が確認できない場合、第3の電極208の電圧を切り、第1の電極207と第2の電極206間に電圧を印加する(S4)。これによって、第1のチャンバ204内のDNAは細孔201を通して第2のチャンバ205へ移動する。この時、同様に、チャンバ1に存在するDNAの細孔への通過が検出された場合(S6)、検出ありと判断し、細孔201への総通過回数からDNA濃度を推定する(S5)。また、検出されなかった場合(S7)は検出限界としてPCR増幅液の調整からやり直す(S1)。本構成によって、従来の蛍光検出方法よりも格段にスループットが上がる。また、常に第1のチャンバ204内のDNAすべてを細孔201に通過させる分析方法よりも、検出時間の短縮につながる。   At this time, a voltage is applied so that the first electrode 207 and the third electrode 208 on the first chamber 204 side are negative, and the second electrode 206 on the second chamber 205 side is positive. It is preferable that the voltage of the third electrode (V3) ≦ the voltage of the first electrode (V1) <the voltage of the second electrode (V2). More preferably, V3 <V1 <V2. Due to this potential difference, ions in the solution and DNA in the PCR amplification solution move. Since DNA is negatively charged, it is attracted to the positive side. Therefore, by setting the voltage applied to the electrodes 208, 207, and 206 to V3 <V1 <V2, DNA existing in the measurement section is attracted to the second electrode 206 existing on the second chamber 205 side, and is finely divided. Pass through hole 201. At this time, the openings of the pores 201 are closed and the opening area is reduced, so that it is difficult for other ions in the liquid to flow. The difficulty of ion flow is detected as a decrease in current value (see FIG. 7b. FIG. 7a is a current waveform when the DNA to be detected does not pass through). Therefore, the total number of passes through which the DNA has passed through the pore can be found from the number of times the current value has decreased. Therefore, when the passage of DNA present in the measurement section to the pore 201 is detected and the passage is confirmed (S3), it is determined that there is a detection, and the DNA concentration is estimated from the total number of passages (S5). When the DNA concentration is low and there is almost no DNA in the measurement section, that is, when the detection of DNA cannot be confirmed within a predetermined time, the voltage of the third electrode 208 is turned off, and the first electrode 207 and the second electrode A voltage is applied between the two electrodes 206 (S4). As a result, the DNA in the first chamber 204 moves to the second chamber 205 through the pore 201. At this time, similarly, when the passage of DNA existing in the chamber 1 to the pore is detected (S6), it is determined that there is a detection, and the DNA concentration is estimated from the total number of passages to the pore 201 (S5). . If not detected (S7), the detection limit is redone from the adjustment of the PCR amplification solution (S1). With this configuration, the throughput is significantly increased as compared with the conventional fluorescence detection method. In addition, the detection time can be shortened as compared with the analysis method in which all the DNA in the first chamber 204 is always passed through the pore 201.

また、本実施形態のバリエーションとして、図5に示すように、複数の大きさの測定区画を段階的に設けてもよい。図6に示すナノポア検出機構は、第1のチャンバ304内に細孔301から遠ざかるにつれて徐々に大きくなる測定区画を備えている。第1のチャンバ304に第1の電極307、第2のチャンバ305に第2の電極306を備えており、基板314がベース302、膜303、およびコーティング膜によって構成されている点は、図3に示すナノポア検出機構と同一である。   As a variation of the present embodiment, as shown in FIG. 5, a plurality of measurement sections may be provided in stages. The nanopore detection mechanism shown in FIG. 6 includes a measurement section that gradually increases as the distance from the pore 301 increases in the first chamber 304. A first electrode 307 is provided in the first chamber 304, a second electrode 306 is provided in the second chamber 305, and the substrate 314 is constituted by the base 302, the film 303, and the coating film. The nanopore detection mechanism shown in FIG.

さらに、区画形成部材311、312、313を備え、それぞれに第3の電極308、第4の電極309、第5の電極310が配置されている。   Furthermore, partition forming members 311, 312, 313 are provided, and a third electrode 308, a fourth electrode 309, and a fifth electrode 310 are respectively disposed.

次のこのナノポア検出機構を用いた動作フローについて、図6を用いて説明する。流路もしくは分注によってPCR増幅液をナノポア検出機構に導入し、PCR増幅液の調整を行う(S1)。次に調整されたPCR増幅液をナノポア検出機構の第1のチャンバ304に導入する。次に、電極306,308,309に電圧を印加する。このとき、第1のチャンバ304側の第4の電極307、第3の電極308はマイナスに、第2のチャンバ305側の第2の電極306はプラスとなるように電圧を印加する。第3の電極の電圧(V3)≦第4の電極の電圧(V4)<第2の電極の電圧(V2)とすることが好ましい。より好ましくは、V3<V4<V2とする。   Next, an operation flow using this nanopore detection mechanism will be described with reference to FIG. The PCR amplification solution is introduced into the nanopore detection mechanism by a flow path or dispensing to adjust the PCR amplification solution (S1). Next, the adjusted PCR amplification solution is introduced into the first chamber 304 of the nanopore detection mechanism. Next, a voltage is applied to the electrodes 306, 308, and 309. At this time, a voltage is applied so that the fourth electrode 307 and the third electrode 308 on the first chamber 304 side are negative, and the second electrode 306 on the second chamber 305 side is positive. It is preferable that the voltage of the third electrode (V3) ≦ the voltage of the fourth electrode (V4) <the voltage of the second electrode (V2). More preferably, V3 <V4 <V2.

この電位差により、溶液中のイオンやPCR増幅液中のDNAは移動する。DNAはマイナスに帯電しているため、プラス側に引き寄せられる。そのため、電極306,308,309に印加する電圧をV3<V4<V2とすることで、区画形成部材311にて形成される測定区画に存在するDNAは、第2のチャンバ305側に存在する第2の電極306に引き寄せられ、細孔301を通過する。この際に、細孔301の開口部を塞ぎ、開口面積を減少させるので、液体中のその他のイオンが流れ難くなる。イオンの流れ難さは、電流値の減少として検出される。そのため、電流値の減少回数から、DNAが細孔を通過した総通過回数がわかる。そのため、測定区画に存在するDNAの細孔301への通過を検出し、通過が確認された場合(S3)、検出ありと判断し、総通過回数からDNA濃度を推定する(S5)。   Due to this potential difference, ions in the solution and DNA in the PCR amplification solution move. Since DNA is negatively charged, it is attracted to the positive side. Therefore, by setting the voltage applied to the electrodes 306, 308, and 309 to V3 <V4 <V2, the DNA present in the measurement section formed by the section forming member 311 is the second electrode 306 present on the second chamber 305 side. And pass through the pore 301. At this time, the opening of the pore 301 is closed and the opening area is reduced, so that it is difficult for other ions in the liquid to flow. The difficulty of ion flow is detected as a decrease in current value. Therefore, the total number of passes through which the DNA has passed through the pore can be found from the number of times the current value has decreased. Therefore, when the passage of DNA present in the measurement section to the pore 301 is detected and passage is confirmed (S3), it is determined that there is a detection, and the DNA concentration is estimated from the total number of passages (S5).

また、DNA濃度が低く、区画形成部材311にて形成される測定区画にDNAがほとんど存在しない場合、第3の電極308をオフにし、代わりに第5の電極310をオンにする(S4)。この時、第4の電極309の電圧(V4)≦第5の電極301の電圧(V5)<第2の電極306の電圧(V2)とする。より好ましくは、V4<V5<V2とする。これによって、区画形成部材312にて形成される測定区画から細孔301を通過するDNAを検出する(S6)。また、DNA濃度が低く、区画形成部材312にて形成される測定区画にDNAがほとんど存在しない場合、第4の電極308をオフにし、代わりに第1の電極307をオンにする(S7)。この時、第5の電極310の電圧(V5)≦第1の電極307の電圧(V1)<第2の電極306の電圧(V2)とする。より好ましくは、V5<V1<V2とする。これによって、区画形成部材313にて形成される測定区画から細孔301を通過するDNAを検出する(S8)。   If the DNA concentration is low and there is almost no DNA in the measurement section formed by the section forming member 311, the third electrode 308 is turned off, and the fifth electrode 310 is turned on instead (S 4). At this time, the voltage of the fourth electrode 309 (V4) ≦ the voltage of the fifth electrode 301 (V5) <the voltage of the second electrode 306 (V2). More preferably, V4 <V5 <V2. Thus, DNA passing through the pore 301 is detected from the measurement section formed by the section forming member 312 (S6). If the DNA concentration is low and there is almost no DNA in the measurement section formed by the section forming member 312, the fourth electrode 308 is turned off and the first electrode 307 is turned on instead (S 7). At this time, the voltage of the fifth electrode 310 (V5) ≦ the voltage of the first electrode 307 (V1) <the voltage of the second electrode 306 (V2). More preferably, V5 <V1 <V2. Thus, DNA passing through the pore 301 is detected from the measurement section formed by the section forming member 313 (S8).

