JP2015205280A - Two-electrode horizontal fillet gas shield arc-welding method - Google Patents

Two-electrode horizontal fillet gas shield arc-welding method Download PDF

Info

Publication number
JP2015205280A
JP2015205280A JP2014085277A JP2014085277A JP2015205280A JP 2015205280 A JP2015205280 A JP 2015205280A JP 2014085277 A JP2014085277 A JP 2014085277A JP 2014085277 A JP2014085277 A JP 2014085277A JP 2015205280 A JP2015205280 A JP 2015205280A
Authority
JP
Japan
Prior art keywords
electrode
welding
wire
trailing
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014085277A
Other languages
Japanese (ja)
Other versions
JP6188626B2 (en
Inventor
正明 鳥谷部
Masaaki Toriyabe
正明 鳥谷部
力也 高山
Rikiya Takayama
力也 高山
州司郎 長島
Shujiro Nagashima
州司郎 長島
竜太朗 千葉
Ryutaro Chiba
竜太朗 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2014085277A priority Critical patent/JP6188626B2/en
Publication of JP2015205280A publication Critical patent/JP2015205280A/en
Application granted granted Critical
Publication of JP6188626B2 publication Critical patent/JP6188626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a two-electrode horizontal fillet gas shield arc-welding method that stabilizes an arc state with little sputter by the horizontal fillet gas shield arc-welding for a plank, improves slag encapsulating performance, slag removability, and bead shape, efficiently yields a long-leg fillet welded part with each uniform leg length free of welding defects, and is excellent in porosity resistance even in welding a primer-coated steel plate.SOLUTION: A welding solid wire is used for a preceding electrode, and a welding flux-cored wire is used for a following electrode to set an interelectrode distance between the preceding electrode and the following electrode to 50 mm or more, a torch angle of the preceding electrode and that of the following electrode to 40-60°,a wire aiming position of the preceding electrode to 5-10 mm on the lower plate side from the route part, a wire aiming position of the following electrode to 3-7 mm on the upper plate side from the route part, and a wire diameter of the preceding electrode and that of the following electrode to 1.2-2.0 mm.

Description

本発明は造船、鉄骨、橋梁などの鋼構造物の製作において、特に厚板部材の水平すみ肉ガスシールドアーク溶接を行うにあたり、ビード形状が良好で溶接部に欠陥のない大脚長のすみ肉ビードが得られ、かつ、プライマ塗装鋼板を用いた水平すみ肉ガスシールドアーク溶接において耐気孔性を向上させる上で好適な2電極水平すみ肉ガスシールドアーク溶接方法に関する。   In the production of steel structures such as shipbuilding, steel frames, bridges, etc., the present invention has a large leg length fillet bead having a good bead shape and no defects in the welded portion, particularly when performing horizontal fillet gas shielded arc welding of thick plate members. In addition, the present invention relates to a two-electrode horizontal fillet gas shielded arc welding method suitable for improving pore resistance in horizontal fillet gas shielded arc welding using a primer-coated steel sheet.

近年、各種溶接構造物の製作において、ガスシールドアーク溶接方法が溶接能率向上を図ることができることから、その適用が増大している。特に、造船、鉄骨、橋梁等の構造物ではすみ肉溶接の割合が多く、板厚30mm以上の厚板での水平すみ肉溶接の場合、すみ肉溶接部の脚長は8mm以上が必要とされるため、高能率化の目的から、溶接用フラックス入りワイヤを用いる2電極水平すみ肉ガスシールドアーク溶接方法が適用されている。例えば、特許文献1や特許文献2には、2電極で行う水平すみ肉ガスシールドアーク溶接方法が開示されている。   In recent years, in the production of various welded structures, the gas shielded arc welding method can improve the welding efficiency, so that its application is increasing. Especially in structures such as shipbuilding, steel frames and bridges, the ratio of fillet welding is large, and in the case of horizontal fillet welding with a plate thickness of 30 mm or more, the leg length of the fillet weld is required to be 8 mm or more. Therefore, a two-electrode horizontal fillet gas shielded arc welding method using a flux-cored wire for welding has been applied for the purpose of improving efficiency. For example, Patent Document 1 and Patent Document 2 disclose a horizontal fillet gas shield arc welding method using two electrodes.

しかし、これらの溶接方法は、長尺部材で脚長4〜6mmの場合における高速化を目的としたもので、各電極で生じる溶融プールを合体させる2電極1プール方式で溶接ビードを形成しているため、すみ肉溶接部の脚長が8mm以上の大脚長が要求される30mm以上の板厚の場合、品質要求を十分に満足することは難しい。   However, these welding methods are intended to increase the speed in the case of a long member with a leg length of 4 to 6 mm, and the weld bead is formed by a two-electrode one-pool method in which the molten pool generated at each electrode is combined. Therefore, in the case of a plate thickness of 30 mm or more where a leg length of the fillet welded portion is required to be a large leg length of 8 mm or more, it is difficult to sufficiently satisfy the quality requirement.

一方、溶接用フラックス入りワイヤの成分組成によって大脚長のすみ肉溶接部を得る技術として、特許文献3や特許文献4には、いずれも1電極溶接で脚長10mmの大脚長を1パス溶接で得られる溶接用フラックス入りワイヤが提案されている。しかし、これらの溶接用フラックス入りワイヤを用いて水平すみ肉溶接を行ったとしても、脚長が10mmを超えると、ルート部の溶け込み不足、ルート部近くのスラグ巻き込み及び上板側のアンダーカットが発生しやすくなる。   On the other hand, as a technique for obtaining a fillet weld portion having a large leg length by the composition of the flux-cored wire for welding, Patent Document 3 and Patent Document 4 both obtain a large leg length of 10 mm by one-pass welding by one-electrode welding. Flux-cored wires for welding have been proposed. However, even if horizontal fillet welding is performed using these flux-cored wires for welding, if the leg length exceeds 10 mm, the root portion will not be sufficiently melted, slag will be caught near the root portion, and the upper plate will be undercut. It becomes easy to do.

また近年、耐錆性の目的から、鋼板表面にプライマが塗装されている鋼板が多く使用されているが、このようなプライマ塗装鋼板を溶接した場合、立板及び下板に塗装したプライマや鋼板表面の赤錆及び付着する水分が溶接時に蒸気化して蒸気ガスが発生するためにピットが発生し、この手直し溶接に時間を要するため、生産コストが高くなるという問題がある。   In recent years, for the purpose of rust resistance, many steel plates with a primer coated on the surface of the steel plate are used, but when such a primer coated steel plate is welded, the primer and the steel plate coated on the vertical plate and the lower plate are used. Since red rust on the surface and adhering moisture are vaporized during welding and steam gas is generated, pits are generated, and this rework welding takes time, and thus there is a problem that production costs increase.

これら問題を解決する方法として、特許文献5には、2電極1プール方式での水平すみ肉ガスシールドアーク溶接で、先行電極及び後行電極に用いる溶接用フラックス入りワイヤの構成成分を限定することにより、プライマ塗装鋼板を用いた場合の耐気孔性を改善する方法が開示されている。しかし、特許文献5に開示された溶接方法は、2電極1プール方式での水平すみ肉溶接に関するものであるため、耐気孔性を改善することができたとしても、脚長8mm以上の大脚長での水平すみ肉ガスシールドアーク溶接では、すみ肉溶接部にアンダーカットやオーバーラップが発生しやすくなるという問題があった。   As a method for solving these problems, Patent Document 5 limits the components of the flux-cored wire for welding used for the leading electrode and the trailing electrode in horizontal fillet gas shielded arc welding in the two-electrode one-pool method. Discloses a method for improving the porosity resistance when a primer-coated steel sheet is used. However, since the welding method disclosed in Patent Document 5 relates to horizontal fillet welding in the two-electrode one-pool method, even if the pore resistance can be improved, the leg length is 8 mm or more. In the horizontal fillet gas shielded arc welding, there is a problem that an undercut or an overlap is likely to occur in the fillet welded portion.

特開平2−280968号公報JP-A-2-280968 特開平6−234075号公報JP-A-6-234075 特開平4−300091号公報JP-A-4-300091 特開平7−328795号公報Japanese Patent Application Laid-Open No. 7-328795 特開2009−190042号公報JP 2009-190042 A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、厚板の2電極水平すみ肉ガスシールドアーク溶接において、アーク状態が良好で、スパッタ発生量が少なく、スラグ被包性及びスラグ剥離性が良好で、ビード形状が良好で、スラグ巻き込みや溶込み不足等の溶接欠陥がない各脚長が均等な大脚長のすみ肉溶接部が高能率に得られ、かつ、プライマ塗装鋼板を用いた水平すみ肉ガスシールドアーク溶接でも耐気孔性にも優れる2電極水平すみ肉ガスシールドアーク溶接方法を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and in a two-electrode horizontal fillet gas shielded arc welding of a thick plate, the arc state is good, the amount of spatter generation is small, and the slag encapsulation is achieved. Also, a fillet welded part with a large leg length is obtained with high efficiency, with a good bead shape, no bead defects such as slag entrainment and lack of penetration, etc. It is an object of the present invention to provide a two-electrode horizontal fillet gas shielded arc welding method which is excellent in both horizontal fillet gas shielded arc welding using metal and is resistant to porosity.

本発明の要旨は、2電極水平すみ肉ガスシールドアーク溶接方法において、先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用い、先行電極と後行電極との電極間距離を50mm以上、先行電極及び後行電極との下板に対するトーチ角度を40〜60°、先行電極のワイヤの狙い位置をルート部から下板側に5〜10mm、後行電極のワイヤ狙い位置をルート部から上板側に3〜7mm、先行電極と後行電極のワイヤ径を1.2〜2.0mmで溶接することを特徴とする。   The gist of the present invention is that in a two-electrode horizontal fillet gas shielded arc welding method, a solid wire for welding is used for the leading electrode, a flux-cored wire for welding is used for the trailing electrode, and the distance between the leading electrode and the trailing electrode is set. 50 mm or more, the torch angle of the leading electrode and the trailing electrode with respect to the lower plate is 40 to 60 °, the aiming position of the leading electrode wire is 5 to 10 mm from the root portion to the lower plate side, and the aiming position of the trailing electrode wire is the root 3 to 7 mm from the part to the upper plate side, and the wire diameters of the leading electrode and the trailing electrode are 1.2 to 2.0 mm.

また、前記溶接用フラックス入りワイヤは、ワイヤ全質量に対する質量%で、フラックスに、スラグ形成剤の合計を3.5〜8.5%含有し、残部は鉄粉、合金粉及び不可避不純物であることも特徴とする2電極水平すみ肉ガスシールドアーク溶接方法にある。   Moreover, the said flux-cored wire for welding is the mass% with respect to the total mass of a wire, contains 3.5-8.5% of the sum total of a slag formation agent in a flux, and the remainder is iron powder, alloy powder, and an unavoidable impurity. The two-electrode horizontal fillet gas shield arc welding method is also characterized.

本発明に係る2電極水平すみ肉ガスシールドアーク溶接方法によれば、厚板の水平すみ肉ガスシールドアーク溶接において、アーク状態が良好で、スパッタ発生量が少なく、スラグ被包性及びスラグ剥離性が良好で、ビード形状が良好で、すみ肉溶接部にスラグ巻き込みや溶込み不足などの溶接欠陥がない各脚長が均等な大脚長のすみ肉ビードが得られ、かつ、プライマ塗装鋼板を用いた場合でも耐気孔性にも優れ、溶接能率の向上及及び高品質の溶接部を提供することができる。   According to the two-electrode horizontal fillet gas shielded arc welding method of the present invention, in the horizontal fillet gas shielded arc welding of thick plates, the arc state is good, the amount of spatter is small, slag encapsulation and slag peelability , Good bead shape, uniform fillet bead with large leg length with uniform leg length without weld defects such as slag entrainment or lack of penetration in fillet welds, and using primer coated steel plate Even in this case, the pore resistance is excellent, and the welding efficiency can be improved and a high-quality weld can be provided.

本発明の2電極2プール方式での水平すみ肉ガスシールドアーク溶接方法における各電極の配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of each electrode in the horizontal fillet gas shield arc welding method by the 2 electrode 2 pool system of this invention. 本発明の2電極2プール方式での水平すみ肉ガスシールドアーク溶接方法で溶接したすみ肉溶接部の断面図である。It is sectional drawing of the fillet weld part welded by the horizontal fillet gas shield arc welding method by the 2 electrode 2 pool system of this invention.

本発明者らは、前記課題を解決するため、2電極2プール方式のすみ肉ガスシールドアーク溶接での溶接施工条件について検討した。   In order to solve the above-mentioned problems, the present inventors have studied welding conditions for fillet gas shielded arc welding using a two-electrode, two-pool method.

図1は、本発明における2電極2プール方式での水平すみ肉ガスシールドアーク溶接において、溶接進行方向に向けて先行して溶接する先行電極T、及び当該先行電極Tに後行して溶接する後行電極Lの配置を示す模式図で、(a)はその断面図、(b)は側面図、(c)は斜視図である。また、図2は、本発明の2電極2プール方式での水平すみ肉ガスシールドアーク溶接方法により得られたすみ肉溶接部の断面形状を示す。図1(a)及び(b)に示すように、2電極2プール方式の水平すみ肉ガスシールドアーク溶接は、下板1と上板2をT字型又はL字型に組んだ部材における隅部に相当するルート部3に対して、先行電極L及び後行電極Tで同時にガスシールドアーク溶接を行う。このとき、本発明におけるガスシールドアーク溶接方法では、図1(c)に示すように、先行電極Lの溶融プール4と後行電極Tの溶融プール5を別々に形成し、2プール状態で溶接を行う。なお、先行電極Lおよび後行電極Tの溶接トーチには、安定したアーク状態及びすみ肉溶接部の優れたビード形状を得る目的から、図1(a)に示すように、溶接進行方向と直交方向に傾斜(以下、トーチ角度θ1という。)を設けた状態で溶接を行う。このトーチ角度θ1における基準となる方向は、水平方向である。また、溶接進行方向と平行方向に対しては、図1(b)に示すように、先行電極Lには鉛直方向から後方への傾斜(以下、後退角θ2)を、後行電極Tには鉛直方向から前方への傾斜(以下、前進角θ3)を設けた状態で溶接を行う。なお、後退角θ2、前進角θ3における基準となる方向は鉛直方向である。 FIG. 1 shows a two-electrode two-pool horizontal fillet gas shielded arc welding according to the present invention, a preceding electrode T that is welded in advance in the welding direction, and a subsequent welding to the preceding electrode T. It is a schematic diagram which shows arrangement | positioning of the trailing electrode L, (a) is the sectional drawing, (b) is a side view, (c) is a perspective view. Moreover, FIG. 2 shows the cross-sectional shape of the fillet welded part obtained by the horizontal fillet gas shield arc welding method in the two-electrode two-pool system of the present invention. As shown in FIGS. 1 (a) and 1 (b), horizontal fillet gas shielded arc welding of the two-electrode two-pool method is performed at a corner of a member in which the lower plate 1 and the upper plate 2 are assembled in a T shape or L shape. Gas shield arc welding is simultaneously performed with the leading electrode L and the trailing electrode T on the root portion 3 corresponding to the portion. At this time, in the gas shielded arc welding method according to the present invention, as shown in FIG. 1 (c), the molten pool 4 of the leading electrode L and the molten pool 5 of the trailing electrode T are separately formed and welded in a two-pool state. I do. For the purpose of obtaining a stable arc state and an excellent bead shape of the fillet weld, the welding torch of the leading electrode L and the trailing electrode T is orthogonal to the welding progress direction as shown in FIG. Welding is performed with an inclination (hereinafter referred to as torch angle θ 1 ) provided in the direction. The reference direction in the torch angle θ 1 is the horizontal direction. Further, with respect to the direction parallel to the welding direction, as shown in FIG. 1 (b), the leading electrode L has an inclination from the vertical direction to the rear (hereinafter referred to as receding angle θ 2 ), and the trailing electrode T Is welded in a state where an inclination from the vertical direction to the front (hereinafter, advancing angle θ 3 ) is provided. The reference direction for the receding angle θ 2 and the advancing angle θ 3 is the vertical direction.

この溶接方法は、通常は両電極に溶接用フラックス入りワイヤが用いられるが、厚板の水平すみ肉ガスシールドアーク溶接では、すみ肉溶接部の脚長が8mm以上必要となるため、大電流域で2電極2プール方式で水平すみ肉ガスシールドアーク溶接した場合、先行電極Lに用いられている溶接用フラックス入りワイヤのアーク力は溶接用ソリッドワイヤに比べて弱く、内包するスラグも多いため、ルート部を完全に溶融させることが困難であり、溶け込み不良やスラグ巻き込みも発生し易くなる。また、図1(c)に示すように、先行電極Lの溶融プール4と後行電極の溶融プール5を別々に形成させる必要があるため、大電流域での2電極2プール方式でのガスシールドアーク溶接では、先行電極Lと後行電極Tの極間D、先行電極L及び後行電極Tのワイヤ狙い位置等の溶接施工条件の調整が難しく、すみ肉溶接部の脚長が不均等になったり、アンダーカットやオーバーラップが発生し、ビード形状が不良になることが多い。   In this welding method, a flux-cored wire for welding is usually used for both electrodes. However, in the case of horizontal fillet gas shielded arc welding of thick plates, the leg length of the fillet weld is required to be 8 mm or more. When horizontal fillet gas shielded arc welding is performed using the 2-electrode 2-pool method, the arc force of the welding flux-cored wire used for the leading electrode L is weaker than that of the solid wire for welding, and there are many slags to be included. It is difficult to completely melt the portion, and poor penetration and slag entrainment are likely to occur. Further, as shown in FIG. 1 (c), since it is necessary to separately form the molten pool 4 of the leading electrode L and the molten pool 5 of the trailing electrode, the gas in the two-electrode two-pool system in a large current region In shielded arc welding, it is difficult to adjust the welding conditions such as the distance D between the leading electrode L and the trailing electrode T, the wire aiming positions of the leading electrode L and the trailing electrode T, and the leg length of the fillet weld is uneven. Or undercuts or overlaps, and the bead shape is often poor.

本発明者らは、2電極2プール方式での水平すみ肉溶接において、図2(a)に示すように、先行電極Lで形成される先行電極ビード10と後行電極Tで成形される後行電極ビード11のバランスが良く、下板脚長S1と上板脚長S2が均等で、かつ、大脚長が得られるすみ肉溶接部を得るために種々検討した結果、先行電極Lに溶接用ソリッドワイヤ、後行電極Tに溶接用フラックス入りワイヤを用い、後行電極Tの溶接用フラックス入りワイヤのスラグ形成剤の合計量を規定することで、先行電極Lの溶接用ソリッドワイヤで大脚長のすみ肉溶接部を形成するのに必要な溶着量を確保し、かつ、後行電極Tの溶接用フラックス入りワイヤで後行電極Tの溶融プール表面を溶融スラグで均一に被包させ、脚長8mm以上の大脚長でも良好なスラグ剥離性及びスラグ被包性が得られることを見出した。   In the horizontal fillet welding by the two-electrode two-pool method, the present inventors have formed after the leading electrode bead 10 formed by the leading electrode L and the trailing electrode T as shown in FIG. As a result of various studies to obtain a fillet welded portion in which the row electrode beads 11 are well balanced, the lower plate leg length S1 is equal to the upper plate leg length S2, and a large leg length is obtained, a solid wire for welding is applied to the leading electrode L. By using a welding flux-cored wire for the trailing electrode T and defining the total amount of the slag forming agent of the welding flux-cored wire for the trailing electrode T, the solid wire for welding the leading electrode L has a large leg length. Ensuring the amount of welding necessary to form the meat weld, and uniformly encapsulating the molten pool surface of the trailing electrode T with molten slag with the flux-cored wire for welding the trailing electrode T, and the leg length of 8 mm or more Good even with large leg length It found that lugs peelability and slag encapsulated is obtained.

また、図1(a)及び図1(b)に示すように、先行電極L及び後行電極Tの溶接進行方向における極間Dを規定するとともに、ルート部3からの先行電極Lの下板側のワイヤ20の狙い位置(以下、ワイヤ狙い位置という。)の距離をA、ルート部3からの後行電極Tの上板1側のワイヤ30の狙い位置(以下、ワイヤ狙い位置という。)の距離をBとし、かつ、先行電極L及び後行電極Tのトーチ角度θ1を規定することで、アーク状態が安定し、オーバーラップ、アンダーカット、溶け込み不良及びスラグ巻き込みがなく、脚長8mm以上の大脚長で下板脚長S1及び上板脚長S2が均等なすみ肉溶接部が得られることを見出した。 Further, as shown in FIGS. 1A and 1B, the gap D in the welding progress direction of the leading electrode L and the trailing electrode T is defined, and the lower plate of the leading electrode L from the root portion 3 is defined. The distance of the target position of the wire 20 on the side (hereinafter referred to as the “wire target position”) is A, and the target position of the wire 30 on the upper plate 1 side of the trailing electrode T from the root portion 3 (hereinafter referred to as the “wire target position”). And the torch angle θ 1 of the leading electrode L and the trailing electrode T is defined, the arc state is stabilized, there is no overlap, undercut, poor penetration and slag entrainment, and the leg length is 8 mm or more. It was found that a fillet welded portion having a lower leg length S1 and an upper board leg length S2 with the same large leg length was obtained.

また、先行電極Lの溶接用ソリッドワイヤから発生するアーク力が強いので、先行電極Lの溶融プールが攪拌されて蒸気ガスが放出し、ピットの発生を抑制することができることも見出した。   It has also been found that since the arc force generated from the welding solid wire of the leading electrode L is strong, the molten pool of the leading electrode L is agitated to release the vapor gas, thereby suppressing the generation of pits.

以下に、本発明における2電極水平すみ肉ガスシールドアーク溶接方法の施工条件の限定理由を述べる。   The reasons for limiting the construction conditions of the two-electrode horizontal fillet gas shield arc welding method in the present invention will be described below.

[先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用いる]
2電極2プール方式での水平すみ肉ガスシールドアーク溶接で先行電極Lに溶接用ソリッドワイヤを用いると、先行電極L及び後行電極Tともに溶接用フラックス入りワイヤを用いた場合に比べて、先行電極Lの溶接用ソリッドワイヤからのアーク力が強いので、溶接時にルート部を十分に溶融させることができ、スラグ量も少ないので、すみ肉溶接部の溶け込み不良やスラグ巻き込みを抑制することができる。また、先行電極Lの溶接用ソリッドワイヤは、溶接用フラックス入りワイヤに比べて溶着量も多いので、8mm以上の大脚長のすみ肉溶接部を得るための溶着量を十分に確保でき、良好なビード形状を得ることができる。また、後行電極Tに溶接用フラックス入りワイヤを用いているので、後行電極Tの溶融プール5表面を溶融スラグで均一に被包でき、スラグ被包性およびスラグ剥離性も良好にすることができる。
[Use welding solid wire for leading electrode and welding flux-cored wire for trailing electrode]
When a solid wire for welding is used for the leading electrode L in horizontal fillet gas shielded arc welding in the two-electrode two-pool method, the leading electrode L and the trailing electrode T are both preceded by using a flux-cored wire for welding. Since the arc force from the welding solid wire of the electrode L is strong, the root portion can be sufficiently melted at the time of welding, and the amount of slag is also small, so that poor penetration of the fillet weld and slag entrainment can be suppressed. . Further, since the welding solid wire of the leading electrode L has a larger amount of welding than the flux-cored wire for welding, it is possible to secure a sufficient amount of welding for obtaining a fillet weld portion having a large leg length of 8 mm or more. A bead shape can be obtained. Further, since the flux-cored wire for welding is used for the trailing electrode T, the surface of the molten pool 5 of the trailing electrode T can be uniformly encapsulated with molten slag, and the slag encapsulation and slag peelability should be improved. Can do.

さらに、プライマ塗装鋼板を用いて2電極2プール方式で水平すみ肉ガスシールドアーク溶接した場合、先行電極Lの溶融プールが攪拌され、プライマ塗装鋼板から発生した蒸気ガスが外に放出されるので、ピットを低減することもできる。   Furthermore, when horizontal fillet gas shielded arc welding is performed using a primer-coated steel sheet in a two-electrode, two-pool system, the molten pool of the leading electrode L is agitated and the vapor gas generated from the primer-coated steel sheet is released to the outside. Pit can also be reduced.

一方、先行電極及L及び後行電極Tともに溶接用フラックス入りワイヤを用いた場合、先行電極Lのアーク力が溶接用ソリッドワイヤより弱いので、先行電極Lの溶融プールが十分に攪拌されず、ピットの発生を十分に抑えることができない。また、先行電極Lの溶着量を増加させた場合に、図2(b)に示すように、ルート部3におけるスラグ巻き込み7が発生しやすくなる。   On the other hand, when using the flux-cored wire for welding for both the leading electrode and L and the trailing electrode T, since the arc force of the leading electrode L is weaker than the solid wire for welding, the molten pool of the leading electrode L is not sufficiently stirred, The occurrence of pits cannot be suppressed sufficiently. Further, when the welding amount of the leading electrode L is increased, as shown in FIG. 2B, slag entrainment 7 in the root portion 3 is likely to occur.

先行電極L及び後行電極Tともに溶接用ソリッドワイヤを用いた場合、後行電極Tのアーク力も強いので、すみ肉溶接部のビード表面が凸状になり、ビード形状が不良になる。さらに、両電極から供給されるスラグ形成剤が極めて少ないので、溶融スラグが後行電極Tの溶融プールを全面被包できず、溶接ビードの垂れを支えきれなくなり、すみ肉溶接部の脚長が不均等となるとともに、スラグ被包性及びスラグ剥離性も不良となる。   When the welding solid wire is used for both the leading electrode L and the trailing electrode T, the arc force of the trailing electrode T is also strong, so that the bead surface of the fillet weld becomes convex and the bead shape becomes poor. Further, since the slag forming agent supplied from both electrodes is extremely small, the molten slag cannot encapsulate the entire molten pool of the trailing electrode T, and cannot support the drooping of the weld bead. In addition to being uniform, the slag encapsulation and slag peelability are also poor.

また、先行電極Lに溶接用フラックス入りワイヤ、後行電極Tに溶接用ソリッドワイヤを用いた場合、ビード形状を整える働きをする後行電極Tに溶接用ソリッドワイヤを用いているので、後行電極Tからのアークが強く、すみ肉溶接部のビード表面が凸状となり、ビード形状が不良となる。また、溶融スラグが後行電極Tの溶融プール5全面に均一に被包できないので、すみ肉溶接部の脚長も不均等となり、スラグ被包性及びスラグ剥離性が不良となる。   In addition, when a flux-cored wire for welding is used for the leading electrode L and a solid wire for welding is used for the trailing electrode T, the solid electrode for welding is used for the trailing electrode T that functions to adjust the bead shape. The arc from the electrode T is strong, the bead surface of the fillet weld is convex, and the bead shape is poor. Further, since the molten slag cannot be encapsulated uniformly over the entire molten pool 5 of the trailing electrode T, the leg length of the fillet welded portion is also uneven, and the slag encapsulation and slag peelability are poor.

したがって、先行電極Lには溶接用ソリッドワイヤ、後行電極Tには溶接用フラックス入りワイヤを用いるものとする。   Therefore, a solid wire for welding is used for the leading electrode L, and a flux-cored wire for welding is used for the trailing electrode T.

[先行電極と後行電極との電極間距離:50mm以上]
図1(a)に示す2電極2プール方式での水平すみ肉ガスシールドアーク溶接で大脚長のすみ肉溶接部を得るためには、図1(b)及び図1(c)に示す先行電極Lと後行電極Tとの電極間距離Dを適正にする必要がある。先行電極Lと後行電極Tの電極間距離Dが50mm未満であると、先行電極Lの溶融プール4が未凝固の状態で後行電極Tの溶融プール5が生成し、これらの溶融プールが重なっていびつな1プール状態となり、すみ肉溶接部の下板1側止端部にオーバーラップ、上板2側止端部にアンダーカットが生じ、ビード形状が不良になる。したがって、先行電極Lと後行電極Tとの電極間距離Dは50mm以上とする。なお、先行電極Lと後行電極Tとの電極間距離Dの上限は特に限定しないが、溶接作業の容易さ及び溶接装置の大きさから200mm以下であることが好ましい。
[Distance between leading electrode and trailing electrode: 50 mm or more]
In order to obtain a fillet weld with a large leg length by horizontal fillet gas shielded arc welding in the two-electrode two-pool system shown in FIG. 1 (a), the leading electrode shown in FIG. 1 (b) and FIG. 1 (c) It is necessary to make the inter-electrode distance D between L and the trailing electrode T appropriate. When the inter-electrode distance D between the leading electrode L and the trailing electrode T is less than 50 mm, the molten pool 5 of the trailing electrode T is generated in a state where the molten pool 4 of the leading electrode L is not solidified, and these molten pools are It overlaps and becomes a one pool state, an overlap occurs at the bottom plate 1 side toe portion of the fillet welded portion, and an undercut occurs at the top plate 2 side toe portion, resulting in a poor bead shape. Therefore, the interelectrode distance D between the leading electrode L and the trailing electrode T is set to 50 mm or more. The upper limit of the inter-electrode distance D between the leading electrode L and the trailing electrode T is not particularly limited, but is preferably 200 mm or less from the viewpoint of ease of welding work and the size of the welding apparatus.

[先行電極及び後行電極の下板に対するトーチ角度:40〜60°]
図1(a)に示す2電極2プール方式での水平すみ肉ガスシールドアーク溶接で、先行電極L及び後行電極Tの下板1に対するトーチ角度θ1が40°未満であると、アークが下板1に近づきすぎてアーク状態が不安定になり、スパッタが多発する。さらに、図2(c)に示すように、すみ肉溶接部の下板1側止端部にアンダーカット8が生じてビード形状が不良になるとともに、下板脚長S1が小さくなって脚長が不均等になる。一方、先行電極L及び後行電極Tの下板1に対するトーチ角度θ1が60°を超えると、逆にアークが上板2に近づきすぎてアーク状態が不安定になり、スパッタが多発する。さらに、すみ肉溶接部の下板1側止端部にはオーバーラップ、上板2側止端部にアンダーカットが生じてビード形状が不良になるとともに、上板脚長S2も小さくなって脚長が不均等になる。したがって、先行電極L及び後行電極Tの下板1に対するトーチ角度θ1は40°〜60°とする。
[Torch angle with respect to lower plate of leading electrode and trailing electrode: 40-60 °]
In the horizontal fillet gas shielded arc welding in the two-electrode two-pool system shown in FIG. 1A, if the torch angle θ 1 with respect to the lower plate 1 of the leading electrode L and the trailing electrode T is less than 40 °, the arc Too close to the lower plate 1 makes the arc state unstable, resulting in frequent spattering. Further, as shown in FIG. 2 (c), an undercut 8 is generated at the bottom plate 1 side toe of the fillet welded portion, resulting in a poor bead shape, and the lower plate leg length S1 is reduced to reduce the leg length. Become even. On the other hand, when the torch angle θ 1 with respect to the lower plate 1 of the leading electrode L and the trailing electrode T exceeds 60 °, the arc becomes too close to the upper plate 2 and the arc state becomes unstable, resulting in frequent spattering. Furthermore, an overlap occurs at the bottom plate 1 side toe of the fillet weld and an undercut occurs at the top plate 2 side toe, resulting in a poor bead shape. The top plate leg length S2 is also reduced and the leg length is reduced. Become unequal. Therefore, the torch angle θ 1 with respect to the lower plate 1 of the leading electrode L and the trailing electrode T is 40 ° to 60 °.

[先行電極の狙い位置をルート部から下板側に5〜10mm]
先行電極Lの下板1側へのワイヤ狙い位置とは、先行電極Lにおけるワイヤ20の略延長線上と下板1との交点である。図1(a)に示す先行電極Lの下板1側へのワイヤ狙い位置とルート部3との距離Aが5mm未満であると、図2(d)に示すように、先行電極Lによって形成された先行電極ビード10が後行電極ビード11により完全に溶融されて覆われるため、下板脚長S1が小さくなるとともに、すみ肉溶接部の下板1側止端部のなじみが悪くなってオーバーラップ9が生じ、ビード形状が不良になる。一方、先行電極Lの下板1側へのワイヤ狙い位置とルート部3との距離Aが10mmを超えると、図2(e)に示すように、先行電極ビード10と後行電極ビード11との重ねしろが少なく、ビード形状が不良になるとともに、上板脚長S2が小さくなり、8mm以上の脚長が得られなくなる。また、先行電極Lのワイヤ狙い位置がルート部3から離れすぎているので、後行電極Lのアークがルート部3を完全に溶融することができず、ルート部3に溶け込み不良6が生じる。したがって、先行電極Lの狙い位置はルート部3から下板1側に5〜10mmとする。
[Target position of the leading electrode is 5-10mm from the root to the lower plate]
The target position of the wire toward the lower plate 1 side of the preceding electrode L is an intersection of the lower plate 1 and a substantially extended line of the wire 20 in the preceding electrode L. When the distance A between the wire aiming position on the lower plate 1 side of the preceding electrode L shown in FIG. 1A and the root portion 3 is less than 5 mm, the leading electrode L is formed as shown in FIG. Since the leading electrode bead 10 thus formed is completely melted and covered by the trailing electrode bead 11, the lower plate leg length S1 is reduced, and the familiarity of the bottom plate 1 side toe portion of the fillet welded portion is deteriorated. A wrap 9 is generated, and the bead shape becomes poor. On the other hand, when the distance A between the wire aiming position on the lower plate 1 side of the leading electrode L and the root portion 3 exceeds 10 mm, as shown in FIG. 2 (e), the leading electrode bead 10 and the trailing electrode bead 11 The bead shape is poor, the upper plate leg length S2 is reduced, and a leg length of 8 mm or more cannot be obtained. Further, since the wire aiming position of the leading electrode L is too far from the root portion 3, the arc of the trailing electrode L cannot completely melt the root portion 3, and a penetration defect 6 occurs in the root portion 3. Therefore, the target position of the leading electrode L is set to 5 to 10 mm from the root portion 3 to the lower plate 1 side.

