JP2015203531A - Operation plan drafting device for heat source facility and operation plan drafting method in waste-heat utilization system - Google Patents

Operation plan drafting device for heat source facility and operation plan drafting method in waste-heat utilization system Download PDF

Info

Publication number
JP2015203531A
JP2015203531A JP2014083116A JP2014083116A JP2015203531A JP 2015203531 A JP2015203531 A JP 2015203531A JP 2014083116 A JP2014083116 A JP 2014083116A JP 2014083116 A JP2014083116 A JP 2014083116A JP 2015203531 A JP2015203531 A JP 2015203531A
Authority
JP
Japan
Prior art keywords
heat source
heat utilization
exhaust heat
source facility
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014083116A
Other languages
Japanese (ja)
Other versions
JP6392537B2 (en
Inventor
亮介 中村
Ryosuke Nakamura
亮介 中村
勉 河村
Tsutomu Kawamura
勉 河村
正教 神永
Masakazu Kaminaga
正教 神永
孝宣 鈴木
Takanobu Suzuki
孝宣 鈴木
雅史 坂齊
Masashi BANSAI
雅史 坂齊
真紀子 市ヶ谷
Makiko Ichigaya
真紀子 市ヶ谷
理 國友
Osamu Kunitomo
理 國友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Tokyo Gas Engineering Solutions Corp
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Tokyo Gas Engineering Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd, Tokyo Gas Engineering Solutions Corp filed Critical Hitachi Ltd
Priority to JP2014083116A priority Critical patent/JP6392537B2/en
Publication of JP2015203531A publication Critical patent/JP2015203531A/en
Application granted granted Critical
Publication of JP6392537B2 publication Critical patent/JP6392537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PROBLEM TO BE SOLVED: To provide an operation plan drafting device and an operation plan drafting method in a waste-heat utilization system capable of drafting an operation plan for a heat source facility in consideration of energy consumption characteristic of the waste-heat utilization facility changing in response to an amount of usage of discharged hot water at a waste-heat utilization system using waste-heat of waste hot water and the like not determining a priority order in use of waste-heat under assumption of usage of waste-heat at a waste-heat utilization facility.SOLUTION: This invention relates to an operation plan drafting device for heat source facility in a waste-heat utilization system for drafting an operation plan for performing the most suitable operation of heat source facility including waste-heat utilizing heat source facility for supplying hot heat or cold heat under utilization of waste-heat so as to calculate an operation plan for waste-heat utilization heat source facility on the basis of energy consumption characteristic varying in response to an amount of usage of waste hot water for the waste heat utilization heat source facility.

Description

本発明は、排熱利用システムにおける熱源設備の運転計画立案装置及び運転計画立案方法に係り、排温水等の排熱を使用する排熱利用システムにおいて、その排熱の使用方法によりエネルギー消費特性が変動する排熱利用設備を含めた熱源設備を最適に運転するための運転計画を立案する運転計画立案装置及び運転計画立案方法に関する。   The present invention relates to an operation plan planning apparatus and an operation plan planning method for a heat source facility in an exhaust heat utilization system, and in an exhaust heat utilization system that uses exhaust heat such as exhaust hot water, the energy consumption characteristics depend on the use method of the exhaust heat. The present invention relates to an operation plan planning apparatus and an operation plan planning method for planning an operation plan for optimally operating a heat source facility including a fluctuating exhaust heat utilization facility.

従来から、例えばビル等の熱需要家へ温冷熱を供給する熱源プラントにおいて、省エネやCO排出量の削減を目的とした様々な技術が提案されている。 2. Description of the Related Art Conventionally, various technologies for energy saving and CO 2 emission reduction have been proposed in a heat source plant that supplies hot and cold heat to heat consumers such as buildings.

この種の従来技術として、特許文献1には、数理計画法を用いた熱源機器の最適運転スケジュール演算を実用化し、熱源機器の運転における多様な要求に対応する技術が開示されている。   As this type of prior art, Japanese Patent Application Laid-Open No. H10-260260 discloses a technique that practically implements an optimum operation schedule calculation of a heat source device using mathematical programming and responds to various requirements in the operation of the heat source device.

特許文献1に開示されている熱源運転支援制御方法は、目的関数を最小にする混合整数線型計画法により、蓄熱槽を含む熱源システムの最適運転スケジュールを決定する熱源運転支援制御方法において、前記熱源システムを構成する各機器の運転・停止状態を表す変数の一部を予め連続変数に設定する変数設定手順と、前記熱源システムの負荷を予測する負荷予測演算手順と、この負荷予測演算手順で予測した負荷予測値と前記目的関数と前記運転・停止状態を表す変数とに基づいて、前記熱源システムの最適運転スケジュールを決定する最適運転スケジュール演算手順とを備えた方法である。   The heat source operation support control method disclosed in Patent Document 1 is a heat source operation support control method for determining an optimal operation schedule of a heat source system including a heat storage tank by a mixed integer linear programming method that minimizes an objective function. A variable setting procedure for setting a part of variables representing the operation / stop state of each device constituting the system as a continuous variable in advance, a load prediction calculation procedure for predicting the load of the heat source system, and prediction using this load prediction calculation procedure And an optimum operation schedule calculation procedure for determining an optimum operation schedule of the heat source system based on the predicted load value, the objective function, and the variable representing the operation / stop state.

特開2004−317049号公報JP 2004-317049 A

ところで、通常、熱源プラントで使用される熱源設備においては、定格出力に対する運転出力で定義される負荷率に対してそのエネルギー消費量(電力・蒸気・ガス等の消費量)が一意に決定される。しかしながら、そのような熱源設備のうち、特に排温水を使用する熱源設備(排熱利用設備)においては、排温水をその最大消費量だけ使用し得る場合を除き、そのエネルギー消費特性(負荷率に対するエネルギー消費量)が変動して複雑なものとなる。そのため、排熱利用設備で排熱を優先的に使用することを前提とせず、その排熱の使用方法も考慮に入れた運転計画を立案するためには、その複雑な特性を考慮する必要がある。   By the way, normally, in the heat source equipment used in the heat source plant, the energy consumption (consumption of electric power, steam, gas, etc.) is uniquely determined with respect to the load factor defined by the operation output with respect to the rated output. . However, among such heat source facilities, in particular, in heat source facilities that use waste hot water (waste heat utilization equipment), the energy consumption characteristics (with respect to the load factor) except for the case where only the maximum consumption of waste heat water can be used. Energy consumption) will fluctuate and become complicated. Therefore, it is not necessary to preferentially use waste heat in waste heat utilization equipment, and in order to create an operation plan that also considers how to use the waste heat, it is necessary to consider its complex characteristics. is there.

特許文献1に開示されている熱源運転支援制御方法においては、目的関数が経済性(建設費+運転費)や省エネルギー性(エネルギー消費)、環境保全性(CO排出量)、制御性(制御量偏差と操作量の2乗和)として表され、特に複合熱源システムを構成する各機器のうちスクリュ冷凍機の性能特性式が、例えばスクリュ冷凍機の入力エネルギー量(電力消費量)と出力エネルギー量(冷水製造熱量)との関係に基づいて定められているが、排熱の使用量に応じて変化する熱源設備の複雑な特性を如何にして有効に利用するかについては一切言及されていない。 In the heat source operation support control method disclosed in Patent Document 1, the objective functions are economic (construction cost + operation cost), energy saving (energy consumption), environmental conservation (CO 2 emissions), controllability (control) In particular, the performance characteristics of the screw chiller among the devices that make up the combined heat source system are, for example, the input energy amount (power consumption) and the output energy of the screw chiller. It is determined based on the relationship with the amount of heat (cold water production heat amount), but there is no mention of how to effectively use the complex characteristics of heat source equipment that changes according to the amount of exhaust heat used. .

本発明は、前記問題に鑑みてなされたものであって、その目的とするところは、排温水等の排熱を使用する排熱利用システムであって、排熱利用設備の排熱使用を前提としてその排熱利用設備が排熱を優先利用するものとしない排熱利用システムにおいて、排温水の使用量に応じて変動する排熱利用設備のエネルギー消費特性まで考慮した熱源設備の運転計画を立案することのできる熱源設備の運転計画立案装置及び運転計画立案方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is an exhaust heat utilization system that uses exhaust heat such as exhaust hot water, and presupposes the use of exhaust heat of the exhaust heat utilization equipment. As a waste heat utilization system that does not preferentially use waste heat, the operation plan of the heat source facility is considered, taking into account the energy consumption characteristics of the waste heat utilization facility that varies depending on the amount of waste heat water used. It is an object of the present invention to provide an operation planning device and an operation planning method for a heat source facility that can be performed.

上記する課題を解決するために、本発明に係る排熱利用システムにおける熱源設備の運転計画立案装置は、排熱を利用して温冷熱を供給する排熱利用熱源設備を含む熱源設備を最適に運転するための運転計画を立案する排熱利用システムにおける熱源設備の運転計画立案装置であって、前記排熱利用熱源設備に対する排温水の使用量に応じて変動するエネルギー消費特性に基づいて前記排熱利用熱源設備の運転計画を演算することを特徴とする。   In order to solve the above-described problems, the operation planning apparatus for the heat source equipment in the exhaust heat utilization system according to the present invention optimizes the heat source equipment including the exhaust heat utilization heat source equipment that supplies the heat and cold using the exhaust heat. An operation plan planning device for a heat source facility in an exhaust heat utilization system for planning an operation plan for operation, wherein the exhaust heat utilization facility is configured based on an energy consumption characteristic that fluctuates in accordance with an amount of waste heat water used for the exhaust heat utilization heat source facility. It is characterized by calculating an operation plan of a heat-use heat source facility.

また、本発明に係る排熱利用システムにおける熱源設備の運転計画立案方法は、排熱を利用して温冷熱を供給する排熱利用熱源設備を含む熱源設備を最適に運転するための運転計画を立案する排熱利用システムにおける熱源設備の運転計画立案方法であって、前記排熱利用熱源設備に対する排温水の使用量に応じて変動するエネルギー消費特性に基づいて前記排熱利用熱源設備の運転計画を演算することを特徴とする。   Further, the operation plan planning method of the heat source facility in the exhaust heat utilization system according to the present invention is an operation plan for optimally operating the heat source facility including the exhaust heat utilization heat source facility that supplies the heat and cold using the exhaust heat. A method for planning an operation plan of a heat source facility in an exhaust heat utilization system to be planned, wherein the operation plan of the exhaust heat utilization heat source facility is based on an energy consumption characteristic that varies in accordance with an amount of waste hot water used for the exhaust heat utilization heat source facility Is calculated.

以上の説明から理解できるように、本発明によれば、排熱利用熱源設備の排熱使用を前提としてその排熱利用熱源設備が排熱を優先利用するものとしない排熱利用システムにおいて、排温水の使用量に応じて変動する排熱利用熱源設備のエネルギー消費特性まで考慮した、最適な運転計画を立案することができ、当該排熱利用熱源設備を含む熱源設備を高効率で運転して省エネやCO排出量の削減を実現することができる。 As can be understood from the above description, according to the present invention, in the exhaust heat utilization system in which the exhaust heat utilization heat source facility does not preferentially use the exhaust heat on the premise of the exhaust heat utilization of the exhaust heat utilization heat source facility. It is possible to formulate an optimal operation plan that takes into account the energy consumption characteristics of the waste heat utilization heat source equipment that fluctuates according to the amount of hot water used, and operates the heat source equipment including the waste heat utilization heat source equipment with high efficiency. Energy saving and CO 2 emission reduction can be realized.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明に係る熱源設備の運転制御システム(運転計画立案装置)の実施形態1の全体構成を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows the whole structure of Embodiment 1 of the operation control system (operation plan planning apparatus) of the heat source equipment which concerns on this invention. 図1に示す熱源設備の運転制御システムの処理フローを説明するフロー図。The flowchart explaining the processing flow of the operation control system of the heat source equipment shown in FIG. 排熱利用熱源設備の排温水の消費特性の一例を示す図。The figure which shows an example of the consumption characteristic of the waste heat water of waste heat utilization heat source equipment. 排熱利用熱源設備の蒸気またはガスの消費特性の一例を示す図。The figure which shows an example of the consumption characteristic of the vapor | steam or gas of waste heat utilization heat source equipment. スクリュ冷凍機の電力消費特性の一例を示す図。The figure which shows an example of the power consumption characteristic of a screw refrigerator. 熱源設備最適演算用モデルの区分線形近似を模式的に説明する模式図。The schematic diagram which illustrates typically the piecewise linear approximation of the heat source equipment optimal calculation model. 本発明に係る熱源設備の運転制御システム(運転計画立案装置)の実施形態2の全体構成を示す全体構成図。The whole block diagram which shows the whole structure of Embodiment 2 of the operation control system (operation plan planning apparatus) of the heat source equipment which concerns on this invention. 本発明に係る熱源設備の運転制御システム(運転計画立案装置)の実施形態3の全体構成を示す全体構成図。The whole block diagram which shows the whole structure of Embodiment 3 of the operation control system (operation plan planning apparatus) of the heat source equipment which concerns on this invention.

以下、本発明に係る排熱利用システムにおける熱源設備の運転計画立案装置及び運転計画立案方法の実施形態について、図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an operation plan planning apparatus and an operation plan planning method for a heat source facility in an exhaust heat utilization system according to the present invention will be described with reference to the drawings.

<実施形態1>
図1は、本発明に係る熱源設備の運転制御システム(運転計画立案装置)の実施形態1の全体構成を示したものである。
<Embodiment 1>
FIG. 1 shows an overall configuration of Embodiment 1 of an operation control system (operation plan planning device) for a heat source facility according to the present invention.

図1に示す熱源設備の運転制御システム(運転計画立案装置)101は、排熱利用熱源設備の排熱使用を前提としてその排熱利用熱源設備が排熱を優先的に利用して運転するものとしない排熱利用システムにおいて、排熱利用熱源設備の排温水使用量に応じて変動するエネルギー消費特性を考慮した熱源設備の運転計画を立案するものである。この熱源設備の運転制御システム101は、主に、最適演算用データ作成部104と、熱源設備最適演算用モデル作成部102と、排熱利用熱源設備最適演算用モデル作成部103と、最適演算部105とを備えている。   The operation control system (operation planning device) 101 of the heat source equipment shown in FIG. 1 is operated with the waste heat utilization heat source equipment preferentially using waste heat on the premise that the waste heat utilization heat source equipment is used. In the waste heat utilization system that does not, the operation plan of the heat source facility is considered in consideration of the energy consumption characteristics that fluctuate according to the amount of waste heat water used by the waste heat utilization heat source facility. This heat source facility operation control system 101 mainly includes an optimum calculation data creation unit 104, a heat source facility optimum computation model creation unit 102, a waste heat utilization heat source facility optimum computation model creation unit 103, and an optimum computation unit. And 105.

最適演算用データ作成部104は、気温や気象情報等を含む気温等外部データ106と熱源設備パラメータ107とを用いて、最適演算の対象でない設備(例えば、冷却水の供給源である冷却塔、自然エネルギーを使用(利用)する太陽光発電パネル、その他運転計画が予め定められている設備等であって、運転計画を立案する際の情報としてその出力情報等が必要な設備)の熱出力等を求め、その演算結果を熱源設備最適演算用モデル作成部102や最適演算部105に送信する。   The optimum calculation data creation unit 104 uses the external data 106 such as temperature including temperature and weather information and the heat source facility parameter 107, and the equipment not subject to the optimum calculation (for example, a cooling tower that is a cooling water supply source, Solar power generation panels that use (use) natural energy, other facilities that have a predetermined operation plan, etc., and that require output information as information when planning an operation plan) And the calculation result is transmitted to the heat source equipment optimal calculation model creation unit 102 and the optimal calculation unit 105.

熱源設備最適演算用モデル作成部102は、最適演算用データ作成部104の演算結果と気温等外部データ106と熱源設備パラメータ107とを用いて、最適演算に用いる従来の熱源設備(排熱利用熱源設備以外の熱源設備)に対する熱源設備最適演算用モデルを作成し、その作成結果を最適演算部105に送信する。   The heat source equipment optimum computation model creation unit 102 uses the computation result of the optimum computation data creation unit 104, the external data 106 such as the temperature, and the heat source equipment parameter 107, and the conventional heat source equipment used for the optimum computation (heat source using exhaust heat). A heat source facility optimal calculation model for a heat source facility other than the facility) is created, and the created result is transmitted to the optimum computation unit 105.

一方、排熱利用熱源設備最適演算用モデル作成部103は、気温等外部データ106と排熱利用熱源設備特性データ108を用いて、最適演算の対象となる排熱利用熱源設備のエネルギー消費特性を規定する排熱利用熱源設備最適演算用モデルを作成し、その作成結果を最適演算部105に送信する。   On the other hand, the exhaust heat utilization heat source equipment optimal calculation model creation unit 103 uses the external data 106 such as temperature and the exhaust heat utilization heat source equipment characteristic data 108 to determine the energy consumption characteristics of the exhaust heat utilization heat source equipment that is the target of the optimum computation. A specified exhaust heat utilization heat source facility optimum computation model is created, and the creation result is transmitted to the optimum computation unit 105.

最適演算部105は、最適演算用データ作成部104から送信された演算結果(熱出力等)と、熱源設備最適演算用モデル作成部102から送信された作成結果(熱源設備最適演算用モデル)と、排熱利用熱源設備最適演算用モデル作成部103から送信された作成結果(排熱利用熱源設備最適演算用モデル)と、予測熱需要109と、ユーザ等による目的関数の指定指示110とに基づき、例えば混合整数計画法などの最適化手法を用いて熱源設備の運転計画を作成し、その作成結果(運転計画111)を例えば熱需要家等に配設された表示パネル等に出力する。   The optimum computation unit 105 includes the computation result (heat output, etc.) transmitted from the optimum computation data creation unit 104, and the creation result (heat source facility optimum computation model) transmitted from the heat source facility optimum computation model creation unit 102. Based on the creation result (model for optimum computation of exhaust heat utilization heat source equipment), the predicted heat demand 109, and the objective function designation instruction 110 by the user, etc. For example, an operation plan of the heat source facility is created using an optimization method such as a mixed integer programming method, and the creation result (operation plan 111) is output to a display panel or the like disposed in a heat consumer or the like.

なお、上記した気温等外部データ106や熱源設備パラメータ107、排熱利用熱源設備特性データ108、予測熱需要109は、予め運転制御システム101内に設けられた記憶部(不図示)等に記憶されている。   The external data 106 such as temperature, the heat source equipment parameter 107, the exhaust heat utilization heat source equipment characteristic data 108, and the predicted heat demand 109 are stored in advance in a storage unit (not shown) or the like provided in the operation control system 101. ing.

図2は、図1に示す熱源設備の運転制御システム101の処理フローを説明したものである。なお、この処理フローは、所定の時間毎に定期的に実行されている。   FIG. 2 illustrates the processing flow of the operation control system 101 for the heat source equipment shown in FIG. Note that this processing flow is periodically executed every predetermined time.

図2に示すように、本実施形態1の熱源設備の運転制御システム101では、まず、最適演算用データ作成部104により、気温等外部データ106と熱源設備パラメータ107を利用して、熱源設備最適演算用モデルに寄与する冷却塔の冷却水温度や最適演算の対象外の設備の熱出力等を生成する(S201)。なお、このような最適演算の対象外の設備としては、例えば、予め定められたスケジュールで運転して電熱を出力する場合のコジェネレーションシステム、外気湿球温度によって決定される温度の冷却水を出力する冷却塔、再生可能エネルギーを使用する太陽光発電パネル、太陽熱集熱器などが挙げられる。また、コジェネレーションシステムは、最適演算の対象となる熱源設備に含めることもできる。   As shown in FIG. 2, in the heat source equipment operation control system 101 of the first embodiment, first, the optimum calculation data creation unit 104 uses the external data 106 such as temperature and the heat source equipment parameters 107 to optimize the heat source equipment. The cooling tower temperature that contributes to the calculation model, the heat output of the equipment not subject to the optimal calculation, and the like are generated (S201). In addition, as equipment that is not subject to such an optimal calculation, for example, a cogeneration system that operates according to a predetermined schedule and outputs electric heat, cooling water at a temperature determined by the outside wet bulb temperature is output. Cooling towers, solar panels using renewable energy, solar collectors, etc. In addition, the cogeneration system can be included in the heat source equipment that is the target of the optimum calculation.

次いで、熱源設備最適演算用モデル作成部102により、気温等外部データ106や熱源設備パラメータ107等に基づいて最適演算に用いる従来の熱源設備(排熱利用熱源設備以外の熱源設備)の熱源設備最適演算用モデルを作成する(S202)。なお、これら従来の熱源設備(排熱利用熱源設備以外の熱源設備)は、上記した外部条件のデータが定まれば負荷率に対してそのエネルギー消費量(蒸気・電気・ガス等の消費量)が一意に決定される設備である。   Next, the heat source equipment optimum computation model creation unit 102 optimizes the heat source equipment of the conventional heat source equipment (heat source equipment other than the heat source equipment using exhaust heat) used for the optimum computation based on the external data 106 such as temperature, the heat source equipment parameter 107, etc. A calculation model is created (S202). Note that these conventional heat source facilities (heat source facilities other than waste heat utilization heat source facilities) have their energy consumption (consumption of steam, electricity, gas, etc.) relative to the load factor if the above-mentioned external condition data is determined. Is a facility that is uniquely determined.

次に、排熱利用熱源設備最適演算用モデル作成部103により、排熱利用熱源設備特性データ108と気温等外部データ106を用いて最適演算で用いる排熱利用熱源設備最適演算用モデルを作成する(S203)。   Next, the exhaust heat utilization heat source facility optimum calculation model creation unit 103 creates the exhaust heat utilization heat source facility optimum calculation model used in the optimum calculation using the exhaust heat utilization heat source facility characteristic data 108 and the external data 106 such as temperature. (S203).

次に、最適演算部105により、熱源設備最適演算用モデル作成部102と排熱利用熱源設備最適演算用モデル作成部103により作成された熱源設備最適演算用モデルと排熱利用熱源設備最適演算用モデルの情報を使用し、予測熱需要109等の外部条件を制約としてユーザによって指定される目的関数に沿った運転計画の最適化を行い、作成された運転計画を外部(例えば熱需要家等に配設された表示パネル等)へ出力する(S204)。   Next, the optimum computation unit 105 uses the heat source facility optimum computation model creation unit 102 and the exhaust heat utilization heat source facility optimum computation model creation unit 103, and the exhaust heat utilization facility heat source facility optimum computation. The model information is used to optimize the operation plan according to the objective function specified by the user with external conditions such as the predicted heat demand 109 as constraints, and the created operation plan is external (for example, to heat consumers, etc.) (S204).

なお、最適演算部105は、ユーザ等により熱源設備パラメータの変更が実施されたか否かを判定し(S205)、熱源設備パラメータの変更が実施されたと判定した場合には、熱源設備パラメータを更新した後(S206)、再度運転計画の最適化を実施する。   The optimum computing unit 105 determines whether or not the heat source equipment parameter has been changed by the user or the like (S205), and when it is determined that the heat source equipment parameter has been changed, the heat source equipment parameter is updated. Later (S206), the operation plan is optimized again.

ここで、排熱利用熱源設備最適演算用モデル作成部103による排熱利用熱源設備最適演算用モデルの作成時に考慮する排熱利用熱源設備のエネルギー消費特性(負荷率に対するエネルギー消費量)について、図3及び図4を参照して説明する。   Here, the energy consumption characteristics (energy consumption relative to the load factor) of the waste heat utilization heat source equipment considered when creating the exhaust heat utilization heat source equipment optimum computation model by the exhaust heat utilization heat source equipment optimum computation model creation unit 103 is shown in FIG. 3 and FIG.

図3は、排熱利用熱源設備の排温水のエネルギー消費特性の一例を示したものである。なお、図3では、冷却水入口温度と冷水出口温度が異なる各条件下において排熱利用熱源設備が十分にその排熱(排温水)を使用することができる、すなわち、排熱利用熱源設備の排熱(排温水)使用量が最大である場合を示している。   FIG. 3 shows an example of the energy consumption characteristics of the waste heat water of the waste heat utilization heat source facility. In FIG. 3, the exhaust heat utilization heat source facility can sufficiently use the exhaust heat (exhaust hot water) under each condition where the cooling water inlet temperature and the cold water outlet temperature are different, that is, the exhaust heat utilization heat source facility. This shows the case where the amount of exhaust heat (waste water) is the maximum.

図示するように、排温水を利用する排熱利用熱源設備の排温水消費量は、一般に、ある負荷率(運転出力(実出力)/定格出力)を境に増加から減少に転換する。すなわち、排熱利用熱源設備の排温水消費特性は、ある負荷率を境に折れ線形状となる特性を有している。この排温水消費特性において排温水消費量が極値(最大値)をとる負荷率(本明細書においては、排温水負荷率区分点として記載)は、排熱利用熱源設備が使用する冷却水の温度(冷却水入口温度)と、出力となる冷水の出口側温度(冷水出口温度)とに依存して変化する。排温水を十分に使用する場合、その時のエネルギー消費特性は一意に決定されるものの、排温水を十分に使用しない場合には、排温水負荷率区分点は低下する。すなわち、排温水を十分に使用できない場合、排熱利用熱源設備のエネルギー消費特性は、冷却水入口温度と冷水出口温度の変化に対するエネルギー消費特性の変化と同様に変動する。なお、通常運転を行うことのできる負荷の最小値である最低負荷率以下では出力と停止を繰り返す発停運転を行う場合があり、図3にはその際の特性も併せて示している。   As shown in the figure, the waste water consumption of exhaust heat utilization heat source equipment that uses waste heat water generally changes from increasing to decreasing at a certain load factor (operation output (actual output) / rated output). That is, the waste water consumption characteristic of the waste heat utilization heat source facility has a characteristic of forming a polygonal line with a certain load factor as a boundary. In this waste water consumption characteristic, the load factor at which the waste water consumption takes an extreme value (maximum value) (in this specification, described as the waste heat water load factor division point) is the cooling water used by the waste heat utilization heat source equipment. It changes depending on the temperature (cooling water inlet temperature) and the outlet side temperature (cooling water outlet temperature) of the cold water to be output. When exhaust water is used sufficiently, the energy consumption characteristics at that time are uniquely determined. However, when exhaust water is not used sufficiently, the waste water load factor division point decreases. That is, when the exhaust hot water cannot be used sufficiently, the energy consumption characteristics of the exhaust heat utilization heat source facility fluctuate in the same manner as the change of the energy consumption characteristics with respect to the change of the cooling water inlet temperature and the cold water outlet temperature. Note that there are cases where the start / stop operation is repeated for output and stop when the load is below the minimum load rate, which is the minimum value of the load that can be operated normally, and FIG. 3 also shows the characteristics at that time.

また、図4は、排熱利用熱源設備の蒸気またはガスのエネルギー消費特性の一例を示したものである。なお、図4でも、図3と同様、冷却水入口温度と冷水出口温度が異なる各条件下において排熱利用熱源設備が十分にその排熱(排温水)を使用することができる、すなわち、排熱利用熱源設備の排熱(排温水)使用量が最大である場合を示している。   FIG. 4 shows an example of the energy consumption characteristics of steam or gas in the exhaust heat utilization heat source facility. In FIG. 4, as in FIG. 3, the exhaust heat utilization heat source facility can sufficiently use the exhaust heat (exhaust hot water) under each condition where the cooling water inlet temperature and the cooling water outlet temperature are different. This shows the case where the amount of exhaust heat (exhaust hot water) used by the heat-use heat source facility is the maximum.

排熱利用熱源設備において、蒸気またはガスは、上記した排温水のみで熱需要を賄いきれない不足分を補うために消費されるため、そのエネルギー消費量は、図4に示すように、上記した排温水負荷率区分点から増加する。すなわち、そのエネルギー消費特性は、排熱利用熱源設備が使用する冷却水の温度(冷却水入口温度)と出力となる冷水の出口側温度(冷水出口温度)とに依存して変化する排温水負荷率区分点から、負荷率に対して増加する特性を有している。排温水を十分に使用するとした場合、その時のエネルギー消費特性は一意に決定されるものの、排温水が十分に使用できない場合には、図3に示す排温水のエネルギー消費特性と同様、冷却水入口温度と冷水出口温度の変化に対するエネルギー消費特性の変化と同様に変動する(図4において、縦軸方向に平行移動するように変動する)。   In the exhaust heat utilization heat source equipment, steam or gas is consumed to make up for the shortage that cannot meet the heat demand only with the above-described exhaust hot water, so the energy consumption is as shown in FIG. Increase from the waste water load factor division point. That is, the energy consumption characteristics of the exhaust heat water load that varies depending on the temperature of the cooling water used by the exhaust heat utilization heat source equipment (cooling water inlet temperature) and the outlet temperature of the cold water that is output (cold water outlet temperature). From the rate dividing point, it has a characteristic of increasing with respect to the load factor. When the exhaust water is used sufficiently, the energy consumption characteristics at that time are uniquely determined. However, when the exhaust water is not sufficiently used, the cooling water inlet is similar to the energy consumption characteristics of the exhaust water shown in FIG. It fluctuates similarly to the change of the energy consumption characteristic with respect to the change of the temperature and the cold water outlet temperature (in FIG. 4, it fluctuates so as to translate in the vertical axis direction).

図3及び図4に基づき説明した排熱利用熱源設備のエネルギー消費特性を加味して、図2に示した熱源設備の運転制御システム101の処理フローをより詳細に説明すると、まず、最適演算用データ作成部104により、最適演算の対象外の設備の熱出力等を生成する(S201)。   The processing flow of the operation control system 101 of the heat source facility shown in FIG. 2 will be described in more detail in consideration of the energy consumption characteristics of the exhaust heat utilization heat source facility described based on FIG. 3 and FIG. The data creation unit 104 generates the heat output of the equipment that is not subject to the optimal calculation (S201).

次いで、熱源設備最適演算用モデル作成部102により、気温等外部データ106や熱源設備パラメータ107等を用いて排熱利用熱源設備以外の熱源設備の熱源設備最適演算用モデルを作成する(S202)。   Next, the heat source equipment optimum computation model creation unit 102 creates a heat source equipment optimum computation model for a heat source equipment other than the exhaust heat utilization heat source equipment using the external data 106 such as temperature, the heat source equipment parameter 107, and the like (S202).

例えば、図5は、排熱利用熱源設備以外の熱源設備であるスクリュ冷凍機の電力消費特性の一例を示したものであり、図6は、熱源設備最適演算用モデルの区分線形近似を模式的に説明したものである。   For example, FIG. 5 shows an example of the power consumption characteristics of a screw refrigerator that is a heat source facility other than the exhaust heat utilization heat source facility, and FIG. 6 schematically shows a piecewise linear approximation of the heat source facility optimum calculation model. This is the explanation.

図5に示す最低負荷率は設備毎にその値が規定されており、この最低負荷率を下回る場合、スクリュ冷凍機は運転と停止を繰り返す発停運転を行う。このような最低負荷率を下回る領域でスクリュ冷凍機を運転することがある場合には、熱源設備最適演算用モデル作成部102は、その特性を近似した曲線を熱源設備最適演算用モデルに入力する。一方で、最低負荷率を下回る領域でスクリュ冷凍機を運転することを考慮しない場合には、熱源設備最適演算用モデル作成部102は、その特性を熱源設備最適演算用モデルに入力しない。   The value of the minimum load factor shown in FIG. 5 is defined for each facility. When the value is below this minimum load factor, the screw refrigerator performs start / stop operation that repeats operation and stop. When the screw refrigerator is operated in such a region below the minimum load factor, the heat source facility optimum calculation model creation unit 102 inputs a curve approximating the characteristics to the heat source facility optimum calculation model. . On the other hand, when the operation of the screw refrigerator is not considered in the region below the minimum load factor, the heat source facility optimum calculation model creation unit 102 does not input the characteristics to the heat source facility optimum calculation model.

また、熱源設備最適演算用モデル作成部102は、最低負荷率を上回る領域では、図6に示すような区分線形近似を行って各熱源設備最適演算用モデルを作成し、各モデルの比例係数と切片を最適演算部105へ出力する。なお、最適演算部105が例えば線形混合整数計画法を用いることなく非線形最適化が可能である場合には、図5に示す曲線の式を表す係数をそのまま最適演算部105へ出力してもよい。   In addition, the heat source equipment optimal calculation model creation unit 102 creates a piecewise linear approximation model as shown in FIG. 6 in a region exceeding the minimum load factor, and creates each heat source equipment optimum calculation model. The intercept is output to the optimum computation unit 105. Note that when the optimal calculation unit 105 can perform nonlinear optimization without using, for example, linear mixed integer programming, the coefficient representing the equation of the curve shown in FIG. .

なお、蒸気吸収冷凍機やガス焚吸収冷温水機等の熱源設備についても、図5及び図6に示す曲線と同様の形式の曲線(その場合には、縦軸が蒸気消費量あるいはガス消費量)でそのエネルギー消費特性を表すことができる。   For heat source equipment such as steam absorption refrigerators and gas fired absorption chiller / heaters, curves of the same format as the curves shown in FIGS. 5 and 6 (in this case, the vertical axis indicates steam consumption or gas consumption). ) Can represent its energy consumption characteristics.

次に、排熱利用熱源設備最適演算用モデル作成部103により、図3、4に示す排熱利用熱源設備のエネルギー消費特性を利用した排熱利用熱源設備最適演算用モデルを作成する(S203)。排熱利用熱源設備特性データ108はそのための情報を含んでおり、排熱利用熱源設備特性データ108に含まれる情報のうち、図3に示すエネルギー消費特性をモデル化するためのパラメータとしては、排温水負荷率区分点の冷水出口温度や冷却水入口温度による変動を表す以下の式(1)を定めるパラメータや、排温水負荷率区分点以下あるいは以上の場合の排温水消費量の傾きに関するパラメータ、発停運転時の排温水の消費特性に関するパラメータ等が挙げられる。なお、より詳細にエネルギー消費特性をモデル化するために、排温水のエネルギー消費特性を直線ではなく曲線近似し、その曲線に関するパラメータを排熱利用熱源設備最適演算用モデル作成部103に入力してもよい。   Next, the exhaust heat utilization heat source facility optimum computation model creation unit 103 creates an exhaust heat utilization heat source facility optimum computation model using the energy consumption characteristics of the exhaust heat utilization heat source facility shown in FIGS. 3 and 4 (S203). . The exhaust heat utilization heat source facility characteristic data 108 includes information for that purpose, and among the information included in the exhaust heat utilization heat source facility characteristic data 108, the parameters for modeling the energy consumption characteristics shown in FIG. A parameter that defines the following equation (1) that expresses the variation of the hot water load factor division point depending on the chilled water outlet temperature and the cooling water inlet temperature, and a parameter related to the slope of the waste water consumption amount when the hot water load factor division point is below or above The parameter etc. regarding the consumption characteristic of the waste water at the time of start / stop operation are mentioned. In order to model the energy consumption characteristics in more detail, the energy consumption characteristics of the exhaust water are approximated by a curve instead of a straight line, and parameters relating to the curve are input to the model creation unit 103 for calculating the optimum heat source equipment for exhaust heat utilization. Also good.

[数1]

Figure 2015203531
[Equation 1]
Figure 2015203531

なお、式(1)において、tは時間、xM_mh_maxは排温水負荷率区分点、Tcは冷水出口温度、Tclは冷却水入口温度を表している。 In equation (1), t represents time, x M_mh_max represents the waste water load factor division point, T c represents the cold water outlet temperature, and T cl represents the cooling water inlet temperature.

また、図4に示すエネルギー消費特性をモデル化するためのパラメータとしては、基本的に負荷率によって変動し、かつ冷水出口温度や冷却水入口温度によって変動する蒸気またはガスの消費量を示す以下の式(2)を定めるパラメータが挙げられる。   In addition, the parameters for modeling the energy consumption characteristics shown in FIG. 4 are basically the following, which indicates the consumption of steam or gas that varies depending on the load factor and varies depending on the chilled water outlet temperature or the cooling water inlet temperature. The parameter which defines Formula (2) is mentioned.

[数2]

Figure 2015203531
[Equation 2]
Figure 2015203531

なお、式(2)において、GorSはガスまたは蒸気の消費量、xは負荷率を表している。   In equation (2), GorS represents the consumption of gas or steam, and x represents the load factor.

排熱利用熱源設備最適演算用モデル作成部103は、これら排熱利用熱源設備特性データ108等に含まれる情報を用いて図3、4に示す特性曲線を生成した後、最適演算部105においてその特性曲線を運転計画の演算に使用するための所定の処理を実行する。   The exhaust heat utilization heat source equipment optimum calculation model creation unit 103 generates the characteristic curves shown in FIGS. 3 and 4 using the information included in the exhaust heat utilization heat source facility characteristic data 108 and the like, and then the optimum computation unit 105 A predetermined process for using the characteristic curve for the calculation of the operation plan is executed.

具体的には、最適演算部105が運転計画を作成する際に非線形計画法を用いる場合には、排熱利用熱源設備最適演算用モデル作成部103は、得られた特性曲線をそのまま使用する。一方で、最適演算部105が運転計画を作成する際に線形計画法を用いる場合には、排熱利用熱源設備最適演算用モデル作成部103は、得られた特性曲線から作成したモデルの線形化処理を実行する。   Specifically, when the optimal calculation unit 105 uses a non-linear programming method when generating an operation plan, the exhaust heat utilization heat source equipment optimal calculation model creation unit 103 uses the obtained characteristic curve as it is. On the other hand, when the optimal computation unit 105 uses linear programming when creating an operation plan, the model creation unit 103 for optimum calculation of exhaust heat utilization heat source equipment linearizes the model created from the obtained characteristic curve. Execute the process.

例えば、図4では、排温水を十分に使用する場合の冷水出口温度と冷却水入口温度で決定される曲線を示しているが、排熱が十分に使用できない場合の特性曲線は、排熱を十分に使用する場合の特性曲線を近似した曲線を縦軸方向に平行移動した曲線とほぼ等しくなることを利用すると、その蒸気消費量は以下の式(3)に示すように記述することができる。この例においては、負荷率に対して消費量の式を二次関数で近似している。   For example, FIG. 4 shows a curve determined by the chilled water outlet temperature and the cooling water inlet temperature when the exhaust hot water is sufficiently used, but the characteristic curve when the exhaust heat cannot be sufficiently used Using the fact that a curve approximating the characteristic curve when fully used becomes almost equal to the curve translated in the vertical axis direction, the steam consumption can be described as shown in the following equation (3). . In this example, the equation of consumption is approximated by a quadratic function with respect to the load factor.

[数3]

Figure 2015203531
[Equation 3]
Figure 2015203531

ここで、式(3)において、αは冷水出口温度によって変化する曲線の変化を考慮するための係数である。また、A1、A2は基本となる曲線形状を定めるための係数であって、αが1の時(定格時の冷水出口温度の時)の場合の基本となる曲線形状を定めるための係数である。また、βは排温水負荷率区分点の変化による縦軸方向の移動を表す定数であり、蒸気消費量がゼロとなる排温水負荷率区分点xmhを用いて以下の式(4)で表記される。 Here, in Expression (3), α is a coefficient for taking into account changes in the curve that change depending on the cold water outlet temperature. A 1 and A 2 are coefficients for determining the basic curve shape, and are factors for determining the basic curve shape when α is 1 (at the time of rated chilled water outlet temperature). It is. Β is a constant that represents the movement in the vertical axis due to the change in the waste water load factor division point, and is expressed by the following equation (4) using the waste water load factor division point x mh at which the steam consumption is zero. Is done.

[数4]

Figure 2015203531
[Equation 4]
Figure 2015203531

排熱利用熱源設備最適演算用モデル作成部103は、これらの係数を排熱利用熱源設備特性データ108として受け取り、ここで得られた特性曲線を用いて図6と同様に区分線形近似を行い、その係数を最適演算部105に送信する。なお、上記したS202と同様、最適演算部105が例えば線形混合整数計画法を用いることなく非線形最適化が可能である場合には、この曲線の式を表す係数をそのまま最適演算部105へ出力してもよい。これにより、排熱(排温水)使用量に応じて変化する排熱消費特性を考慮した熱源設備最適演算用モデルを利用することができる。   The exhaust heat utilization heat source facility optimum calculation model creation unit 103 receives these coefficients as the exhaust heat utilization heat source facility characteristic data 108, performs a piecewise linear approximation using the characteristic curve obtained here in the same manner as in FIG. The coefficient is transmitted to the optimum computation unit 105. As in S202 described above, when the optimum computing unit 105 can perform nonlinear optimization without using, for example, linear mixed integer programming, the coefficient representing the equation of this curve is output to the optimum computing unit 105 as it is. May be. Accordingly, it is possible to use a heat source facility optimum calculation model that takes into consideration exhaust heat consumption characteristics that change according to the amount of exhaust heat (exhaust hot water) used.

そして、最適演算部105により、一般に使用される混合整数線形計画法等を用いて運転計画の最適化演算を行う(S204)。ただし、最適演算部105による運転計画の演算方法は、これに限定されず、例えば非線形最適化やヒューリスティック等を用いて運転計画の最適化演算を行ってもよい。   Then, the optimization calculation unit 105 performs an optimization calculation of the operation plan using a generally used mixed integer linear programming method or the like (S204). However, the operation plan calculation method by the optimum calculation unit 105 is not limited to this, and the operation plan optimization calculation may be performed using, for example, nonlinear optimization, heuristic, or the like.

具体的には、最適演算部105は、例えばコストやCO排出量などの目的関数(ユーザによって指定)を最小化するように、用役の需要と供給の同一条件や、熱源設備最適演算用モデル作成部102と排熱利用熱源設備最適演算用モデル作成部103により作成された設備モデルにより規定される制約式等に基づいて運転計画の最適化演算を行う。例えば、最適演算部105は、混合整数線形計画法で解を求めるに当たり、排熱利用熱源設備最適演算用モデル作成部103により作成されたモデルに対して以下の式(5)に示すように負荷率を二つに分けて演算を行うことで、その最適化を行うことができる。 Specifically, the optimal calculation unit 105 is used for the same condition of utility demand and supply, or for optimal calculation of heat source equipment so as to minimize an objective function (specified by the user) such as cost and CO 2 emission amount. An operation plan optimization calculation is performed based on a constraint equation defined by the equipment model created by the model creation unit 102 and the exhaust heat utilization heat source equipment optimum computation model creation unit 103. For example, when calculating the solution by the mixed integer linear programming, the optimal calculation unit 105 loads the model created by the exhaust heat utilization heat source facility optimal calculation model creation unit 103 as shown in the following equation (5). The calculation can be optimized by dividing the rate into two.

[数5]

Figure 2015203531
[Equation 5]
Figure 2015203531

なお、式(5)において、xmhは上記式(4)と同様に排温水負荷率区分点、xstは残りの負荷率を表している。 In equation (5), x mh represents the waste water load factor division point as in equation (4), and x st represents the remaining load factor.

排温水の使用量が少ない場合、排温水負荷率区分点xmhの移動によって排熱利用熱源設備のエネルギー消費特性の変化を模擬することができるため、これに基づく制約式を用いることにより排熱利用熱源設備のエネルギー消費特性を詳細に考慮した運転計画を立案することができる。これにより、本実施形態1によれば、排熱を使用する熱源設備を含む全ての熱源設備に対して、排熱利用熱源設備の排温水使用量に応じて変動する複雑なエネルギー消費特性を考慮に入れた熱源設備の運転計画を立案することが可能となる。そのため、排熱を使用する熱源設備を含む全ての熱源設備を高効率で運転することができ、省エネやCO排出量の削減を実現することができる。例えば、熱源プラントにおける排熱量が少なく、排熱利用熱源設備を使用すると蒸気又はガスによる追焚きで効率が悪化する場合に、効率の良い電動の設備を追加で立ち上げる、あるいはそれのみで運転することで消費エネルギーを削減するような運転計画を作成できる。また、複数の排熱利用熱源設備があり、その全てに十分な量の排熱がない場合に、各熱源設備に分配するべき排熱量を精緻に決定できる。 When the amount of waste water used is small, it is possible to simulate changes in the energy consumption characteristics of the waste heat utilization heat source equipment by moving the waste heat water load factor division point x mh. It is possible to formulate an operation plan that takes into account the energy consumption characteristics of the heat source equipment. Thereby, according to this Embodiment 1, the complicated energy consumption characteristic which fluctuates according to the amount of waste heat water usage of waste heat utilization heat source equipment is considered with respect to all heat source equipment including heat source equipment which uses waste heat. It is possible to make an operation plan for the heat source equipment placed in Therefore, all the heat source equipment including the heat source equipment that uses the exhaust heat can be operated with high efficiency, and energy saving and CO 2 emission reduction can be realized. For example, if the amount of exhaust heat in the heat source plant is small and the efficiency deteriorates due to the use of exhaust heat-utilizing heat source equipment, additional efficient electric equipment is started up or operated alone. This makes it possible to create an operation plan that reduces energy consumption. Further, when there are a plurality of exhaust heat utilizing heat source facilities and all of them do not have a sufficient amount of exhaust heat, the amount of exhaust heat to be distributed to each heat source facility can be precisely determined.

<実施形態2>
図7は、本発明に係る熱源設備の運転制御システム(運転計画立案装置)の実施形態2の全体構成を示したものである。図7に示す実施形態2の運転制御システムは、図1に示す実施形態1の運転制御システムに対して、熱源設備特性データ演算部701Aや排熱利用熱源設備特性データ演算部703Aを利用して熱源設備パラメータ107Aや排熱利用熱源設備特性データ108Aを更新する構成が相違しており、その他の構成は実施形態1の運転制御システムと同様である。したがって、実施形態1と同様の構成には同様の符号を付してその詳細な説明は省略する。
<Embodiment 2>
FIG. 7 shows the overall configuration of a second embodiment of the operation control system (operation planning apparatus) for the heat source equipment according to the present invention. The operation control system of the second embodiment shown in FIG. 7 uses the heat source facility characteristic data calculation unit 701A and the exhaust heat utilization heat source facility characteristic data calculation unit 703A as compared with the operation control system of the first embodiment shown in FIG. The configuration for updating the heat source facility parameter 107A and the exhaust heat utilization heat source facility characteristic data 108A is different, and the other configurations are the same as those of the operation control system of the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図示するように、本実施形態2では、熱源設備の運転制御システム(運転計画立案装置)101Aの最適演算部105Aにより演算された運転計画111Aで運転される熱源プラント705Aの各熱源設備702Aが、熱源設備特性データ演算部701Aや排熱利用熱源設備特性データ演算部703Aと通信可能に接続されている。   As shown in the drawing, in the second embodiment, each heat source facility 702A of the heat source plant 705A operated by the operation plan 111A calculated by the optimum operation unit 105A of the operation control system (operation plan planning device) 101A of the heat source facility is The heat source facility characteristic data calculation unit 701A and the exhaust heat utilization heat source facility characteristic data calculation unit 703A are communicably connected.

熱源設備特性データ演算部701Aや排熱利用熱源設備特性データ演算部703Aは、排熱利用熱源設備を含む各熱源設備702Aの運転実績データを収集し、その収集した運転実績データに基づいて熱源設備パラメータ107Aと排熱利用熱源設備特性データ108Aを定期的に更新する。   The heat source facility characteristic data calculation unit 701A and the exhaust heat utilization heat source facility characteristic data calculation unit 703A collect the operation result data of each heat source facility 702A including the exhaust heat utilization heat source facility, and based on the collected operation result data, the heat source facility The parameter 107A and the waste heat utilization heat source facility characteristic data 108A are periodically updated.

これにより、本実施形態2によれば、例えば、経年変化(経年劣化)などにより熱源プラント705Aの各熱源設備702Aのエネルギー消費特性が変化した場合であっても、その特性データを随時更新して排熱利用熱源設備最適演算用モデルを作成し、そのような熱源設備の経年変化を考慮した排熱利用熱源設備最適演算用モデルを熱源設備の運転計画の演算に利用することができるため、より精緻な熱源設備の運転計画を立案することが可能となる。   Thus, according to the second embodiment, for example, even when the energy consumption characteristics of each heat source facility 702A of the heat source plant 705A change due to aging (aging deterioration) or the like, the characteristic data is updated as needed. A model for optimal calculation of exhaust heat utilization heat source equipment can be created, and the model for optimal calculation of exhaust heat utilization heat source equipment considering the secular change of such heat source equipment can be used for calculation of the operation plan of the heat source equipment. It is possible to create an operation plan for a precise heat source facility.

<実施形態3>
図8は、本発明に係る熱源設備の運転制御システム(運転計画立案装置)の実施形態3の全体構成を示したものである。図8に示す実施形態3の運転制御システムは、図1に示す実施形態1の運転制御システムに対して、熱源設備運転信号出力部801Bを利用して熱源プラント805Bの各熱源設備802Bの運転状態を自動制御する構成が相違しており、その他の構成は実施形態1の運転制御システムと同様である。したがって、実施形態1と同様の構成には同様の符号を付してその詳細な説明は省略する。
<Embodiment 3>
FIG. 8 shows an overall configuration of the third embodiment of the operation control system (operation planning apparatus) for the heat source equipment according to the present invention. The operation control system of the third embodiment shown in FIG. 8 is different from the operation control system of the first embodiment shown in FIG. 1 in that the operation state of each heat source facility 802B of the heat source plant 805B using the heat source facility operation signal output unit 801B. The configuration for automatically controlling is different, and the other configuration is the same as that of the operation control system of the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図示するように、本実施形態3では、熱源プラント805Bの各熱源設備802Bが熱源設備運転信号出力部801Bと通信可能に接続されている。熱源設備の運転制御システム101Bの最適演算部105Bにより演算された運転計画111Bは前記熱源設備運転信号出力部801Bに送信され、該熱源設備運転信号出力部801Bから熱源プラント805Bの各熱源設備802Bに対して各熱源設備802Bの運転状態を指示する運転信号が出力される。排熱利用熱源設備を含む熱源プラント805Bの各熱源設備802Bは、熱源設備運転信号出力部801Bから送信された運転信号に基づいて運転されることで、最適演算部105Bにより演算された運転計画111Bに従った運転が自動的に行われる。   As illustrated, in the third embodiment, each heat source facility 802B of the heat source plant 805B is communicably connected to the heat source facility operation signal output unit 801B. The operation plan 111B calculated by the optimal calculation unit 105B of the operation control system 101B of the heat source facility is transmitted to the heat source facility operation signal output unit 801B, and is transmitted from the heat source facility operation signal output unit 801B to each heat source facility 802B of the heat source plant 805B. On the other hand, an operation signal instructing the operation state of each heat source facility 802B is output. Each heat source facility 802B of the heat source plant 805B including the exhaust heat utilization heat source facility is operated based on the operation signal transmitted from the heat source facility operation signal output unit 801B, and thereby the operation plan 111B calculated by the optimum operation unit 105B. The operation according to is automatically performed.

これにより、本実施形態3によれば、熱源設備の運転制御システム101Bにおいて最適化された運転計画111Bを立案するのみならず、その運転計画111Bに基づいて排熱利用熱源設備を含む複数台の熱源設備802Bの運転状態を自動的に制御することが可能となる。   As a result, according to the third embodiment, not only the operation plan 111B optimized in the operation control system 101B of the heat source facility is created, but also a plurality of units including the exhaust heat utilization heat source facility are included based on the operation plan 111B. It becomes possible to automatically control the operating state of the heat source facility 802B.

なお、本発明は上記した実施形態1〜3に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態1〜3は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to above-described Embodiment 1-3, Various deformation | transformation forms are included. For example, the above-described first to third embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。   Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。   Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

101 熱源設備の運転制御システム(運転計画立案装置)
102 熱源設備最適演算用モデル作成部
103 排熱利用熱源設備最適演算用モデル作成部
104 最適演算用データ作成部
105 最適演算部
106 気温等外部データ
107 熱源設備パラメータ
108 排熱利用熱源設備特性データ
109 予測熱需要
111 運転計画
101 Operation control system for heat source equipment (operation planning device)
102 Model creation section for optimal calculation of heat source equipment
103 Model creation section for optimal calculation of waste heat source heat source equipment
104 Optimal calculation data generator
105 Optimal calculation section
106 External data such as temperature
107 Heat source equipment parameters
108 Waste heat utilization heat source equipment characteristic data
109 Projected heat demand
111 Operation plan

Claims (11)

排熱を利用して温冷熱を供給する排熱利用熱源設備を含む熱源設備を最適に運転するための運転計画を立案する排熱利用システムにおける熱源設備の運転計画立案装置であって、
前記排熱利用熱源設備に対する排温水の使用量に応じて変動するエネルギー消費特性に基づいて前記排熱利用熱源設備の運転計画を演算することを特徴とする、排熱利用システムにおける熱源設備の運転計画立案装置。
An operation plan planning device for a heat source facility in an exhaust heat utilization system for planning an operation plan for optimally operating a heat source facility including an exhaust heat utilization heat source facility that supplies exhaust heat to supply heat and cold,
The operation of the heat source facility in the exhaust heat utilization system, wherein the operation plan of the exhaust heat utilization heat source facility is calculated based on an energy consumption characteristic that varies according to the amount of waste hot water used for the exhaust heat utilization heat source facility Planning device.
請求項1に記載の排熱利用システムにおける熱源設備の運転計画立案装置であって、
前記排熱利用熱源設備に対する排温水の使用量に応じて変動するエネルギー消費特性に基づいて排熱利用熱源設備最適演算用モデルを作成する排熱利用熱源設備最適演算用モデル作成部と、
前記排熱利用熱源設備最適演算用モデルに基づいて前記排熱利用熱源設備の運転計画を演算する最適演算部と、を備えることを特徴とする、排熱利用システムにおける熱源設備の運転計画立案装置。
An operation planning device for heat source equipment in the exhaust heat utilization system according to claim 1,
An exhaust heat utilization heat source equipment optimum computation model creation unit for creating an exhaust heat utilization heat source equipment optimum computation model based on energy consumption characteristics that vary depending on the amount of waste hot water used for the waste heat utilization heat source equipment; and
An operation calculation unit for a heat source facility in an exhaust heat utilization system, comprising: an optimum calculation unit that calculates an operation plan of the exhaust heat utilization heat source facility based on the exhaust heat utilization heat source facility optimum calculation model .
請求項2に記載の排熱利用システムにおける熱源設備の運転計画立案装置であって、
前記エネルギー消費特性は、前記排熱利用熱源設備における負荷率に対する排温水消費量を規定するエネルギー消費特性と負荷率に対する蒸気またはガスの消費量を規定するエネルギー消費特性とを含むことを特徴とする、排熱利用システムにおける熱源設備の運転計画立案装置。
An operation planning device for heat source equipment in the exhaust heat utilization system according to claim 2,
The energy consumption characteristic includes an energy consumption characteristic that defines waste water consumption with respect to a load factor in the exhaust heat utilization heat source facility, and an energy consumption characteristic that defines steam or gas consumption with respect to the load factor. Operation planning device for heat source equipment in exhaust heat utilization system.
請求項2に記載の排熱利用システムにおける熱源設備の運転計画立案装置であって、
前記最適演算部は、前記エネルギー消費特性から得られる排温水消費量が最大値をとる負荷率を用いて前記排熱利用熱源設備の運転計画を演算することを特徴とする、排熱利用システムにおける熱源設備の運転計画立案装置。
An operation planning device for heat source equipment in the exhaust heat utilization system according to claim 2,
In the exhaust heat utilization system, the optimum computation unit computes an operation plan of the exhaust heat utilization heat source facility using a load factor at which the exhaust warm water consumption obtained from the energy consumption characteristics takes a maximum value. Operation planning device for heat source equipment.
請求項2に記載の排熱利用システムにおける熱源設備の運転計画立案装置であって、
前記最適演算部は、前記排熱利用熱源設備の経年変化を考慮した前記排熱利用熱源設備最適演算用モデルに基づいて前記排熱利用熱源設備の運転計画を演算することを特徴とする、排熱利用システムにおける熱源設備の運転計画立案装置。
An operation planning device for heat source equipment in the exhaust heat utilization system according to claim 2,
The optimum computation unit computes an operation plan of the exhaust heat utilization heat source facility based on the exhaust heat utilization heat source facility optimum computation model considering a secular change of the exhaust heat utilization heat source facility. Operation planning device for heat source equipment in heat utilization system.
請求項1に記載の排熱利用システムにおける熱源設備の運転計画立案装置であって、
前記排熱利用熱源設備の運転計画に基づいて該排熱利用熱源設備の運転状態を制御することを特徴とする、排熱利用システムにおける熱源設備の運転計画立案装置。
An operation planning device for heat source equipment in the exhaust heat utilization system according to claim 1,
An operation plan planning apparatus for a heat source facility in an exhaust heat utilization system, wherein an operation state of the exhaust heat utilization heat source facility is controlled based on an operation plan of the exhaust heat utilization heat source facility.
排熱を利用して温冷熱を供給する排熱利用熱源設備を含む熱源設備を最適に運転するための運転計画を立案する排熱利用システムにおける熱源設備の運転計画立案方法であって、
前記排熱利用熱源設備に対する排温水の使用量に応じて変動するエネルギー消費特性に基づいて前記排熱利用熱源設備の運転計画を演算することを特徴とする、排熱利用システムにおける熱源設備の運転計画立案方法。
An operation planning method for a heat source facility in an exhaust heat utilization system for creating an operation plan for optimally operating a heat source facility including an exhaust heat utilization heat source facility that supplies exhaust heat to supply heat and cold,
The operation of the heat source facility in the exhaust heat utilization system, wherein the operation plan of the exhaust heat utilization heat source facility is calculated based on an energy consumption characteristic that varies according to the amount of waste hot water used for the exhaust heat utilization heat source facility Planning method.
請求項7に記載の排熱利用システムにおける熱源設備の運転計画立案方法であって、
前記排熱利用熱源設備に対する排温水の使用量に応じて変動するエネルギー消費特性に基づいて排熱利用熱源設備最適演算用モデルを作成し、該排熱利用熱源設備最適演算用モデルに基づいて前記排熱利用熱源設備の運転計画を演算することを特徴とする、排熱利用システムにおける熱源設備の運転計画立案方法。
An operation planning method for a heat source facility in the exhaust heat utilization system according to claim 7,
An exhaust heat utilization heat source facility optimal calculation model is created based on energy consumption characteristics that vary according to the amount of waste heat water used for the exhaust heat utilization heat source facility, and the exhaust heat utilization heat source facility optimal calculation model is An operation plan for a heat source facility in an exhaust heat utilization system, wherein an operation plan for the exhaust heat utilization heat source facility is calculated.
請求項8に記載の排熱利用システムにおける熱源設備の運転計画立案方法であって、
前記エネルギー消費特性は、前記排熱利用熱源設備における負荷率に対する排温水消費量を規定するエネルギー消費特性と負荷率に対する蒸気またはガスの消費量を規定するエネルギー消費特性とを含むことを特徴とする、排熱利用システムにおける熱源設備の運転計画立案方法。
An operation planning method for heat source equipment in the exhaust heat utilization system according to claim 8,
The energy consumption characteristic includes an energy consumption characteristic that defines waste water consumption with respect to a load factor in the exhaust heat utilization heat source facility, and an energy consumption characteristic that defines steam or gas consumption with respect to the load factor. , Operation planning method for heat source equipment in waste heat utilization system.
請求項8に記載の排熱利用システムにおける熱源設備の運転計画立案方法であって、
前記排熱利用熱源設備の経年変化を考慮した前記排熱利用熱源設備最適演算用モデルに基づいて前記排熱利用熱源設備の運転計画を演算することを特徴とする、排熱利用システムにおける熱源設備の運転計画立案方法。
An operation planning method for heat source equipment in the exhaust heat utilization system according to claim 8,
A heat source facility in an exhaust heat utilization system, wherein an operation plan of the exhaust heat utilization heat source facility is calculated based on a model for optimal computation of the exhaust heat utilization heat source facility considering a secular change of the exhaust heat utilization heat source facility Operation planning method.
請求項7に記載の排熱利用システムにおける熱源設備の運転計画立案方法であって、
前記排熱利用熱源設備の運転計画に基づいて該排熱利用熱源設備の運転状態を制御することを特徴とする、排熱利用システムにおける熱源設備の運転計画立案方法。
An operation planning method for a heat source facility in the exhaust heat utilization system according to claim 7,
An operation plan planning method for a heat source facility in an exhaust heat utilization system, wherein an operation state of the exhaust heat utilization heat source facility is controlled based on an operation plan of the exhaust heat utilization heat source facility.
JP2014083116A 2014-04-14 2014-04-14 Operation planning apparatus and operation planning method for heat source equipment in exhaust heat utilization system Active JP6392537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014083116A JP6392537B2 (en) 2014-04-14 2014-04-14 Operation planning apparatus and operation planning method for heat source equipment in exhaust heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014083116A JP6392537B2 (en) 2014-04-14 2014-04-14 Operation planning apparatus and operation planning method for heat source equipment in exhaust heat utilization system

Publications (2)

Publication Number Publication Date
JP2015203531A true JP2015203531A (en) 2015-11-16
JP6392537B2 JP6392537B2 (en) 2018-09-19

Family

ID=54597068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083116A Active JP6392537B2 (en) 2014-04-14 2014-04-14 Operation planning apparatus and operation planning method for heat source equipment in exhaust heat utilization system

Country Status (1)

Country Link
JP (1) JP6392537B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940679A (en) * 2017-12-14 2018-04-20 江苏省邮电规划设计院有限责任公司 A kind of group control method based on data center's handpiece Water Chilling Units performance curve
CN108168030A (en) * 2017-12-14 2018-06-15 南京师范大学 A kind of intelligent control method based on refrigeration performance curve
JP2020106402A (en) * 2018-12-27 2020-07-09 清水建設株式会社 Heat source machine performance evaluation device, heat source machine performance evaluation method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146257A (en) * 1998-09-04 2000-05-26 Atr Adaptive Communications Res Lab Method of and device for controlling building energy system and recording medium with control processing program recorded
JP2001273007A (en) * 2000-03-27 2001-10-05 Osaka Gas Co Ltd Optimum driving control system of plant
JP2013160415A (en) * 2012-02-03 2013-08-19 Hitachi Plant Technologies Ltd Heat source system and control method for heat source system
JP2013228121A (en) * 2012-04-24 2013-11-07 Hitachi Ltd Device for controlling air conditioning facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146257A (en) * 1998-09-04 2000-05-26 Atr Adaptive Communications Res Lab Method of and device for controlling building energy system and recording medium with control processing program recorded
JP2001273007A (en) * 2000-03-27 2001-10-05 Osaka Gas Co Ltd Optimum driving control system of plant
JP2013160415A (en) * 2012-02-03 2013-08-19 Hitachi Plant Technologies Ltd Heat source system and control method for heat source system
JP2013228121A (en) * 2012-04-24 2013-11-07 Hitachi Ltd Device for controlling air conditioning facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940679A (en) * 2017-12-14 2018-04-20 江苏省邮电规划设计院有限责任公司 A kind of group control method based on data center's handpiece Water Chilling Units performance curve
CN108168030A (en) * 2017-12-14 2018-06-15 南京师范大学 A kind of intelligent control method based on refrigeration performance curve
CN107940679B (en) * 2017-12-14 2020-07-07 中通服咨询设计研究院有限公司 Group control method based on performance curve of water chilling unit of data center
JP2020106402A (en) * 2018-12-27 2020-07-09 清水建設株式会社 Heat source machine performance evaluation device, heat source machine performance evaluation method, and program

Also Published As

Publication number Publication date
JP6392537B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
Saeedi et al. Robust optimization based optimal chiller loading under cooling demand uncertainty
Zhao et al. MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages
US9335748B2 (en) Energy management system
US20110066258A1 (en) System and Method for Energy Plant Optimization Using Mixed Integer-Linear Programming
JP4347602B2 (en) Heat source operation support control method, system and program
CN102298371B (en) Distributed combined cooling and power supply system control method
JP6034211B2 (en) Operation control device, operation control method, and operation control program
WO2015037307A1 (en) Power storage control device, management system, power storage control method, power storage control program, and memory medium
Capone et al. Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems
WO2013025962A1 (en) Thermo-economic modeling and optimization of a combined cooling, heating, and power plant
US20160349780A1 (en) Operation plan generation device, control device, operation plan generation method, and program
JP6580159B2 (en) Water heater control system, control method and program
JP6392537B2 (en) Operation planning apparatus and operation planning method for heat source equipment in exhaust heat utilization system
JP5540698B2 (en) Power system plan creation device and power system plan creation method
Liu et al. Towards accurate modeling of dynamic startup/shutdown and ramping processes of thermal units in unit commitment problems
US20110295585A1 (en) Optimal self-maintained energy management system and use
Sarkar et al. Concurrent Carbon Footprint Reduction (C2FR) Reinforcement Learning Approach for Sustainable Data Center Digital Twin
CN111555362B (en) Optimal regulation and control method and device for full-renewable energy source thermoelectric storage coupling system
JP5668969B2 (en) Power supply output control device, demand power control system, power supply output control method, and power supply output control program
Sawant et al. Experimental demonstration of grid-supportive scheduling of a polygeneration system using economic-MPC
JP2009282799A (en) Method and program for plant operation planning
JP3763767B2 (en) Operation planning system for energy supply equipment
Verzijlbergh et al. Conceptual model of a cold storage warehouse with PV generation in a smart grid setting
CN111697577B (en) Source network load storage multi-time scale unified cooperative scheduling method and system
JP6534038B2 (en) Demand power control apparatus and demand power control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6392537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150