さらに、DNA濃度が低く、区画形成部材313にて形成される測定区画にDNAがほとんど存在しない場合、第5の電極310をオフにする(S9)。これにより、DNAの細孔301への通過を検出する(S10)。これでも検出されなかった場合(S11)は検出限界としてPCR増幅液の調整からやり直す(S1)。   Further, when the DNA concentration is low and there is almost no DNA in the measurement section formed by the section forming member 313, the fifth electrode 310 is turned off (S9). Thereby, the passage of DNA to the pore 301 is detected (S10). If this is not detected (S11), the detection limit is redone from the adjustment of the PCR amplification solution (S1).

本発明は上述の実施例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者に容易に理解されよう。   It will be readily appreciated by those skilled in the art that the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the invention described in the claims.

201 細孔
202 ベース
203 膜
204 第1のチャンバ
205 第2のチャンバ
206 第2の電極
207 第1の電極
208 第3の電極
209 区画形成部材
210 基板
201 pores
202 base
203 membrane
204 First chamber
205 Second chamber
206 Second electrode
207 first electrode
208 Third electrode
209 Compartment forming member
210 Board

Claims (6)

核酸試料を温調する温調部と、ナノメートルサイズの細孔と1対の電極を有し、電気泳動により細孔を通過した核酸試料を検出するナノポア検出部と、温調部からナノポア検出部へ核酸試料を搬送する搬送部とを有し、
温調部により増幅した核酸試料が細孔を通過した回数をカウントし、核酸試料の濃度を測定することを特徴とする核酸分析装置。
A temperature control unit for controlling the temperature of a nucleic acid sample, a nanopore detection unit that has a nanometer-size pore and a pair of electrodes, detects a nucleic acid sample that has passed through the pore by electrophoresis, and a nanopore detection from the temperature control unit A transport unit for transporting the nucleic acid sample to the unit,
A nucleic acid analyzer characterized by counting the number of times a nucleic acid sample amplified by a temperature control section has passed through a pore and measuring the concentration of the nucleic acid sample.
請求項1において、
ナノポア検出部は、チャンバと、前記基板上の一方の領域側に設けられた区画形成部材と、を備え、
前記1対の電極は、チャンバ内に前記基板により仕切られた一方の領域に設けられた第1の電極と他方の領域に設けられた第2の電極から成り、前記区画形成部材上には第3の電極が備えられており、
前記基板には前記細孔が設けられており、前記区画形成部材は前記細孔を囲って設けられており、前記チャンバ内の領域に電圧を印加することによって、前記細孔に核酸試料を通過させて核酸試料の分析を行う、ナノポア検出部と、
核酸分析装置。
In claim 1,
The nanopore detection unit includes a chamber and a partition forming member provided on one side of the substrate,
The pair of electrodes includes a first electrode provided in one region partitioned by the substrate in the chamber and a second electrode provided in the other region, and the first electrode is provided on the partition forming member. 3 electrodes are provided,
The substrate is provided with the pores, and the partition forming member is provided to surround the pores, and a nucleic acid sample is passed through the pores by applying a voltage to a region in the chamber. A nanopore detector for analyzing a nucleic acid sample,
Nucleic acid analyzer.
請求項2の核酸分析装置において、
区画形成部材上に当該区画形成部材よりも大きな区画を形成する別の区画形成部材が設けられ、当該別の区画形成部材上に第4の電極を備えることを特徴とする核酸分析装置。
The nucleic acid analyzer according to claim 2,
A nucleic acid analyzer comprising: a partition forming member provided with another partition forming member that forms a partition larger than the partition forming member; and a fourth electrode provided on the separate partition forming member.
核酸試料を温調して増幅し、増幅した核酸試料を電気泳動によりナノメートルサイズの細孔を通過させ、細孔を通過した回数をカウントし、核酸試料の濃度を測定することを特徴とする核酸分析方法。   The nucleic acid sample is temperature-controlled and amplified, the amplified nucleic acid sample is passed through a nanometer-size pore by electrophoresis, the number of passes through the pore is counted, and the concentration of the nucleic acid sample is measured. Nucleic acid analysis method. 請求項4に記載の核酸分析方法において、
細孔の上流側の区画の一部の区画の核酸試料について細孔を通過させることを特徴とする核酸分析方法。
The nucleic acid analysis method according to claim 4,
A nucleic acid analysis method comprising passing a pore through a nucleic acid sample in a part of a compartment upstream of the pore.
請求項5に記載の核酸分析方法において、
所定の時間内に核酸試料の通過を検出できなかった場合、細孔の上流側の全体の区画の核酸試料について細孔を通過させることを特徴とする核酸分析方法。
The nucleic acid analysis method according to claim 5,
A nucleic acid analysis method characterized by allowing a nucleic acid sample in an entire section upstream of a pore to pass through a pore when the passage of the nucleic acid sample cannot be detected within a predetermined time.
JP2014088701A 2014-04-23 2014-04-23 Nucleic acid analyzer and nucleic acid analysis method Active JP6378924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014088701A JP6378924B2 (en) 2014-04-23 2014-04-23 Nucleic acid analyzer and nucleic acid analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014088701A JP6378924B2 (en) 2014-04-23 2014-04-23 Nucleic acid analyzer and nucleic acid analysis method

Publications (2)

Publication Number Publication Date
JP2015206737A true JP2015206737A (en) 2015-11-19
JP6378924B2 JP6378924B2 (en) 2018-08-22

Family

ID=54603619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088701A Active JP6378924B2 (en) 2014-04-23 2014-04-23 Nucleic acid analyzer and nucleic acid analysis method

Country Status (1)

Country Link
JP (1) JP6378924B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090087A1 (en) * 2015-11-24 2017-06-01 株式会社日立ハイテクノロジーズ Biological sample analyzer and biological sample analysis method
WO2020012804A1 (en) * 2018-07-11 2020-01-16 株式会社日立製作所 Biological sample analysis device and biological sample analysis method
CN114350496A (en) * 2020-10-19 2022-04-15 成都瀚辰光翼生物工程有限公司 Gene detecting apparatus
CN117551746A (en) * 2023-12-01 2024-02-13 北京博奥医学检验所有限公司 Method for detecting target nucleic acid and adjacent region nucleic acid sequence thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164270A1 (en) * 2011-05-27 2012-12-06 Oxford Nanopore Technologies Limited Coupling method
US20130037410A1 (en) * 2010-11-16 2013-02-14 Zhejiang University Nanopore Sensor Comprising A Sub-Nanometer-Thick Layer
JP2013036865A (en) * 2011-08-09 2013-02-21 Hitachi High-Technologies Corp Nanopore-based analyzer
US20130264206A1 (en) * 2012-04-09 2013-10-10 Samsung Electronics Co., Ltd. Biomolecule detection apparatus including plurality of electrodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130037410A1 (en) * 2010-11-16 2013-02-14 Zhejiang University Nanopore Sensor Comprising A Sub-Nanometer-Thick Layer
WO2012164270A1 (en) * 2011-05-27 2012-12-06 Oxford Nanopore Technologies Limited Coupling method
JP2013036865A (en) * 2011-08-09 2013-02-21 Hitachi High-Technologies Corp Nanopore-based analyzer
US20130264206A1 (en) * 2012-04-09 2013-10-10 Samsung Electronics Co., Ltd. Biomolecule detection apparatus including plurality of electrodes

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090087A1 (en) * 2015-11-24 2017-06-01 株式会社日立ハイテクノロジーズ Biological sample analyzer and biological sample analysis method
GB2558482A (en) * 2015-11-24 2018-07-11 Hitachi High Tech Corp Biological sample analyzer and biological sample analysis method
JPWO2017090087A1 (en) * 2015-11-24 2018-08-16 株式会社日立ハイテクノロジーズ Biological sample analyzer and biological sample analyzing method
GB2558482B (en) * 2015-11-24 2021-11-17 Hitachi High Tech Corp Biological sample analyzer and biological sample analysis method
US11402368B2 (en) 2015-11-24 2022-08-02 Hitachi High-Tech Corporation Biological sample analyzer and biological sample analysis method
WO2020012804A1 (en) * 2018-07-11 2020-01-16 株式会社日立製作所 Biological sample analysis device and biological sample analysis method
JP2020008493A (en) * 2018-07-11 2020-01-16 株式会社日立製作所 Device and method for analyzing biological sample
CN114350496A (en) * 2020-10-19 2022-04-15 成都瀚辰光翼生物工程有限公司 Gene detecting apparatus
CN114350496B (en) * 2020-10-19 2023-12-08 成都瀚辰光翼生物工程有限公司 Gene detection apparatus
CN117551746A (en) * 2023-12-01 2024-02-13 北京博奥医学检验所有限公司 Method for detecting target nucleic acid and adjacent region nucleic acid sequence thereof

Also Published As

Publication number Publication date
JP6378924B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
US10100356B2 (en) Systems and methods for automated reusable parallel biological reactions
Chen et al. Probing single DNA molecule transport using fabricated nanopores
JP6193252B2 (en) System and method for high efficiency electronic sequencing and detection
JP6378924B2 (en) Nucleic acid analyzer and nucleic acid analysis method
Egatz-Gomez et al. Future microfluidic and nanofluidic modular platforms for nucleic acid liquid biopsy in precision medicine
JP2018510329A5 (en)
US20160187282A1 (en) Device for single molecule detection and fabrication methods thereof
US20060210994A1 (en) Microfluidic systems and methods for using microfluidic devices
JP2018505423A5 (en)
Vaclavek et al. Resistive pulse sensing as particle counting and sizing method in microfluidic systems: Designs and applications review
KR20140131854A (en) Control method and control device for movement speed of substance, and use therefor
GB2559921A (en) Measuring reagent and analysis device for analyzing biopolymer
Yukimoto et al. Tracking single-particle dynamics via combined optical and electrical sensing
TW201803991A (en) Method for screening nucleic acid aptamer
Tan et al. Detection of a single enzyme molecule based on a solid-state nanopore sensor
van Kooten et al. Focusing analytes from 50 μL into 500 pL: On-chip focusing from large sample volumes using isotachophoresis
Yamamoto et al. Nanofluidic single-molecule sorting of DNA: a new concept in separation and analysis of biomolecules towards ultimate level performance
Lee et al. Direct electrophoretic microRNA preparation from clinical samples using nanofilter membrane
Song et al. Size‐based cell sorting with a resistive pulse sensor and an electromagnetic pump in a microfluidic chip
Li et al. Tiny protein detection using pressure through solid‐state nanopores
Mironov et al. Conformational dynamics of DNA G‐quadruplex in solution studied by kinetic capillary electrophoresis coupled on‐line with mass spectrometry
CN104212711A (en) Electronic sensor and gene detection method based on electronic sensor
Nguyen et al. On-line dual-stage enrichment via magneto-extraction and electrokinetic preconcentration: A new concept and instrumentation for capillary electrophoresis
US11119068B2 (en) Device and method for isotachophoretic focusing large sample volumes
JP2017187443A (en) Polymer film for analyzer, substrate for analyzer, method of manufacturing polymer film for analyzer, and method of manufacturing substrate for analyzer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6378924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350