JP5540698B2 - Power system plan creation device and power system plan creation method - Google Patents

Power system plan creation device and power system plan creation method Download PDF

Info

Publication number
JP5540698B2
JP5540698B2 JP2009297660A JP2009297660A JP5540698B2 JP 5540698 B2 JP5540698 B2 JP 5540698B2 JP 2009297660 A JP2009297660 A JP 2009297660A JP 2009297660 A JP2009297660 A JP 2009297660A JP 5540698 B2 JP5540698 B2 JP 5540698B2
Authority
JP
Japan
Prior art keywords
plan
cost
power system
generator
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009297660A
Other languages
Japanese (ja)
Other versions
JP2011139585A (en
Inventor
賢哉 村上
達也 飯坂
親志 中沢
秀之 伊藤
巨己 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009297660A priority Critical patent/JP5540698B2/en
Publication of JP2011139585A publication Critical patent/JP2011139585A/en
Application granted granted Critical
Publication of JP5540698B2 publication Critical patent/JP5540698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力系統計画作成装置および電力系統計画作成方法に関する。   The present invention relates to a power system plan creation device and a power system plan creation method.

いわゆる電力自由化や規制緩和に呼応して、発電コストの一層の削減が求められており、一層的確な発電所運用計画や、複数の電力系統を含む電力系統計画作成技術が求められている。   In response to so-called liberalization of electric power and deregulation, further reduction in power generation cost is required, and more accurate power plant operation plan and electric power system plan creation technology including a plurality of electric power systems are required.

このため、例えば、第1の従来技術として、非特許文献1には、各種制約を考慮し、燃料費、起動費ならびに融通(買電)費の合計を最小化する発電計画を立案しようとする、翌日運用計画技術が開示されている。   For this reason, for example, as Non-Patent Document 1, as the first prior art, an attempt is made to formulate a power generation plan that minimizes the total of fuel costs, start-up costs and interchange (purchase power) costs in consideration of various restrictions. The next day operation planning technology is disclosed.

また、第2の従来技術として、特許文献1に開示された技術が知られている。この特許文献1には、「推定総需要電力」から、「固定電力」(原子力など)および「変動電力」(火力など)を差し引いた不足分を、二次電池の総分担電力とする技術が開示されている。   As a second conventional technique, a technique disclosed in Patent Document 1 is known. This Patent Document 1 discloses a technology that uses a shortage obtained by subtracting “fixed power” (such as nuclear power) and “variable power” (such as thermal power) from “estimated total demand power” as the total shared power of the secondary battery. It is disclosed.

この第2の従来技術では、以下のように個々の二次電池の運転スケジュールと充電量を調整している。すなわち、まず、総分担電力を賄い、さらに変動電力(火力機)の制約を緩和(火力分担電力のフラット化)することにより燃料費を削減し、さらに、これにより「変動電力」の発電計画も修正して効率化を図れる、としている。   In the second prior art, the operation schedule and charge amount of each secondary battery are adjusted as follows. In other words, first of all, we will cover the total power sharing, and further reduce the fuel cost by relaxing the constraints on the variable power (thermal power generator) (flattening the thermal power sharing power). It can be modified to improve efficiency.

特開2006−94649号公報JP 2006-94649 A

社団法人電気学会、2008年9月20日発行、「電気学会論文誌」、Vol.128 No.10,2008)、p1227−1234。The Institute of Electrical Engineers of Japan, published on September 20, 2008, “The Journal of the Institute of Electrical Engineers”, Vol. 128 No. 10, 2008), p1227-1234.

上述の第1の従来技術では、以下のような技術的課題がある。すなわち、現在高性能の二次電池(特にNAS(ナトリウム硫黄)蓄電池)が開発されており、二次電池を含めた電力系統は一般的になりつつある。   The first prior art described above has the following technical problems. That is, high-performance secondary batteries (especially NAS (sodium sulfur) storage batteries) are being developed, and power systems including secondary batteries are becoming common.

このような状況下では発電機の運転計画と二次電池の充放電計画の両者が必要であり、これらは相互に関連しあっているため両者を併せて考慮した計画が必要である。
しかしながら、上述の第1の従来技術では、二次電池を含めた運用計画についてはなんら考慮されていない。
Under such circumstances, both an operation plan for the generator and a charge / discharge plan for the secondary battery are necessary. Since these are related to each other, a plan that takes both into account is necessary.
However, in the above-described first conventional technology, no consideration is given to the operation plan including the secondary battery.

また、二次電池を含めた運用計画を行う上述の第2の従来技術場合には、依然として、以下のような技術的課題がある。
すなわち、電力系統に二次電池が含まれる場合には、NAS電池が用いられる場合が多いが、NAS電池の場合、ヒータによりこれを300℃程度に保つ必要がある。
Further, in the case of the above-described second prior art in which the operation plan including the secondary battery is performed, there are still the following technical problems.
That is, when a secondary battery is included in the power system, a NAS battery is often used. However, in the case of a NAS battery, it is necessary to keep it at about 300 ° C. with a heater.

一方、NAS電池は放電時に発熱し、充電時に吸熱するため、ヒータ加熱により昇温・
保温を行う場合も、このNAS電池自体の発熱や吸熱を考慮して行うことにより、ヒータの無駄な加熱を抑制できる余地がある。
On the other hand, NAS batteries generate heat during discharge and absorb heat during charging.
Even in the case of performing heat insulation, there is room for suppressing useless heating of the heater by considering heat generation and heat absorption of the NAS battery itself.

従って、NAS電池を含む電力系統の運用には、ヒータによる加熱費用を考慮し、NAS電池の加熱費用を含めた運用コストの最適化(最小化)を実現する発電機の発電計画を策定するする必要がある。   Therefore, in the operation of the electric power system including the NAS battery, the heating cost of the heater is taken into consideration, and the generator power generation plan that optimizes (minimizes) the operating cost including the NAS battery heating cost is formulated. There is a need.

しかし、第2の従来技術では、NAS電池の加熱費用を考慮した発電計画、充放電計画は行われていなかった。
本発明の目的は、高温作動型二次電池装置のヒータ加熱費用まで考慮したコストを最小化することが可能な電力系統計画作成技術を提供することにある。
However, in the second prior art, a power generation plan and a charge / discharge plan considering the heating cost of the NAS battery have not been performed.
An object of the present invention is to provide a power system planning technique capable of minimizing the cost in consideration of the heater heating cost of the high temperature operation type secondary battery device.

本発明の第1の観点は、接続された負荷の推定総需要電力に基づいて、内燃力発電装置および高温作動型二次電池装置を備えた電力系統における前記内燃力発電装置の運転計画および前記高温作動型二次電池の充放電計画を行う電力系統計画作成装置であって、
前記運転計画および前記充放電計画の情報から制約項目を計算する制約項目計算手段と、
前記運転計画および前記充放電計画の情報からコスト項目で構成される目的関数を計算する目的関数計算手段と、
前記制約項目を満たす範囲内で前記コスト項目の合計である目的関数を最小化するような前記運転計画および前記充放電計画を求めるコスト最適化手段とを有し、
前記コスト項目は、前記内燃力発電装置の稼働に要する発電機燃料費と、前記内燃力発電装置の起動に要する発電機起動費と、前記高温作動型二次電池装置の昇温用ヒータ加熱費用と、前記高温作動型二次電池装置の電池充電ロスと、前記電力系統が外部から融通された電力の買電コストとを含むことを特徴とする電力系統計画作成装置を提供する。
According to a first aspect of the present invention, based on the estimated total demand power of a connected load, an operation plan of the internal combustion power generation apparatus in an electric power system including the internal combustion power generation apparatus and a high-temperature operation type secondary battery device, and A power system planning device for charging and discharging a high-temperature operation type secondary battery,
Constraint item calculation means for calculating a constraint item from information on the operation plan and the charge / discharge plan,
An objective function calculating means for calculating an objective function composed of cost items from information on the operation plan and the charge / discharge plan;
Cost optimization means for obtaining the operation plan and the charge / discharge plan that minimize the objective function that is the sum of the cost items within a range that satisfies the constraint item ,
The cost items include a generator fuel cost required for operating the internal combustion power generation device, a generator startup cost required for starting the internal combustion power generation device, and a heater heating cost for raising the temperature of the high temperature operation type secondary battery device. And a battery charging loss of the high-temperature operation type secondary battery device, and a power purchase cost of the electric power that is exchanged from the outside of the power system.

本発明の第2の観点は、接続された負荷の推定総需要電力に基づいて、内燃力発電装置および高温作動型二次電池装置を備えた電力系統における前記内燃力発電装置の運転計画および前記高温作動型二次電池の充放電計画を行う電力系統計画作成方法であって、
前記高温作動型二次電池装置のヒータ加熱費用を含む稼働コストが最小化となるように、前記運転計画および前記充放電計画を作成する電力系統計画作成方法を提供する。
According to a second aspect of the present invention, based on the estimated total demand power of the connected load, the operation plan of the internal combustion power generation apparatus in the power system including the internal combustion power generation apparatus and the high-temperature operation type secondary battery device, and the A power system planning method for charging and discharging a high temperature operation type secondary battery,
Provided is a power system plan creation method for creating the operation plan and the charge / discharge plan so that the operation cost including the heater heating cost of the high temperature operation type secondary battery device is minimized.

本発明によれば、高温作動型二次電池装置のヒータ加熱費用まで考慮したコストを最小化することが可能な電力系統計画作成技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electric power system plan preparation technique which can minimize the cost which considered the heater heating expense of the high temperature operation type secondary battery apparatus can be provided.

本発明の一実施の形態である電力系統計画作成方法を実施する電力系統計画作成装置の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of a structure of the electric power system plan preparation apparatus which implements the electric power system plan preparation method which is one embodiment of this invention. 本発明の一実施の形態である電力系統計画作成装置が適用される電力系統の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of a structure of the electric power system with which the electric power system plan preparation apparatus which is one embodiment of this invention is applied. 本発明の一実施の形態である電力系統計画作成方法および電力系統計画作成装置の作用の一例を示すフローチャートである。It is a flowchart which shows an example of an effect | action of the electric power system plan preparation method and electric power system plan preparation apparatus which are one embodiment of this invention. 本発明の一実施の形態である電力系統計画作成装置が適用される電力系統を構成する高温作動型二次電池装置の吸発熱特性の一例を示す線図である。It is a diagram which shows an example of the heat absorption and heat generation characteristic of the high temperature operation type secondary battery apparatus which comprises the electric power system with which the electric power system plan preparation apparatus which is one embodiment of this invention is applied.

本実施の形態では、一態様として、以下のように作用する制約項目計算手段と、目的関数計算手段と、コスト最適化手段を具備した電力系統計画作成技術を開示する。
すなわち、制約項目計算手段では、起動停止、発電出力ならびに充放電計画案から、以下の、需給バランス、発電機出力上下限、出力変化率上下限、発電機最小連続停止/運転時間、充放電上下限、蓄電量上下限、の各制約項目を計算する。
In the present embodiment, as one aspect, a power system plan creation technique including a constraint item calculation unit, an objective function calculation unit, and a cost optimization unit that operate as follows is disclosed.
That is, in the constraint item calculation means, the following supply / demand balance, generator output upper / lower limit, output change rate upper / lower limit, generator minimum continuous stop / operation time, charge / discharge Each restriction item of the lower limit and the upper and lower limit of the storage amount is calculated.

すなわち、制約項目としての需給バランスとは、計画対象期間の各時点において、
推定総需要電力=発電機発電力合計+蓄電池充放電合計+買電電力合計
の関係を維持することを言う。ただし、充電時は充電分をマイナス、放電時は放電分をプラスとする。
In other words, the supply and demand balance as a constraint item is as follows:
It means maintaining the relationship of estimated total demand power = total power generated by generator + total charge / discharge of storage battery + total purchased power. However, when charging, the charge is negative, and when discharging, the discharge is positive.

制約項目としての発電機出力上下限、出力変化率上下限とは、計画対象期間の各時点、各発電機において、
当該発電機発電力下限≦当該発電機発電力≦当該発電機発電力上限
の関係を維持することをいう。
The upper and lower limits of the generator output and the upper and lower limits of the output change rate as the restriction items are as follows:
It means maintaining the relationship of the generator power generation lower limit ≦ the generator power generation ≦ the generator power generation upper limit.

制約項目としての発電機最小連続停止/運転時間、とは、計画対象期間の各発電機において、
当該発電機連続停止時間≧当該発電機連続停止時間下限
当該発電機連続運転時間≧当該発電機連続運転時間下限
の関係を維持することをいう。発電機があまり頻繁に運転停止を行えず運転を開始したら一定期間は停止できず、停止したら一定期間は起動できないことからくる制約である。
The generator minimum continuous stop / operation time as a restriction item is as follows:
Maintaining the relationship of the generator continuous stop time ≧ the generator continuous stop time lower limit, the generator continuous operation time ≧ the generator continuous operation time lower limit. This is a limitation because the generator cannot be stopped so frequently and cannot start for a certain period if it starts operation, and cannot start for a certain period if stopped.

制約項目としての充放電上下限とは、計画対象期間の各時点、各蓄電池において、
当該蓄電池充電量下限≦当該蓄電池充電量≦当該蓄電池充電量上限
当該蓄電池放電量下限≦当該蓄電池放電量≦当該蓄電池放電量上限
の関係を維持することをいう。なお、ここで充電量ならびに放電量は単位時間あたりの充電量ならびに放電量を示す。
The upper and lower limits of charge / discharge as a restriction item are as follows:
The storage battery charge amount lower limit ≦ the storage battery charge amount ≦ the storage battery charge amount upper limit The storage battery discharge amount lower limit ≦ the storage battery discharge amount ≦ maintaining the battery discharge amount upper limit. Here, the charge amount and the discharge amount indicate the charge amount and the discharge amount per unit time.

制約項目としての蓄電量上下限とは、計画対象期間の各時点、各蓄電池において、
当該蓄電池蓄電量下限≦当該蓄電池蓄電量≦当該蓄電池蓄電量上限
の関係を維持することをいう。なお、ここで蓄電量は蓄電池に充電されている(累積の)蓄電量を示す。
The upper and lower limits of power storage amount as a restriction item are as follows:
This means that the relationship of the storage battery storage amount lower limit ≦ the storage battery storage amount ≦ the storage battery storage amount upper limit is maintained. Here, the storage amount indicates the (accumulated) storage amount charged in the storage battery.

目的関数計算手段では、起動停止、発電出力ならびに充放電計画案から、以下の、発電機燃料費、発電機起動費、NAS電池昇温用ヒータ加熱費用、NAS電池充電ロス、買電コスト(融通電力)、の各コスト項目の合計として目的関数を計算する。   In the objective function calculation means, from the start / stop, power generation output and charge / discharge plan, the following generator fuel cost, generator start-up cost, heater heating cost for NAS battery temperature rise, NAS battery charge loss, power purchase cost (accommodation) The objective function is calculated as the sum of each cost item.

ここで、発電機燃料費は、計画対象期間にわたる各発電機の燃料消費量の積算値合計、である。
発電機起動費は、計画対象期間中の各発電機の起動時の費用合計である。
Here, the generator fuel cost is the total sum of the fuel consumption of each generator over the planning target period.
The generator startup cost is the total cost at startup of each generator during the planning period.

NAS電池昇温用ヒータ加熱費用は、計画対象期間中の各蓄電値を所要温度に昇温・保温するためのヒータの加熱費用合計である。
NAS電池は充電時に吸熱(冷える)、放電時に発熱(温まる)、自然放熱による放熱(冷める)がある。
The heater heating cost for raising the NAS battery is the total heating cost of the heater for raising the temperature of each storage value to the required temperature during the planning period.
NAS batteries have heat absorption (cooling) during charging, heat generation (warming) during discharge, and heat dissipation (cooling) due to natural heat dissipation.

これに対して電池の温度が上下限内に維持されるように電池に設置されたヒータを運転する。ヒータの運転方式としてはこの下限を下回ったらヒータを起動し、その後上限を超えたらヒータを停止する運転が行われるのが一般的であるが、より温度を一定値に維持するためにPID制御等による定値追従制御を行ってもよい。   On the other hand, the heater installed in the battery is operated so that the temperature of the battery is maintained within the upper and lower limits. As a heater operation method, it is common to start the heater when it falls below this lower limit, and then stop the heater when the upper limit is exceeded, but in order to maintain the temperature at a constant value, PID control, etc. You may perform constant value follow-up control by.

蓄電池充放電計画から蓄電池の吸発熱ならびに自然放熱状況が計算され、蓄電池の保持熱量が計算される。蓄電池の保持熱量から蓄電池の温度が計算され、例えば温度を上下限内に収める場合には、この温度が下限(設定最低温度)を下回ったらヒータを起動し、そ
の後上限(設定最高温度)を超えたらヒータを停止する運転が行われる。
From the storage battery charging / discharging plan, the heat absorption and heat generation of the storage battery and the state of natural heat dissipation are calculated, and the retained heat amount of the storage battery is calculated. The temperature of the storage battery is calculated from the amount of heat stored in the storage battery. For example, when the temperature falls within the upper and lower limits, the heater is started when this temperature falls below the lower limit (set minimum temperature), and then exceeds the upper limit (set maximum temperature). Then, the operation to stop the heater is performed.

NAS電池充電ロスは、計画対象期間中の各蓄電池の充電量累積値と放電量累積値の差である。蓄電池に蓄電された充電量(充電量累積値)のすべてを放電できるわけではなく、放電できない部分がロスとなる。具体的には、NAS電池充電ロス=充電量累積値−放電累積値、となる。   The NAS battery charge loss is the difference between the charge amount accumulated value and the discharge amount accumulated value of each storage battery during the planning target period. Not all of the charge amount (charge amount accumulated value) stored in the storage battery can be discharged, and the portion that cannot be discharged is lost. Specifically, NAS battery charge loss = charge amount accumulated value−discharge accumulated value.

買電コスト(融通電力)とは、推定総需要電力を、発電機発電量と蓄電池放電量ではまかない切れない場合に不足分を外部から電力を購入してまかなう際の購買電力費用である。   The power purchase cost (accommodated power) is the purchased power cost when the estimated total demand power is not covered by the generator power generation amount and the storage battery discharge amount, and the shortage is purchased from the outside.

すなわち、購買電力費用の算出の基礎となる買電電力合計は、
買電電力合計=推定総需要電力−発電機発電力合計+蓄電池充放電合計
で表される。
In other words, the total electric power purchased, which is the basis for calculating the purchased electric power cost, is
Total power purchased = Estimated total demand power−Total power generated by generators + Total charge / discharge of storage battery

最後に、コスト最適化手段では、制約項目計算手段と目的関数計算手段により、以下のようにして制約条件を満たしつつ、目的関数(コスト項目合計)を最小化するような発電機運転ならびに蓄電池充放電計画の計画変数を決定変数とする最適解を求める。   Finally, in the cost optimization means, the constraint item calculation means and the objective function calculation means satisfy generators and minimize the objective function (total cost items) while satisfying the constraints as follows. An optimal solution is obtained with the design variable of the discharge plan as the decision variable.

決定変数の探索による最適化手法は、一般的に設定された決定変数に対して制約条件値と目的関数値を算出し、その結果に基づいて、一般的には決定変数を前回値からより最適値に近づけるような何らかのルールに基づいて決定変数を調整する。調整後の決定変数に基づいて再度制約条件値と目的関数値を計算してその結果を評価することを繰り返しながら決定変数が最適値に近づいていき、計算された制約条件値と目的関数値が最適条件を満たしていれば最終的に最適解に収束したと判断し、処理を終了する。   The optimization method based on the search of the decision variable calculates the constraint condition value and objective function value for the generally set decision variable, and based on the result, the decision variable is generally more optimal than the previous value. The decision variable is adjusted based on some rule that approaches the value. The decision variable approaches the optimal value by repeating the calculation of the constraint condition value and the objective function value again based on the adjusted decision variable and evaluating the result, and the calculated constraint condition value and objective function value are If the optimum condition is satisfied, it is determined that the solution has finally converged to the optimum solution, and the process is terminated.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
図1は、本発明の一実施の形態である電力系統計画作成方法を実施する電力系統計画作成装置の構成の一例を示す概念図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual diagram showing an example of the configuration of a power system plan creation device that implements a power system plan creation method according to an embodiment of the present invention.

図2は、本発明の一実施の形態である電力系統計画作成装置が適用される電力系統の構成の一例を示す概念図である。
図3は、本発明の一実施の形態である電力系統計画作成方法および電力系統計画作成装置の作用の一例を示すフローチャートである。
FIG. 2 is a conceptual diagram showing an example of a configuration of a power system to which a power system plan creation device according to an embodiment of the present invention is applied.
FIG. 3 is a flowchart showing an example of the operation of the power system plan creation method and the power system plan creation device according to one embodiment of the present invention.

図4は、本発明の一実施の形態である電力系統計画作成装置が適用される電力系統を構成する高温作動型二次電池装置の吸発熱特性の一例を示す線図である。
まず、図2を参照して、本実施の形態の発電計画作成システム200が適用される電力系統100の構成例について説明する。
FIG. 4 is a diagram showing an example of the heat absorption and heat generation characteristics of the high temperature operation type secondary battery device constituting the electric power system to which the electric power system planning apparatus according to the embodiment of the present invention is applied.
First, with reference to FIG. 2, the structural example of the electric power grid | system 100 to which the power generation plan production system 200 of this Embodiment is applied is demonstrated.

本実施の形態の電力系統100は、電力線網110と、これに接続される複数の発電機120(Ga)、複数のNAS蓄電池130(Gb)、負荷140(L)、で構成されている。 Power system 100 of the present embodiment includes a power line network 110, a plurality of generators 120 connected thereto (Ga n), a plurality of NAS battery 130 (Gb n), the load 140 (L n), in consists ing.

個々のNAS蓄電池130(以下、単に蓄電池と記す場合がある)には、電池ヒータ131が設けられ、個々のNAS蓄電池130の動作温度を所望の温度範囲に維持する構成となっている。   Each NAS storage battery 130 (hereinafter may be simply referred to as a storage battery) is provided with a battery heater 131 so that the operating temperature of each NAS storage battery 130 is maintained within a desired temperature range.

また、電力線網110には、電力線181を介して外部電力系統180が接続され、必要に応じて外部電力系統180から電力線181を経由して電力の融通を受けることが可
能になっている。
In addition, an external power system 180 is connected to the power line network 110 via the power line 181, and it is possible to receive power interchange from the external power system 180 via the power line 181 as necessary.

さらに、本実施の形態の電力系統100の場合、個々の発電機120、NAS蓄電池130は、通信ネットワーク150に接続され、同じく通信ネットワーク150に接続された需給制御システム170を介して、起動/停止、放電/充電等の動作が制御される。   Furthermore, in the case of the power system 100 according to the present embodiment, each generator 120 and NAS storage battery 130 are connected to the communication network 150 and started / stopped via the supply / demand control system 170 that is also connected to the communication network 150. The operation such as discharging / charging is controlled.

さらに、本実施の形態の場合、通信ネットワーク150には、発電計画作成システム200と、データベース160が接続されている。
データベース160は、例えば、推定総需要電力300、発電機・蓄電池特性400等の情報が格納され、これらの情報を、必要に応じて通信ネットワーク150等を介して発電計画作成システム200に出力することが可能になっている。
Further, in the case of the present embodiment, a power generation plan creation system 200 and a database 160 are connected to the communication network 150.
The database 160 stores, for example, information such as the estimated total demand power 300 and the generator / storage battery characteristics 400, and outputs these information to the power generation plan creation system 200 via the communication network 150 or the like as necessary. Is possible.

発電計画作成システム200は、発電機120の運転計画ならびに、NAS蓄電池130の充放電計画、等の電力系統計画を作成する。
すなわち図1に例示されるように、本実施の形態の発電計画作成システム200は、演算装置210と、演算装置210への情報の入力を行う図示しない入力部ならびに演算装置210からの情報の出力を行う出力部で構成される。
The power generation plan creation system 200 creates a power system plan such as an operation plan for the generator 120 and a charge / discharge plan for the NAS storage battery 130.
That is, as illustrated in FIG. 1, the power generation plan creation system 200 according to the present embodiment includes an arithmetic device 210, an input unit (not shown) that inputs information to the arithmetic device 210, and the output of information from the arithmetic device 210. It is comprised by the output part which performs.

発電計画作成システム200には、演算装置210によって実現される最適化手段220、目的関数計算手段230、制約条件計算手段240を備えている。
すなわち、発電計画作成システム200は、例えばコンピュータで構成され、演算装置210はマイクロプロセッサで構成され、最適化手段220、目的関数計算手段230、制約条件計算手段240の各々の機能は、例えば、演算装置210によって実行される制御プログラムによって実現される。
The power generation plan creation system 200 includes an optimization unit 220, an objective function calculation unit 230, and a constraint condition calculation unit 240 that are realized by the arithmetic unit 210.
That is, the power generation plan creation system 200 is configured by, for example, a computer, the calculation device 210 is configured by a microprocessor, and the functions of the optimization unit 220, the objective function calculation unit 230, and the constraint condition calculation unit 240 are, for example, calculation This is realized by a control program executed by the apparatus 210.

演算装置210への入力部では通信ネットワーク150を経由して、または、直接的なデータベース160へのアクセスにより演算の基本情報となる以下の、推定総需要電力300、発電機・蓄電池特性400等のデータが入力される。   In the input unit to the arithmetic unit 210, the estimated total demand power 300, the generator / storage battery characteristics 400, etc., which become basic information of the calculation via the communication network 150 or by direct access to the database 160, such as the following: Data is entered.

そして、演算装置210からは処理結果として発電機運転計画値510、蓄電池充放電計画値520が、データベース160に出力される。
需給制御システム170は、データベース160から発電機運転計画値510および蓄電池充放電計画値520の情報を読み出して、発電機120およびNAS蓄電池130等の運用管理を行う。
Then, the generator operation plan value 510 and the storage battery charge / discharge plan value 520 are output from the arithmetic unit 210 to the database 160 as processing results.
The supply and demand control system 170 reads information on the generator operation plan value 510 and the storage battery charge / discharge plan value 520 from the database 160, and performs operation management of the generator 120, the NAS storage battery 130, and the like.

需給制御システム170は、発電計画作成システム200から得られる発電機運転計画値510および蓄電池充放電計画値520に基づいて、発電機120およびNAS蓄電池130の運用を制御する。   The supply and demand control system 170 controls the operation of the generator 120 and the NAS storage battery 130 based on the generator operation plan value 510 and the storage battery charge / discharge plan value 520 obtained from the power generation plan creation system 200.

発電計画作成システム200に入力される推定総需要電力300は、例えば、電力線網110における過去の実績や、季節、天候等の情報によって推定される情報である。
一方、本実施の形態の場合、一例として、発電機・蓄電池特性400は、発電機燃料費特性410、発電機起動費特性420、発電機出力上限431および発電機出力下限432、発電機出力変化率上限441および発電機出力変化率下限442、発電機最小連続停止時間451および発電機最小連続運転時間452、蓄電池ヒータ特性460、蓄電池充電ロス特性470、蓄電池充電量上限481および蓄電池充電量下限482、蓄電池放電量上限483および蓄電池放電量下限484、蓄電池蓄電量上限491および蓄電池蓄電量下限492、さらには、買電コスト401、等の情報を含んでいる。
The estimated total demand power 300 input to the power generation plan creation system 200 is information estimated based on information such as past performance in the power line network 110, season, weather, and the like.
On the other hand, in the case of the present embodiment, as an example, the generator / storage battery characteristic 400 includes a generator fuel cost characteristic 410, a generator start-up cost characteristic 420, a generator output upper limit 431, a generator output lower limit 432, and a generator output change. Rate upper limit 441 and generator output change rate lower limit 442, generator minimum continuous stop time 451 and generator minimum continuous operation time 452, storage battery heater characteristic 460, storage battery charge loss characteristic 470, storage battery charge amount upper limit 481 and storage battery charge amount lower limit 482 , Storage battery discharge amount upper limit 483 and storage battery discharge amount lower limit 484, storage battery storage amount upper limit 491 and storage battery storage amount lower limit 492, and further information such as power purchase cost 401 is included.

発電計画作成システム200では、上述の推定総需要電力300および発電機・蓄電池
特性400のデータが演算装置210に入力され、演算装置210では、これらのデータを元に制約条件と目的関数値が計算され、これに基づいて最適化計算が行われる。
In the power generation plan creation system 200, the data of the estimated total demand power 300 and the generator / battery characteristics 400 described above are input to the arithmetic device 210, and the arithmetic device 210 calculates constraint conditions and objective function values based on these data. Based on this, an optimization calculation is performed.

そして、演算装置210における最適化計算の結果得られる発電機運転計画値510および蓄電池充放電計画値520の情報が出力部を通して、通信ネットワーク150経由、または、直接的なデータベース160への書き込みにより出力される。   Then, information on the generator operation plan value 510 and the storage battery charge / discharge plan value 520 obtained as a result of the optimization calculation in the arithmetic unit 210 is output through the output unit, via the communication network 150, or directly written in the database 160. Is done.

以下、本実施の形態の発電計画作成システム200の作用を説明する。
本実施の形態の電力系統計画作成のように、各種の制約を満たしつつ目的関数(コスト項目)を最小化するような計画変数を求めるのは最適化問題である。
Hereinafter, the operation of the power generation plan creation system 200 of the present embodiment will be described.
It is an optimization problem to obtain a plan variable that minimizes the objective function (cost item) while satisfying various constraints as in the power system plan creation of the present embodiment.

これは後述のように混合整数非線形計画問題であり、決定変数である計画変数の探索に基づく最適解求解手法が有効である。
そして、探索に基づく最適化問題の求解手順として、本実施の形態では、図3のフローチャートに例示される、以下の入力処理610、計画変数調整処理620、制約項目計算処理630、目的関数計算処理640、結果評価処理650、出力処理660、の各処理を実行する。
As described later, this is a mixed integer nonlinear programming problem, and an optimal solution solving method based on a search for a design variable that is a decision variable is effective.
Then, as a solution procedure for the optimization problem based on the search, in this embodiment, the following input process 610, plan variable adjustment process 620, constraint item calculation process 630, objective function calculation process, which are exemplified in the flowchart of FIG. Each process of 640, the result evaluation process 650, and the output process 660 is performed.

すなわち、「入力処理610」により最適化問題の条件を表すパラメータが入力され、「計画変数調整処理620」にて計画変数値に値が設定(最初は調整ではなく初期値の設定)され、設定された計画変数値に基づいて「制約項目計算処理630」により制約項目の制約条件値が、「目的関数計算処理640」によりコスト項目の合計としての目的関数値が計算される。   That is, a parameter indicating the condition of the optimization problem is input by “input process 610”, and a value is set to the plan variable value by “plan variable adjustment process 620” (initial value is not initially adjusted but set). Based on the planned variable values, the constraint condition value of the constraint item is calculated by the “constraint item calculation process 630”, and the objective function value as the sum of the cost items is calculated by the “objective function calculation process 640”.

この結果を、「結果評価処理650」で評価して計画変数値がより最適な値に近づくように、計画変数調整処理620で、当該計画変数値を調整して探索が行われる。この探索を制約条件値と目的関数値が最適条件を満たすまで繰り返し、得られた結果を、「出力処理660」で出力する。   A search is performed by adjusting the plan variable value in the plan variable adjustment process 620 so that the result is evaluated in the “result evaluation process 650” and the plan variable value approaches a more optimal value. This search is repeated until the constraint condition value and the objective function value satisfy the optimum condition, and the obtained result is output by “output processing 660”.

以下に上記各処理について詳細に説明する。
(入力処理610)
既述のように以下の推定総需要電力300および発電機・蓄電池特性400の入力データが演算装置210に入力される。
Hereinafter, each of the processes will be described in detail.
(Input processing 610)
As described above, the input data of the following estimated total demand power 300 and generator / storage battery characteristics 400 is input to the arithmetic unit 210.

発電機・蓄電池特性400は、火力発電機の属性・特性(台数、各発電機属性・特性:発電機燃料費特性410、発電機起動費特性420、発電機出力上限431、発電機出力下限432、発電機出力変化率上限441、発電機出力変化率下限442、発電機最小連続停止時間451、発電機最小連続運転時間452など)と、蓄電池の属性、特性(台数、各蓄電池の特性:蓄電池ヒータ特性460、蓄電池充電ロス特性470、蓄電池充電量上限481および蓄電池充電量下限482、蓄電池放電量上限483および蓄電池放電量下限484、蓄電池蓄電量上限491、蓄電池蓄電量下限492など)と、その他の属性(買電コスト401など)の情報を含んでいる。   The generator / storage battery characteristics 400 are the attributes / characteristics of the thermal power generator (number, each generator attribute / characteristic: generator fuel cost characteristic 410, generator startup cost characteristic 420, generator output upper limit 431, generator output lower limit 432). Generator output change rate upper limit 441, generator output change rate lower limit 442, generator minimum continuous stop time 451, generator minimum continuous operation time 452, etc.) and storage battery attributes and characteristics (number of units, characteristics of each storage battery: storage battery Heater characteristics 460, storage battery charge loss characteristics 470, storage battery charge amount upper limit 481 and storage battery charge amount lower limit 482, storage battery discharge amount upper limit 483 and storage battery discharge amount lower limit 484, storage battery charge amount upper limit 491, storage battery charge amount lower limit 492, etc.) Information (such as a power purchase cost 401).

(計画変数調整処理620)
制約項目計算処理630、目的関数計算処理640で計算された制約項目値、コスト項目値の結果に基づいて計画変数値を最適に近づけるように調整する処理を行う。
(Plan variable adjustment process 620)
Based on the result of the constraint item value and the cost item value calculated by the constraint item calculation process 630 and the objective function calculation process 640, a process of adjusting the plan variable value to be close to the optimum is performed.

(制約項目計算処理630)
設定された計画変数値に対する制約項目値を、制約条件計算手段240で計算する。
ここで設定された計画変数値とは、初期値または計画変数調整処理620で調整された
計画変数値である。
(Constraint item calculation process 630)
The constraint item value for the set plan variable value is calculated by the constraint condition calculation means 240.
The plan variable value set here is an initial value or a plan variable value adjusted by the plan variable adjustment processing 620.

(目的関数計算処理640)
設定された計画変数値に対するコスト項目値を目的関数計算手段230で計算する。
ここで設定された計画変数値は、初期値または計画変数調整処理620で調整された計画変数値である。
(Objective function calculation process 640)
The cost function value for the set plan variable value is calculated by the objective function calculation means 230.
The plan variable value set here is the initial value or the plan variable value adjusted in the plan variable adjustment process 620.

(結果評価処理650)
制約項目計算処理630で計算された制約項目、目的関数計算処理640で計算されたコスト項目を、最適化手段220で評価し、制約条件が満足されているか、コストが最適(最小)となっているかを評価する。
(Result evaluation process 650)
The constraint item calculated in the constraint item calculation process 630 and the cost item calculated in the objective function calculation process 640 are evaluated by the optimization unit 220 and the constraint condition is satisfied or the cost is optimal (minimum). Evaluate whether

(出力処理660)
結果評価処理650にて最適と判定された計画値が最適な発電機運転・蓄電池充放電計画(発電機運転計画値510、蓄電池充放電計画値520)として、最適化手段220から出力される。
(Output processing 660)
The plan value determined to be optimal in the result evaluation process 650 is output from the optimization unit 220 as the optimal generator operation / battery charge / discharge plan (generator operation plan value 510, storage battery charge / discharge plan value 520).

次に、上述のような本実施の形態の電力系統計画作成のための最適化問題における定式化の一例を示す。
発電機120の運転ならびにNAS蓄電池130の充放電の計画問題は、以下の計画変数、目的関数(目的関数計算手段230)、制約条件(制約条件計算手段240)により定式化される。
Next, an example of formulation in the optimization problem for creating the power system plan of the present embodiment as described above will be shown.
The planning problem of the operation of the generator 120 and the charging / discharging of the NAS storage battery 130 is formulated by the following planning variables, objective function (objective function calculation means 230), and constraint conditions (constraint condition calculation means 240).

これは連続値をとる決定変数と整数値をとる決定変数とを含み決定変数に対して非線形な目的関数を含む最適化問題であり、混合整数非線形計画問題となる。
本実施の形態の場合、計画変数としては、
各発電機iの計画対象時間中各時刻tにおける起動停止uit(0:停止、1:運転)
各発電機iの起動の有無Δu(0:起動無し、1:起動あり)
各発電機iの計画対象時間中各時刻tにおける発電出力Pit
各発電機iの計画対象時間中各時刻tにおける放電量HGit
各発電機iの計画対象時間中各時刻tにおける充電量HPit
がある。
この場合、HGit,HPitはいずれもゼロ以上の値をとるものとし、NAS蓄電池130の充電時にはHGit=0,HPit>0、放電時にはHGit>0,HPit=0とする。
This is an optimization problem including a decision variable that takes a continuous value and a decision variable that takes an integer value and includes an objective function that is nonlinear with respect to the decision variable, and becomes a mixed integer nonlinear programming problem.
In the case of this embodiment, as a plan variable,
Start / stop u it (0: stop, 1: run) at each time t during the planning target time of each generator i
Whether or not each generator i is activated Δu i (0: no activation, 1: activation)
Power generation output P it at each time t during the planning target time of each generator i
Discharge amount HG it at each time t during the planning target time of each generator i
Charge amount HP it at each time t during the planning target time of each generator i
There is.
In this case, HG it and HP it both take values of zero or more, and HG it = 0, HP it > 0 when the NAS storage battery 130 is charged, and HG it > 0 and HP it = 0 when discharging.

目的関数(目的関数計算手段230):
目的関数は以下で表わされ、この各要素がコスト項目であり、目的関数計算手段230により計算される。
Objective function (objective function calculation means 230):
The objective function is expressed as follows, and each element is a cost item and is calculated by the objective function calculating means 230.

目的関数=燃料費(J1)+起動費(J2)+NAS電池ヒータ費用(J3)+充電ロス費用(J4)+買電コスト(J5)
燃料費J1は、次の式(1)で表される。
Objective function = fuel cost (J1) + startup cost (J2) + NAS battery heater cost (J3) + charge loss cost (J4) + power purchase cost (J5)
The fuel cost J1 is expressed by the following formula (1).

ここでa,b,cは発電機iの燃料消費特性(発電機燃料費特性410)により定まるパラメータである。
起動費J2は、次の式(2)で表される。
Here, a i , b i and c i are parameters determined by the fuel consumption characteristic of the generator i (generator fuel cost characteristic 410).
The start-up cost J2 is expressed by the following formula (2).

ここでSUCは、発電機iの燃料費特性の係数である。
NAS電池ヒータ費用J3は、以下の式(3)〜式(8)を踏まえて、式(9)で表される。
Here, SUC i is a coefficient of the fuel cost characteristic of the generator i.
The NAS battery heater cost J3 is expressed by equation (9) based on the following equations (3) to (8).

既述のように、NAS蓄電池130の運転のためには電池を例えば300℃以上の温度に保つ必要があるが、逆にあまり高い温度としても劣化するため例えば360℃以下としている。一方で、蓄電池は、充電時に吸熱し、放電時に発熱するという特性を持つ。これを考慮して、蓄電池に蓄積される熱量は以下のようにして計算される。   As described above, in order to operate the NAS storage battery 130, it is necessary to keep the battery at a temperature of, for example, 300 ° C. or higher. On the other hand, a storage battery has a characteristic of absorbing heat during charging and generating heat during discharging. Considering this, the amount of heat stored in the storage battery is calculated as follows.

蓄電池iの時刻tにおける充放電量を1つの変数Eitで表わすものとする。Eitは充電時は負の値をとり、放電時は正の値をとり、既出の記号を用いて以下のように表わされる。 It denotes the charge and discharge amount at the time t of the battery i in one variable E it. Eit takes a negative value at the time of charging, takes a positive value at the time of discharging, and is expressed as follows using the above-mentioned symbols.

蓄電池iの時刻tにおける単位時間の発熱量を表す変数をΔQitとする(ΔQitは発熱吸熱共通の変数であり、発熱時に正、吸熱時に負の値をとるものとする)、放電時の発熱特性ならびに充電時の吸熱特性を合わせてEitとΔQitの関係として、図4の線図のように表わすものとする。 A variable representing the amount of heat generated per unit time at time t of the storage battery i is ΔQ it (ΔQ it is a variable common to exothermic heat absorption, and takes a positive value during heat generation and a negative value during heat absorption). The relationship between E it and ΔQ it is shown in the diagram of FIG. 4 together with the heat generation characteristics and the heat absorption characteristics during charging.

このような吸発熱特性は充放電量の各値Eitに対応して吸発熱量ΔQitが定まる、テーブルやグラフとして表されるが、本実施の形態では、これを関数とみなして、これを以下の式(4)のように表わすものとする。 Such heat absorption / heat generation characteristics are expressed as a table or graph in which the heat absorption / heat generation amount ΔQ it is determined corresponding to each value E it of charge / discharge, but in the present embodiment, this is regarded as a function, Is expressed as the following equation (4).

この特性は蓄電池iごとに定まると考えられるので関数fも電池ごとに定まるため添数iを付している。
次に時刻tにおいて蓄電池iから自然放熱により逃げる単位時間当たりの熱量をRDitとする。
Since this characteristic is considered to be determined for each storage battery i, the function f i is also determined for each battery, so the index i is attached.
Next, let RD it be the amount of heat per unit time that escapes from the storage battery i by natural heat radiation at time t.

RDitは例えば時間によらず一定値としてもよいし、蓄電池温度と周囲温度の差(の絶対値)に比例して放熱が発生するようなモデルを考えてもよい。
一定値の放熱が発生すると考えた場合、以下の式(5)のように定められる。
RD it is may be a constant value regardless of the example time may be considered a model such as the heat radiation in proportion to the difference between the battery temperature and the ambient temperature (absolute value of) occurs.
When it is considered that a certain value of heat dissipation occurs, it is defined as the following equation (5).

蓄電池iに時刻tまでに蓄積される熱量Qitは以下の式(6)で表わされる。 The amount of heat Q it stored in the storage battery i by time t is expressed by the following equation (6).

ここでQi0は蓄電池iの保持熱量の初期値である。
次に時刻tにおける蓄電池iの温度Titは以下の式(7)のようにして算出される。
Here, Q i0 is an initial value of the retained heat amount of the storage battery i.
Next, the temperature T it of the storage battery i at time t is calculated as in the following equation (7).

ここでMは蓄電池iの質量である。
電池ヒータ131は蓄電池ごとに設置されているものとし、蓄電池iの起動停止は蓄電池iの温度Titに基づいて、以下のように定められる。
Here M i is the mass of the battery i.
Battery heater 131 is assumed to be installed for each battery, start and stop of the accumulator i is based on the temperature T it of the battery i, is defined as follows.

なお、ここでは電池ヒータ131は起動(運転)または停止の2状態のみをとるものとし、電池ヒータ131は運転時には電力等の一定のエネルギーを消費して一定量の発熱を行うものとする。電池ヒータ131の運転停止は当該蓄電池の温度に応じて定まるものとし、例えば設定最低温度Tit minを下回ると起動して運転し始め、その後、設定最高温度Tit maxに達すると停止するものとする。 Here, it is assumed that the battery heater 131 takes only two states of starting (operation) or stopping, and the battery heater 131 consumes a certain amount of energy such as electric power during operation and generates a certain amount of heat. The operation stop of the battery heater 131 is determined according to the temperature of the storage battery. For example, the battery heater 131 starts to operate when the temperature falls below the set minimum temperature T it min , and then stops when the set maximum temperature T it max is reached. To do.

時刻tにおける蓄電池iの電池ヒータ131の運転停止状態hitは、 Shutdown state h it of the battery heater 131 of the storage battery i is at time t,

で計算される。
蓄電池iのヒータ運転時のエネルギー消費量をFとすると、その時刻tにおけるエネルギー消費量はFitと表わされる。
Calculated by
When the energy consumption during heater operation of the storage battery i and F i, the energy consumption in the time t is expressed as F i h it.

従って、評価対象期間において各蓄電池について合計することにより、電池ヒータ131の費用(NAS電池ヒータ費用J3)は以下の式(9)で表わされる。   Therefore, by summing up each storage battery in the evaluation target period, the cost of the battery heater 131 (NAS battery heater cost J3) is expressed by the following equation (9).

また、充電ロス費用J4は、以下の式(10)で表される。   Further, the charge loss cost J4 is expressed by the following formula (10).

この式(10)は充電量累積値(絶対値)−放電量累積値(絶対値)を表し、充電ロス
に対応する。
買電コストJ5は、次の式(11)で表される。
This equation (10) represents the charge amount accumulated value (absolute value) −discharge amount accumulated value (absolute value), and corresponds to the charge loss.
The power purchase cost J5 is expressed by the following equation (11).

ただし、R:時刻tにおける買電量、k:買電単価、である。
以上の各コスト項目の合計として目的関数の関数値が算出される。
次に、制約条件について説明する。
Here, R t : power purchase amount at time t, k: power purchase unit price.
The function value of the objective function is calculated as the sum of the above cost items.
Next, the constraint conditions will be described.

制約条件(制約条件計算手段240):
制約条件は以下で表わされ、この各項目について、制約条件計算手段240により計算される。
Constraint conditions (constraint condition calculation means 240):
The constraint conditions are expressed as follows, and each item is calculated by the constraint condition calculation means 240.

[需給バランス]:
:推定総需要電力とすると、計画対象期間の各時点において、以下の式(12)の関係が維持される必要がある。
[Supply and demand balance]:
If D t is the estimated total demand power, the relationship of the following formula (12) needs to be maintained at each point in the planning target period.

[発電機出力上下限、出力変化率上下限]:   [Generator output upper and lower limits, output change rate upper and lower limits]:

ただし、
min:発電機iの出力下限値(発電機出力下限432)
max:発電機iの出力上限値(発電機出力上限431)
である。
However,
P i min : Output lower limit value of generator i (generator output lower limit 432)
P i max : Output upper limit value of generator i (generator output upper limit 431)
It is.

ただし、
ΔP downmax:発電機iの下降側最大変化率(発電機出力変化率下限442)
ΔP upmax:発電機iの上昇側最大変化率(発電機出力変化率上限441)
である。
[発電機最小連続停止/運転時間]:
However,
ΔP i downmax : descent-side maximum change rate of generator i (generator output change rate lower limit 442)
ΔP i upmax : Maximum increase rate of generator i on the rising side (generator output change rate upper limit 441)
It is.
[Generator minimum continuous stop / operation time]:

ただし、mint:発電機iの最小連続停止時間(発電機最小連続停止時間451)である。 However, mint i is the minimum continuous stop time of the generator i (the minimum generator continuous stop time 451).

ただし、minr:発電機iの最小連続運転時間(発電機最小連続運転時間452)である。
[充放電上下限]:
計画対象期間の各時点、各蓄電池において、放電量上下限の制約として、以下の式(17)および式(18)で表される制約がある。
Where minr i is the minimum continuous operation time of the generator i (the minimum generator continuous operation time 452).
[Charging / discharging upper and lower limit]:
At each time point in the planning target period and each storage battery, there are constraints expressed by the following formulas (17) and (18) as constraints on the upper and lower discharge amounts.

ただし、式(17)、式(18)において、
HG min:蓄電池iの放電量下限値(蓄電池放電量下限484)
HG max:蓄電池iの放電量上限値(蓄電池放電量上限483)
HP min:蓄電池iの充電量下限値(蓄電池充電量下限482)
HP max:蓄電池iの充電量上限値(蓄電池充電量上限481)
である。
However, in Formula (17) and Formula (18),
HG i min : discharge amount lower limit value of storage battery i (storage battery discharge amount lower limit 484)
HG i max : discharge amount upper limit value of storage battery i (storage battery discharge amount upper limit 483)
HP i min : Charge amount lower limit value of storage battery i (storage battery charge amount lower limit 482)
HP i max : Charge amount upper limit value of storage battery i (storage battery charge amount upper limit 481)
It is.

なおここで、充電量ならびに放電量は単位時間あたりの充電量ならびに放電量を示す。
[蓄電量上下限]:
計画対象期間の各時点、各蓄電池において、蓄電量上下限の制約として、以下の式(19)で表される制約がある。
Here, the charge amount and the discharge amount indicate the charge amount and the discharge amount per unit time.
[Capacity limit]:
In each storage battery at each time point in the planning target period, there is a restriction expressed by the following formula (19) as a restriction on the upper and lower limits of the amount of electricity stored.

ただし、この式(19)において、
LH min:蓄電池iの蓄電量下限値(蓄電池蓄電量下限492)
LH max:蓄電池iの蓄電量上限値(蓄電池蓄電量上限491)
である。
However, in this formula (19),
LH i min : Storage battery lower limit value of storage battery i (storage battery storage capacity lower limit 492)
LH i max : The storage amount upper limit value of the storage battery i (storage battery storage amount upper limit 491)
It is.

なお、ここで蓄電量は蓄電池に充電されている(累積の)蓄電量を示す。
(最適化問題の求解)
上述の図3のフローチャートにて説明した探索に基づく最適化問題の求解(最適化処理)として、最適化手段220では、例えば、メタヒューリスティク手法を用いることができる。
Here, the storage amount indicates the (accumulated) storage amount charged in the storage battery.
(Solving optimization problems)
As an optimization problem solution (optimization process) based on the search described in the flowchart of FIG. 3 described above, the optimization unit 220 can use, for example, a metaheuristic technique.

具体的には、遺伝的アルゴリズム(GA)とその改良手法、シミュレーティッドアニー
リング(SA)とその改良手法、タブサーチ(以下TSと記す)とその改良手法およびParticle Swarm Optimization(以下PSOと記す)とその改良手法などが用いることができる。
Specifically, Genetic Algorithm (GA) and its improved method, Simulated Annealing (SA) and its improved method, Tab Search (hereinafter referred to as TS) and its improved method, and Particle Swarm Optimization (hereinafter referred to as PSO) Such improved techniques can be used.

以上説明したように、本実施の形態によれば、以下の効果を奏する。
すなわち、従来は発電機運転・蓄電池充放電計画においてはNAS電池におけるヒータの運用費用については考慮されずに計画が立てられ、NAS電池のヒータはそれに従属して運転しており、不必要にヒータが運転され非効率になる場合があった。
As described above, according to the present embodiment, the following effects are obtained.
In other words, in the conventional generator operation / storage battery charging / discharging plan, the operation cost of the heater in the NAS battery is not considered, and the heater of the NAS battery is operated depending on it, and the heater is unnecessarily operated. May become inefficient due to driving.

これに対して本実施の形態の場合には、NAS蓄電池130に備えられた電池ヒータ131の運転を考慮した発電機発電・蓄電池充放電計画を立てることにより、電池ヒータ131のコストまでを網羅した運転コストの削減が図られ、電力系統100における発電機発電・蓄電池充放電が全体で最適的に効率的に行われ、コストの削減が図られると同時に環境負荷の低減も図られる。   On the other hand, in the case of the present embodiment, the cost of the battery heater 131 is covered by making a generator power generation / storage battery charging / discharging plan considering the operation of the battery heater 131 provided in the NAS storage battery 130. The operation cost is reduced, and the generator power generation / storage battery charging / discharging in the electric power system 100 is optimally and efficiently performed as a whole, thereby reducing the cost and simultaneously reducing the environmental load.

すなわち、NAS蓄電池130は放電時に発熱し、充電時に吸熱するため、電池ヒータ131による加熱により昇温・保温を行う場合も、NAS蓄電池130自体の発熱や吸熱を考慮して行うことにより電池ヒータ131の無駄な加熱を抑制できる。   That is, since the NAS storage battery 130 generates heat during discharging and absorbs heat during charging, the battery heater 131 can also be used by considering the heat generation and heat absorption of the NAS storage battery 130 even when the temperature is increased and maintained by heating by the battery heater 131. It is possible to suppress unnecessary heating.

さらに、NAS蓄電池130自体の吸発熱を考慮した充放電を行うことにより、電池ヒータ131の加熱費用を含めた運用コストの最適化(最小化)を実現可能な発電機の発電計画を策定することができる。   In addition, a power generation plan for a generator that can realize optimization (minimization) of operation costs including heating costs of the battery heater 131 by charging and discharging in consideration of heat absorption and heat generation of the NAS storage battery 130 itself is formulated. Can do.

なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
例えば、高温作動型二次電池装置としては、NAS(ナトリウム硫黄)蓄電池装置に限らず、稼働に際してヒータによる加熱を必要とする二次電池に広く適用できる。
Needless to say, the present invention is not limited to the configuration exemplified in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the high temperature operation type secondary battery device is not limited to a NAS (sodium sulfur) storage battery device, but can be widely applied to secondary batteries that require heating by a heater during operation.

100 電力系統
110 電力線網
120 発電機
130 NAS蓄電池
131 電池ヒータ
140 負荷
150 通信ネットワーク
160 データベース
170 需給制御システム
180 外部電力系統
181 電力線
200 発電計画作成システム
210 演算装置
220 最適化手段
230 目的関数計算手段
240 制約条件計算手段
300 推定総需要電力
400 発電機・蓄電池特性
401 買電コスト
410 発電機燃料費特性
420 発電機起動費特性
431 発電機出力上限
432 発電機出力下限
441 発電機出力変化率上限
442 発電機出力変化率下限
451 発電機最小連続停止時間
452 発電機最小連続運転時間
460 蓄電池ヒータ特性
470 蓄電池充電ロス特性
481 蓄電池充電量上限
482 蓄電池充電量下限
483 蓄電池放電量上限
484 蓄電池放電量下限
491 蓄電池蓄電量上限
492 蓄電池蓄電量下限
510 発電機運転計画値
520 蓄電池充放電計画値
610 入力処理
620 計画変数調整処理
630 制約項目計算処理
640 目的関数計算処理
650 結果評価処理
660 出力処理
J1 燃料費
J2 起動費
J3 NAS電池ヒータ費用
J4 充電ロス費用
J5 買電コスト
DESCRIPTION OF SYMBOLS 100 Power system 110 Power line network 120 Generator 130 NAS storage battery 131 Battery heater 140 Load 150 Communication network 160 Database 170 Supply and demand control system 180 External power system 181 Power line 200 Power generation plan creation system 210 Arithmetic unit 220 Optimization means 230 Objective function calculation means 240 Constraint condition calculation means 300 Estimated total demand power 400 Generator / storage battery characteristics 401 Power purchase cost 410 Generator fuel cost characteristics 420 Generator start-up cost characteristics 431 Generator output upper limit 432 Generator output lower limit 441 Generator output change rate upper limit 442 Power generation Machine output change rate lower limit 451 Generator minimum continuous stop time 452 Generator minimum continuous operation time 460 Battery heater characteristic 470 Battery charge loss characteristic 481 Battery charge upper limit 482 Battery charge lower limit 483 Battery discharge upper limit 48 Storage battery discharge amount lower limit 491 Storage battery storage amount upper limit 492 Storage battery storage amount lower limit 510 Generator operation plan value 520 Storage battery charge / discharge plan value 610 Input process 620 Plan variable adjustment process 630 Constraint item calculation process 640 Objective function calculation process 650 Result evaluation process 660 Output Processing J1 Fuel Cost J2 Startup Cost J3 NAS Battery Heater Cost J4 Charge Loss Cost J5 Power Purchase Cost

Claims (4)

接続された負荷の推定総需要電力に基づいて、内燃力発電装置および高温作動型二次電池装置を備えた電力系統における前記内燃力発電装置の運転計画および前記高温作動型二次電池の充放電計画を行う電力系統計画作成装置であって、
前記運転計画および前記充放電計画の情報から制約項目を計算する制約項目計算手段と、
前記運転計画および前記充放電計画の情報からコスト項目で構成される目的関数を計算する目的関数計算手段と、
前記制約項目を満たす範囲内で前記コスト項目の合計である目的関数を最小化するような前記運転計画および前記充放電計画を求めるコスト最適化手段とを有し、
前記コスト項目は、
前記内燃力発電装置の稼働に要する発電機燃料費と、
前記内燃力発電装置の起動に要する発電機起動費と、
前記高温作動型二次電池装置の昇温用ヒータ加熱費用と、
前記高温作動型二次電池装置の電池充電ロスと、
前記電力系統が外部から融通された電力の買電コストと、
を含むことを特徴とする電力系統計画作成装置。
Based on the estimated total demand power of the connected load, the operation plan of the internal combustion power generation device in the power system including the internal combustion power generation device and the high temperature operation type secondary battery device, and charging and discharging of the high temperature operation type secondary battery A power system planning device for planning,
Constraint item calculation means for calculating a constraint item from information on the operation plan and the charge / discharge plan,
An objective function calculating means for calculating an objective function composed of cost items from information on the operation plan and the charge / discharge plan;
Cost optimization means for obtaining the operation plan and the charge / discharge plan that minimize the objective function that is the sum of the cost items within a range that satisfies the constraint item,
The cost item is
Generator fuel cost required for operation of the internal combustion power generator,
Generator starting cost required for starting the internal combustion power generator,
The heater heating cost for raising the temperature of the high temperature operation type secondary battery device,
Battery charge loss of the high temperature operation type secondary battery device,
The power purchase cost of the electric power that the electric power system has exchanged from the outside,
An electric power system plan creation device characterized by including.
接続された負荷の推定総需要電力に基づいて、内燃力発電装置および高温作動型二次電池装置を備えた電力系統における前記内燃力発電装置の運転計画および前記高温作動型二次電池の充放電計画を行う電力系統計画作成方法であって、
前記高温作動型二次電池装置のヒータ加熱費用を含む稼働コストが最小化となるように、前記運転計画および前記充放電計画を作成することを特徴とする電力系統計画作成方法。
Based on the estimated total demand power of the connected load, the operation plan of the internal combustion power generation device in the power system including the internal combustion power generation device and the high temperature operation type secondary battery device, and charging and discharging of the high temperature operation type secondary battery A power system planning method for planning,
A power system plan creation method, wherein the operation plan and the charge / discharge plan are created so that an operation cost including a heater heating cost of the high temperature operation type secondary battery device is minimized.
請求項記載の電力系統計画作成方法において、
前記高温作動型二次電池装置は、NAS(ナトリウム硫黄)蓄電池装置であることを特徴とする電力系統計画作成方法。
In the electric power system plan preparation method of Claim 2 ,
The high-temperature operation type secondary battery device is a NAS (sodium sulfur) storage battery device.
接続された負荷の推定総需要電力に基づいて、内燃力発電装置および高温作動型二次電池装置を備えた電力系統における前記内燃力発電装置の運転計画および前記高温作動型二次電池の充放電計画を行う電力系統計画作成装置であって、  Based on the estimated total demand power of the connected load, the operation plan of the internal combustion power generation device in the power system including the internal combustion power generation device and the high temperature operation type secondary battery device, and charging and discharging of the high temperature operation type secondary battery A power system planning device for planning,
前記高温作動型二次電池装置のヒータ加熱費用を含む稼働コストが最小化となるように、前記運転計画および前記充放電計画を作成する手段を有することを特徴とする電力系統計画作成装置。  An electric power system plan creation device comprising means for creating the operation plan and the charge / discharge plan so that an operation cost including a heater heating cost of the high temperature operation type secondary battery device is minimized.
JP2009297660A 2009-12-28 2009-12-28 Power system plan creation device and power system plan creation method Active JP5540698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297660A JP5540698B2 (en) 2009-12-28 2009-12-28 Power system plan creation device and power system plan creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297660A JP5540698B2 (en) 2009-12-28 2009-12-28 Power system plan creation device and power system plan creation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014004623A Division JP2014082932A (en) 2014-01-14 2014-01-14 Electric power system planning apparatus and electric power system planning method

Publications (2)

Publication Number Publication Date
JP2011139585A JP2011139585A (en) 2011-07-14
JP5540698B2 true JP5540698B2 (en) 2014-07-02

Family

ID=44350434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297660A Active JP5540698B2 (en) 2009-12-28 2009-12-28 Power system plan creation device and power system plan creation method

Country Status (1)

Country Link
JP (1) JP5540698B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5653869B2 (en) * 2011-09-15 2015-01-14 本田技研工業株式会社 Fuel cell system
JP2014082932A (en) * 2014-01-14 2014-05-08 Fuji Electric Co Ltd Electric power system planning apparatus and electric power system planning method
JP6359948B2 (en) * 2014-10-29 2018-07-18 京セラ株式会社 Power storage device and method for controlling power storage device
JP6520386B2 (en) * 2015-05-25 2019-05-29 富士電機株式会社 Power system planning device
JP6520517B2 (en) * 2015-07-22 2019-05-29 富士電機株式会社 Supply and demand planning device, program
JP6664264B2 (en) * 2016-04-11 2020-03-13 三菱電機株式会社 Battery operation plan creation device
CN110601177B (en) * 2019-08-06 2023-04-14 广东工业大学 Economic optimization method for micro-grid containing wind power and photovoltaic power generation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631986B2 (en) * 2001-07-10 2005-03-23 株式会社エネット Power control and management system
JP4187620B2 (en) * 2003-09-22 2008-11-26 株式会社明電舎 A generator start / stop plan creation method and apparatus, and a recording medium for recording a processing program of the start / stop plan creation apparatus.
JP4087774B2 (en) * 2003-10-21 2008-05-21 日本電信電話株式会社 Distributed energy system operation plan creation device and creation method
JP4203602B2 (en) * 2006-09-06 2009-01-07 国立大学法人 琉球大学 Operation support method and apparatus for power supply equipment

Also Published As

Publication number Publication date
JP2011139585A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5540698B2 (en) Power system plan creation device and power system plan creation method
Karami et al. An optimal dispatch algorithm for managing residential distributed energy resources
Sharma et al. Automatic generation control of a multi-area ST–Thermal power system using Grey Wolf Optimizer algorithm based classical controllers
Bao et al. A multi time-scale and multi energy-type coordinated microgrid scheduling solution—Part I: Model and methodology
Moradi et al. Operational strategy optimization in an optimal sized smart microgrid
Pourmousavi et al. Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization
CN110244566B (en) Capacity optimization configuration method for combined cooling heating and power system considering flexible load
Abdalla et al. Optimized economic operation of microgrid: combined cooling and heating power and hybrid energy storage systems
CN108229865A (en) A kind of electric heating gas integrated energy system low-carbon economy dispatching method based on carbon transaction
CN109787227B (en) Multi-time scale optimization scheduling method for multi-energy complementary system
JP6239631B2 (en) Management system, management method, management program, and recording medium
CN109409595B (en) Garden multi-energy complementary system day-ahead scheduling method
Howlader et al. Distributed generation incorporated with the thermal generation for optimum operation of a smart grid considering forecast error
Moazeni et al. Step towards energy-water smart microgrids; buildings thermal energy and water demand management embedded in economic dispatch
JP7438029B2 (en) energy management system
JP6034211B2 (en) Operation control device, operation control method, and operation control program
JP2013156937A (en) Optimal operation control device of energy network
JP2020524325A (en) A method of constructing a displaceable load model considering both environmental costs and rear-time electricity bill
Chen et al. Optimal scheduling of combined heat and power units with heat storage for the improvement of wind power integration
Kumar et al. A New Approach to Design and Optimize Sizing of Hybrid Microgrids in Deregulated Electricity Environment
Yıldız et al. An innovative LFC scheme for multi-area microgrid incorporating with hydrogen-based demand response mechanism
Kumar et al. Voltage stability of solar dish-Stirling based autonomous DC microgrid using grey wolf optimised FOPID-controller
CN117252043B (en) Multi-target optimal scheduling method and device for regional multi-energy complementary energy system
JP2014082932A (en) Electric power system planning apparatus and electric power system planning method
WO2015159356A1 (en) Power control system and power control method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250