JP2015206425A - Half-toroidal type continuously variable transmission - Google Patents

Half-toroidal type continuously variable transmission Download PDF

Info

Publication number
JP2015206425A
JP2015206425A JP2014087864A JP2014087864A JP2015206425A JP 2015206425 A JP2015206425 A JP 2015206425A JP 2014087864 A JP2014087864 A JP 2014087864A JP 2014087864 A JP2014087864 A JP 2014087864A JP 2015206425 A JP2015206425 A JP 2015206425A
Authority
JP
Japan
Prior art keywords
power roller
trunnion
cam
input
pressing force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014087864A
Other languages
Japanese (ja)
Other versions
JP6090634B2 (en
Inventor
佐藤 隆夫
Takao Sato
隆夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014087864A priority Critical patent/JP6090634B2/en
Priority to CN201510099265.6A priority patent/CN105041997B/en
Publication of JP2015206425A publication Critical patent/JP2015206425A/en
Application granted granted Critical
Publication of JP6090634B2 publication Critical patent/JP6090634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate proper pressing force with a simple structure in a half toroidal type continuously variable transmission.SOLUTION: A cam mechanism 18 disposed between a trunnion body 17 and an intermediate member 19, is composed of a first cam face C1 formed on the trunnion body 17, a second cam face C2 formed on the intermediate member 19, and a ball 34 kept into contact with the first cam face C1 and the second cam face C2. As the first and second cam faces C1, C2 are in parallel with each other and inclined to a trunnion axis L1, when a prescribed input torque is input, an input disc 13 and an output disc 14 convert a load for energizing a power roller 23 in a direction of the trunnion axis L1 by tangential force of transmission torque, into pressing force of the power roller 23 by the cam mechanism 18, thus gross slip of the power roller 23 can be prevented. Here, as the cam mechanism 18 generates necessary and sufficient pressing force according to the input torque and ratio, degradation of power transmission efficiency due to excessive pressing force can be prevented.

Description

本発明は、駆動源に接続された入力軸と、前記入力軸に相対回転不能に支持された入力ディスクと、前記入力軸に相対回転自在に支持された出力ディスクと、前記入力軸を挟むように配置された一対のトラニオンと、前記一対のトラニオンに支持されて前記入力ディスクおよび前記出力ディスク間に挟持されるパワーローラとを備えるハーフトロイダル型無段変速機に関する。   The present invention sandwiches an input shaft connected to a drive source, an input disk supported so as not to rotate relative to the input shaft, an output disk supported so as to be rotatable relative to the input shaft, and the input shaft. And a power roller supported by the pair of trunnions and clamped between the input disk and the output disk.

入力ディスクおよび出力ディスク間に挟持したパワーローラを傾転させることでレシオを無段階に変化させるハーフトロイダル型無段変速機は、入力ディスクおよび出力ディスクとパワーローラとの接触点に介在するトラクションオイルを圧縮してガラス化することで得られるトラクション力でトルクを伝達するため、ローダにより入力ディスクおよび出力ディスク間にパワーローラを挟持する荷重である押し付け力を発生させることで、前記接触点にグロススリップが発生するのを防止する必要がある。適切な押し付け力はハーフトロイダル型無段変速機への入力トルクおよびレシオにより決定されるが、押し付け力が不足すると前記接触点にグロススリップが発生してトルク伝達が不可能になり、また押し付け力が過大であると前記接触点のスピン損失や各部の軸受の損失が増加して動力伝達効率が低下する問題がある。   The half-toroidal continuously variable transmission, which changes the ratio steplessly by tilting the power roller sandwiched between the input disc and output disc, is a traction oil that intervenes at the contact point between the input disc and output disc and the power roller. In order to transmit torque with the traction force obtained by compressing the glass to vitrify, the loader generates a pressing force, which is a load for sandwiching the power roller between the input disk and the output disk, so that the gloss is applied to the contact point. It is necessary to prevent the occurrence of slip. The appropriate pressing force is determined by the input torque and ratio to the half-toroidal continuously variable transmission. However, if the pressing force is insufficient, a gross slip will occur at the contact point and torque transmission will be impossible. If it is excessively large, there is a problem that the spin loss at the contact point and the loss of the bearings at each part increase to lower the power transmission efficiency.

かかるハーフトロイダル型無段変速機のローダとして、油圧を用いるものが下記特許文献1により公知であり、トルクカムを用いるものが下記特許文献2により公知である。   As a loader of such a half-toroidal continuously variable transmission, one using a hydraulic pressure is known from the following Patent Document 1, and one using a torque cam is known from the following Patent Document 2.

特開2002−206608号公報JP 2002-206608 A 特開2005−308166号公報JP 2005-308166 A

ところで、油圧を用いたローダは、入力軸および入力ディスク間にピストンおよびシリンダを配置し、油圧でピストンを駆動することで押し付け力を発生させるため、ハーフトロイダル型無段変速機の入力トルクおよびレシオに応じて最適の押し付け力を発生させることが可能であるが、ソレノイドバルブ等の電気デバイスが必要になって油圧回路の構造が複雑化するだけでなく、オイルポンプの負荷が増大してしまう問題がある。   By the way, a loader using hydraulic pressure has a piston and a cylinder arranged between an input shaft and an input disk, and generates a pressing force by driving the piston with hydraulic pressure. Therefore, the input torque and ratio of the half-toroidal continuously variable transmission are reduced. It is possible to generate an optimal pressing force according to the pressure, but not only the structure of the hydraulic circuit is complicated due to the need for an electric device such as a solenoid valve, but the load of the oil pump increases. There is.

またトルクカムを用いたローダは、入力軸に設けたカム面と入力ディスクに用いたカム面との間に複数の転動体を配置したものであり、簡単な構造で入力トルクに応じた押し付け力を発生させることが可能であるが、レシオに応じて押し付け力を変化させることができないため、レシオによっては押し付け力が過剰となって動力伝達効率の低下を招く問題がある。   In addition, a loader using a torque cam has a plurality of rolling elements arranged between a cam surface provided on an input shaft and a cam surface used for an input disk. Although it can be generated, the pressing force cannot be changed in accordance with the ratio. Therefore, depending on the ratio, there is a problem that the pressing force becomes excessive and the power transmission efficiency is lowered.

本発明は前述の事情に鑑みてなされたもので、ハーフトロイダル型無段変速機において、簡単な構造で適正な押し付け力を発生させることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to generate an appropriate pressing force with a simple structure in a half-toroidal continuously variable transmission.