[後行電極の狙い位置をルート部から上板側に3〜7mm]
後行電極Tの上板2側へのワイヤ狙い位置とは、後行電極Tにおけるワイヤ30の略延長線上と下板1との交点である。図1(a)に示す後行電極Tの上板2側へのワイヤ狙い位置とルート部3との距離Bが3mm未満であると、上板脚長S2が小さくなる。また図2(d)に示すように、すみ肉溶接部の下板1側止端部にオーバーラップ9が生じ、ビード形状が不良になる。一方、後行電極Tの上板2側のワイヤ狙い位置とルート部3との距離Bが7mmを超えると、図2(f)に示すように、すみ肉溶接部の上板2側止端部にアンダーカット8が生じ、ビード形状が不良になる。また、先行電極ビード10と後行電極ビード11との重ねしろが少なく、ビード形状が不良になる。したがって、後行電極Tの狙い位置はルート部3から上板2側に3〜7mmとする。
[The target position of the trailing electrode is 3 to 7 mm from the root part to the upper plate side]
The target position of the wire toward the upper plate 2 side of the trailing electrode T is an intersection of the lower plate 1 and the substantially extended line of the wire 30 in the trailing electrode T. If the distance B between the wire aiming position of the succeeding electrode T shown in FIG. 1A toward the upper plate 2 side and the root portion 3 is less than 3 mm, the upper plate leg length S2 is reduced. Moreover, as shown in FIG.2 (d), the overlap 9 arises in the lower plate 1 side toe part of a fillet weld part, and a bead shape becomes bad. On the other hand, when the distance B between the wire aiming position on the upper plate 2 side of the trailing electrode T and the root portion 3 exceeds 7 mm, as shown in FIG. Undercut 8 occurs in the part, and the bead shape becomes poor. Further, there is little overlap between the leading electrode bead 10 and the trailing electrode bead 11, and the bead shape becomes poor. Therefore, the target position of the trailing electrode T is set to 3 to 7 mm from the root portion 3 to the upper plate 2 side.

[先行電極及び後行電極のワイヤ径:1.2〜2.0mm]
先行電極L及び後行電極Tのワイヤ20、30のワイヤ径は、すみ肉溶接部の8mm以上の大脚長及び溶接速度に適応したワイヤ径を選定する必要がある。先行電極L及び後行電極Tの各ワイヤ20、30のワイヤ径が1.2mm未満であると、脚長8mm以上の大脚長のすみ肉溶接部を確保するためにはワイヤ送給速度を上限近くまで上げなければならず、アーク状態が不安定になり、スパッタが多発し、ビード形状も不良となる。一方、先行電極L及び後行電極Tのワイヤ径が2.0mmを超えると、通常のワイヤ送給装置ではワイヤが送給できず、専用のワイヤ送給装置を設置しなければならないので、設備コストが高くなる。したがって、先行電極及び後行電極のワイヤ径は1.2〜2.0mmとしている。
[Wire diameter of leading electrode and trailing electrode: 1.2 to 2.0 mm]
As for the wire diameters of the wires 20 and 30 of the leading electrode L and the trailing electrode T, it is necessary to select a wire diameter suitable for a large leg length of 8 mm or more of the fillet weld and a welding speed. If the wire diameters of the wires 20 and 30 of the leading electrode L and the trailing electrode T are less than 1.2 mm, the wire feeding speed is close to the upper limit in order to secure a fillet weld with a large leg length of 8 mm or more. The arc state becomes unstable, spattering occurs frequently, and the bead shape becomes poor. On the other hand, if the wire diameters of the leading electrode L and the trailing electrode T exceed 2.0 mm, the wire cannot be fed with a normal wire feeding device, and a dedicated wire feeding device must be installed. Cost increases. Therefore, the wire diameter of the leading electrode and the trailing electrode is set to 1.2 to 2.0 mm.

[スラグ形成剤の合計:3.5〜8.5%]
前述の施工条件で2電極2プール方式での水平すみ肉ガスシールドアーク溶接を行うことで、アーク状態が安定し、スパッタ及びピットの発生が少なく、スラグ被包性、スラグ剥離性が良好で、アンダーカットやオーバーラップのない均等な大脚長の溶接ビードが得ることができ、溶接の高能率化を達成することができる。一方、厚板での水平すみ肉ガスシールドアーク溶接の場合、更にビード形状、スラグ被包性及びスラグ剥離性を良好にさせるため、後行電極Tに用いる溶接用フラックス入りワイヤのスラグ形成剤量を限定する必要がある。
[Total slag forming agent: 3.5 to 8.5%]
By performing horizontal fillet gas shielded arc welding with the 2-electrode 2-pool method under the above-mentioned construction conditions, the arc state is stable, spatter and pits are less likely to occur, slag encapsulation and slag peelability are good, It is possible to obtain a welded bead having a uniform large leg length without undercuts or overlaps, thereby achieving high welding efficiency. On the other hand, in the case of horizontal fillet gas shielded arc welding with thick plates, the amount of slag forming agent for welding flux-cored wire used for the trailing electrode T in order to further improve the bead shape, slag encapsulation and slag peelability Need to be limited.

後行電極Tに用いる溶接用フラックス入りワイヤのスラグ形成剤は、2電極2プール方式での水平すみ肉ガスシールドアーク溶接ですみ肉溶接部を形成する際、溶融スラグとなって後行電極Tの溶融プール全面を被包してすみ肉溶接部のビード形状を整えるとともに、溶融された金属が下板側に流れるのを防止し、脚長8mm以上の大脚長でもすみ肉溶接部の脚長を均等にする作用がある。ワイヤ全質量に対して、スラグ形成剤の合計が3.5質量%未満であると、スラグ生成量が不足して後行電極Tの溶融プール全面を均一に被包できないので、ビード形状が不良になるとともに、溶融スラグがビード表面に焼き付き、スラグ剥離性も不良となる。一方、スラグ形成剤の合計が8.5質量%を超えると、スラグ過多となってスラグ被包状態にムラが発生し、ビード形状が不良になる。したがって、スラグ形成剤の合計は、ワイヤ全質量に対して3.5〜8.5質量%とする。   The slag forming agent of the flux-cored wire for welding used for the trailing electrode T becomes a molten slag when forming a fillet welded part by horizontal fillet gas shield arc welding in the two-electrode two-pool method, and the trailing electrode T The entire weld pool is encapsulated and the bead shape of the fillet weld is adjusted, and the melted metal is prevented from flowing to the lower plate. The leg length of the fillet weld is even with a large leg length of 8 mm or more. Has the effect of If the total amount of the slag forming agent is less than 3.5% by mass with respect to the total mass of the wire, the slag generation amount is insufficient and the entire molten pool of the trailing electrode T cannot be encapsulated uniformly, so the bead shape is poor. At the same time, the molten slag is baked on the bead surface, and the slag peelability is poor. On the other hand, if the total amount of the slag forming agent exceeds 8.5% by mass, the slag is encapsulated and unevenness occurs in the slag encapsulated state, resulting in a poor bead shape. Therefore, the total amount of the slag forming agent is set to 3.5 to 8.5% by mass with respect to the total mass of the wire.

なお、スラグ形成剤は、TiO2、SiO2、ZrO2、Na2O、K2O、Al23、FeO、Fe23、MgOなどの酸化物及びCaF2、K2SiF6、Na3AlF6などの弗化物などの合計をいう。 The slag forming agent includes TiO 2 , SiO 2 , ZrO 2 , Na 2 O, K 2 O, Al 2 O 3 , FeO, Fe 2 O 3 , MgO and other oxides and CaF 2 , K 2 SiF 6 , This refers to the total of fluorides such as Na 3 AlF 6 .

以上、本発明の後行電極Tに用いる溶接用フラックス入りワイヤの構成成分の限定理由を述べたが、残部は、鋼製外皮成分のC、Si、Mn、Fe及び不可避不純物、フラックス中の鉄粉、合金粉及び不可避不純物である。鉄粉は、溶着速度を高める目的から適量添加することができる。また、合金粉は、Si、Mn、Ti、Al、Mgなどの金属粉や、Fe−Si、Fe−Mn、Fe−Si−Mn、Fe−Al、Fe−Tiなどの鉄合金粉などをいい、溶接金属の機械的性質の向上などの目的から適量添加することができる。   The reason for limiting the constituent components of the flux-cored wire for welding used in the trailing electrode T of the present invention has been described above, the balance being steel outer shell components C, Si, Mn, Fe, inevitable impurities, iron in the flux Powders, alloy powders and inevitable impurities. An appropriate amount of iron powder can be added for the purpose of increasing the welding speed. Further, the alloy powder refers to metal powder such as Si, Mn, Ti, Al, Mg, and iron alloy powder such as Fe-Si, Fe-Mn, Fe-Si-Mn, Fe-Al, Fe-Ti, and the like. An appropriate amount can be added for the purpose of improving the mechanical properties of the weld metal.

なお、上記の鋼製外皮は、フラックス充填した後の伸線加工性に優れる熱間圧延鋼帯で、鋼製外皮全質量に対して、質量%で、C:0.10%以下、Si:0.05%以下、Mn:0.20〜0.80%、P:0.050%以下、S:0.050%以下のものが適しており、特に、Cが0.005〜0.03%のものは、スパッタ低減及び低ヒューム化にも有効である。   The steel outer shell is a hot-rolled steel strip having excellent wire drawing workability after flux filling, and is C: 0.10% or less, Si: 0.05% or less, Mn: 0.20 to 0.80%, P: 0.050% or less, S: 0.050% or less are suitable, and in particular, C is 0.005 to 0.03. % Is also effective for reducing spatter and reducing fume.

また、溶接用フラックス入りワイヤのワイヤ断面形状は、かしめタイプ又はシームレスタイプのどちらでもよいが、ワイヤ表面に銅めっきを施すことができるシームレスタイプは、チップの摩耗が少なく、安定したアーク状態が長時間維持することができ、溶接の高能率化を図ることができる。また、ワイヤに継ぎ目が無いので、吸湿性に優れており、長期間保管することができる。   The cross-sectional shape of the flux-cored wire for welding may be either a caulking type or a seamless type, but the seamless type that can be plated with copper on the wire surface has less wear on the tip and a longer stable arc state. The time can be maintained, and the efficiency of welding can be improved. Moreover, since there is no seam in a wire, it is excellent in hygroscopicity and can be stored for a long time.

さらに、溶接用フラックス入りワイヤ中の水素量及び窒素量は、耐気孔性及び衝撃靭性の低下を防止するため、ワイヤ全質量に対して40ppm以下にするのが望ましい。   Furthermore, the hydrogen content and the nitrogen content in the flux-cored wire for welding are desirably 40 ppm or less with respect to the total mass of the wire in order to prevent deterioration of the pore resistance and impact toughness.

また、スラグ剥離剤として、SをFeSなどの形態で故意に添加するのは有効であるが、Sがワイヤ全質量に対して質量%で0.030%を超えると、スラグ被包性が悪くなり、ビード形状が不良となる。   In addition, it is effective to intentionally add S as a slag remover in the form of FeS or the like, but if S exceeds 0.030% by mass with respect to the total mass of the wire, the slag encapsulation is poor. Thus, the bead shape becomes defective.

また、シールドガスはCO2が経済的であり通常使用されるが、ArとCO2の混合ガスも使用できる。 The shielding gas is usually CO 2 because it is economical, but a mixed gas of Ar and CO 2 can also be used.

以下、実施例により本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

熱間圧延鋼帯の軟鋼外皮(C:0.02質量%、Si:0.01質量%、Mn:0.35質量%、Al:0.02質量%、N:0.0015質量%)に、表1に示すスラグ形成剤の含有率からなる各種フラックスをフラックス充填率17質量%で充填し、軟鋼外皮をパイプ状に成形して端面同士を溶接してシームレス状にした後、表3に示す各種ワイヤ径に縮径した溶接用フラックス入りワイヤを各種試作した。   Hot rolled steel strip with mild steel skin (C: 0.02 mass%, Si: 0.01 mass%, Mn: 0.35 mass%, Al: 0.02 mass%, N: 0.0015 mass%) After filling various fluxes composed of the content of the slag forming agent shown in Table 1 at a flux filling rate of 17% by mass, forming a mild steel shell into a pipe shape and welding the end faces together to form a seamless shape, Table 3 Various types of welding flux-cored wires reduced in diameter to the various wire diameters shown were made.

表1に示す溶接用フラックス入りワイヤを後行電極に用い、先行電極には表2に示す溶接用ソリッドワイヤを用いて、表3に示す各種溶接施工条件で、2電極2プール方式での水平すみ肉ガスシールドアーク溶接(1パス両側同時溶接)を行い、溶接作業性を調査した。なお、チップ母材間距離は25〜30mm、シールドガスはCO2ガスを使用し、ガス流量25リットル/minで、溶接長750mmで溶接を行った。 The welding flux-cored wire shown in Table 1 is used for the trailing electrode, the welding electrode shown in Table 2 is used for the leading electrode, and the welding is performed in the 2-electrode 2-pool system under the various welding conditions shown in Table 3. Fillet gas shielded arc welding (simultaneous welding on both sides of one pass) was performed to investigate welding workability. The distance between the tip base materials was 25 to 30 mm, CO 2 gas was used as the shielding gas, welding was performed at a gas flow rate of 25 liters / min and a welding length of 750 mm.

試験体は、490N/mm2級高張力鋼表面にプライマを塗装した鋼板(以下、プライマ鋼板という。プライマ膜厚は側面約15μm、端面はフライス加工、鋼板寸法:板幅100mm×長さ1000mm×板厚32mmを用い、下板と上板との隙間がない状態でT字に組んだものを使用した。 The specimen is a steel plate with a primer applied to the surface of a 490 N / mm 2 grade high-strength steel (hereinafter referred to as a primer steel plate. The primer film thickness is about 15 μm on the side surface, the end surface is milled, the steel plate dimensions: plate width 100 mm × length 1000 mm × A plate having a thickness of 32 mm and assembled in a T shape with no gap between the lower plate and the upper plate was used.

T字型の試験体を、2電極2プール方式の水平すみ肉ガスシールドアーク溶接で、各試作ワイヤのアーク安定性、スパッタ発生量、スラグ被包性、スラグ剥離性、ピット発生数、ビード形状、脚長(実測値)について調査し、評価を行った。アーク安定性、スラグ被包性、スラグ剥離性、ビード形状については、目視観察により良好が否かを確認した。また、スパッタ発生量については、目視観察により多いか否かを、また、ピット発生量については、ピット発生の有無について確認し、ピットが発生していた場合にはその個数を測定した。脚長については、下板脚長S1及び上板脚長S2ともに脚長8mm以上で、かつ、JIS Z 3313に準拠し、各脚長の脚長差が0.5×Smin(下板脚長S1及び上板脚長S2の最小値)−0.5以下であるものを均等として合格とした。それら結果を表4にまとめて示す。   T-shaped test specimens are produced by horizontal fillet gas shielded arc welding using a 2-electrode 2-pool system. Arc stability, spatter generation, slag encapsulation, slag peelability, number of pits, and bead shape of each prototype wire The leg length (measured value) was investigated and evaluated. Regarding the arc stability, slag encapsulation, slag peelability, and bead shape, it was confirmed by visual observation whether or not they were good. Further, the amount of spatter generation was confirmed by visual observation, and the amount of pit generation was checked for the presence or absence of pit generation, and the number of pits was measured. Regarding the leg length, both the lower plate leg length S1 and the upper plate leg length S2 are 8 mm or more in length, and in accordance with JIS Z 3313, the leg length difference of each leg length is 0.5 × Smin (the lower plate leg length S1 and the upper plate leg length S2 (Minimum value) -0.5 or less were regarded as equal and accepted. The results are summarized in Table 4.

表3、表4、中No.1〜7が本発明例、No.8〜20は比較例である。   Table 3, Table 4, middle No. 1-7 are examples of the present invention, No.1. 8 to 20 are comparative examples.

本発明例であるNo.1〜5は、先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用い、先行電極と後行電極の電極間距離、先行電極及び後行電極との下板に対するトーチ角度、先行電極及び後行電極の下板及び上板に対する狙い位置、先行電極及び後行電極のワイヤ径が適正で、さらに、前記溶接用フラックス入りワイヤラック入り中のスラグ形成剤の含有量が適正なので、プライマ塗装した厚鋼板での2電極2プール方式での水平すみ肉ガスシールドアーク溶接でのアーク状態が良好で、スパッタ発生量が少なく、ビード形状、スラグ被包性及びスラグ剥離性がいずれも良好で、ピットの発生もなく、両脚長が8mm以上で均等な大脚長のすみ肉溶接部を得ることができ、極めて良好な結果であった。   No. which is an example of the present invention. 1-5 is a solid wire for welding as a leading electrode, a flux-cored wire for welding as a trailing electrode, a distance between electrodes of the leading electrode and the trailing electrode, a torch angle with respect to the lower plate of the leading electrode and the trailing electrode, Since the target electrode with respect to the lower plate and the upper plate of the preceding electrode and the succeeding electrode, the wire diameter of the preceding electrode and the succeeding electrode are appropriate, and the content of the slag forming agent in the welding flux-cored wire rack is appropriate. , Good arc condition in horizontal fillet gas shielded arc welding with 2-electrode 2-pool system with primer coated thick steel plate, less spatter generation, bead shape, slag encapsulation and slag peelability It was good, no pits were produced, and a fillet welded part having a uniform large leg length with both leg lengths of 8 mm or more could be obtained, which was a very good result.

なお、No.6は、後行電極に用いた溶接用フラックス入りワイヤ(記号F5)のフラックス形成剤の合計が3.5%未満であり少ないので、スラグ被包性及びスラグ剥離性並びにビード形状がやや悪かったが、すみ肉溶接部の品質上の問題は無かった。また、No.7は、後行電極に用いた溶接用フラックス入りワイヤ(記号F6)のフラックス形成剤の合計が8.5%超であり多いので、スラグ被包性及びビード形状がやや悪かったが、すみ肉溶接部の品質上の問題は無かった。   In addition, No. No. 6, since the total flux forming agent of the welding flux-cored wire (symbol F5) used for the trailing electrode was less than 3.5%, the slag encapsulation and slag peelability and the bead shape were slightly poor. However, there was no problem with the quality of the fillet weld. No. No. 7, the total flux forming agent of the welding flux-cored wire (symbol F6) used for the trailing electrode was over 8.5%, so the slag encapsulation and bead shape were somewhat poor. There was no problem with the quality of the weld.

比較例中No.8は、先行電極及び後行電極の両方に溶接用フラックス入りワイヤ(記号F2)を用いたので、すみ肉溶接部のルート部にスラグ巻き込みが発生し、耐気孔性が不良でピットが発生した。   No. in the comparative examples. In No. 8, since the flux-cored wire for welding (symbol F2) was used for both the leading electrode and the trailing electrode, slag entrainment occurred in the root portion of the fillet welded portion, and pits were generated due to poor porosity resistance. .

No.9は、先行電極に溶接用フラックス入りワイヤ、後行電極に溶接用ソリッドワイヤを用いたので、スラグ被包性及びスラグ剥離性並びにビード形状が不良であった。また、すみ肉溶接部の脚長も不均等であった。   No. No. 9 used a flux-cored wire for welding as the leading electrode and a solid wire for welding as the trailing electrode, so that the slag encapsulation and slag peelability and the bead shape were poor. Moreover, the leg length of the fillet weld was also uneven.

No.10は、先行電極及び後行電極の両方に溶接用ソリッドワイヤを用いたので、スラグ被包性及びスラグ剥離性並びにビード形状が不良で、すみ肉溶接部の脚長も不均等であった。   No. No. 10 used welding solid wires for both the leading electrode and the trailing electrode, so the slag encapsulation and slag peelability and the bead shape were poor, and the leg length of the fillet weld was also uneven.

No.11は、先行電極及び後行電極のワイヤ径が2.0mmを超えているので、通常のワイヤ送給装置ではワイヤが送給できず、専用のワイヤ送給装置を設置したので、設備コストが高かった。また、後行電極に用いた溶接用フラックス入りワイヤ(記号F6)のスラグ形成剤の合計が8.5%超であり多いので、スラグ被包性及びビード形状が不良であった。   No. 11, because the wire diameters of the leading electrode and the trailing electrode exceed 2.0 mm, the wire cannot be fed by a normal wire feeding device, and a dedicated wire feeding device is installed. it was high. Moreover, since the sum total of the slag formation agent of the flux-cored wire for welding (symbol F6) used for the succeeding electrode is more than 8.5%, the slag encapsulation property and the bead shape were poor.

No.12は、先行電極と後行電極の電極間距離が50mm未満であり短いので、アーク状態が不安定で、スパッタ発生量が多かった。また、すみ肉溶接部の下板側止端部にオーバーラップ、上板側止端部にアンダーカットが生じ、ビード形状が不良であった。   No. In No. 12, since the distance between the leading electrode and the trailing electrode was less than 50 mm and short, the arc state was unstable and the amount of spatter was large. In addition, an overlap occurred at the bottom plate side toe portion of the fillet welded portion, and an undercut occurred at the top plate side toe portion, and the bead shape was poor.

No.13は、先行電極の下板側のワイヤ狙い位置とルート部との距離が10mm超であり長いので、すみ肉溶接部のルートに溶け込み不良が生じ、ビード形状も不良であった。また、すみ肉溶接部の上板脚長が小さく、脚長が不均等であった。   No. In No. 13, the distance between the target position of the wire on the lower plate side of the preceding electrode and the root portion was longer than 10 mm, so that a poor penetration occurred in the root of the fillet welded portion, and the bead shape was also poor. Further, the upper plate leg length of the fillet welded portion was small, and the leg length was uneven.

No.14は、先行電極の下板側のワイヤ狙い位置とルート部との距離が5mm未満であり短いので、すみ肉溶接部の下板側止端部にオーバーラップが生じ、ビード形状が不良であった。また、すみ肉溶接部の下板脚長が小さく、脚長が不均等であった。   No. No. 14, the distance between the wire target position on the lower plate side of the preceding electrode and the root portion is less than 5 mm and is short, so that overlap occurs at the bottom plate side toe portion of the fillet welded portion and the bead shape is poor. It was. Moreover, the lower plate leg length of the fillet welded portion was small, and the leg length was uneven.

No.15は、後行電極の上板側のワイヤ狙い位置とルート部との距離が7mm超であり長いので、すみ肉溶接部の上板側止端部にアンダーカット6が生じ、ビード形状が不良であった。   No. No. 15, the distance between the wire target position on the upper plate side of the trailing electrode and the root portion is longer than 7 mm, and therefore, the undercut 6 occurs in the upper plate side toe portion of the fillet welded portion, and the bead shape is poor. Met.

No.16は、後行電極の上板側のワイヤ狙い位置とルート部との距離が3mm未満であり短いので、すみ肉溶接部の下板止端部にオーバーラップが生じ、ビード形状が不良であった。また、すみ肉溶接部の上板脚長が小さく、脚長が不均等であった。   No. In No. 16, the distance between the wire target position on the upper plate side of the trailing electrode and the root portion is less than 3 mm and is short, so that an overlap occurs at the bottom plate toe of the fillet welded portion and the bead shape is poor. It was. Further, the upper plate leg length of the fillet welded portion was small, and the leg length was uneven.

No.17は、先行電極及び後行電極の下板に対するトーチ角度が40°未満であり低いので、アーク状態が不安定で、スパッタ発生量が多かった。また、すみ肉溶接部の下板側止端部にアンダーカットが生じてビード形状が不良で、下板脚長も小さく、脚長が不均等であった。   No. In No. 17, since the torch angle with respect to the lower plate of the leading electrode and the trailing electrode was less than 40 °, the arc state was unstable and the amount of spatter was large. In addition, undercuts occurred at the bottom plate side toe portion of the fillet welded portion, the bead shape was poor, the lower plate leg length was small, and the leg length was uneven.

No.18は、先行電極及び後行電極のワイヤ径が1.2mm未満であり細いので、アーク状態が不安定で、スパッタ発生量が多く、ビード形状も不良であった。   No. In No. 18, since the wire diameters of the leading electrode and the trailing electrode were less than 1.2 mm and were thin, the arc state was unstable, the amount of spatter was large, and the bead shape was also poor.

No.19は、先行電極及び後行電極の下板に対するトーチ角度が60°超であり高いので、アーク状態が不安定で、スパッタ発生量が多かった。また、すみ肉溶接部の下板側止端部にオーバーラップ、上板側止端部にアンダーカットが生じてビード形状が不良で、上板脚長も小さく、脚長が不均等であった。   No. In No. 19, since the torch angle with respect to the lower plate of the leading electrode and the trailing electrode was higher than 60 ° and high, the arc state was unstable and the amount of spatter was large. In addition, an overlap occurred at the lower plate side toe portion of the fillet welded portion, and an undercut occurred at the upper plate side toe portion, resulting in a poor bead shape, a small upper plate leg length, and an uneven leg length.

No.20は、先行電極及び後行電極のワイヤ径が2.0mm超であり太いので、通常のワイヤ送給装置ではワイヤが送給できず、専用のワイヤ送給装置を設置しなければならないので、設備コストが高かった。また、後行電極に用いた溶接用フラックス入りワイヤ(記号F5)のスラグ形成剤の合計が3.5%未満と少ないので、スラグ被包性及びスラグ剥離性並びにビード形状が不良であった。   No. No. 20, since the wire diameter of the leading electrode and the trailing electrode is over 2.0 mm and thick, the wire cannot be fed with a normal wire feeding device, and a dedicated wire feeding device must be installed. The equipment cost was high. Moreover, since the sum total of the slag formation agent of the flux-cored wire for welding (symbol F5) used for the succeeding electrode was less than 3.5%, the slag encapsulating property, the slag peeling property, and the bead shape were poor.

1 下板
2 上板
3 ルート部
4 先行電極の溶融プール
5 後行電極の溶融プール
6 溶け込み不良
7 スラグ巻き込み
8 アンダーカット
9 オーバーラップ
10 先行電極ビード
11 後行電極ビード
20、30 ワイヤ
L 先行電極
T 後行電極
D 極間距離
S1 下板脚長
S2 上板脚長
θ1 トーチ角度
θ2 前進角
θ3 後退角
DESCRIPTION OF SYMBOLS 1 Lower plate 2 Upper plate 3 Route part 4 Melting pool of preceding electrode 5 Molten pool of trailing electrode 6 Poor penetration 7 Slag entrainment 8 Undercut 9 Overlap 10 Leading electrode bead 11 Subsequent electrode bead 20, 30 Wire L Leading electrode T trailing electrode D distance between poles S1 lower plate leg length S2 upper plate leg length θ 1 torch angle θ 2 advance angle θ 3 receding angle

Claims (2)

2電極水平すみ肉ガスシールドアーク溶接方法において、
先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用い、
先行電極と後行電極との電極間距離を50mm以上、
先行電極及び後行電極との下板に対するトーチ角度を40〜60°、
先行電極のワイヤ狙い位置をルート部から下板側に5〜10mm、
後行電極のワイヤ狙い位置をルート部から上板側に3〜7mm、
先行電極及び後行電極のワイヤ径を1.2〜2.0mmで溶接することを特徴とする2電極水平すみ肉ガスシールドアーク溶接方法。
In the two-electrode horizontal fillet gas shielded arc welding method,
Using a solid wire for welding as the leading electrode and a flux-cored wire for welding as the trailing electrode,
The distance between the leading electrode and the trailing electrode is 50 mm or more,
A torch angle with respect to the lower plate of the leading electrode and the trailing electrode is 40 to 60 °,
The wire aiming position of the leading electrode is 5 to 10 mm from the root part to the lower plate side,
3-7mm from the root part to the upper plate side of the wire aiming position of the trailing electrode,
A two-electrode horizontal fillet gas shielded arc welding method characterized by welding a wire diameter of a leading electrode and a trailing electrode at 1.2 to 2.0 mm.
前記溶接用フラックス入りワイヤは、ワイヤ全質量に対する質量%で、フラックスに、
スラグ形成剤の合計を3.5〜8.5%含有し、
残部は鉄粉、合金粉及び不可避不純物であることを特徴とする請求項1記載の2電極水平すみ肉ガスシールドアーク溶接方法。
The welding flux-cored wire is the mass% with respect to the total mass of the wire.
Contains 3.5 to 8.5% of the total slag forming agent,
The two-electrode horizontal fillet gas shielded arc welding method according to claim 1, wherein the balance is iron powder, alloy powder and inevitable impurities.
JP2014085277A 2014-04-17 2014-04-17 Two-electrode horizontal fillet gas shielded arc welding method Expired - Fee Related JP6188626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014085277A JP6188626B2 (en) 2014-04-17 2014-04-17 Two-electrode horizontal fillet gas shielded arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014085277A JP6188626B2 (en) 2014-04-17 2014-04-17 Two-electrode horizontal fillet gas shielded arc welding method

Publications (2)

Publication Number Publication Date
JP2015205280A true JP2015205280A (en) 2015-11-19
JP6188626B2 JP6188626B2 (en) 2017-08-30

Family

ID=54602592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014085277A Expired - Fee Related JP6188626B2 (en) 2014-04-17 2014-04-17 Two-electrode horizontal fillet gas shielded arc welding method

Country Status (1)

Country Link
JP (1) JP6188626B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151088A1 (en) 2018-01-30 2019-08-08 株式会社神戸製鋼所 Weaving control method and weaving control system
CN113458552A (en) * 2020-03-31 2021-10-01 株式会社神户制钢所 Tandem gas shielded arc welding method and welding device
CN115279528A (en) * 2020-03-31 2022-11-01 株式会社神户制钢所 Multi-electrode gas shielded arc single-side welding method and multi-electrode gas shielded arc single-side welding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229770A (en) * 2006-03-01 2007-09-13 Nippon Steel & Sumikin Welding Co Ltd Two-electrode large leg length horizontal fillet gas shield arc welding method
JP2012254469A (en) * 2011-06-09 2012-12-27 Kobe Steel Ltd Two-electrode welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229770A (en) * 2006-03-01 2007-09-13 Nippon Steel & Sumikin Welding Co Ltd Two-electrode large leg length horizontal fillet gas shield arc welding method
JP2012254469A (en) * 2011-06-09 2012-12-27 Kobe Steel Ltd Two-electrode welding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151088A1 (en) 2018-01-30 2019-08-08 株式会社神戸製鋼所 Weaving control method and weaving control system
KR20200098697A (en) 2018-01-30 2020-08-20 가부시키가이샤 고베 세이코쇼 Weaving control method and weaving control system
CN113458552A (en) * 2020-03-31 2021-10-01 株式会社神户制钢所 Tandem gas shielded arc welding method and welding device
CN115279528A (en) * 2020-03-31 2022-11-01 株式会社神户制钢所 Multi-electrode gas shielded arc single-side welding method and multi-electrode gas shielded arc single-side welding device
JP7388969B2 (en) 2020-03-31 2023-11-29 株式会社神戸製鋼所 Tandem gas shielded arc welding method and welding equipment

Also Published As

Publication number Publication date
JP6188626B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP4531617B2 (en) Flux-cored wire for gas shielded arc welding
JP5283993B2 (en) Flux-cored wire for titania-based gas shielded arc welding
US20140263259A1 (en) Consumable for specially coated metals
JP5557790B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
WO2017126657A1 (en) Consumable electrode gas-shielded arc welding method and arc weld
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
JP6188626B2 (en) Two-electrode horizontal fillet gas shielded arc welding method
KR101600174B1 (en) Flux cored wire for gas shielded arc welding
JP6969705B1 (en) Steel wire for gas shielded arc welding, gas shielded arc welding method, and manufacturing method of gas shielded arc welded joint
JP6875232B2 (en) Multi-electrode gas shield arc single-sided welding method
JPH02280968A (en) Horizontal filter gas shielded arc welding method at high speed
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
JP2001259888A (en) Flux cored wire for welding galvanized steel sheet having excellent pit resistance and blowhole resistance
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP4385028B2 (en) MIG brazing welding method
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2009148774A (en) Rutile type flux cored wire for gas shielded arc welding
KR101600172B1 (en) Flux cored wire for gas shielded arc welding
JP2006224178A (en) Flux-cored wire for gas-shielded arc fillet welding
JP3288535B2 (en) Flux-cored wire for gas shielded arc welding
JP5361797B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding
JP2015136720A (en) Two electrode horizontal fillet gas shield arc welding method
JP2019048321A (en) Multielectrode gas shield arc-welding method
JP2014065066A (en) Flux cored wire for horizontal gas shielded arc welding
JP3124439B2 (en) High speed horizontal fillet gas shielded arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170801

R150 Certificate of patent or registration of utility model

Ref document number: 6188626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees