JP2015205247A - Particulate material manufacturing apparatus - Google Patents

Particulate material manufacturing apparatus Download PDF

Info

Publication number
JP2015205247A
JP2015205247A JP2014087768A JP2014087768A JP2015205247A JP 2015205247 A JP2015205247 A JP 2015205247A JP 2014087768 A JP2014087768 A JP 2014087768A JP 2014087768 A JP2014087768 A JP 2014087768A JP 2015205247 A JP2015205247 A JP 2015205247A
Authority
JP
Japan
Prior art keywords
discharge
inert gas
arc discharge
raw material
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014087768A
Other languages
Japanese (ja)
Other versions
JP6277844B2 (en
Inventor
天野 哲也
Tetsuya Amano
哲也 天野
西 泰彦
Yasuhiko Nishi
泰彦 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2014087768A priority Critical patent/JP6277844B2/en
Publication of JP2015205247A publication Critical patent/JP2015205247A/en
Application granted granted Critical
Publication of JP6277844B2 publication Critical patent/JP6277844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress adherence of a thermally treated product onto an inner wall surface of a discharge container which is caused by arc discharge and make it possible to continuously manufacture the thermally treated product.SOLUTION: There is provided particulate material manufacturing apparatus comprising: a discharge container 10 in which a plurality of discharge electrodes 14 are two-dimensionally or three-dimensionally arranged; and an AC power source 18 which applies alternating current having a phase difference to the discharge electrodes 14 to generate arc discharge between the discharge electrodes 14. The apparatus has: material supply means (20) for supplying a particulate material (32) to an arc discharge generating part 16 by the discharge electrodes 14 together with inert gas; shield gas forming means (24) for forming a shield gas flow 26 of inert gas flowing so as to surround an inert gas flow (22) containing a thermally treated product caused by arc discharge, in which the shield gas flow flows from the arc discharge generating part 16 toward an outflow port 12 of the discharge container 10; and recovery means (30) of the thermally treated product caused by arc discharge which flowed out from the discharge container 10 together with inert gas.

Description

本発明は、微粒子材料製造装置に係り、特に、ナノ粒子材料を製造する際に用いるのに好適な、微粒子材料製造装置に関する。   The present invention relates to a fine particle material production apparatus, and more particularly, to a fine particle material production apparatus suitable for use in producing a nanoparticle material.

リチウムイオン二次電池は、エネルギー密度が高いことから、ハイブリッド車や電気自動車の電源として期待されているが、未だ十分な性能とは言えない。そこで近年、負極をカーボン材料の代わりにシリコン材料で構成することが検討されている。特にシリコン系ナノ材料は、高容量且つ充放電サイクルの繰り返しによる劣化が少ないとして、次世代リチウムイオン二次電池の負極材料として注目されている。   Lithium ion secondary batteries are expected to be used as power sources for hybrid vehicles and electric vehicles because of their high energy density, but they are still not satisfactory. Therefore, in recent years, it has been studied that the negative electrode is made of a silicon material instead of a carbon material. In particular, silicon-based nanomaterials are attracting attention as negative electrode materials for next-generation lithium ion secondary batteries because they have high capacity and little deterioration due to repeated charge / discharge cycles.

ナノ粒子材料を製造する方法としては、特許文献1に、図1に示す如く、点対称に配置し、間隔を空けて先端を突き合わせた複数本の電極棒2に、電源装置3から位相の異なる電圧を印加して、反応炉1内でマルチアークMを発生させ、キャリアガス供給管5の中に組み込まれた原料供給管4により、珪素及び炭素を含むガス状又は粉末状の原料を前記マルチアークMの中心部に連続的に供給し、前記マルチアークMにより前記原料を順次熱分解合成して炭化珪素の粉末とすることが記載されている。形成された炭化珪素の微粉末は、順次下方に降下し、反応炉1の下方に連結した冷却装置6を通る間に冷却されて、排出装置7により外部に取り出される。図において、8は、反応炉1内を真空引きするためのポンプ、9は、マルチアークMに投入されなかった原料を分離抽出するためのサイクロンである。   As a method for producing a nanoparticle material, as shown in FIG. 1, a phase difference from a power supply device 3 is applied to a plurality of electrode rods 2 that are arranged point-symmetrically and abut each other at an interval as shown in FIG. A voltage is applied to generate a multi-arc M in the reaction furnace 1, and a gaseous or powdery raw material containing silicon and carbon is introduced into the multi-gas by a raw material supply pipe 4 incorporated in a carrier gas supply pipe 5. It is described that the material is continuously supplied to the center of the arc M, and the raw materials are sequentially pyrolyzed and synthesized into a silicon carbide powder by the multi-arc M. The formed fine powder of silicon carbide sequentially descends downward, is cooled while passing through the cooling device 6 connected to the lower side of the reaction furnace 1, and is taken out by the discharge device 7. In the figure, 8 is a pump for evacuating the inside of the reaction furnace 1, and 9 is a cyclone for separating and extracting raw materials that have not been put into the multi-arc M.

又、特許文献2や3には、放電容器内に導入したヘリウム雰囲気中において、二次元又は三次元に配置された3つ以上の放電電極にそれぞれ位相差のある多相交流を印加して、アーク放電を発生させ、このアーク放電により形成されたプラズマ領域を用いて炭素原料又は複合炭素原料を蒸発せしめ、蒸発した全量を当該プラズマ領域内で凝縮させて、前記放電容器内壁に煤として付着させることが記載されている。   In Patent Documents 2 and 3, in a helium atmosphere introduced into a discharge vessel, a multiphase alternating current having a phase difference is applied to three or more discharge electrodes arranged two-dimensionally or three-dimensionally, An arc discharge is generated, the carbon raw material or the composite carbon raw material is evaporated using the plasma region formed by the arc discharge, and the whole amount of the evaporated material is condensed in the plasma region and attached as soot on the inner wall of the discharge vessel. It is described.

特開平7−187639号公報Japanese Patent Application Laid-Open No. 7-187639 特開2005−343784号公報JP 2005-343784 A 特開2012−184128号公報JP 2012-184128 A

しかしながら、特許文献1に記載の技術では、反応炉1の下方に連結した冷却装置6の壁面に熱処理生成物が付着し、場合によっては冷却装置6内を閉塞して、外部に取り出せなくなってしまうという問題点を有していた。   However, in the technique described in Patent Document 1, a heat treatment product adheres to the wall surface of the cooling device 6 connected to the lower side of the reaction furnace 1, and in some cases, the cooling device 6 is blocked and cannot be taken out to the outside. It had the problem that.

一方、特許文献2や3に記載の技術は、放電終了後に放電容器内面に付着した煤から熱処理生成物を回収する必要があり、熱処理生成物を連続的に製造することは不可能であった。   On the other hand, in the techniques described in Patent Documents 2 and 3, it is necessary to recover the heat treatment product from the soot adhering to the inner surface of the discharge vessel after the discharge is completed, and it is impossible to continuously manufacture the heat treatment product. .

本発明は、前記従来の問題点を解消するべくなされたもので、ナノ粒子材料を含む微粒子材料を連続的に生成することが可能な微粒子材料製造装置を提供することを課題とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a fine particle material manufacturing apparatus capable of continuously generating a fine particle material including a nanoparticle material.

本発明は、複数の放電電極が、内部に二次元又は三次元に配置された放電容器と、前記放電電極にそれぞれ位相差のある交流を印加して前記放電電極の間にアーク放電を発生させる交流電源を備えた微粒子材料製造装置であって、前記放電電極によるアーク放電発生部に微粒子の原料を不活性ガスとともに供給する原料供給手段と、前記アーク放電発生部から前記放電容器の流出口に向かって流れる、アーク放電による熱処理生成物を含む不活性ガス流を包囲するように流れる不活性ガスのシールドガス流を形成するシールドガス形成手段と、前記放電容器から不活性ガスとともに流出したアーク放電による熱処理生成物の回収手段と、を有することにより前記課題を解決するものである。   According to the present invention, an arc discharge is generated between a discharge vessel in which a plurality of discharge electrodes are arranged two-dimensionally or three-dimensionally inside and an alternating current having a phase difference is applied to each of the discharge electrodes. An apparatus for producing a particulate material provided with an AC power source, comprising: a raw material supply means for supplying a raw material of fine particles together with an inert gas to an arc discharge generating portion by the discharge electrode; and an outlet of the discharge vessel from the arc discharge generating portion. Shield gas forming means for forming a shield gas flow of the inert gas flowing so as to surround the inert gas flow containing the heat treatment product by the arc discharge flowing toward the arc, and the arc discharge flowing out from the discharge vessel together with the inert gas The above-mentioned problem is solved by having a heat treatment product recovery means.

ここで、前記不活性ガスのシールドガス流の流速を、前記アーク放電による熱処理生成物を含む不活性ガス流の流速よりも遅い流速とすることができる。   Here, the flow rate of the shield gas flow of the inert gas can be made slower than the flow rate of the inert gas flow containing the heat treatment product by the arc discharge.

又、前記アーク放電による熱処理生成物の回収手段から流出する不活性ガスを前記原料供給手段及び/又はシールドガス形成手段に循環する不活性ガス循環手段を有することができる。   Further, an inert gas circulation means for circulating an inert gas flowing out from the heat treatment product recovery means by the arc discharge to the raw material supply means and / or shield gas formation means can be provided.

又、前記不活性ガスを、希ガスとすることができる。   Further, the inert gas can be a rare gas.

又、前記放電容器が、前記アーク放電で熱処理されなかった未熱処理原料の回収手段を備えることができる。   Further, the discharge vessel may be provided with a means for recovering unheated raw material that has not been heat-treated by the arc discharge.

本発明では、アーク放電発生部のアークプラズマによって熱処理された原料を含む気体の周囲に気体の流れを生じさせ、シールドの役目をさせる。このようなシールドガスにより、放電容器内壁面への熱処理生成物の付着を抑制して、微粒子材料等の熱処理生成物を連続的に製造することが可能となる。   In the present invention, a gas flow is generated around the gas containing the raw material heat-treated by the arc plasma in the arc discharge generation portion, and the gas acts as a shield. With such a shielding gas, it is possible to suppress the adhesion of the heat treatment product to the inner wall surface of the discharge vessel and continuously produce the heat treatment product such as a particulate material.

特許文献1で提案された製造装置の構成を示す断面図Sectional drawing which shows the structure of the manufacturing apparatus proposed by patent document 1 本発明の第1実施形態の構成を示す断面図Sectional drawing which shows the structure of 1st Embodiment of this invention. 同じく第2実施形態の構成を示す断面図Sectional drawing which similarly shows the structure of 2nd Embodiment

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, the constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.

本発明の第1実施形態は、図2に示す如く、3つ以上の放電電極14が、内部に三次元に配置された放電容器10と、前記放電電極14にそれぞれ位相差のある交流を印加して前記放電電極14の間にアーク放電を発生させる交流電源18を備えたナノ材料製造装置であって、前記放電電極14によるアーク放電発生部(アークプラズマ場)16に微粒子の原料を希ガスと共に供給する原料供給ノズル(原料供給手段)20と、前記アーク放電発生部16から前記放電容器10上方の流出口12に向かって流れる、アーク放電による熱処理生成物を含む生成物ガス流22を包囲するように流れる希ガスのシールドガス流26を形成するシールドガス供給ノズル(シールドガス形成手段)24と、前記放電容器10から希ガスと共に流出したアーク放電による熱処理生成物を回収するための生成物捕集フィルタ(回収手段)30と、該生成物捕集フィルタ30から流出する希ガスを前記シールドガス供給ノズル24及び/又は原料供給ノズル20に循環するための循環ポンプ(希ガス循環手段)40と、前記アーク放電で熱処理されずに前記アーク放電発生部16から落下する未熱処理原料32を回収するための未熱処理原料回収器(回収手段)34を備えたものである。   In the first embodiment of the present invention, as shown in FIG. 2, three or more discharge electrodes 14 apply a three-dimensionally arranged discharge vessel 10 and alternating current having a phase difference to each of the discharge electrodes 14. A nanomaterial manufacturing apparatus having an AC power source 18 for generating an arc discharge between the discharge electrodes 14, wherein a raw material of fine particles is used as a rare gas in an arc discharge generation part (arc plasma field) 16 by the discharge electrode 14. A raw material supply nozzle (raw material supply means) 20 to be supplied together with a product gas flow 22 including a heat treatment product by arc discharge flowing from the arc discharge generation unit 16 toward the outlet 12 above the discharge vessel 10 is surrounded. A shielding gas supply nozzle (shielding gas forming means) 24 for forming a shielding gas flow 26 of the rare gas flowing in the same manner; A product collection filter (recovery means) 30 for collecting the heat treatment product by the spark discharge and a rare gas flowing out from the product collection filter 30 to the shield gas supply nozzle 24 and / or the raw material supply nozzle 20 A circulation pump (rare gas circulation means) 40 for circulation and an unheat treated raw material collector (collection means) for collecting the unheat treated raw material 32 falling from the arc discharge generator 16 without being heat treated by the arc discharge. 34 is provided.

前記シールドガス供給ノズル24は、例えば先端が上向きに配置されたL字状ノズルとすることができる。   The shield gas supply nozzle 24 can be, for example, an L-shaped nozzle having a tip arranged upward.

前記アーク放電発生部16に形成されるアークプラズマ場で加熱された原料は、昇華されて生成物ガス流22と共に上方に移動し、その途中で冷却されて微粒子となる。   The raw material heated in the arc plasma field formed in the arc discharge generator 16 is sublimated and moves upward together with the product gas flow 22, and is cooled in the middle to become fine particles.

ここで、前記希ガスのシールドガス流26の流速Vは、熱処理生成物を含む生成物ガス流22の流速Vよりも遅い流速とされている。同様な密度の流体に速度差がある場合、流速の遅い側の流体は流速の速い側の流体へ巻き込まれる。従って、アークプラズマ(16)によって加熱された原料を含む気体の拡散を抑制し、放電容器10内壁面への熱処理生成物の付着を確実に抑制することができる。 Here, the flow velocity V 2 of the shielding gas flow 26 of the rare gas is a slower flow rate than the flow velocity V 1 of the product gas stream 22 containing the heat treatment product. When fluids of similar density have a speed difference, the fluid on the slow flow side is entangled with the fluid on the fast flow side. Therefore, diffusion of the gas containing the raw material heated by the arc plasma (16) can be suppressed, and adhesion of the heat treatment product to the inner wall surface of the discharge vessel 10 can be reliably suppressed.

前記シールドガス流26の流速Vは、シールドガスの流量とシールドガス供給ノズル24の口径が決まれば速度分布が推定できるので、数値シミュレーションなどで、常にシールドガス流26の流速Vが、生成物ガス流22の流速Vより遅くなるようにシールドガスの流量を制御することができる。 Since the flow velocity V 2 of the shield gas flow 26 can be estimated if the flow rate of the shield gas and the diameter of the shield gas supply nozzle 24 are determined, the flow velocity V 2 of the shield gas flow 26 is always generated by numerical simulation or the like. The flow rate of the shield gas can be controlled to be slower than the flow velocity V 1 of the product gas flow 22.

前記希ガスとしては、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドンが含まれるが、希ガス以外の不活性ガスを用いることも可能である。   Examples of the rare gas include helium, neon, argon, krypton, xenon, and radon, but an inert gas other than the rare gas can also be used.

前記放電電極14は、例えばカーボン製やタングステン製とすることができる。なお、タングステン電極は冷却が必要になるので、カーボン電極の方が望ましい。   The discharge electrode 14 can be made of carbon or tungsten, for example. Since the tungsten electrode needs to be cooled, the carbon electrode is preferable.

前記放電電極14の数は、交流電源18として商用の3相交流を使用した場合には、その位相差から電源を簡単に構成することができるので、例えば3、6、12とすることができる。   When the commercial three-phase alternating current is used as the alternating current power source 18, the number of the discharge electrodes 14 can be set to, for example, 3, 6, 12 because the power source can be easily configured from the phase difference. .

又、前記放電電極14の段数は、実施形態の2段に限定されず、1段又は3段以上であってもよい。   Further, the number of stages of the discharge electrode 14 is not limited to the two stages of the embodiment, and may be one stage or three or more stages.

前記原料供給ノズル20の数は、放電電極14の数に合わせて、例えば3の倍数、又は2の倍数とすることができる。   The number of the raw material supply nozzles 20 can be a multiple of 3, for example, or a multiple of 2, according to the number of discharge electrodes 14.

本実施形態においては、循環ポンプ40を設けて、希ガスを循環させているので、希ガスを再利用でき、無駄が少ない。なお、例えば原料を、再生希ガスでなく普通の希ガスで原料供給ノズル20に吹き込んでもよい。   In the present embodiment, since the circulation pump 40 is provided to circulate the rare gas, the rare gas can be reused and waste is reduced. Note that, for example, the raw material may be blown into the raw material supply nozzle 20 with a normal noble gas instead of the regenerative noble gas.

前記実施形態においては、シールドガス供給ノズル24が、先端が上向きに配置されたL字状ノズルとされていたが、図3に示す第2実施形態のように、直管状ノズルを斜め上向きに配置することも可能である。   In the above-described embodiment, the shield gas supply nozzle 24 is an L-shaped nozzle with the tip disposed upward, but the straight tubular nozzle is disposed obliquely upward as in the second embodiment shown in FIG. It is also possible to do.

前記実施形態は、例えば、シリコンからシリコン微粒子を製造する場合や、シリコンと二酸化珪素SiOを混合して、酸化珪素SiO(0<x<2)を製造する場合に好適であるが、本発明の製造対象は、これに限定されず、原料と生成物が同じ物質で微粒子化する場合や、生成物が原料の反応生成物である場合の両方に適用可能である。原料もシリコン系に限定されず、無機材料であれば何でも製造できる。 The above embodiment is suitable for, for example, manufacturing silicon fine particles from silicon or mixing silicon and silicon dioxide SiO 2 to manufacture silicon oxide SiO x (0 <x <2). The manufacturing object of the invention is not limited to this, and is applicable to both the case where the raw material and the product are made into fine particles with the same substance and the case where the product is a reaction product of the raw material. The raw material is not limited to silicon, and any inorganic material can be manufactured.

10…放電容器
12…流出口
14…放電電極
16…アーク放電発生部
18…交流電源
20…原料供給ノズル
22…生成物ガス流
24…シールドガス供給ノズル
26…シールドガス流
30…生成物捕集フィルタ
32…未熱処理原料
34…未熱処理原料回収器
40…循環ポンプ
DESCRIPTION OF SYMBOLS 10 ... Discharge container 12 ... Outlet 14 ... Discharge electrode 16 ... Arc discharge generation part 18 ... AC power supply 20 ... Raw material supply nozzle 22 ... Product gas flow 24 ... Shield gas supply nozzle 26 ... Shield gas flow 30 ... Product collection Filter 32 ... Unheated raw material 34 ... Unheated raw material collector 40 ... Circulation pump

Claims (5)

複数の放電電極が、内部に二次元又は三次元に配置された放電容器と、前記放電電極にそれぞれ位相差のある交流を印加して前記放電電極の間にアーク放電を発生させる交流電源を備えた微粒子材料製造装置であって、
前記放電電極によるアーク放電発生部に微粒子の原料を不活性ガスとともに供給する原料供給手段と、
前記アーク放電発生部から前記放電容器の流出口に向かって流れる、アーク放電による熱処理生成物を含む不活性ガス流を包囲するように流れる不活性ガスのシールドガス流を形成するシールドガス形成手段と、
前記放電容器から不活性ガスとともに流出したアーク放電による熱処理生成物の回収手段と、
を有することを特徴とする微粒子材料製造装置。
A plurality of discharge electrodes are provided with a discharge vessel disposed two-dimensionally or three-dimensionally therein, and an AC power source for applying an alternating current having a phase difference to the discharge electrodes to generate an arc discharge between the discharge electrodes. A fine particle material manufacturing apparatus,
A raw material supply means for supplying a raw material of fine particles together with an inert gas to an arc discharge generation part by the discharge electrode;
Shielding gas forming means for forming a shielding gas flow of an inert gas flowing so as to surround an inert gas flow including a heat treatment product by the arc discharge, flowing from the arc discharge generation portion toward the outlet of the discharge vessel; ,
Means for recovering the heat treatment product by arc discharge flowing out of the discharge vessel together with the inert gas;
An apparatus for producing a fine particle material, comprising:
前記不活性ガスのシールドガス流の流速が、前記アーク放電による熱処理生成物を含む不活性ガス流の流速よりも遅いことを特徴とする請求項1に記載の微粒子材料製造装置。   2. The fine particle material manufacturing apparatus according to claim 1, wherein the flow rate of the shield gas flow of the inert gas is slower than the flow rate of the inert gas flow containing the heat treatment product by the arc discharge. 前記アーク放電による熱処理生成物の回収手段から流出する不活性ガスを前記原料供給手段及び/又はシールドガス形成手段に循環する不活性ガス循環手段を有することを特徴とする請求項1又は2に記載の微粒子材料製造装置。   3. An inert gas circulation means for circulating an inert gas flowing out from the heat treatment product recovery means by the arc discharge to the raw material supply means and / or shield gas formation means. Fine particle material manufacturing equipment. 前記不活性ガスが、希ガスであることを特徴とする請求項1乃至3のいずれかに記載の微粒子材料製造装置。   The fine particle material manufacturing apparatus according to claim 1, wherein the inert gas is a rare gas. 前記放電容器が、前記アーク放電で熱処理されなかった未熱処理原料の回収手段を備えることを特徴とする請求項1乃至4のいずれかに記載の微粒子材料製造装置。   The fine particle material manufacturing apparatus according to any one of claims 1 to 4, wherein the discharge vessel includes a means for collecting an unheated raw material that has not been heat-treated by the arc discharge.
JP2014087768A 2014-04-21 2014-04-21 Nanoparticle material production equipment Expired - Fee Related JP6277844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087768A JP6277844B2 (en) 2014-04-21 2014-04-21 Nanoparticle material production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087768A JP6277844B2 (en) 2014-04-21 2014-04-21 Nanoparticle material production equipment

Publications (2)

Publication Number Publication Date
JP2015205247A true JP2015205247A (en) 2015-11-19
JP6277844B2 JP6277844B2 (en) 2018-02-14

Family

ID=54602570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087768A Expired - Fee Related JP6277844B2 (en) 2014-04-21 2014-04-21 Nanoparticle material production equipment

Country Status (1)

Country Link
JP (1) JP6277844B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087155A (en) * 2015-11-12 2017-05-25 パナソニックIpマネジメント株式会社 Apparatus for producing fine particles and method for producing fine particles
JP2018176121A (en) * 2017-04-19 2018-11-15 パナソニックIpマネジメント株式会社 Apparatus for producing fine particles and method for producing fine particles
JP2019136694A (en) * 2018-02-09 2019-08-22 パナソニックIpマネジメント株式会社 Apparatus for producing fine particle, and method for producing fine particle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251112A (en) * 1984-05-23 1985-12-11 Daido Steel Co Ltd Process and device for preparing silicon
JPH07187631A (en) * 1993-12-22 1995-07-25 Ryoda Sato Production of carbon cluster
JPH07187639A (en) * 1993-12-22 1995-07-25 Ryoda Sato Production of silicon carbide utilizing multiarc
JP2002504057A (en) * 1997-06-06 2002-02-05 シュウォブ,イバン Method and apparatus for producing fullerenes
JP2005343784A (en) * 2004-05-06 2005-12-15 Fukui Prefecture Method for producing nano structure carbon material and production apparatus
JP2009097039A (en) * 2007-10-17 2009-05-07 Konica Minolta Medical & Graphic Inc Particle manufacturing method
JP2009285537A (en) * 2008-05-27 2009-12-10 Sumitomo Metal Mining Co Ltd Method for producing fine particle and production apparatus to be used therein
JP2013082591A (en) * 2011-10-12 2013-05-09 Tokyo Institute Of Technology Apparatus and method for producing glass
JP2013532063A (en) * 2010-06-28 2013-08-15 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Production of ultrafine particles in plasma systems with controlled pressure zones

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251112A (en) * 1984-05-23 1985-12-11 Daido Steel Co Ltd Process and device for preparing silicon
JPH07187631A (en) * 1993-12-22 1995-07-25 Ryoda Sato Production of carbon cluster
JPH07187639A (en) * 1993-12-22 1995-07-25 Ryoda Sato Production of silicon carbide utilizing multiarc
JP2002504057A (en) * 1997-06-06 2002-02-05 シュウォブ,イバン Method and apparatus for producing fullerenes
JP2005343784A (en) * 2004-05-06 2005-12-15 Fukui Prefecture Method for producing nano structure carbon material and production apparatus
JP2009097039A (en) * 2007-10-17 2009-05-07 Konica Minolta Medical & Graphic Inc Particle manufacturing method
JP2009285537A (en) * 2008-05-27 2009-12-10 Sumitomo Metal Mining Co Ltd Method for producing fine particle and production apparatus to be used therein
JP2013532063A (en) * 2010-06-28 2013-08-15 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Production of ultrafine particles in plasma systems with controlled pressure zones
JP2013082591A (en) * 2011-10-12 2013-05-09 Tokyo Institute Of Technology Apparatus and method for producing glass

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087155A (en) * 2015-11-12 2017-05-25 パナソニックIpマネジメント株式会社 Apparatus for producing fine particles and method for producing fine particles
JP2018176121A (en) * 2017-04-19 2018-11-15 パナソニックIpマネジメント株式会社 Apparatus for producing fine particles and method for producing fine particles
US10898957B2 (en) 2017-04-19 2021-01-26 Panasonic Intellectual Property Management Co., Ltd. Production apparatus and production method for fine particles
JP2019136694A (en) * 2018-02-09 2019-08-22 パナソニックIpマネジメント株式会社 Apparatus for producing fine particle, and method for producing fine particle
JP7142241B2 (en) 2018-02-09 2022-09-27 パナソニックIpマネジメント株式会社 Microparticle manufacturing apparatus and microparticle manufacturing method

Also Published As

Publication number Publication date
JP6277844B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6277844B2 (en) Nanoparticle material production equipment
CN106693853A (en) Fine particle production apparatus and fine particle production method
JP6924944B2 (en) Fine particle manufacturing equipment and fine particle manufacturing method
CN100503430C (en) Method and device for producing nano-size carbon particles and monolayer carbon tube
JP6512484B2 (en) Microparticle production apparatus and method
CN103229601A (en) Method and device for generating a non-sothermal plasma jet
JP6962825B2 (en) High frequency induced thermal plasma device
CN106185947A (en) A kind of preparation method of nano silica fume
CN103501889B (en) By at SiO 2and FeTiO 3the method that electromagnetic interaction obtains silicon and titanium is produced between particle and magnetic wave
Holgate et al. Electrohydrodynamic stability of a plasma-liquid interface
US20150239740A1 (en) Method for fabricating porous carbon material
JP2018114462A (en) Fine particle manufacturing device and manufacturing method
Polyakov et al. On the mechanism of radial sustenance of dense dusty plasmas
JP7142241B2 (en) Microparticle manufacturing apparatus and microparticle manufacturing method
Furukawa et al. Numerical study of nanoparticle formation in two-coil tandem-type modulated induction thermal plasmas with simultaneous modulation of upper-and lower-coil currents
JP6009947B2 (en) Nano particle production equipment
US10974220B2 (en) Fine particle producing apparatus and fine particle producing method
JP6287553B2 (en) Nanomaterial production equipment
CN110651334A (en) Generator and method for generating electricity
JP6722461B2 (en) Powder processing apparatus and method
CN209754020U (en) Preparation device of spherical tungsten powder
Yamamoto et al. Numerical analysis of metal vapor behavior with multi-diffusion system in TIG welding of stainless steel
JP2012130826A (en) Nano-particle manufacturing method, nano-particles, and nano-particle manufacturing apparatus
JP5852973B2 (en) Carbon nanoparticle manufacturing method and manufacturing apparatus thereof
KR20170108881A (en) Ultra-high temperature precipitation process for preparing polycrystalline silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180101

R150 Certificate of patent or registration of utility model

Ref document number: 6277844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370