上記目的を達成するために、請求項1に記載された発明によれば、駆動源に接続された入力軸と、前記入力軸に相対回転不能に支持された入力ディスクと、前記入力軸に相対回転自在に支持された出力ディスクと、前記入力軸を挟むように配置された一対のトラニオンと、前記一対のトラニオンに支持されて前記入力ディスクおよび前記出力ディスク間に挟持されるパワーローラとを備えるハーフトロイダル型無段変速機であって、前記トラニオンは、トラニオン本体と、前記トラニオン本体に対してトラニオン軸線方向に移動自在に支持された中間部材と、前記中間部材に前記パワーローラを回転自在かつ揺動自在に支持するパワーローラ支持部材と、前記トラニオン本体および前記中間部材間に配置されたカム機構とを備え、前記カム機構は、前記トラニオン本体に形成された第1カム面と、前記中間部材に形成された第2カム面と、前記第1カム面および前記第2カム面に当接する転動体とからなり、前記第1、第2カム面は相互に平行であってトラニオン軸線に対して傾斜することを特徴とするハーフトロイダル型無段変速機が提案される。   In order to achieve the above object, according to the first aspect of the present invention, an input shaft connected to a drive source, an input disk supported so as not to rotate relative to the input shaft, and relative to the input shaft are provided. An output disk rotatably supported, a pair of trunnions arranged so as to sandwich the input shaft, and a power roller supported by the pair of trunnions and sandwiched between the input disk and the output disk. The trunnion is a half-toroidal continuously variable transmission, wherein the trunnion is a trunnion body, an intermediate member that is supported so as to be movable in the trunnion axis direction with respect to the trunnion body, and the power roller is rotatable on the intermediate member. A cam roller disposed between the trunnion body and the intermediate member; Comprises a first cam surface formed on the trunnion body, a second cam surface formed on the intermediate member, and a rolling element in contact with the first cam surface and the second cam surface. A half-toroidal continuously variable transmission is proposed in which the first and second cam surfaces are parallel to each other and inclined with respect to the trunnion axis.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記パワーローラが前記入力ディスクあるいは前記出力ディスクに接触する接触点とトラニオン軸線とを結ぶ方向がパワーローラ軸線に対して成す角度をθとし、前記第1、第2カム面がトラニオン軸線に対してなす角度をαとし、前記接触点のトラクション係数をMとしたとき、tanα=M÷cosθが成立することを特徴とするハーフトロイダル型無段変速機が提案される。   According to the second aspect of the invention, in addition to the configuration of the first aspect, the direction connecting the contact point where the power roller contacts the input disk or the output disk and the trunnion axis is the power roller axis. Tan α = M ÷ cos θ is satisfied, where θ is the angle formed with respect to the trunnion axis and α is the angle between the first and second cam surfaces and the traction coefficient of the contact point is M. A characteristic half-toroidal continuously variable transmission is proposed.

また請求項3に記載された発明によれば、請求項1の構成に加えて、前記パワーローラが前記入力ディスクあるいは前記出力ディスクに接触する接触点とトラニオン軸線とを結ぶ方向がパワーローラ軸線に対して成す角度をθとし、前記第1、第2カム面がトラニオン軸線に対してなす角度をαとし、前記接触点のトラクション係数をMとし、前記接触点における伝達力に対する所定の安全率をSf(Sf>1)としたとき、tanα=M÷cosθ÷Sfが成立することを特徴とするハーフトロイダル型無段変速機が提案される。   According to a third aspect of the present invention, in addition to the configuration of the first aspect, the direction connecting the contact point where the power roller contacts the input disk or the output disk and the trunnion axis is the power roller axis. An angle formed with respect to the trunnion axis is defined as θ, an angle formed by the first and second cam surfaces with respect to the trunnion axis, a traction coefficient of the contact point as M, and a predetermined safety factor for the transmission force at the contact point. A half-toroidal continuously variable transmission is proposed in which tan α = M ÷ cos θ ÷ Sf is established when Sf (Sf> 1).

また請求項4に記載された発明によれば、請求項1〜請求項3の何れか1項の構成に加えて、前記カム機構は、トラニオン軸線方向に複数個配置されるとともに、トラニオン軸線を挟む方向に複数個配置されることを特徴とするハーフトロイダル型無段変速機が提案される。   According to the invention described in claim 4, in addition to the configuration of any one of claims 1 to 3, a plurality of the cam mechanisms are arranged in the trunnion axis direction, and the trunnion axis line is arranged. A half-toroidal continuously variable transmission is proposed, which is arranged in a plurality in the sandwiching direction.

尚、実施の形態のボール34は本発明の転動体に対応する。   In addition, the ball | bowl 34 of embodiment respond | corresponds to the rolling element of this invention.

請求項1の構成によれば、ハーフトロイダル型無段変速機は、駆動源に接続された入力軸と、入力軸に相対回転不能に支持された入力ディスクと、入力軸に相対回転自在に支持された出力ディスクと、入力軸を挟むように配置された一対のトラニオンと、一対のトラニオンに支持されて入力ディスクおよび出力ディスク間に挟持されるパワーローラとを備える。   According to the configuration of claim 1, the half-toroidal continuously variable transmission includes an input shaft connected to a drive source, an input disk supported so as not to rotate relative to the input shaft, and supported relative to the input shaft so as to be relatively rotatable. And a pair of trunnions arranged so as to sandwich the input shaft, and a power roller supported by the pair of trunnions and sandwiched between the input disk and the output disk.

トラニオンは、トラニオン本体と、トラニオン本体に対してトラニオン軸線方向に移動自在に支持された中間部材と、中間部材にパワーローラを回転自在かつ揺動自在に支持するパワーローラ支持部材と、トラニオン本体および中間部材間に配置されたカム機構とを備え、カム機構は、トラニオン本体に形成された第1カム面と、中間部材に形成された第2カム面と、第1カム面および第2カム面に当接する転動体とからなり、第1、第2カム面は相互に平行であってトラニオン軸線に対して傾斜するので、所定の入力トルクが入力するときに入力ディスクおよび出力ディスクが伝達トルクの接線力成分によりパワーローラをトラニオン軸線方向に付勢する荷重をカム機構でパワーローラの押し付け力に変換し、パワーローラが入力ディスクあるいは出力ディスクに対してグロススリップするのを防止することができる。このとき、カム機構は入力トルクおよびレシオに応じた必要充分な押し付け力を発生するので、過剰な押し付け力による動力伝達効率の低下を防止することができる。   The trunnion includes a trunnion body, an intermediate member that is supported so as to be movable in the trunnion axis direction with respect to the trunnion body, a power roller support member that rotatably and swingably supports a power roller on the intermediate member, a trunnion body, A cam mechanism disposed between the intermediate members, the cam mechanism including a first cam surface formed on the trunnion body, a second cam surface formed on the intermediate member, a first cam surface, and a second cam surface. Since the first and second cam surfaces are parallel to each other and are inclined with respect to the trunnion axis, the input disk and the output disk receive the transmission torque when a predetermined input torque is input. The load that urges the power roller in the trunnion axial direction due to the tangential force component is converted to the pressing force of the power roller by the cam mechanism, and the power roller is the input disk. Rui can be prevented from gross slip with respect to the output disc. At this time, the cam mechanism generates a necessary and sufficient pressing force according to the input torque and the ratio, so that it is possible to prevent a decrease in power transmission efficiency due to an excessive pressing force.

また従来の油圧を用いたローダで必要となるソレノイドバルブ等の電気デバイスが不要であるため、ハーフトロイダル型無段変速機の油圧回路の構造を簡素化できるだけでなく、油圧を発生するオイルポンプの負荷を低減することができる。しかも従来の入力軸と入力ディスクとの間にトルクカム機構を配置したローダに比べて、そのトルクカム機構を廃止することによりハーフトロイダル型無段変速機の入力軸線方向の寸法を小型化することができる。   In addition, since an electric device such as a solenoid valve required for a conventional loader using hydraulic pressure is unnecessary, not only can the structure of the hydraulic circuit of the half-toroidal continuously variable transmission be simplified, but also an oil pump that generates hydraulic pressure can be used. The load can be reduced. Moreover, as compared with the conventional loader in which the torque cam mechanism is disposed between the input shaft and the input disk, the dimension in the input axis direction of the half toroidal continuously variable transmission can be reduced by eliminating the torque cam mechanism. .

また請求項2の構成によれば、パワーローラが入力ディスクあるいは出力ディスクに接触する接触点とトラニオン軸線とを結ぶ方向がパワーローラ軸線に対して成す角度をθとし、第1、第2カム面がトラニオン軸線に対してなす角度をαとし、接触点のトラクション係数をMとしたとき、tanα=M÷cosθが成立するので、カム機構により発生する押し付け力をパワーローラのグロススリップを防止し得る押し付け力に一層精度良く一致させることができる。   According to the second aspect of the present invention, the angle between the contact point where the power roller contacts the input disk or the output disk and the trunnion axis with respect to the power roller axis is θ, and the first and second cam surfaces Is α and the contact point traction coefficient is M, tan α = M ÷ cos θ holds, so that the pressing force generated by the cam mechanism can prevent the gloss slip of the power roller. It is possible to match the pressing force with higher accuracy.

また請求項3の構成によれば、パワーローラが入力ディスクあるいは出力ディスクに接触する接触点とトラニオン軸線とを結ぶ方向がパワーローラ軸線に対して成す角度をθとし、第1、第2カム面がトラニオン軸線に対してなす角度をαとし、接触点のトラクション係数をMとし、接触点における伝達力に対する所定の安全率をSf(Sf>1)としたとき、tanα=M÷cosθ÷Sfが成立するので、カム機構により発生する押し付け力をパワーローラのグロススリップを防止し得る押し付け力に対して所定の安全率を乗じた大きさに設定することができる。   According to the third aspect of the present invention, the angle between the contact point where the power roller contacts the input disk or the output disk and the trunnion axis with respect to the power roller axis is θ, and the first and second cam surfaces Is α, the traction coefficient of the contact point is M, and the predetermined safety factor for the transmission force at the contact point is Sf (Sf> 1), tan α = M ÷ cos θ ÷ Sf is Therefore, the pressing force generated by the cam mechanism can be set to a magnitude obtained by multiplying the pressing force that can prevent the gloss slip of the power roller by a predetermined safety factor.

また請求項4の構成によれば、カム機構は、トラニオン軸線方向に複数個配置されるとともに、トラニオン軸線を挟む方向に複数個配置されるので、トラニオン本体から中間部材に伝達される押し付け力を複数のカム機構で分担して支持することで、中間部材の姿勢を安定させることができる。   According to the fourth aspect of the present invention, a plurality of cam mechanisms are arranged in the direction of the trunnion axis, and a plurality of cam mechanisms are arranged in the direction sandwiching the trunnion axis, so that the pressing force transmitted from the trunnion body to the intermediate member is generated. By sharing and supporting by a plurality of cam mechanisms, the posture of the intermediate member can be stabilized.

ハーフトロイダル型無段変速機の入力軸に直交する方向の断面図。Sectional drawing of the direction orthogonal to the input shaft of a half toroidal type continuously variable transmission. 図1の2−2線断面図。FIG. 2 is a sectional view taken along line 2-2 in FIG. 1. トラニオンおよびパワーローラの斜視図。The perspective view of a trunnion and a power roller. トラニオンの斜視図。The perspective view of a trunnion. 図3の5方向矢視図。FIG. 図5の6−6線断面図。FIG. 6 is a sectional view taken along line 6-6 of FIG. 図2の要部拡大図。The principal part enlarged view of FIG. 図6の8部拡大図。FIG. 本発明の効果を説明するグラフ。The graph explaining the effect of this invention.

以下、図1〜図9に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1および図2に示すように、シングルキャビティ型のハーフトロイダル型無段変速機Tは、ケーシング11に回転自在に支持されて図示せぬ駆動源に接続された入力軸12を備えており、入力軸12は概略コーン状の入力ディスク13が固設されるとともに、概略コーン状の出力ディスク14がベアリング15を介して相対回転自在に支持される。ケーシング11には、一対のトラニオン16,16が入力軸12を挟むように配置されており、各トラニオン16は、クランク状に形成されたトラニオン本体17と、トラニオン本体17に4個のカム機構18…を介して支持された中間部材19と、中間部材19に揺動自在に支持されたパワーローラ支持部材20とを備える。パワーローラ支持部材20にスラストベアリング21およびラジアルベアリング22を介してパワーローラ23が回転自在に支持されており、パワーローラ23は入力ディスク13および出力ディスク14に相互に対向するトロイダル面に当接する。   As shown in FIGS. 1 and 2, the single cavity half-toroidal continuously variable transmission T includes an input shaft 12 that is rotatably supported by a casing 11 and connected to a drive source (not shown). A substantially cone-shaped input disk 13 is fixed to the input shaft 12, and a substantially cone-shaped output disk 14 is supported via a bearing 15 so as to be relatively rotatable. A pair of trunnions 16, 16 are arranged in the casing 11 so as to sandwich the input shaft 12. Each trunnion 16 includes a trunnion body 17 formed in a crank shape, and four cam mechanisms 18 in the trunnion body 17. The intermediate member 19 is supported via the intermediate member 19, and the power roller support member 20 is supported by the intermediate member 19 so as to be swingable. A power roller 23 is rotatably supported on the power roller support member 20 via a thrust bearing 21 and a radial bearing 22, and the power roller 23 abuts on the toroidal surfaces facing the input disk 13 and the output disk 14.

ケーシング11に結合した油圧制御ブロック25内に、各トラニオン16をトラニオン軸線L1方向に駆動する油圧アクチュエータ26が配置される。油圧アクチュエータ26は、トラニオン本体17に設けられたピストン27と、ピストン27が摺動自在に嵌合するシリンダ28と、ピストン27の上下一側に区画された増速用油室29と、ピストン27の上下他側に区画された減速用油室30とから構成されており、増速用油室29および減速用油室30に差圧が作用することで、一対のトラニオン本体17,17がトラニオン軸線L1方向に沿って相互に逆方向に駆動される。   A hydraulic actuator 26 for driving each trunnion 16 in the direction of the trunnion axis L1 is disposed in a hydraulic control block 25 coupled to the casing 11. The hydraulic actuator 26 includes a piston 27 provided in the trunnion body 17, a cylinder 28 in which the piston 27 is slidably fitted, a speed increasing oil chamber 29 partitioned on one side of the piston 27, and a piston 27. And a speed reducing oil chamber 29 and a speed reducing oil chamber 30 so that a differential pressure acts on the speed increasing oil chamber 29 and the speed reducing oil chamber 30 so that the pair of trunnion bodies 17 and 17 are trunnions. Driven in directions opposite to each other along the direction of the axis L1.

一対のトラニオン本体17,17の上部および下部が、各々球面継手31…を介して上部リンク32および下部リンク33の両端部に枢支されており、一方のトラニオン本体17が上動して他方のトラニオン本体17が下動するときに、その動きが同期するようになっている。   The upper and lower portions of the pair of trunnion bodies 17 and 17 are pivotally supported by both end portions of the upper link 32 and the lower link 33 through spherical joints 31... When the trunnion body 17 moves downward, the movement is synchronized.

図3〜図6に示すように、トラニオン本体17に形成した平坦面17aにはトラニオン軸線L1方向に直線状に延びるガイド突起17bが設けられており、このガイド突起17bに中間部材19の平坦面19aに形成した直線状のガイド溝19bが摺動自在に嵌合する。4個のカム機構18…の各々は、トラニオン本体17の平坦面17aに形成した凹部17cと、中間部材19の平坦面19aに形成した凹部19cと、両凹部17c,19cに挟持されたボール34とで構成される。   3-6, the flat surface 17a formed on the trunnion body 17 is provided with a guide protrusion 17b extending linearly in the direction of the trunnion axis L1, and the flat surface of the intermediate member 19 is provided on the guide protrusion 17b. A linear guide groove 19b formed in 19a is slidably fitted. Each of the four cam mechanisms 18 has a recess 17c formed on the flat surface 17a of the trunnion body 17, a recess 19c formed on the flat surface 19a of the intermediate member 19, and a ball 34 sandwiched between the recesses 17c and 19c. It consists of.

中間部材19は平坦面19aと反対側に形成された円弧面19dを備えており、円弧面19dには円弧状のガイド突起19eが設けられる。一方、パワーローラ支持部材20には中間部材19のガイド突起19eに摺動自在に嵌合する円弧状のガイド溝20aが設けられており、ガイド突起19eおよびガイド溝20aによりパワーローラ支持部材20はトラニオン本体17に対して揺動自在に支持される。   The intermediate member 19 includes an arcuate surface 19d formed on the opposite side of the flat surface 19a, and an arcuate guide protrusion 19e is provided on the arcuate surface 19d. On the other hand, the power roller support member 20 is provided with an arcuate guide groove 20a slidably fitted to the guide protrusion 19e of the intermediate member 19, and the power roller support member 20 is formed by the guide protrusion 19e and the guide groove 20a. The trunnion body 17 is supported to be swingable.

図8に拡大して示すように、トラニオン本体17の凹部17cと、中間部材19の凹部19cとには、相互に平行であってトラニオン軸線L1に対して角度αで傾斜する第1、第2カム面C1,C2が形成されており、これらの第1、第2カム面C1,C2にボール34が当接する。   As shown in FIG. 8 in an enlarged manner, the recess 17c of the trunnion body 17 and the recess 19c of the intermediate member 19 are first and second parallel to each other and inclined at an angle α with respect to the trunnion axis L1. Cam surfaces C1 and C2 are formed, and the ball 34 comes into contact with the first and second cam surfaces C1 and C2.

次に、上記構成を備えた本発明の実施の形態の作用を説明する。   Next, the operation of the embodiment of the present invention having the above configuration will be described.

先ず、ハーフトロイダル型無段変速機Tの変速作用について説明する。油圧アクチュエータ26,26で一対のトラニオン16,16をトラニオン軸線L1に沿って相互に逆方向に駆動すると、パワーローラ23,23が入力ディスク13および出力ディスク14から受ける反力でトラニオン本体17,17がトラニオン軸線L1まわりに回転することで、パワーローラ23,23の入力ディスク13との接触点が入力軸12に対して半径方向外側に移動するとともに、出力ディスク14との接触点が入力軸12に対して半径方向内側に移動するため、入力ディスク13の回転が増速して出力ディスク14に伝達され、ハーフトロイダル型無段変速機Tのレシオが連続的に減少する。   First, the shifting action of the half toroidal type continuously variable transmission T will be described. When the pair of trunnions 16, 16 are driven in the opposite directions along the trunnion axis L 1 by the hydraulic actuators 26, 26, the trunnion bodies 17, 17 are caused by reaction forces that the power rollers 23, 23 receive from the input disk 13 and the output disk 14. Rotates around the trunnion axis L1, so that the contact point of the power rollers 23, 23 with the input disk 13 moves radially outward with respect to the input shaft 12, and the contact point with the output disk 14 changes to the input shaft 12. Therefore, the rotation of the input disk 13 is increased and transmitted to the output disk 14, and the ratio of the half-toroidal continuously variable transmission T is continuously reduced.

一方、一対のトラニオン16,16をトラニオン軸線L1に沿って前述とは逆方向に駆動すると、パワーローラ23,23の入力ディスク13との接触点が入力軸12に対して半径方向内側に移動するとともに、出力ディスク14との接触点が入力軸12に対して半径方向外側に移動するため、入力ディスク13の回転が減速して出力ディスク14に伝達され、ハーフトロイダル型無段変速機Tのレシオが連続的に増加する。   On the other hand, when the pair of trunnions 16 and 16 are driven along the trunnion axis L1 in the opposite direction, the contact point of the power rollers 23 and 23 with the input disk 13 moves radially inward with respect to the input shaft 12. At the same time, since the contact point with the output disk 14 moves radially outward with respect to the input shaft 12, the rotation of the input disk 13 is decelerated and transmitted to the output disk 14, and the ratio of the half-toroidal continuously variable transmission T Increases continuously.

次に、図5、図6および図8に基づいてカム機構18の作用を説明する。   Next, the operation of the cam mechanism 18 will be described based on FIG. 5, FIG. 6, and FIG.

ハーフトロイダル型無段変速機Tの入力軸12に所定の入力トルクが入力されると、例えば一方のパワーローラ23は入力ディスク13との接触点から下向きのトルク伝達接線力Ftを受け、出力ディスク14との接触点から下向きのトルク伝達接線力Ftを受ける(図5参照)。その結果、パワーローラ23を支持するトラニオン16は2Ftの荷重で下向きに付勢され、この下向きの2Ftの荷重は油圧アクチュエータ26が発生する上向きの2Ftの荷重で支持される。このとき、上向きに付勢されたトラニオン16と、下向きに付勢されたパワーローラ23と一体の中間部材19とは、2Ftの荷重でトラニオン軸線L1方向に相対移動する(図6(B)の矢印A,B参照)。   When a predetermined input torque is input to the input shaft 12 of the half toroidal type continuously variable transmission T, for example, one power roller 23 receives a downward torque transmission tangential force Ft from a contact point with the input disk 13 and outputs the output disk. 14 receives a downward torque transmission tangential force Ft from the point of contact with 14 (see FIG. 5). As a result, the trunnion 16 that supports the power roller 23 is biased downward by a load of 2 Ft, and the downward load of 2 Ft is supported by an upward load of 2 Ft generated by the hydraulic actuator 26. At this time, the trunnion 16 biased upward and the intermediate member 19 integrated with the power roller 23 biased downward move relatively in the direction of the trunnion axis L1 with a load of 2 Ft (see FIG. 6B). (See arrows A and B).

図8は2Ftの荷重が入力したカム機構18の拡大図である。2Ftの荷重は4個のカム機構18…が均等に分担するため、1個のカム機構18のトラニオン16側の第1カム面C1とボール34との接触点P1には、
F1=2Ft÷4=Ft/2 …(1)
の荷重がトラニオン軸線L1方向に作用する。第1カム面C1は角度α傾斜しているため、第1カム面C1がボール34を押圧する荷重F2は、
F2=F1÷sinα=(Ft/2)÷sinα …(2)
であり、ボール34は中間部材19側の第2カム面C2をF2=(Ft/2)÷sinαで押圧する。第2カム面C2は角度α傾斜しているため、中間部材19がボール34との接触点P2において受けるパワーローラ軸線L2方向の荷重F3は、
F3=F2×cosα=(Ft/2)÷tanα …(3)
となる。即ち、1個のカム機構18は、パワーローラ23をパワーローラ軸線L2方向にF3=(Ft/2)÷tanαの押し付け力で押圧する。
FIG. 8 is an enlarged view of the cam mechanism 18 to which a load of 2 Ft is input. Since the load of 2 Ft is equally shared by the four cam mechanisms 18, the contact point P 1 between the first cam surface C 1 on the trunnion 16 side of the one cam mechanism 18 and the ball 34 is
F1 = 2Ft ÷ 4 = Ft / 2 (1)
Is applied in the direction of the trunnion axis L1. Since the first cam surface C1 is inclined at the angle α, the load F2 with which the first cam surface C1 presses the ball 34 is
F2 = F1 ÷ sin α = (Ft / 2) ÷ sin α (2)
The ball 34 presses the second cam surface C2 on the intermediate member 19 side by F2 = (Ft / 2) ÷ sin α. Since the second cam surface C2 is inclined by the angle α, the load F3 in the direction of the power roller axis L2 that the intermediate member 19 receives at the contact point P2 with the ball 34 is:
F3 = F2 × cos α = (Ft / 2) ÷ tan α (3)
It becomes. That is, one cam mechanism 18 presses the power roller 23 in the direction of the power roller axis L2 with a pressing force of F3 = (Ft / 2) ÷ tan α.

図7は、パワーローラ23のトラニオン軸線L1と直交する方向の断面を示すもので、パワーローラ23は入力ディスク13に接触点P3において接触し、出力ディスク14に接触点P4において接触しており、トラニオン軸線L1および接触点P3を結ぶ方向とパワーローラ軸線L2とが成す角度はθであり、トラニオン軸線L1および接触点P4を結ぶ方向とパワーローラ軸線L2とが成す角度は同じくθである。4個のカム機構18…がパワーローラ23をパワーローラ軸線L2方向に押圧する押し付け力は4×F3=2Ft÷tanαであり、その押し付け力は接触点P3においてパワーローラ23が入力ディスク13を押圧する押し付け力F4と、接触点P4においてパワーローラ23が出力ディスク14を押圧する押し付け力F4とに分解され、それら二つの押し付け力F4は、
F4=4×F3÷2÷cosθ=Ft÷tanα÷cosθ …(4)
である。
FIG. 7 shows a cross section of the power roller 23 in a direction perpendicular to the trunnion axis L1, and the power roller 23 is in contact with the input disk 13 at the contact point P3 and is in contact with the output disk 14 at the contact point P4. The angle formed between the direction connecting the trunnion axis L1 and the contact point P3 and the power roller axis L2 is θ, and the angle formed between the direction connecting the trunnion axis L1 and the contact point P4 and the power roller axis L2 is also θ. The pressing force by which the four cam mechanisms 18 press the power roller 23 in the direction of the power roller axis L2 is 4 × F3 = 2Ft ÷ tanα. The pressing force presses the input disk 13 at the contact point P3. The pressing force F4 is divided into a pressing force F4 that the power roller 23 presses the output disk 14 at the contact point P4, and these two pressing forces F4 are:
F4 = 4 × F3 ÷ 2 ÷ cos θ = Ft ÷ tan α ÷ cos θ (4)
It is.

入力軸線L3から入力ディスク13側の接触点P3までの半径をr1とし、駆動源から入力軸12に入力される入力トルクをTinとし、ハーフトロイダル型無段変速機Tのキャビティ数をN(本実施の形態ではN=1)とし、パワーローラ23の数をn(本実施の形態ではn=2)とすると、入力軸12に入力される入力トルクTinは、トルク伝達接線力Ftを用いて、
Tin=N×n×r1×Ft …(5)
で与えられるため、トルク伝達接線力Ftは、
Ft=Tin÷N÷n÷r1 …(6)
で表される。
The radius from the input axis L3 to the contact point P3 on the input disk 13 side is r1, the input torque input from the drive source to the input shaft 12 is Tin, and the number of cavities of the half-toroidal continuously variable transmission T is N (main Assuming that N = 1 in the embodiment and the number of power rollers 23 is n (n = 2 in this embodiment), the input torque Tin input to the input shaft 12 uses the torque transmission tangential force Ft. ,
Tin = N × n × r1 × Ft (5)
The torque transmission tangential force Ft is given by
Ft = Tin ÷ N ÷ n ÷ r1 (6)
It is represented by

(6)式を(4)式に代入すると、カム機構18により接触点P3においてパワーローラ23が入力ディスク13を押圧する押し付け力F4は、
F4=Tin÷N÷n÷r1÷tanα÷cosθ …(7)
で表される。
When the equation (6) is substituted into the equation (4), the pressing force F4 that the power roller 23 presses the input disk 13 at the contact point P3 by the cam mechanism 18 is
F4 = Tin ÷ N ÷ n ÷ r1 ÷ tan α ÷ cos θ (7)
It is represented by

一方、接触点P3における摩擦係数を表すトラクション係数をMとすると、接触点P3においてグロススリップが発生しないためのパワーローラ23の押し付け力F4′は、
F4′=Ft÷M=Tin÷N÷n÷r1÷M …(8)
で与えられる。
On the other hand, when the traction coefficient representing the friction coefficient at the contact point P3 is M, the pressing force F4 ′ of the power roller 23 for preventing the occurrence of gross slip at the contact point P3 is:
F4 ′ = Ft ÷ M = Tin ÷ N ÷ n ÷ r1 ÷ M (8)
Given in.

(7)式に示す、カム機構18により接触点P3においてパワーローラ23が入力ディスク13を押圧する押し付け力F4と、(8)式に示す、接触点P3においてグロススリップが発生しないためのパワーローラ23の押し付け力F4′とを比較すると明らかなように、
tanα=M÷cosθ …(9)
に設定すればF4′=F4が常に成立し、パワーローラ23が入力ディスク13に対してグロススリップしないための過不足のない押し付け力F4をカム機構18により発生させることができる。しかも、そのための条件である(9)式は、何れも定数である第1カム面C1および第2カム面C2の角度αと、トラニオン軸線L1および接触点P3,P4を結ぶ方向がパワーローラ軸線L2と成す角度θと、トラクション係数Mだけを含んでおり、入力トルクを含まないだけでなく、接触点P1の半径r1および接触点P4の半径r2、つまりハーフトロイダル型無段変速機Tのレシオを含まないので、入力トルクおよびレシオに関わらずに適切な押し付け力F4を得ることができる。
A pressing force F4 that the power roller 23 presses the input disk 13 at the contact point P3 by the cam mechanism 18 shown in the equation (7), and a power roller that prevents the gloss slip from occurring at the contact point P3 shown in the equation (8). As is clear from the comparison with the pressing force F4 'of 23,
tan α = M ÷ cos θ (9)
If it is set, F4 ′ = F4 is always established, and the cam mechanism 18 can generate a pressing force F4 that does not cause excess or deficiency so that the power roller 23 does not slip grossly against the input disk 13. Moreover, the condition (9), which is the condition for this, is that the angle α between the first cam surface C1 and the second cam surface C2, which are both constants, and the direction connecting the trunnion axis L1 and the contact points P3 and P4 are the power roller axis. It includes only the angle θ formed with L2 and the traction coefficient M and does not include the input torque, but also includes the radius r1 of the contact point P1 and the radius r2 of the contact point P4, that is, the ratio of the half-toroidal continuously variable transmission T. Therefore, an appropriate pressing force F4 can be obtained regardless of the input torque and the ratio.

同様に、(7)式および(8)式を比較すると明らかなように、
tanα=M÷cosθ÷Sf(Sf>1) …(10)
に設定すれば、F4′×Sf=F4が常に成立し、パワーローラ23が入力ディスク13に対してグロススリップしないための押し付け力に対して所定の安全率Sfを乗じた力F4をカム機構18により発生させることができる。しかも、そのための条件はハーフトロイダル型無段変速機Tの入力トルクおよびレシオを含まないので、入力トルクおよびレシオに関わらずに適切な押し付け力F4を得ることができる。
Similarly, as is clear when comparing Equations (7) and (8),
tan α = M ÷ cos θ ÷ Sf (Sf> 1) (10)
If F4 ′ × Sf = F4 is always established, a force F4 obtained by multiplying the pressing force for preventing the power roller 23 from slipping against the input disk 13 by a predetermined safety factor Sf is applied to the cam mechanism 18. Can be generated. In addition, since the condition for this does not include the input torque and the ratio of the half-toroidal continuously variable transmission T, an appropriate pressing force F4 can be obtained regardless of the input torque and the ratio.

以上、入力ディスク13側の接触点P3の押し付け力F4について検討したが、次に、出力ディスク14側の接触点P4の押し付け力F4について検討する。   The pressing force F4 of the contact point P3 on the input disk 13 side has been examined above. Next, the pressing force F4 of the contact point P4 on the output disk 14 side will be examined.

出力ディスク14側の接触点P4の入力軸線L3からの半径はr2であり、かつ出力ディスク14から出力される出力トルクToutは、レシオをiとすると、
Tout=Tin×i …(11)
で与えられる。
The radius from the input axis L3 of the contact point P4 on the output disk 14 side is r2, and the output torque Tout output from the output disk 14 is i.
Tout = Tin × i (11)
Given in.

カム機構18により出力ディスク14側の接触点P4においてパワーローラ23が出力ディスク14を押圧する押し付け力F4は、(7)式のTinをToutに変更し、かつr1をr2に変更することで、
F4=Tout÷N÷n÷r2÷tanα÷cosθ …(12)
で与えられる。また接触点P4においてグロススリップが発生しないためのパワーローラ23の押し付け力F4′は、(8)式の入力トルクTinを出力トルクToutに変更し、r1をr2に変更することで、
F4′=Tout÷N÷n÷r2÷M …(13)
で与えられる。
The pressing force F4 by which the power roller 23 presses the output disk 14 at the contact point P4 on the output disk 14 side by the cam mechanism 18 is obtained by changing Tin in the equation (7) to Tout and changing r1 to r2.
F4 = Tout ÷ N ÷ n ÷ r2 ÷ tan α ÷ cos θ (12)
Given in. Further, the pressing force F4 ′ of the power roller 23 for preventing the gross slip from occurring at the contact point P4 is obtained by changing the input torque Tin in the equation (8) to the output torque Tout and changing r1 to r2.
F4 ′ = Tout ÷ N ÷ n ÷ r2 ÷ M (13)
Given in.

(12)式および(13)式を比較すると明らかなように、(9)式に示すようにtanα=M÷cosθに設定すればF4′=F4が常に成立し、カム機構18によりパワーローラ23が出力ディスク14に対してグロススリップしないための過不足のない押し付け力F4を得ることができる。しかも、そのための条件はハーフトロイダル型無段変速機Tの入力トルクおよびレシオを含まないので、入力トルクおよびレシオに関わらずに適切な押し付け力F4を得ることができる。   As is clear from the comparison between the equations (12) and (13), as shown in the equation (9), if tan α = M ÷ cos θ is set, F4 ′ = F4 is always established, and the cam mechanism 18 causes the power roller 23 to Therefore, it is possible to obtain a pressing force F4 with no excess or deficiency for preventing the output disk 14 from slipping grossly. In addition, since the condition for this does not include the input torque and the ratio of the half-toroidal continuously variable transmission T, an appropriate pressing force F4 can be obtained regardless of the input torque and the ratio.

同様に、(12)式および(13)式を比較すると明らかなように、(10)式に示すようにtanα=M÷cosθ÷Sfに設定すれば、F4′×Sf=F4が常に成立し、パワーローラ23が入力ディスク13に対してグロススリップしないための押し付け力に対して安全率Sfを乗じた力F4をカム機構18により発生させることができる。しかも、そのための条件はハーフトロイダル型無段変速機Tの入力トルクおよびレシオを含まないので、入力トルクおよびレシオに関わらずに適切な押し付け力F4を得ることができる。   Similarly, as is clear from the comparison between the equations (12) and (13), if tan α = M ÷ cos θ ÷ Sf is set as shown in the equation (10), F4 ′ × Sf = F4 is always established. The cam mechanism 18 can generate a force F4 obtained by multiplying the pressing force for preventing the power roller 23 from slipping against the input disk 13 by the safety factor Sf. In addition, since the condition for this does not include the input torque and the ratio of the half-toroidal continuously variable transmission T, an appropriate pressing force F4 can be obtained regardless of the input torque and the ratio.

本実施の形態のカム機構18が入力トルクおよびレシオに応じた押し付け力F4を発生可能な理由は、以下のように考えられる。   The reason why the cam mechanism 18 of this embodiment can generate the pressing force F4 according to the input torque and the ratio is considered as follows.

即ち、レシオが一定の状態で入力トルクが例えば2倍になると、パワーローラ23に加わるトルク伝達接線力Ftも2倍になり、カム機構18に入力するトラニオン軸線L1方向の荷重2Ftも2倍になり、カム機構18が発生するパワーローラ23の押し付け力F4も2倍になる。   That is, when the input torque is doubled with the ratio being constant, the torque transmission tangential force Ft applied to the power roller 23 is also doubled, and the load 2Ft in the direction of the trunnion axis L1 input to the cam mechanism 18 is also doubled. Thus, the pressing force F4 of the power roller 23 generated by the cam mechanism 18 is also doubled.

また入力トルクが一定の状態でレシオが減少して入力軸線L3から入力ディスク13側の接触点P3までの半径r1が例えば2倍になると、パワーローラ23に加わるトルク伝達接線力Ftが2分の1になり、カム機構18に入力するトラニオン軸線L1方向の荷重2Ftも2分の1になり、カム機構18が発生するパワーローラ23の押し付け力F4も2分の1になる。   When the ratio decreases and the radius r1 from the input axis L3 to the contact point P3 on the input disk 13 side is doubled, for example, when the input torque is constant, the torque transmission tangential force Ft applied to the power roller 23 is 2 minutes. The load 2Ft in the direction of the trunnion axis L1 input to the cam mechanism 18 is also halved, and the pressing force F4 of the power roller 23 generated by the cam mechanism 18 is also halved.

以上のように、入力トルクやレシオが変化しても、その変化に応じてパワーローラ23の押し付け力が自動的に変化するため、全ての入力トルク領域および全てのレシオ領域で適切な押し付け力を得ることができる。   As described above, even if the input torque or ratio changes, the pressing force of the power roller 23 automatically changes in accordance with the change. Therefore, an appropriate pressing force is applied in all input torque regions and all ratio regions. Can be obtained.

図9は、接触点P3,P4においてパワーローラ23が入力ディスク13を押圧する押し付け力が、ハーフトロイダル型無段変速機Tのレシオに応じてどのように変化するかを示すグラフである。   FIG. 9 is a graph showing how the pressing force with which the power roller 23 presses the input disk 13 at the contact points P3 and P4 changes according to the ratio of the half-toroidal continuously variable transmission T.

本実施の形態によれば、(8)式により求めたパワーローラ23にグロススリップが発生しないための押し付け力(実線参照)に安全率(例えば1.1)を乗算した最終的な押し付け力(破線参照)が得られるように、(10)式を用いて前記角度αが決定される。鎖線は、前記特許文献2に記載されたトルクカム機構により発生する押し付け力を示しており、この押し付け力はレシオが小さい領域および大きい領域で過剰になっており(斜線部参照)、その分だけ無駄なフリクションが発生して動力伝達効率の低下を招く問題がある。しかしながら、本実施の形態によれば、全てのレシオ領域で過不足のない押し付け力を発生させ、パワーローラ23のグロススリップを防止しながら動力伝達効率の低下を回避することができる。   According to the present embodiment, the final pressing force (for example, 1.1) multiplied by the pressing force (see the solid line) for preventing the occurrence of gross slip in the power roller 23 obtained by the equation (8) (see 1.1). The angle α is determined using the equation (10) so that a broken line is obtained. The chain line indicates the pressing force generated by the torque cam mechanism described in Patent Document 2, and this pressing force is excessive in a region where the ratio is small and a region where the ratio is large (see the hatched portion), and the corresponding amount is wasted. There is a problem that the friction is generated and the power transmission efficiency is lowered. However, according to the present embodiment, it is possible to generate a pressing force with no excess or deficiency in all ratio regions, and to avoid a reduction in power transmission efficiency while preventing a gross slip of the power roller 23.

以上のように、本実施の形態によれば、入力軸12に所定の入力トルクが入力するときに入力ディスク13および出力ディスク14が伝達トルクの接線力成分によりパワーローラ23をトラニオン軸線L1方向に付勢する荷重をカム機構18でパワーローラ23の押し付け力に変換し、パワーローラ23が入力ディスク13あるいは出力ディスク14に対してグロススリップするのを防止することができる。このとき、カム機構18は入力トルクおよびレシオに応じた必要充分な押し付け力を発生するので、過剰な押し付け力による動力伝達効率の低下を防止することができる。   As described above, according to the present embodiment, when a predetermined input torque is input to the input shaft 12, the input disk 13 and the output disk 14 cause the power roller 23 to move in the direction of the trunnion axis L1 by the tangential force component of the transmission torque. The urging load is converted into a pressing force of the power roller 23 by the cam mechanism 18, and the power roller 23 can be prevented from being grossly slipped with respect to the input disk 13 or the output disk 14. At this time, the cam mechanism 18 generates a necessary and sufficient pressing force in accordance with the input torque and the ratio, so that it is possible to prevent a decrease in power transmission efficiency due to an excessive pressing force.

またカム機構18…をトラニオン軸線L1方向に複数個配置するとともに、トラニオン軸線L1を挟む方向に複数個配置したので、トラニオン本体17から中間部材19に伝達される押し付け力を複数のカム機構18…を分担して支持することで、中間部材19の姿勢を安定させることができる。しかも従来の油圧を用いたローダで必要となるソレノイドバルブ等の電気デバイスが不要であるため、ハーフトロイダル型無段変速機Tの油圧回路の構造を簡素化できるだけでなく、油圧を発生するオイルポンプの負荷を低減することができる。更に、従来の入力軸と入力ディスクとの間にトルクカム機構を配置したローダに比べて、そのトルクカム機構を廃止することにより、ハーフトロイダル型無段変速機Tの入力軸線L3方向の寸法を小型化することができる。   Further, since a plurality of cam mechanisms 18 are arranged in the direction of the trunnion axis L1, and a plurality of cam mechanisms 18 are arranged in the direction sandwiching the trunnion axis L1, a pressing force transmitted from the trunnion body 17 to the intermediate member 19 is applied to the plurality of cam mechanisms 18. By supporting and sharing, the posture of the intermediate member 19 can be stabilized. In addition, since an electric device such as a solenoid valve required for a conventional loader using hydraulic pressure is unnecessary, not only can the hydraulic circuit structure of the half-toroidal continuously variable transmission T be simplified, but also an oil pump that generates hydraulic pressure. Can be reduced. Furthermore, compared to the conventional loader in which the torque cam mechanism is arranged between the input shaft and the input disk, the size of the half toroidal continuously variable transmission T in the direction of the input axis L3 is reduced by eliminating the torque cam mechanism. can do.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施の形態のハーフトロイダル型無段変速機Tはシングルキャビティ型のものであるが、ダブルキャビティ型のものであっても良い。   For example, the half-toroidal continuously variable transmission T according to the embodiment is a single cavity type, but may be a double cavity type.

12 入力軸
13 入力ディスク
14 出力ディスク
16 トラニオン
17 トラニオン本体
18 カム機構
19 中間部材
20 パワーローラ支持部材
23 パワーローラ
34 ボ−ル(転動体)
C1 第1カム面
C2 第2カム面
L1 トラニオン軸線
L2 パワーローラ軸線
P3 接触点
P4 接触点
12 input shaft 13 input disk 14 output disk 16 trunnion 17 trunnion body 18 cam mechanism 19 intermediate member 20 power roller support member 23 power roller 34 ball (rolling element)
C1 first cam surface C2 second cam surface L1 trunnion axis L2 power roller axis P3 contact point P4 contact point

Claims (4)

駆動源に接続された入力軸(12)と、前記入力軸(12)に相対回転不能に支持された入力ディスク(13)と、前記入力軸(12)に相対回転自在に支持された出力ディスク(14)と、前記入力軸(12)を挟むように配置された一対のトラニオン(16)と、前記一対のトラニオン(16)に支持されて前記入力ディスク(13)および前記出力ディスク(14)間に挟持されるパワーローラ(23)とを備えるハーフトロイダル型無段変速機であって、
前記トラニオン(16)は、トラニオン本体(17)と、前記トラニオン本体(17)に対してトラニオン軸線(L1)方向に移動自在に支持された中間部材(19)と、前記中間部材(19)に前記パワーローラ(23)を回転自在かつ揺動自在に支持するパワーローラ支持部材(20)と、前記トラニオン本体(17)および前記中間部材(19)間に配置されたカム機構(18)とを備え、
前記カム機構(18)は、前記トラニオン本体(17)に形成された第1カム面(C1)と、前記中間部材(19)に形成された第2カム面(C2)と、前記第1カム面(C1)および前記第2カム面(C2)に当接する転動体(34)とからなり、前記第1、第2カム面(C1,C2)は相互に平行であってトラニオン軸線(L1)に対して傾斜することを特徴とするハーフトロイダル型無段変速機。
An input shaft (12) connected to a drive source, an input disk (13) supported so as not to rotate relative to the input shaft (12), and an output disk supported so as to be rotatable relative to the input shaft (12) (14), a pair of trunnions (16) disposed so as to sandwich the input shaft (12), and the input disk (13) and the output disk (14) supported by the pair of trunnions (16) A half-toroidal continuously variable transmission comprising a power roller (23) sandwiched therebetween,
The trunnion (16) includes a trunnion body (17), an intermediate member (19) supported to be movable in the direction of the trunnion axis (L1) with respect to the trunnion body (17), and the intermediate member (19). A power roller support member (20) that rotatably and swingably supports the power roller (23), and a cam mechanism (18) disposed between the trunnion body (17) and the intermediate member (19). Prepared,
The cam mechanism (18) includes a first cam surface (C1) formed on the trunnion body (17), a second cam surface (C2) formed on the intermediate member (19), and the first cam A rolling element (34) contacting the surface (C1) and the second cam surface (C2), and the first and second cam surfaces (C1, C2) are parallel to each other and have a trunnion axis (L1) A half-toroidal continuously variable transmission that is inclined with respect to
前記パワーローラ(23)が前記入力ディスク(13)あるいは前記出力ディスク(14)に接触する接触点(P3,P4)とトラニオン軸線(L1)とを結ぶ方向がパワーローラ軸線(L2)に対して成す角度をθとし、前記第1、第2カム面(C1,C2)がトラニオン軸線(L1)に対してなす角度をαとし、前記接触点(P3,P4)のトラクション係数をMとしたとき、tanα=M÷cosθが成立することを特徴とする、請求項1に記載のハーフトロイダル型無段変速機。   The direction connecting the contact points (P3, P4) where the power roller (23) contacts the input disk (13) or the output disk (14) and the trunnion axis (L1) is relative to the power roller axis (L2). When the angle formed is θ, the angle formed by the first and second cam surfaces (C1, C2) with respect to the trunnion axis (L1) is α, and the traction coefficient of the contact points (P3, P4) is M. The half-toroidal continuously variable transmission according to claim 1, wherein tan α = M ÷ cos θ is established. 前記パワーローラ(23)が前記入力ディスク(13)あるいは前記出力ディスク(14)に接触する接触点(P3,P4)とトラニオン軸線(L1)とを結ぶ方向がパワーローラ軸線(L2)に対して成す角度をθとし、前記第1、第2カム面(C1,C2)がトラニオン軸線(L1)に対してなす角度をαとし、前記接触点(P3,P4)のトラクション係数をMとし、前記接触点(P3,P4)における伝達力に対する所定の安全率をSf(Sf>1)としたとき、tanα=M÷cosθ÷Sfが成立することを特徴とする、請求項1に記載のハーフトロイダル型無段変速機。   The direction connecting the contact points (P3, P4) where the power roller (23) contacts the input disk (13) or the output disk (14) and the trunnion axis (L1) is relative to the power roller axis (L2). The angle formed by θ, the angle formed by the first and second cam surfaces (C1, C2) with respect to the trunnion axis (L1) is α, the traction coefficient of the contact points (P3, P4) is M, The half toroidal according to claim 1, wherein tan α = M ÷ cos θ ÷ Sf is established when a predetermined safety factor for the transmission force at the contact points (P3, P4) is Sf (Sf> 1). Type continuously variable transmission. 前記カム機構(18)は、トラニオン軸線(L1)方向に複数個配置されるとともに、トラニオン軸線(L1)を挟む方向に複数個配置されることを特徴とする、請求項1〜請求項3の何れか1項に記載のハーフトロイダル型無段変速機。   A plurality of cam mechanisms (18) are arranged in the direction of the trunnion axis (L1), and a plurality of cam mechanisms (18) are arranged in a direction sandwiching the trunnion axis (L1). The half toroidal continuously variable transmission according to any one of the preceding claims.
JP2014087864A 2014-04-22 2014-04-22 Half toroidal continuously variable transmission Expired - Fee Related JP6090634B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014087864A JP6090634B2 (en) 2014-04-22 2014-04-22 Half toroidal continuously variable transmission
CN201510099265.6A CN105041997B (en) 2014-04-22 2015-03-06 Semi-ring surface formula buncher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087864A JP6090634B2 (en) 2014-04-22 2014-04-22 Half toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2015206425A true JP2015206425A (en) 2015-11-19
JP6090634B2 JP6090634B2 (en) 2017-03-08

Family

ID=54448817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087864A Expired - Fee Related JP6090634B2 (en) 2014-04-22 2014-04-22 Half toroidal continuously variable transmission

Country Status (2)

Country Link
JP (1) JP6090634B2 (en)
CN (1) CN105041997B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118358A (en) * 1981-12-31 1983-07-14 エクセラマテイツク インコーポレーテツド Traction roller stepless transmission
JPS5965654A (en) * 1982-09-07 1984-04-13 エクセラマテイック・インコーポレーテッド Toroidal shape non-stage transmission
JPH01255758A (en) * 1988-04-06 1989-10-12 Nippon Seiko Kk Rolling friction type power transmitter
JP2002243010A (en) * 2001-02-20 2002-08-28 Nissan Motor Co Ltd Toroidal continuously variable transmission
JP2003042254A (en) * 2001-07-30 2003-02-13 Nsk Ltd Toroidal continuously variable transmission and continuously variable transmission system
US20130244827A1 (en) * 2012-03-15 2013-09-19 Shin Katsumata Toroidal traction drive

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506225B2 (en) * 1999-12-17 2004-03-15 日産自動車株式会社 Toroidal type continuously variable transmission
JP2007240004A (en) * 2007-05-07 2007-09-20 Nsk Ltd Power roller unit for toroidal continuously variable transmission
JP5742297B2 (en) * 2011-02-28 2015-07-01 日本精工株式会社 Toroidal continuously variable transmission
JP5803146B2 (en) * 2011-02-25 2015-11-04 日本精工株式会社 Toroidal continuously variable transmission
JP2013204604A (en) * 2012-03-27 2013-10-07 Honda Motor Co Ltd Toroidal continuously variable transmission mechanism
CN103912644B (en) * 2014-04-01 2016-03-16 四川大学 Single-deck semi-ring surface type stepless speed variator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118358A (en) * 1981-12-31 1983-07-14 エクセラマテイツク インコーポレーテツド Traction roller stepless transmission
JPS5965654A (en) * 1982-09-07 1984-04-13 エクセラマテイック・インコーポレーテッド Toroidal shape non-stage transmission
JPH01255758A (en) * 1988-04-06 1989-10-12 Nippon Seiko Kk Rolling friction type power transmitter
JP2002243010A (en) * 2001-02-20 2002-08-28 Nissan Motor Co Ltd Toroidal continuously variable transmission
JP2003042254A (en) * 2001-07-30 2003-02-13 Nsk Ltd Toroidal continuously variable transmission and continuously variable transmission system
US20130244827A1 (en) * 2012-03-15 2013-09-19 Shin Katsumata Toroidal traction drive

Also Published As

Publication number Publication date
CN105041997A (en) 2015-11-11
JP6090634B2 (en) 2017-03-08
CN105041997B (en) 2017-08-01

Similar Documents

Publication Publication Date Title
US2586725A (en) Variable-speed transmission
US8382636B2 (en) Continuously variable transmission
JP2019516922A (en) System and method for axial force generation
US2123008A (en) Power transmission mechanism
US4078442A (en) Variable speed drive
JP6090634B2 (en) Half toroidal continuously variable transmission
US20100167868A1 (en) Friction type continuously variable transmission
US4463620A (en) Infinitely variable traction roller transmission
JP5029758B2 (en) Friction transmission transmission and method for controlling pressing force of friction transmission transmission
US3516305A (en) Torque converter
US2123007A (en) Tractive pressure means for frictional power transmission mechanisms
JP5304688B2 (en) Power transmission device
JP5120666B2 (en) Toroidal continuously variable transmission
JP2000130528A (en) Compression device for transmission wheel pressurizing device
JPS62127555A (en) Pre-load mechanism for rolling friction transmission
JP2014214838A (en) Continuously variable transmission
JP4978557B2 (en) Friction wheel type continuously variable transmission
JP6766382B2 (en) Toroidal continuously variable transmission
JP2005172065A (en) Traction driven continuously variable transmission
JP3738664B2 (en) Toroidal continuously variable transmission
JP2005273916A (en) Traction drive type continuously variable transmission
JP2005226841A (en) Traction drive continuously variable transmission
JP4192398B2 (en) Toroidal continuously variable transmission
JP6048394B2 (en) Toroidal continuously variable transmission
JP4519707B2 (en) Traction drive continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170125

R150 Certificate of patent or registration of utility model

Ref document number: 6090634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees