JP2015203438A - Process of manufacture of waveform cage, and the waveform cage - Google Patents

Process of manufacture of waveform cage, and the waveform cage Download PDF

Info

Publication number
JP2015203438A
JP2015203438A JP2014082285A JP2014082285A JP2015203438A JP 2015203438 A JP2015203438 A JP 2015203438A JP 2014082285 A JP2014082285 A JP 2014082285A JP 2014082285 A JP2014082285 A JP 2014082285A JP 2015203438 A JP2015203438 A JP 2015203438A
Authority
JP
Japan
Prior art keywords
cage
portions
rivet
hole
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014082285A
Other languages
Japanese (ja)
Inventor
啓太 板垣
Keita Itagaki
啓太 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014082285A priority Critical patent/JP2015203438A/en
Publication of JP2015203438A publication Critical patent/JP2015203438A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/42Ball cages made from wire or sheet metal strips
    • F16C33/422Ball cages made from wire or sheet metal strips made from sheet metal
    • F16C33/427Ball cages made from wire or sheet metal strips made from sheet metal from two parts, e.g. ribbon cages with two corrugated annular parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a structure having superior durability by forming a surface hardened layer at an opposite side surface part opposing to an inside surface of the head part of the rivet in the outer side surface of one cage element even in the case when a nitriding treatment is applied in a state in which a rivet is assembled to the one cage element.SOLUTION: A protrusion part 21 is formed at an opposing side surface part 20 of one cage element 8. Then, a clearance 23 is formed between an inside surface 19 of a head part 15 of each rivet 9 and a portion other than each protrusion part 21 in the opposing side surface part 20 in a state in which an intermediate assembly 17b is constituted by press fitting a large diameter part 18 of each rivet 9 into each of through-holes 12a. In this state, nitriding treatment is applied to the intermediate assembly. On the other hand, nitriding treatment is applied to a single unit of the other cage element. Then, the protrusion part 21 is pressed and crushed by the head part 15 of each rivet 9 in a state in which the other cage element is assembled to the intermediate assembly 17b and a caulked part is formed.

Description

この発明は、ラジアル玉軸受等、自動車のトランスミッション、カーエアコン用コンプレッサ等の自動車用補機、或いは、一般産業用の各種機械等の回転支持部分に組み込まれる各種転がり軸受を構成する、玉を保持する波形保持器の製造方法及び波形保持器の構造の改良に関する。   The present invention holds a ball that constitutes various rolling bearings incorporated in a rotational support portion of a radial ball bearing or the like, an automobile auxiliary machine such as a car transmission, a compressor for a car air conditioner, or various machines for general industries. The present invention relates to a method for manufacturing a waveform holder and an improvement in the structure of the waveform holder.

各種機械装置の回転支持部に組み込む転がり軸受として、例えば図20に示す様な単列深溝型の玉軸受1が、広く使用されている。この玉軸受1は、外周面に内輪軌道2を有する内輪3と、内周面に外輪軌道4を有する外輪5と、これら内輪軌道2と外輪軌道4との間に転動自在に設けられた複数個の玉6と、これら各玉6を転動自在に保持する保持器7とを備える。   For example, a single-row deep groove type ball bearing 1 as shown in FIG. 20 is widely used as a rolling bearing incorporated in a rotation support portion of various mechanical devices. The ball bearing 1 is provided between an inner ring 3 having an inner ring raceway 2 on an outer peripheral surface, an outer ring 5 having an outer ring raceway 4 on an inner peripheral surface, and the inner ring raceway 2 and the outer ring raceway 4 so as to be capable of rolling. A plurality of balls 6 and a cage 7 that holds the balls 6 so as to roll freely are provided.

このうちの保持器7は、例えば特許文献1〜5に記載されている様な、波形保持器と呼ばれるもので、図21、23に示す様に、1対の保持器素子8、8を複数本のリベット9、9により接合して成る。これら両保持器素子8、8は、鋼板、ステンレス鋼板等の金属板製の素材に、プレスによる打ち抜き加工及び曲げ加工を施す事により、全体を波形の円環状に造られている。この様な両保持器素子8、8は、円周方向複数箇所に部分球面状の曲板部10、10を、円周方向に隣り合う曲板部10、10同士の間に平板部11、11を、これら各平板部11、11の中央部に貫通孔12、12を、それぞれ備える。又、前記各リベット9、9は、鋼、ステンレス鋼等の金属製で、杆部13と、この杆部13の基端部に設けられた頭部15とを備える。   Of these, the cage 7 is called a waveform cage as described in, for example, Patent Documents 1 to 5, and includes a plurality of pairs of cage elements 8 and 8 as shown in FIGS. The rivets 9 and 9 are joined together. Both of these cage elements 8 and 8 are formed into a corrugated annular shape by punching and bending a metal plate material such as a steel plate and a stainless steel plate by a press. Both of these cage elements 8, 8 include a plurality of circumferentially curved curved plate portions 10, 10 at a plurality of locations in the circumferential direction, and a flat plate portion 11, between the curved plate portions 10, 10 adjacent in the circumferential direction, 11 is provided with through-holes 12 and 12 in the center of each flat plate portion 11 and 11, respectively. Each of the rivets 9 and 9 is made of a metal such as steel or stainless steel, and includes a flange portion 13 and a head portion 15 provided at a base end portion of the flange portion 13.

前記保持器7は、前記両保持器素子8、8の各平板部11、11の同士を互いに重ね合わせると共に、これら各平板部11、11の互いに整合する位置に形成した前記各貫通孔12、12に前記リベット9、9の杆部13を挿通した状態で、これら各杆部13の先端部を押し潰してかしめ部14を形成し、互いに重ね合わせた前記各平板部11、11同士を、前記各リベット9、9の頭部15とかしめ部14とで挟持する事により接合している。そして、この状態で、前記各曲板部10、10に囲まれた部分を、それぞれ前記各玉6を転動自在に保持する為のポケット16、16としている。   The retainer 7 overlaps the flat plate portions 11 and 11 of the retainer elements 8 and 8 with each other, and the through holes 12 formed at positions where the flat plate portions 11 and 11 are aligned with each other. 12 with the flanges 13 of the rivets 9 and 9 inserted therethrough, the tip portions of these flanges 13 are crushed to form the crimped portions 14, and the flat plate portions 11 and 11 that are overlapped with each other are The rivets 9 and 9 are joined by being sandwiched between the head 15 and the caulking portion 14. In this state, the portions surrounded by the curved plate portions 10 and 10 serve as pockets 16 and 16 for holding the balls 6 in a rollable manner.

上述の様な保持器7を備えた玉軸受1は、例えば、冷媒圧縮用のスクロール型コンプレッサの可動スクロールにその一端部を連結された回転軸の他端部等の回転支持部分に組み込まれて、前記内輪3と前記外輪5とが偏心或いは傾斜した状況下で使用される場合がある。この様な場合には、運転中、前記各玉6から前記保持器7に、これら各玉6の公転速度の相違等に起因して、大きな力が作用する可能性がある為、この様な場合には、この保持器7の耐久性を十分に確保しておく必要がある。具体的には、この保持器7を構成する、前記両保持器素子8、8及び前記各リベット9、9の強度を十分に確保しておく必要がある。これら各部材8、9の強度を向上させる方法としては、これら両保持器素子8、8の肉厚やこれら各リベット9、9の直径を大きくする方法があるが、寸法制約上、採用できない場合も少なくない。これに対し、前記各部材8、9の寸法変化を殆ど伴う事なく、同様の目的を達成できる方法として、これら各部材8、9の表面に、例えば窒化層(窒化処理による表面硬化層)を形成する方法が、特許文献2に記載される等により、従来から広く知られている。以下、この特許文献2に記載された発明に就いて、図22を参照しつつ説明する。   The ball bearing 1 provided with the cage 7 as described above is incorporated in a rotation support portion such as the other end portion of a rotating shaft whose one end portion is connected to a movable scroll of a scroll compressor for refrigerant compression, for example. In some cases, the inner ring 3 and the outer ring 5 are used in an eccentric or inclined state. In such a case, during operation, a large force may act on the cage 7 from the balls 6 due to the difference in the revolution speed of the balls 6. In this case, it is necessary to ensure sufficient durability of the cage 7. Specifically, it is necessary to sufficiently secure the strength of the two retainer elements 8 and 8 and the rivets 9 and 9 constituting the retainer 7. As a method of improving the strength of each of these members 8 and 9, there is a method of increasing the thickness of both of these cage elements 8 and 8 and the diameter of each of these rivets 9 and 9, but cannot be adopted due to dimensional constraints. Not a few. On the other hand, for example, a nitride layer (a hardened surface layer by nitriding treatment) is formed on the surface of each member 8 and 9 as a method that can achieve the same purpose with almost no dimensional change of each member 8 and 9. The forming method has been widely known, for example, as described in Patent Document 2. Hereinafter, the invention described in Patent Document 2 will be described with reference to FIG.

前記特許文献2に記載された発明の場合、先ず、図22に示す様に、両保持器素子8、8の各平板部11、11の内側面同士を、隙間を介した状態で対向させると共に、これら各平板部11、11の互いに整合する部分に形成した貫通孔12、12に、前記各リベット9、9の杆部13、13を挿通して、中間組立体17とする。尚、この中間組立体17の状態で、これら各リベット9、9の杆部13、13の外周面と、これら各貫通孔12、12の内周面との間には隙間が設けられている。次いで、前記中間組立体17に対して、窒化処理を施す。尚、窒化処理の方法に関しては、従来から行われている窒化処理の方法と同様であり、特許文献2にも記載されている為、説明は省略する。その後、前記両保持器素子8、8の各平板部11、11の内側面同士を突き合せた状態で、前記各リベット9、9の杆部13、13の先端部をかしめる(塑性変形させて前記かしめ部14とする)事により、前記両保持器素子8、8同士を結合固定する。   In the case of the invention described in Patent Document 2, first, as shown in FIG. 22, the inner side surfaces of the flat plate portions 11, 11 of both the cage elements 8, 8 are opposed to each other through a gap. The flanges 13 and 13 of the rivets 9 and 9 are inserted into the through holes 12 and 12 formed in the matching portions of the flat plates 11 and 11 to form an intermediate assembly 17. In the state of the intermediate assembly 17, a gap is provided between the outer peripheral surface of the flanges 13 and 13 of the rivets 9 and 9 and the inner peripheral surface of the through holes 12 and 12. . Next, the intermediate assembly 17 is subjected to nitriding treatment. The nitriding method is the same as the conventional nitriding method, and is also described in Patent Document 2, so that the description thereof is omitted. Thereafter, in the state where the inner side surfaces of the flat plate portions 11 and 11 of the both cage elements 8 and 8 are abutted with each other, the tips of the flange portions 13 and 13 of the rivets 9 and 9 are caulked (plastically deformed). Thus, both the cage elements 8 and 8 are coupled and fixed together.

この様な特許文献2に記載された発明の場合、図23に示す様に、前記両保持器素子8、8の表面、及び、前記リベット9、9の表面に窒化層35を形成して、前記保持器7の耐久性の向上を図る事ができる。但し、前述の様な中間組立体17の状態で、前記各リベット9、9は、前記各貫通孔12、12に対して軸方向の抜け止めを図られていない。この為、窒化処理を施す装置に前記中間組立体17を組み込む際、或いは、窒化処理の際、前記リベット9、9が前記各貫通孔12、12から抜け落ちてしまう可能性がある。   In the case of the invention described in Patent Document 2 as described above, as shown in FIG. 23, a nitride layer 35 is formed on the surfaces of both the cage elements 8 and 8 and the surfaces of the rivets 9 and 9, The durability of the cage 7 can be improved. However, in the state of the intermediate assembly 17 as described above, the rivets 9 and 9 are not prevented from coming off in the axial direction with respect to the through holes 12 and 12. For this reason, when the intermediate assembly 17 is incorporated into a nitriding apparatus or when the nitriding process is performed, the rivets 9 and 9 may fall out of the through holes 12 and 12.

尚、前記特許文献2には、前記両保持器素子8、8のうち、一方(図22の上方)の保持器素子8の各貫通孔12、12にのみ、前記各リベット9、9を挿通する事により構成した中間組立体、即ち、図22に示した中間組立体17から他方(図22の下方)の保持器素子8を省略した中間組立体に対して、窒化処理を施すと共に、この他方の保持器素子8には、単体の状態で窒化処理を施した後、これら両保持器素子8、8同士を前記各リベット9、9により結合固定する発明も記載されている。しかしながら、この様な発明の場合も、上述した発明の場合と同様の問題、即ち、窒化処理の際に、前記各リベット9、9が前記各貫通孔12、12から抜け落ちる可能性があると言った問題を有している。   In Patent Document 2, the rivets 9 and 9 are inserted only into the through holes 12 and 12 of one of the cage elements 8 (upper side in FIG. 22) of the cage elements 8 and 8. The intermediate assembly constructed by doing this, that is, the intermediate assembly in which the other retainer element 8 (lower side in FIG. 22) is omitted from the intermediate assembly 17 shown in FIG. The other cage element 8 also describes an invention in which after nitriding is performed in a single state, both the cage elements 8 and 8 are bonded and fixed to each other by the rivets 9 and 9. However, in the case of such an invention, the same problem as in the case of the above-described invention, that is, the rivets 9 and 9 may fall out of the through-holes 12 and 12 during the nitriding process. Have problems.

又、特許文献2には、前記両保持器素子8、8及び前記各リベット9、9に対して、それぞれ単体の状態で窒化処理を施す事に就いても記載されている。但し、前記各リベット9、9に、単体の状態で窒化処理を施す場合、これら各リベット9、9は非常に小さい部品であり、これら各リベット9、9の全表面に窒化処理を施す為には、窒化処理の工程で面倒な作業、及び、特別な装置(治具等)が必要になる場合がある。具体的には、前記各リベット9、9の様な小さい部品に窒化処理を施す場合、これら各リベット9、9を、かご等にまとめて入れた状態で窒化処理を施す事が考えられる。しかしながら、この様な状態でこれら各リベット9、9に窒化処理を施すと、前記各リベット9、9同士が当接した(重なった)部分には、窒素が入りづらくなる。この結果、これら各リベット9、9のどの部分に表面硬化層が形成されたかを把握する事が困難となり、これら各リベット9、9の強度を安定して向上させられない可能性がある。これに対して、前記各リベット9、9を、これら各リベット9、9同士が当接しない様に整列させた状態で、窒化処理を施す場合、これら各リベット9、9を整列させる為の面倒な作業、及び、これら各リベット9、9が倒れる事を防止する為の治具等が必要になり、製造コストが嵩んでしまう。   Further, Patent Document 2 also describes that both the cage elements 8 and 8 and the rivets 9 and 9 are subjected to nitriding treatment in a single state. However, when each of the rivets 9 and 9 is subjected to nitriding treatment in a single state, each of the rivets 9 and 9 is a very small part, and in order to perform nitriding treatment on the entire surface of each of the rivets 9 and 9 In some cases, troublesome work and special equipment (such as jigs) are required in the nitriding process. Specifically, when nitriding is performed on small parts such as the rivets 9 and 9, it is conceivable to perform nitriding with the rivets 9 and 9 being put together in a cage or the like. However, when the rivets 9 and 9 are subjected to nitriding treatment in such a state, it is difficult for nitrogen to enter the portion where the rivets 9 and 9 are in contact with each other (overlap). As a result, it is difficult to grasp in which part of the rivets 9 and 9 the surface hardened layer is formed, and the strength of the rivets 9 and 9 may not be stably improved. On the other hand, when nitriding is performed in a state where the rivets 9 and 9 are aligned so that the rivets 9 and 9 do not come into contact with each other, it is troublesome to align the rivets 9 and 9. And a jig or the like for preventing the rivets 9 and 9 from falling down is necessary, and the manufacturing cost increases.

[先発明の説明]
そこで、本発明の発明者は、前記各リベット9、9の、前記各保持器素子8、8の各貫通孔12、12に対する抜け止めを図るべく、以下の様な発明をした。
以下、この先発明に就いて、図24を参照しつつ説明する。
この先発明の場合、前記かしめ部14(図23参照)を形成する以前の状態で、前記各リベット9、9の杆部13のうちの頭部15寄り部分に大径部18を設けている。この大径部18は、その外径寸法D18が、一方{図24(b)の上方}の保持器素子8の各貫通孔12の内径寸法d12よりも僅かに大きい(D18>d12)。又、前記各リベット9、9の杆部13のうちの前記大径部18以外の部分の外径寸法D13は、前記一方の保持器素子8の貫通孔12の内径寸法d12よりも小さい(D13<d12)。尚、図24に示す構造の場合、他方の保持器素子8の各貫通孔12の内径寸法は、前記一方の保持器素子8の各貫通孔12の内径寸法d12と等しい。
[Description of Prior Invention]
Therefore, the inventors of the present invention have made the following invention in order to prevent the rivets 9 and 9 from coming off from the through holes 12 and 12 of the cage elements 8 and 8.
Hereinafter, this prior invention will be described with reference to FIG.
In the case of this prior invention, a large-diameter portion 18 is provided in a portion closer to the head portion 15 of the flange portion 13 of each of the rivets 9 and 9 before the caulking portion 14 (see FIG. 23) is formed. The large-diameter portion 18 has an outer diameter D 18 that is slightly larger than the inner diameter d 12 of each through-hole 12 of the cage element 8 on the one side {above FIG. 24B} (D 18 > d 12 ). Further, the outer diameter D 13 of the portions other than the large-diameter portion 18 of the rod portion 13 of each rivet 9, 9 is smaller than the inner diameter d 12 of the through-hole 12 of the one retainer element 8 (D 13 <d 12). In the case of the structure shown in FIG. 24, the inner diameter dimension of each through hole 12 of the other cage element 8 is equal to the inner diameter dimension d 12 of each through hole 12 of the one cage element 8.

この様な先発明の場合、図24(a)に示す様に、前記一方の保持器素子8の外側(図24の上側)に前記各リベット9の頭部15を配置した状態で、前記大径部18を、前記各貫通孔12に圧入内嵌する事により、前記各リベット9を、前記一方の保持器素子8に仮止めする事で、中間組立体17aを構成する。次いで、この中間組立体17aに対して窒化処理を施す。一方、前記他方の保持器素子8には、単体の状態で窒化処理を施す。   In the case of such a prior invention, as shown in FIG. 24 (a), in the state where the heads 15 of the rivets 9 are arranged outside the one cage element 8 (upper side in FIG. 24), The intermediate assembly 17a is configured by temporarily fixing the rivets 9 to the one retainer element 8 by press fitting the diameter portions 18 into the through holes 12. Next, nitriding is performed on the intermediate assembly 17a. On the other hand, the other cage element 8 is subjected to nitriding in a single state.

従って、上述の様な先発明の場合、前記他方の保持器素子8は、その周面の全体に窒化層が形成される。一方、前記中間組立体17aは、前記各リベット9、9の大径部18を、前記一方の保持器素子8の貫通孔12に圧入内嵌している。この為、この大径部18及びこの大径部18と当接している前記一方の保持器素子8の貫通孔12の内周面部分には、窒化層が形成されない。   Therefore, in the case of the prior invention as described above, the other cage element 8 has a nitride layer formed on the entire peripheral surface thereof. On the other hand, in the intermediate assembly 17a, the large-diameter portion 18 of each of the rivets 9, 9 is press-fitted and fitted into the through hole 12 of the one retainer element 8. For this reason, a nitrided layer is not formed on the inner peripheral surface portion of the large-diameter portion 18 and the through-hole 12 of the one retainer element 8 in contact with the large-diameter portion 18.

又、上述の様な先発明の場合、図24(b)に示す様に、前記中間組立体17aの平板部11と他方の保持器素子8の平板部11とを重ね合わせるのと同時に、これら両保持器素子8、8の曲板部10、10の内面同士の間に前記各玉6(図20参照)を挟み込む。そして、この状態で、前記各リベット9、9の先端部をかしめる事により、これら両保持器素子8、8同士を結合固定する。   In the case of the prior invention as described above, as shown in FIG. 24 (b), the flat plate portion 11 of the intermediate assembly 17a and the flat plate portion 11 of the other cage element 8 are overlapped at the same time. The balls 6 (see FIG. 20) are sandwiched between the inner surfaces of the curved plate portions 10 and 10 of the cage elements 8 and 8. In this state, the retainer elements 8 and 8 are coupled and fixed to each other by caulking the tips of the rivets 9 and 9.

ところで、上述の様な先発明の場合、前記中間組立体17aを構成した状態では、前記リベット9、9の頭部15の内側面19(図24の下面)と、前記一方の保持器素子8の外側面(図24の上面)のうち、前記頭部15の内側面19と対向する対向側面部20とが、当接した状態となる。従って、この状態で前記窒化処理を施すと、これら両面19、20部分に窒化層を形成する事ができず、これら両面19、20の剛性を十分に確保できない可能性がある。この様な状態で、前記かしめ部14を形成しようとすると、前記各リベット9、9に加わる軸方向の押圧力に基づいて、前記対向側面部20が、図25に示す様に陥没してしまう可能性がある。この結果、使用の際、前記一方の保持器素子8に亀裂が発生する等して、この保持器素子8の耐久性が損なわれてしまう可能性がある。   Incidentally, in the case of the above-described prior invention, in the state where the intermediate assembly 17a is configured, the inner surface 19 (the lower surface in FIG. 24) of the head 15 of the rivets 9, 9 and the one retainer element 8 are arranged. Of the outer side surface (upper surface in FIG. 24), the opposite side surface portion 20 facing the inner surface 19 of the head 15 is in contact. Therefore, if the nitriding treatment is performed in this state, a nitrided layer cannot be formed on both the surfaces 19 and 20, and the rigidity of these surfaces 19 and 20 may not be sufficiently secured. If the caulking portion 14 is to be formed in such a state, the opposing side surface portion 20 is depressed as shown in FIG. 25 based on the axial pressing force applied to the rivets 9 and 9. there is a possibility. As a result, there is a possibility that the durability of the retainer element 8 may be impaired due to cracks in the one retainer element 8 during use.

特開平7−301242号公報JP-A-7-301242 特開平10−281163号公報JP-A-10-281163 特開平11−179475号公報JP-A-11-179475 特開2009−8164号公報JP 2009-8164 A 特開2009−236227号公報JP 2009-236227 A

本発明は、上述の様な事情に鑑みて、一方の保持器素子に複数のリベットを組み付けた中間組立体の状態で表面硬化処理を施した場合でも、前記一方の保持器素子の外側面のうち、前記リベットの頭部の内側面と対向する部分に、表面硬化層を形成する事により、耐久性に優れた波形保持器の構造、及びこの様な波形保持器の製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides the outer surface of the one retainer element even when the surface hardening treatment is performed in the state of an intermediate assembly in which a plurality of rivets are assembled to one retainer element. Of these, by forming a hardened surface layer on the inner surface of the rivet head, a corrugated cage structure with excellent durability and a method for manufacturing such a corrugated cage should be realized. Invented.

本発明の対象となる波形保持器は、1対の保持器素子と、複数のリベットとを備えている。
このうちの両保持器素子はそれぞれ、金属板により全体を波形の円環状に造られて、円周方向複数箇所に部分球面状の曲板部を、円周方向に隣り合う曲板部同士の間に平板部を、これら各平板部の一部に貫通孔を、それぞれ備えている。
又、前記各リベットはそれぞれ、金属製で、杆部と、この杆部の基端部に設けられた、この杆部よりも大径の頭部とを備えている。
そして、前記両保持器素子の各平板部同士を互いに重ね合わせると共に、互いに重ね合わせたこれら各平板部の貫通孔に前記各リベットの杆部を挿通した状態で、これら各杆部の先端部を押し潰して、これら各杆部よりも大径のかしめ部を形成し、互いに重ね合わせた前記各平板部同士を前記各リベットの頭部とかしめ部とで挟持する事により接合して、前記各曲板部に囲まれた部分を、それぞれ玉を転動自在に保持する為のポケットとしている。
The waveform holder that is the subject of the present invention comprises a pair of holder elements and a plurality of rivets.
Both of these cage elements are each made of a metal plate into a corrugated annular shape, with partial spherical curved plate portions at multiple locations in the circumferential direction, and between adjacent curved plate portions in the circumferential direction. A flat plate portion is provided therebetween, and a through hole is provided in a part of each flat plate portion.
Each of the rivets is made of metal and includes a flange portion and a head portion having a diameter larger than that of the flange portion provided at a base end portion of the flange portion.
Then, the flat plate portions of the two cage elements are overlapped with each other, and the leading end portions of the hook portions are inserted into the through holes of the flat plate portions overlapped with each other. Squeezing to form a caulking portion having a diameter larger than each of the flange portions, and joining the flat plate portions overlapped with each other by sandwiching the head portion and the caulking portion of each rivet, The part surrounded by the curved plate part is used as a pocket to hold the ball freely rolling.

特に、本発明のうち、請求項1に記載した波形保持器の製造方法の場合、前記かしめ部を形成する以前の状態の、前記各保持器素子のうちの一方の保持器素子の外側面(リベットの頭部が配置される側の側面)のうちの、前記各貫通孔の周囲で、このリベットの頭部の内側面と対向する対向側面部の少なくとも1箇所位置に凸部を形成する。
又、前記リベットの杆部を、前記一方の保持器素子の貫通孔に、前記頭部の内側面と前記凸部とが当接するまで圧入する事により、前記対向側面部のうちのこの凸部以外の部分と前記頭部の内側面との間に隙間が形成された中間組立体を構成する。次いで、この中間組立体に対して表面硬化処理を施すと共に、前記両保持器素子のうちの他方の保持器素子に対して、単体のまま表面硬化処理を施す。
そして、前記中間組立体を構成する各リベットの杆部のうちの前記一方の保持器素子の各貫通孔から突出した部分を前記他方の保持器素子の各貫通孔に挿通して前記両保持器素子の平板部同士を重ね合わせた状態で、前記頭部により前記凸部を押し潰すと共に、前記杆部の先端部に前記かしめ部を形成する。
In particular, in the case of the method for manufacturing a waveform holder according to claim 1 of the present invention, the outer surface of one of the cage elements in the state before forming the caulking portion ( A convex portion is formed at the position of at least one of the opposing side surface portions facing the inner side surface of the head portion of the rivet around each through hole in the side surface on the side where the head portion of the rivet is disposed.
Further, the convex portion of the opposing side surface portion is press-fitted into the through hole of the one retainer element until the inner side surface of the head portion and the convex portion are in contact with each other. An intermediate assembly is formed in which a gap is formed between the other portion and the inner side surface of the head. Next, the intermediate assembly is subjected to surface hardening treatment, and the other of the two cage elements is subjected to surface hardening treatment as it is.
And the part which protruded from each through-hole of said one retainer element among the collar parts of each rivet which comprises the said intermediate assembly is inserted in each through-hole of said other retainer element, and both said holders In a state where the flat plate portions of the elements are overlapped, the convex portion is crushed by the head portion, and the caulking portion is formed at the distal end portion of the flange portion.

尚、一般的な波形保持器を構成する各ポケットの両端の開口幅は、それぞれこれら各ポケット内に保持すべき玉の直径よりも小さくなっている。この為、この様な一般的な波形保持器の場合には、完成後の状態で、前記各ポケット内に前記各玉を組み込む事はできない。従って、この様な一般的な波形保持器を対象として、上述した本発明の製造方法を実施する場合には、上述の様に、かしめ部を形成する前に1対の保持器素子の曲板部の内面同士の間に各玉を挟み込んでおく必要がある。
これに対し、特殊な例であるが、完成後の状態で、各ポケットの両端の開口幅のうち、一方の開口幅のみが、これら各ポケット内に保持すべき玉の直径よりも小さくなっており、他方の開口幅が、これら各玉の直径よりも大きくなっている波形保持器を対象として、上述した本発明の製造方法を実施する場合には、必ずしも、かしめ部を形成する前に1対の保持器素子の曲板部の内面同士の間に各玉を挟み込んでおく必要はない。
Note that the opening widths at both ends of each pocket constituting a general corrugated holder are smaller than the diameter of the ball to be held in each pocket. For this reason, in the case of such a general waveform holder, the balls cannot be incorporated into the pockets in a completed state. Accordingly, when the above-described manufacturing method of the present invention is implemented for such a general waveform holder, as described above, a curved plate of a pair of cage elements is formed before the caulking portion is formed. It is necessary to sandwich each ball between the inner surfaces of the parts.
On the other hand, although it is a special example, after completion, only one of the opening widths at both ends of each pocket is smaller than the diameter of the ball to be held in each pocket. When the above-described manufacturing method of the present invention is applied to the corrugated cage whose other opening width is larger than the diameter of each of these balls, it is not necessarily necessary to form the caulking portion before forming the caulking portion. It is not necessary to sandwich each ball between the inner surfaces of the curved plate portions of the pair of cage elements.

尚、本発明の波形保持器の製造方法は、前記各貫通孔の内周面及び前記各リベットの杆部の外周面の耐久性の向上を図る為に、例えば、次の様な製造方法と併せて実施する事ができる。具体的には、前記かしめ部を形成する以前の状態の前記各リベットの杆部のうちの前記頭部寄り部分と、前記両保持器素子のうちの一方の保持器素子の各貫通孔の内周面とのうちの何れか一方の部位に、円周方向に亙る凹凸面であるスプラインを形成する。
又、前記他方の部位は、これら各スプラインの凸部と締め代を有する状態で嵌合可能な円筒面とする。
そして、前記各スプラインの凸部と、前記円筒面とを締り嵌めで嵌合した状態で、これら各スプラインの凹部と、これら各凹部と対向するこの円筒面との間に隙間を存在させる。
The corrugated cage manufacturing method of the present invention includes, for example, the following manufacturing method in order to improve the durability of the inner peripheral surface of each through hole and the outer peripheral surface of the flange portion of each rivet. It can be implemented together. Specifically, a portion closer to the head of the rivet portion of each of the rivets in a state before forming the caulking portion, and each through hole of one of the cage elements of the two cage elements. A spline that is an uneven surface extending in the circumferential direction is formed in any one of the peripheral surfaces.
Further, the other part is a cylindrical surface that can be fitted with a convex portion of each spline and having a tightening allowance.
And in the state which fitted the convex part of each said spline, and the said cylindrical surface by interference fit, a clearance gap exists between the recessed part of these each spline, and this cylindrical surface facing these each recessed part.

或いは、本発明の波形保持器の製造方法は、前記各貫通孔の内周面及び前記各リベットの杆部の外周面の耐久性の向上を図る為に、次の様な製造方法と併せて実施する事もできる。具体的には、前記かしめ部を形成する以前の状態で、前記各リベットの杆部の、前記頭部寄り部分に、円柱状の大径部を設ける。
又、前記両保持器素子のうち、一方の保持器素子の各貫通孔の形状を、例えば非円形に形成すると共に、これら各貫通孔の内周面の一部に、前記各リベットの大径部と締め代を有する状態で嵌合可能な嵌合部を設ける。又、前記各貫通孔の内周面の残部に、これら各貫通孔の嵌合部に前記各リベットの大径部を圧入した状態で、この残部とこれら各リベットの大径部の外周面との間に隙間が形成される非嵌合部を設ける。
Alternatively, the corrugated cage manufacturing method of the present invention is combined with the following manufacturing method in order to improve the durability of the inner peripheral surface of each through-hole and the outer peripheral surface of the collar portion of each rivet. It can also be implemented. Specifically, a columnar large-diameter portion is provided in a portion closer to the head of the flange portion of each rivet before the caulking portion is formed.
In addition, the shape of each through hole of one of the cage elements is formed in a non-circular shape, for example, and a large diameter of each rivet is formed on a part of the inner peripheral surface of each through hole. The fitting part which can be fitted in the state which has a part and a fastening allowance is provided. In addition, in the state where the large diameter portion of each rivet is press-fitted into the fitting portion of each through hole, the remaining portion and the outer peripheral surface of the large diameter portion of each rivet A non-fitting portion in which a gap is formed is provided.

又、本発明のうち、請求項2に記載した波形保持器は、前記かしめ部を形成する以前の状態の、前記各保持器素子のうちの一方の保持器素子の外側面のうちの、前記各貫通孔の周囲で、このリベットの頭部の内側面と対向する対向側面部の少なくとも1箇所位置に凸部が形成されている。
又、前記各リベットと前記一方の保持器素子とは、前記リベットの杆部を、前記一方の保持器素子の貫通孔に、このリベットの頭部の内側面と、前記凸部とが当接するまで圧入する事により、前記対向側面部のうちのこの凸部以外の部分と前記頭部の内側面との間に隙間が形成された中間組立体の状態で表面硬化処理を施されたものである。
一方、前記両保持器素子のうちの他方の保持器素子は、単体のまま表面硬化処理を施されたものである。
そして、前記中間組立体を構成する各リベットの杆部のうちの前記一方の保持器素子の各貫通孔から突出した部分を前記他方の保持器素子の各貫通孔に挿通すると共に前記両保持器素子の平板部同士を重ね合わせて、前記かしめ部が形成された状態で、前記凸部が、前記頭部により押し潰されている。
In the present invention, the waveform holder according to claim 2 is the state of the outer surface of one of the cage elements in the state before the caulking portion is formed. Around each through-hole, a convex portion is formed at at least one position of the opposing side surface portion that faces the inner surface of the rivet head.
The rivets and the one retainer element contact the flange of the rivet and the through hole of the one retainer element, and the inner surface of the head of the rivet and the convex portion abut. The surface is hardened in a state of an intermediate assembly in which a gap is formed between a portion other than the convex portion of the opposite side surface portion and the inner side surface of the head portion. is there.
On the other hand, the other cage element of both the cage elements is subjected to surface hardening treatment as it is.
And the part which protruded from each through-hole of said one holder element among the collar parts of each rivet which comprises the said intermediate assembly is penetrated to each through-hole of said other holder element, and both said holders The convex portions are crushed by the head in a state where the flat plate portions of the element are overlapped to form the caulking portion.

尚、上述の様な本発明の波形保持器は、前記各貫通孔の内周面及び前記各リベットの杆部の外周面の耐久性の向上を図る為に、例えば、次の様な波形保持器の構造と併せて実施する事ができる。具体的には、前記かしめ部を形成する以前の状態の前記各リベットの杆部の前記頭部寄り部分と、前記両保持器素子のうちの一方の保持器素子の各貫通孔の内周面とのうちの何れか一方の部位に、円周方向に亙る凹凸面であるスプラインを形成すると共に、他方の部位を、これら各スプラインの凸部と締め代を有する状態で嵌合可能な円筒面とする。   The waveform holder of the present invention as described above has the following waveform holding, for example, in order to improve the durability of the inner peripheral surface of each through-hole and the outer peripheral surface of the flange portion of each rivet. It can be implemented together with the structure of the vessel. Specifically, the inner peripheral surface of each through hole of one of the cage elements of the rivet of each rivet in the state before the caulking portion is formed, and one of the cage elements And a spline that is a concave-convex surface extending in the circumferential direction, and the other part can be fitted with a convex portion of each spline and a tightening allowance. And

或いは、上述の様な本発明の波形保持器は、前記各貫通孔の内周面及び前記各リベットの杆部の外周面の耐久性の向上を図る為に、次の様な波形保持器の構造と併せて実施する事もできる。具体的には、前記かしめ部を形成する以前の状態のこれら各リベットが、前記杆部の頭部寄り部分に、円筒状の大径部を有するものとする。
又、前記両保持器素子のうちの一方の保持器素子の各貫通孔の形状を、例えば非円形に形成すると共に、これら各貫通孔の内周面の一部に、前記各リベットの大径部と締め代を有する状態で嵌合可能な嵌合部を設ける。又、前記各貫通孔の内周面の残部に、前記各リベットの大径部を前記嵌合部に圧入した状態で、この残部と、この大径部の外周面との間に隙間が形成される非嵌合部を設ける。
Alternatively, the corrugated cage of the present invention as described above has the following corrugated cage in order to improve the durability of the inner peripheral surface of each through-hole and the outer peripheral surface of the flange portion of each rivet. It can also be implemented in conjunction with the structure. Specifically, each of these rivets in a state before forming the caulking portion has a cylindrical large-diameter portion in a portion near the head portion of the flange portion.
Further, the shape of each through hole of one of the cage elements is formed in a non-circular shape, for example, and a large diameter of each rivet is formed on a part of the inner peripheral surface of each through hole. The fitting part which can be fitted in the state which has a part and a fastening allowance is provided. In addition, a gap is formed between the remaining portion and the outer peripheral surface of the large diameter portion in a state where the large diameter portion of each rivet is press-fitted into the fitting portion in the remaining portion of the inner peripheral surface of each through hole. A non-fitting portion is provided.

上述の様に構成する本発明によれば、一方の保持器素子に複数のリベットを組み付けた中間組立体の状態で表面硬化処理を施した場合でも、前記一方の保持器素子の外側面のうち、前記リベットの頭部の内側面と対向する部分に、表面硬化層を形成する事ができ、耐久性に優れた波形保持器を得られる。
即ち、本発明の場合、かしめ部を形成する以前の状態の、前記一方の保持器素子の外側面のうち、前記各貫通孔の周囲で、前記リベットの頭部の内側面と対向する対向側面部に凸部を形成している。この為、前記一方の保持器素子と前記リベットとを組み合わせて構成する中間組立体の状態で、前記対向側面部のうちの前記凸部以外の部分と、前記頭部の内側面との間に隙間を設ける事ができる。この結果、この様な中間組立体の状態で窒化処理を施した場合でも、前記一方の保持器素子の対向側面部のうちの前記凸部以外の部分に、窒化層を形成できる。従って、この一方の保持器素子の対向側面部の強度を確保して、前記かしめ部を形成する際に、この対向側面部が陥没する事を防止して、保持器の耐久性を確保できる。
According to the present invention configured as described above, even when a surface hardening process is performed in a state of an intermediate assembly in which a plurality of rivets are assembled to one cage element, the outer surface of the one cage element is In addition, a hardened surface layer can be formed on a portion facing the inner side surface of the head of the rivet, and a corrugated cage excellent in durability can be obtained.
That is, in the case of the present invention, of the outer surface of the one retainer element in the state before the caulking portion is formed, the opposing side surface that faces the inner surface of the head portion of the rivet around each through-hole. A convex part is formed on the part. For this reason, in the state of an intermediate assembly configured by combining the one retainer element and the rivet, between the portion other than the convex portion of the opposed side surface portion and the inner side surface of the head portion. A gap can be provided. As a result, even when nitriding is performed in the state of such an intermediate assembly, a nitride layer can be formed in a portion other than the convex portion of the opposing side surface portion of the one cage element. Accordingly, the strength of the opposing side surface portion of the one cage element is secured, and when the caulking portion is formed, the opposing side surface portion is prevented from being depressed, and the durability of the cage can be secured.

本発明の実施の形態の第1例を示す、図2のA−A断面に相当する、中間組立体の一部断面図。FIG. 3 is a partial cross-sectional view of an intermediate assembly corresponding to the AA cross section of FIG. 2, showing a first example of an embodiment of the present invention. 同じく、一方の保持器素子の外側面のうち、貫通孔の周囲に形成した凸部を説明する為の部分平面図。Similarly, the partial top view for demonstrating the convex part formed in the circumference | surroundings of a through-hole among the outer surfaces of one cage | basket element. 同じく、凸部の別態様を説明する為の図2と同様の図。Similarly, the same figure as FIG. 2 for demonstrating another aspect of a convex part. 本発明の効果を説明する為の、図23のB−B断面に相当する、保持器の一部断面図。FIG. 24 is a partial cross-sectional view of the cage corresponding to the BB cross section of FIG. 23 for explaining the effect of the present invention. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 同じく、図2と同様の図。Similarly, the same figure as FIG. 同じく、図3と同様の図。Similarly, the same figure as FIG. 本発明の実施の形態の第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example of embodiment of this invention. 同じく、図2と同様の図。Similarly, the same figure as FIG. 同じく、図3と同様の図。Similarly, the same figure as FIG. 本発明の実施の形態の第4例を示す、中間組立体の状態に於ける、一方の保持器素子の貫通孔及びリベットの杆部の頭部寄り部分の形状を説明する為の、図22の拡大C−C断面に相当する部分拡大断面図。FIG. 22 is a view illustrating a fourth example of the embodiment of the present invention, illustrating the shapes of the through hole of one cage element and the shape of the rivet head portion near the head in the intermediate assembly state. The partial expanded sectional view equivalent to the expanded CC cross section. 同じく、図11のD−D断面に相当する、図24と同様の図。Similarly, the figure similar to FIG. 24 corresponding to the DD cross section of FIG. 本発明の実施の形態の第5例を示す、図11と同様の図。The figure similar to FIG. 11 which shows the 5th example of embodiment of this invention. 同第6例を示す、図11と同様の図。The figure similar to FIG. 11 which shows the same 6th example. 同第7例を示す、図11と同様の図。The figure similar to FIG. 11 which shows the said 7th example. 同第8例を示す、図11と同様の図。The figure similar to FIG. 11 which shows the said 8th example. 同第9例を示す、図11と同様の図。The figure similar to FIG. 11 which shows the 9th example. 同第10例を示す、図11と同様の図。The figure similar to FIG. 11 which shows the 10th example. 同第11例を示す、図11と同様の図。The figure similar to FIG. 11 which shows the 11th example. 本発明の対象となる波形保持器を組み込んだ玉軸受の半部断面図。The half part sectional view of the ball bearing incorporating the corrugated cage used as the object of the present invention. 同じく波形保持器を取り出して示す斜視図。The perspective view which similarly takes out and shows a waveform holder. 従前の表面処理を施す方法に就いて説明する為の中間組立体の一部断面図。The fragmentary sectional view of the intermediate assembly for demonstrating about the method of performing the conventional surface treatment. 同じく窒化処理を施した後の状態を示す波形保持器の一部断面図。The partial sectional view of the waveform holder which shows the state after performing nitriding treatment similarly. 先発明の製造方法を説明する為の中間組立体の一部断面図(a)と、両保持器素子をリベットによりかしめ固定する直前の状態を示す一部断面図(b)。The partial cross-sectional view (a) of the intermediate assembly for demonstrating the manufacturing method of a prior invention, and the partial cross-sectional view (b) which show the state just before caulking and fixing both cage elements with a rivet. 先発明の製造方法により生じる問題点を説明する為の、図24(b)と同様の図。The figure similar to FIG.24 (b) for demonstrating the problem which arises with the manufacturing method of a prior invention.

[実施の形態の第1例]
図1〜4は、本発明の実施の形態の第1例を示している。尚、本例の特徴は、保持器を構成する1対の保持器素子8、8のうちの、一方の保持器素子8の構造を工夫した点にある。この特徴部分以外の製造方法及び構造は、前述した先発明の波形保持器の製造方法及び構造とほぼ同様であるから、先発明或いは従来構造と同様に構成する部分に就いては説明を簡略にし、以下、本例の特徴部分を中心に説明する。尚、本例は一般的な波形保持器を対象とするが、この一般的な波形保持器とは、前述した様に、完成状態で、各ポケットの両端の開口幅が、それぞれこれら各ポケット内に保持すべき玉の直径よりも小さくなっているものを言う。
[First example of embodiment]
1 to 4 show a first example of an embodiment of the present invention. The feature of this example is that the structure of one of the cage elements 8 of the pair of cage elements 8 and 8 constituting the cage is devised. Since the manufacturing method and structure other than this characteristic part are almost the same as the manufacturing method and structure of the waveform retainer of the previous invention described above, the description of the parts configured similarly to the previous invention or the conventional structure will be simplified. Hereinafter, the characteristic part of this example will be mainly described. Although this example is intended for a general waveform holder, this general waveform holder is, as described above, in the completed state, the opening width at each end of each pocket is within each of these pockets. Says what is smaller than the diameter of the ball to be held.

本例の波形保持器は、図20〜23に示した従来構造の波形保持器7と同様に、1対の保持器素子8、8と、これら両保持器素子8、8同士を接合する為の複数本のリベット9とから成る。このうちの両保持器素子8、8は、鋼板、ステンレス鋼板等の、窒化処理可能な金属板製の素材に、プレスによる打ち抜き加工及び曲げ加工を施す事により、全体を波形の円環状に造られている。この様な両保持器素子8、8は、円周方向複数箇所に部分球面状の曲板部10、10を、円周方向に隣り合う曲板部10、10同士の間に平板部11、11を、これら各平板部11、11の円周方向中央部に貫通孔12aを、それぞれ備える。又、前記各リベット9は、鋼、ステンレス鋼等の、窒化処理可能な金属製で、杆部13と、この杆部13の基端部に設けられた頭部15とを備える。   The waveform holder of the present example is similar to the waveform holder 7 of the conventional structure shown in FIGS. 20 to 23, in order to join a pair of cage elements 8 and 8 and both of these cage elements 8 and 8 together. And a plurality of rivets 9. Of these, both cage elements 8 and 8 are formed into a corrugated annular shape by stamping and bending a metal plate material such as a steel plate and a stainless steel plate that can be nitrided. It has been. Both of these cage elements 8, 8 include a plurality of circumferentially curved curved plate portions 10, 10 at a plurality of locations in the circumferential direction, and a flat plate portion 11, between the curved plate portions 10, 10 adjacent in the circumferential direction, 11 is provided with a through-hole 12a at the center in the circumferential direction of each of the flat plate portions 11 and 11, respectively. Each of the rivets 9 is made of a metal that can be nitrided, such as steel or stainless steel, and includes a flange 13 and a head 15 provided at the base end of the flange 13.

又、本例の場合も、前述した先発明と同様に、かしめ部14を形成する以前の状態で、前記各リベット9の杆部13のうちの頭部15寄り部分に大径部18を設けている。この大径部18は、その外径寸法D18が、前記一方の保持器素子8の各貫通孔12aの内径寸法d12よりも僅かに大きい(D18>d12)。又、前記各リベット9、9の杆部13のうちの前記大径部18以外の部分の外径寸法D13は、前記一方の保持器素子8の貫通孔12aの内径寸法d12よりも小さい(D13<d12)。尚、他方の保持器素子8の各貫通孔12の内径寸法は、前記一方の保持器素子8の各貫通孔12aの内径寸法d12と等しい。 Also in the case of this example, similarly to the above-described invention, the large diameter portion 18 is provided on the portion near the head portion 15 of the collar portion 13 of each rivet 9 before the caulking portion 14 is formed. ing. The large-diameter portion 18 has an outer diameter D 18 that is slightly larger than an inner diameter d 12 of each through hole 12a of the one retainer element 8 (D 18 > d 12 ). In addition, the outer diameter D 13 of the portion other than the large diameter portion 18 of the flange portion 13 of each rivet 9, 9 is smaller than the inner diameter d 12 of the through hole 12 a of the one cage element 8. (D 13 <d 12). The inner diameter dimension of each through hole 12 of the other cage element 8 is equal to the inner diameter dimension d 12 of each through hole 12a of the one cage element 8.

特に本発明の波形保持器の場合、前記両保持器素子8、8のうちの、一方の保持器素子8の外側面(前記各リベット9の頭部15が配置される側の側面で、図1の上面)の、これら各リベット9の頭部15の内側面19と対向する部分である対向側面部20(図2に斜格子で示す部分)の、円周方向に関して等間隔に離隔した2箇所位置に、凸部21、21を形成している。尚、これら各凸部21、21を形成する位置及び個数は、図2の場合に限定されるものではない。例えば、図3(a)に示す様に、対向側面部20のうちの、前記各貫通孔12aの円周方向に関する1箇所位置のみに形成したり、図3(b)に示す様に、対向側面部20のうちの、前記各貫通孔12aの円周方向に関する3箇所位置に形成したり、対向側面部20のうちの、前記各貫通孔12aの円周方向に関する4箇所位置に形成する事もできる。   In particular, in the case of the corrugated cage of the present invention, of the two cage elements 8, 8, the outer surface of one cage element 8 (the side surface on the side where the head 15 of each rivet 9 is disposed, 2 of the opposing side surface portion 20 (portion shown by a slanted lattice in FIG. 2) which is a portion facing the inner side surface 19 of the head portion 15 of each rivet 9 at an equal interval in the circumferential direction. Protrusions 21 and 21 are formed at the positions. Note that the positions and the number of the projections 21 and 21 are not limited to those shown in FIG. For example, as shown in FIG. 3 (a), it is formed at only one position in the circumferential direction of each through hole 12a in the opposing side surface portion 20, or as shown in FIG. 3 (b). Forming at three positions in the circumferential direction of each through-hole 12a in the side surface portion 20, or forming at four positions in the circumferential direction of each through-hole 12a in the opposing side surface portion 20. You can also.

次に、以上の様な構成を有する本例の波形保持器の製造方法に就いて説明する。
先ず、前述した先発明と同様に、図1に示した中間組立体17bを組み立てる。具体的には、前記両保持器素子8、8のうち、一方の保持器素子8の外側(図1の上側)に前記各リベット9の頭部15を配置すると共に、前記大径部18を、前記各貫通孔12aの内側に圧入により内嵌する。又、この状態で、前記各リベット9の頭部15の内側面19と、前記一方の保持器素子8の各凸部21、21の先端面22とを当接させる。この状態で、前記内側面19と、この一方の保持器素子8の対向側面部20のうちの、前記各凸部21、21以外の部分との間には、隙間23が形成される。尚、本例の場合、前記各リベット9の大径部18の外周面と、前記各貫通孔12aの内周面とは、全周に亙り隙間が存在しない状態で嵌合している。
次いで、上述の様に構成した中間組立体17bに対して窒化処理を施す。一方、前記両保持器素子8、8のうち、他方の保持器素子8には、単体の状態で窒化処理を施す。
Next, the manufacturing method of the waveform holder of this example having the above configuration will be described.
First, the intermediate assembly 17b shown in FIG. 1 is assembled in the same manner as the previous invention. Specifically, the head 15 of each of the rivets 9 is disposed on the outer side (upper side in FIG. 1) of one of the cage elements 8 and 8, and the large-diameter portion 18 is disposed. These are fitted into the through holes 12a by press fitting. Further, in this state, the inner side surface 19 of the head portion 15 of each rivet 9 and the front end surface 22 of each convex portion 21, 21 of the one retainer element 8 are brought into contact with each other. In this state, a gap 23 is formed between the inner side surface 19 and a portion of the opposing side surface portion 20 of the one cage element 8 other than the convex portions 21 and 21. In the case of this example, the outer peripheral surface of the large-diameter portion 18 of each rivet 9 and the inner peripheral surface of each through-hole 12a are fitted in a state where no clearance exists over the entire periphery.
Next, nitriding is performed on the intermediate assembly 17b configured as described above. On the other hand, of the two cage elements 8 and 8, the other cage element 8 is subjected to nitriding in a single state.

この様な本例の場合、前記他方の保持器素子8は、その表面の全体に窒化層が形成される。一方、前記中間組立体17bは、前記各貫通孔12aの内周面と前記各リベット9の大径部18の外周面とが全周に亙り隙間のない状態で嵌合している為、当該部分には、窒化層が形成されない。一方、前記一方の保持器素子8の対向側面部20のうちの、前記各凸部21、21以外の部分、及び、前記各リベット9の頭部15の内側面19のうちの、前記各凸部21、21の先端面22と当接した部分以外の部分には、前記隙間23が形成されている為、窒化層が形成される。   In the case of this example, a nitride layer is formed on the entire surface of the other cage element 8. On the other hand, the intermediate assembly 17b is fitted with the inner peripheral surface of each through-hole 12a and the outer peripheral surface of the large-diameter portion 18 of each rivet 9 over the entire circumference without any gaps. The nitride layer is not formed on the portion. On the other hand, the convex portions of the opposing side surface portion 20 of the one cage element 8 other than the convex portions 21 and 21 and the inner side surface 19 of the head portion 15 of the rivets 9. Since the gap 23 is formed in a portion other than the portion in contact with the front end surface 22 of the portions 21 and 21, a nitride layer is formed.

次いで、前記中間組立体17bを構成する一方の保持器素子8の平板部11と他方の保持器素子8の平板部11とを重ね合わせた状態{図24(b)参照}で、これら両保持器素子8、8の曲板部10、10の内面同士の間に各玉6(図20参照)を挟み込む。そして、この状態で、前記各リベット9の先端部をかしめる(かしめ部14を形成する)事により、これら両保持器素子8、8同士を結合固定する。尚、この様なかしめ作業の際、前記一方の保持器素子8に形成された各凸部21、21は、前記各リベット9の頭部15の内側面19により押し潰される。この為、前記かしめ部14を形成した後の状態では、前記一方の保持器素子8の対向側面部20と、前記各リベット9の頭部15の内側面19との間に存在していた前記隙間23が消失して、図4に示す様な状態、即ち、これら対向側面部20と内側面19とが全周に亙り当接した状態となる。   Next, in a state in which the flat plate portion 11 of one cage element 8 constituting the intermediate assembly 17b and the flat plate portion 11 of the other cage element 8 are overlapped {see FIG. 24 (b)}, both of these holders are held. Each ball 6 (see FIG. 20) is sandwiched between the inner surfaces of the curved plate portions 10 and 10 of the vessel elements 8 and 8. In this state, the retainer elements 8 and 8 are coupled and fixed to each other by caulking the tip of each rivet 9 (forming the caulking portion 14). In this caulking operation, the convex portions 21 and 21 formed on the one retainer element 8 are crushed by the inner side surface 19 of the head portion 15 of the rivet 9. For this reason, in the state after the caulking portion 14 is formed, the above-described existing side surface portion 20 of the one retainer element 8 and the inner side surface 19 of the head portion 15 of each rivet 9 are present. The gap 23 disappears, and the state as shown in FIG. 4, that is, the opposed side surface portion 20 and the inner side surface 19 are in contact with each other over the entire circumference.

上述の様な本例によれば、前記一方の保持器素子8に前記各リベット9を組み付けた中間組立体17bの状態で表面硬化処理を施した場合でも、前記一方の保持器素子8の外側面のうち、前記リベット9の頭部15の内側面19と対向する部分に表面硬化層を形成する事により、耐久性に優れた波形保持器を得られる。
即ち、本例の場合、前記かしめ部14を形成する以前の状態の、前記一方の保持器素子8の外側面のうち、前記各貫通孔12aの周囲で、前記各リベット9の頭部15の内側面19と対向する対向側面部20に、前記各凸部21、21を形成している。この為、前記一方の保持器素子8と前記各リベット9とを組み合わせて構成する前記中間組立体17bの状態で、前記対向側面部20のうちの前記各凸部21、21以外の部分と、前記頭部15の内側面19との間に、前記隙間23を設ける事ができる。この結果、この様な中間組立体17bの状態で窒化処理を施した場合でも、前記一方の保持器素子8の対向側面部20のうちの前記各凸部21、21以外の部分に、窒化層を形成できる。従って、この一方の保持器素子8の対向側面部20の強度を確保して、前記かしめ部14を形成する際に、この対向側面部20が陥没する事を防止して、保持器の耐久性を確保できる。
According to this example as described above, even when the surface hardening treatment is performed in the state of the intermediate assembly 17b in which each of the rivets 9 is assembled to the one cage element 8, the outside of the one cage element 8 is removed. By forming a hardened surface layer on the side surface of the rivet 9 facing the inner side surface 19 of the head 15, a corrugated cage having excellent durability can be obtained.
That is, in the case of this example, the head 15 of each rivet 9 is formed around each through-hole 12a on the outer surface of the one cage element 8 before the caulking portion 14 is formed. The convex portions 21 and 21 are formed on the opposing side surface portion 20 facing the inner side surface 19. For this reason, in the state of the intermediate assembly 17b configured by combining the one cage element 8 and the rivets 9, portions of the opposing side surface portion 20 other than the convex portions 21, 21; The gap 23 can be provided between the inner surface 19 of the head 15. As a result, even when nitriding is performed in the state of such an intermediate assembly 17b, a nitride layer is formed on portions of the opposing side surface portion 20 of the one cage element 8 other than the convex portions 21 and 21. Can be formed. Accordingly, the strength of the opposing side surface portion 20 of the one cage element 8 is ensured, and when the caulking portion 14 is formed, the opposing side surface portion 20 is prevented from being depressed, thereby maintaining the durability of the cage. Can be secured.

[実施の形態の第2例]
図5〜7は、本発明の実施の形態の第2例を示している。本例の場合、一方の保持器素子8の対向側面部20に形成した凸部21a、21aの形状を、前述した実施の形態の第1例と異ならせている。
具体的には、本例の場合、前記各凸部21a、21aを、その高さ寸法が、各貫通孔12aに最も近い位置で最も高く、これら各貫通孔12aから離れるほど小さくなる、三角柱状に形成している。尚、本例の場合も、前記各凸部21a、21aを形成する位置及び個数は、図6の場合に限定されるものではない。例えば、図7の(a)〜(c)に示す様な状態で形成する事もできる。
[Second Example of Embodiment]
5 to 7 show a second example of the embodiment of the present invention. In the case of this example, the shape of the convex portions 21a, 21a formed on the opposing side surface portion 20 of one cage element 8 is different from that of the first example of the embodiment described above.
Specifically, in the case of this example, each of the convex portions 21a and 21a has a triangular prism shape whose height dimension is the highest at a position closest to each through hole 12a and decreases as the distance from each through hole 12a increases. Is formed. In the case of this example as well, the position and number of the convex portions 21a and 21a are not limited to those shown in FIG. For example, it can also be formed in a state as shown in FIGS.

上述の様な本例によれば、前記各凸部21a、21aの前記一方の保持器素子8の厚さ方向に関する剛性を低くする事ができる。この為、かしめ作業の際には、前記各リベット9、9の頭部15の内側面19により、前記各凸部21a、21aを押し潰し易くする事ができる。その他の構成及び作用・効果に就いては、前述した実施の形態の第1例の場合とほぼ同様である。   According to the present example as described above, the rigidity in the thickness direction of the one cage element 8 of each of the convex portions 21a and 21a can be reduced. For this reason, in the caulking operation, the convex portions 21a and 21a can be easily crushed by the inner surface 19 of the head 15 of the rivets 9 and 9. Other configurations and operations / effects are substantially the same as those in the first example of the embodiment described above.

[実施の形態の第3例]
図8〜10は、本発明の実施の形態の第3例を示している。本例の場合も、一方の保持器素子8の対向側面部20に形成した凸部21b、21bの形状を、前述した実施の形態の第1例と異ならせている。
具体的には、本例の場合、前記各凸部21b、21bを、その頂点が、各貫通孔12aに最も近い位置に存在する三角錐状に形成している。尚、本例の場合も、前記各凸部21b、21bを形成する位置及び個数は、図9の場合に限定されるものではない。例えば、図10の(a)〜(c)に示す様な状態で形成する事もできる。
上述の様な本例によれば、前記各凸部21b、21bの前記一方の保持器素子8の厚さ方向に関する剛性を、前述した実施の形態の第2例の場合よりも更に低くする事ができる。その他の構成及び作用・効果に就いては、前述した実施の形態の第2例の場合とほぼ同様である。
[Third example of embodiment]
8 to 10 show a third example of the embodiment of the present invention. Also in this example, the shape of the convex portions 21b and 21b formed on the opposing side surface portion 20 of one cage element 8 is different from that of the first example of the above-described embodiment.
Specifically, in the case of this example, each of the convex portions 21b and 21b is formed in a triangular pyramid shape whose apex exists at a position closest to each through hole 12a. In the case of this example as well, the positions and number of the projections 21b, 21b are not limited to those shown in FIG. For example, it can be formed in a state as shown in FIGS.
According to the present example as described above, the rigidity in the thickness direction of the one retainer element 8 of each of the convex portions 21b and 21b is made lower than in the second example of the above-described embodiment. Can do. Other configurations, operations, and effects are substantially the same as those in the second example of the above-described embodiment.

[実施の形態の第4例]
図11〜12は、本発明の実施の形態の第4例を示している。本例の特徴は、保持器を構成する1対の保持器素子8、8のうちの、一方の保持器素子8の各貫通孔12bの形状を工夫した点にある。
本例の場合、前記一方の保持器素子8の各平板部11に形成した各貫通孔12bの内周面に、図11に示す様な、この貫通孔12bの円周方向に亙る凹凸面である雌スプライン24を形成している。又、この雌スプライン24のうちの、凸部25、25の内径寸法(内接円直径)d25は、各リベット9の杆部13の大径部18の外径寸法D18よりも僅かに小さくしている(d25<D18)。尚、前記各凸部25、25の先端面は、前記各リベット9の杆部13の大径部18に締り嵌めにより嵌合可能な、部分円筒状凹面である。
[Fourth Example of Embodiment]
11 to 12 show a fourth example of the embodiment of the present invention. The feature of this example is that the shape of each through hole 12b of one of the cage elements 8 of the pair of cage elements 8 and 8 constituting the cage is devised.
In the case of this example, the inner peripheral surface of each through hole 12b formed in each flat plate portion 11 of the one retainer element 8 has an uneven surface extending in the circumferential direction of this through hole 12b as shown in FIG. A female spline 24 is formed. Of the female spline 24, the inner diameter dimension (inscribed circle diameter) d 25 of the convex portions 25, 25 is slightly smaller than the outer diameter dimension D 18 of the large diameter portion 18 of the flange portion 13 of each rivet 9. It is made small (d 25 <D 18 ). In addition, the front end surface of each said convex parts 25 and 25 is a partial cylindrical concave surface which can be fitted to the large diameter part 18 of the collar part 13 of each said rivet 9 by interference fitting.

一方、前記雌スプライン24の凹部26、26の底部の内径寸法(内接円直径)d26は、前記大径部18の外径寸法D18よりも大きい(d26>D18)。
従って、前記各雌スプライン24の各凸部25、25の内側に前記各リベット9の大径部18を圧入した状態で、この雌スプライン24の凹部26、26と、これら各凹部26、26と対向する前記各リベット9の大径部18の外周面との間に隙間27、27が形成される。
尚、本例の場合、前記両保持器素子8、8のうちの他方の保持器素子8の各貫通孔12は、前述した従来構造及び先発明の構造と同様に円形に形成している。
Meanwhile, the inside diameter (inscribed circle diameter) d 26 of the bottom of the recess 26 of the female spline 24 is larger than the outer diameter D 18 of the large-diameter portion 18 (d 26> D 18) .
Therefore, in a state where the large-diameter portion 18 of each rivet 9 is press-fitted inside each convex portion 25, 25 of each female spline 24, the concave portions 26, 26 of the female spline 24, and the respective concave portions 26, 26 Gaps 27 and 27 are formed between the outer peripheral surfaces of the large-diameter portions 18 of the opposing rivets 9.
In the case of this example, each through-hole 12 of the other retainer element 8 out of the retainer elements 8 and 8 is formed in a circular shape as in the conventional structure and the structure of the previous invention.

又、本例の場合、前記一方の保持器素子8の対向側面部20a(各リベット9の頭部15の内側面19と対向する部分で、図11に斜格子で示す部分)のうち、前記各貫通孔12bの径方向に関して反対となる2箇所位置に、凸部21、21を形成している。尚、本例の場合、これら各凸部21、21の形状を、前述した実施形態の第1例と同様の形状としている。但し、これら各凸部21、21の形状を、前述した実施の形態の第2例或いは第3例の凸部21a、21bと同様の形状に形成する事もできる。又、前記各凸部21、21を形成する位置及び個数は、図11の場合に限定されるものではない。   Further, in the case of this example, among the opposing side surface portions 20a of the one retainer element 8 (the portion facing the inner side surface 19 of the head 15 of each rivet 9 and the portion indicated by the oblique lattice in FIG. 11), Convex portions 21 and 21 are formed at two positions opposite to each other in the radial direction of each through hole 12b. In the case of this example, the shape of each of the convex portions 21 and 21 is the same as that of the first example of the embodiment described above. However, the shape of each of the convex portions 21 and 21 can be formed in the same shape as the convex portions 21a and 21b of the second example or the third example of the embodiment described above. Further, the positions and number of the convex portions 21 and 21 are not limited to those shown in FIG.

上述の様な構成を有する本例の波形保持器の製造方法は、前述した実施の形態の第1例の場合と同様に、先ず、図12(a)に示した中間組立体17cを組み立てる。具体的には、前記両保持器素子8、8のうち、一方の保持器素子8の外側(図12の上側)に前記各リベット9の頭部15を配置すると共に、前記大径部18を、前記各貫通孔12bの雌スプライン24の各凸部25、25の内側に内嵌する。この状態で、これら各雌スプライン24の各凹部26、26と、これら各凹部26、26と対向する前記各リベット9の大径部18の外周面との間には、前記各隙間27、27が形成される。又、前記各リベット9の頭部15の内側面19と、前記一方の保持器素子8の各凸部21、21の先端面22とが当接すると共に、前記内側面19と、この一方の保持器素子8の対向側面部20のうちの、前記各凸部21、21以外の部分との間には、隙間23が形成されている。
次いで、上述の様に構成される中間組立体17cに対して窒化処理を施す。一方、前記両保持器素子8、8のうち、他方の保持器素子8には、単体の状態で窒化処理を施す。
In the manufacturing method of the waveform holder of the present example having the above-described configuration, first, the intermediate assembly 17c shown in FIG. 12A is assembled as in the case of the first example of the embodiment described above. Specifically, the head 15 of each rivet 9 is arranged outside one of the cage elements 8, 8 (upper side in FIG. 12), and the large-diameter portion 18 is These are fitted inside the convex portions 25, 25 of the female spline 24 of each through hole 12b. In this state, the gaps 27 and 27 are formed between the recesses 26 and 26 of the female splines 24 and the outer peripheral surface of the large-diameter portion 18 of the rivet 9 facing the recesses 26 and 26. Is formed. Further, the inner side surface 19 of the head portion 15 of each rivet 9 and the tip surface 22 of each convex portion 21, 21 of the one retainer element 8 come into contact with each other, and the inner side surface 19 and one of the holding surfaces thereof are held. A gap 23 is formed between the opposing side surface portion 20 of the vessel element 8 and the portions other than the convex portions 21, 21.
Next, nitriding is performed on the intermediate assembly 17c configured as described above. On the other hand, of the two cage elements 8 and 8, the other cage element 8 is subjected to nitriding in a single state.

この様な本例の場合、前記他方の保持器素子8は、その表面の全体に窒化層が形成される。一方、前記中間組立体17cは、前記各雌スプライン24の各凸部25、25と、前記各リベット9の大径部18とが嵌合している為、当該部分には、窒化層が形成されない。又、前記各貫通孔12bの雌スプライン24の各凹部26、26と、これら各凹部26、26と対向する前記各リベット9の大径部18の外周面との間には、前記各隙間27、27が形成されている為、当該部分には、窒化層が形成される。更に、前記一方の保持器素子8の対向側面部20aのうち、前記各凸部21、21以外の部分及び、前記各リベット9の頭部15の内側面19のうち、前記各凸部21、21の先端面22と当接した部分以外の部分にも、窒化層が形成される。   In the case of this example, a nitride layer is formed on the entire surface of the other cage element 8. On the other hand, in the intermediate assembly 17c, the convex portions 25, 25 of the female splines 24 and the large-diameter portions 18 of the rivets 9 are fitted, so that a nitride layer is formed in the portion. Not. The gaps 27 are formed between the recesses 26 and 26 of the female spline 24 of the through holes 12b and the outer peripheral surface of the large-diameter portion 18 of the rivet 9 facing the recesses 26 and 26. 27 are formed, a nitride layer is formed in this portion. Furthermore, among the opposing side surface portions 20a of the one retainer element 8, the portions other than the convex portions 21 and 21 and the inner side surface 19 of the head portion 15 of the rivets 9 have the convex portions 21, A nitrided layer is also formed in a portion other than the portion in contact with the tip surface 22 of 21.

次いで、前記中間組立体17cを構成する一方の保持器素子8の平板部11と他方の保持器素子8の平板部11とを重ね合わせた状態{図12(b)参照}で、これら両保持器素子8、8の曲板部10、10の内面同士の間に各玉6(図20参照)を挟み込む。そして、この状態で、前記各リベット9の先端部をかしめる事により、これら両保持器素子8、8同士を結合固定する。尚、この様なかしめ作業の際、前記一方の保持器素子8に形成された各凸部21、21は、前記各リベット9の頭部15の内側面19により押し潰される。この為、前記かしめ部14を形成した後の状態では、前記一方の保持器素子8の対向側面部20と、前記各リベット9の頭部15の内側面19との間に存在していた前記隙間23が消失する。   Next, in a state in which the flat plate portion 11 of one cage element 8 and the flat plate portion 11 of the other cage element 8 constituting the intermediate assembly 17c are overlapped {see FIG. Each ball 6 (see FIG. 20) is sandwiched between the inner surfaces of the curved plate portions 10 and 10 of the vessel elements 8 and 8. In this state, the retainer elements 8 and 8 are coupled and fixed to each other by caulking the tips of the rivets 9. In this caulking operation, the convex portions 21 and 21 formed on the one retainer element 8 are crushed by the inner side surface 19 of the head portion 15 of the rivet 9. For this reason, in the state after the caulking portion 14 is formed, the above-described existing side surface portion 20 of the one retainer element 8 and the inner side surface 19 of the head portion 15 of each rivet 9 are present. The gap 23 disappears.

上述の様な本例によれば、前記一方の保持器素子8に前記各リベット9を組み付けた状態(中間組立体17cの状態)で窒化処理を施した場合でも、前記一方の保持器素子8の各貫通孔12bの内周面及び前記各リベット9の大径部18の外周面の一部に窒化層を形成して、耐久性に優れた構造を実現できる。
即ち、本例の場合、前記各リベット9の杆部13に円筒状の大径部18を設けると共に、前記一方の保持器素子8の各貫通孔12bの内周面に、前記雌スプライン24を形成している。この為、この雌スプライン24の各凸部25、25の内側に、前記各リベット9の大径部18を嵌合する事により構成した前記中間組立体17cの状態で、前記雌スプライン24の各凹部26、26と、これら各凹部26、26と対向する前記各リベット9の大径部18の外周面との間に前記各隙間27、27を設ける事ができる。この結果、前記中間組立体17cの状態で窒化処理を施した場合でも、前記雌スプラインの各凹部26、26、及び、これら各凹部26、26と対向する前記大径部18の外周面に、窒化層を形成できる。従って、前記一方の保持器素子8の各貫通孔12bの内周面、及び、前記各リベット9の大径部18の外周面の強度を確保して、保持器の耐久性を確保できる。
According to this example as described above, even when nitriding is performed in a state where the rivets 9 are assembled to the one cage element 8 (in the state of the intermediate assembly 17c), the one cage element 8 A nitride layer is formed on the inner peripheral surface of each through-hole 12b and a part of the outer peripheral surface of the large-diameter portion 18 of each rivet 9, so that a structure with excellent durability can be realized.
That is, in the case of this example, a cylindrical large diameter portion 18 is provided in the flange portion 13 of each rivet 9, and the female spline 24 is provided on the inner peripheral surface of each through hole 12b of the one cage element 8. Forming. Therefore, in the state of the intermediate assembly 17c configured by fitting the large diameter portion 18 of each rivet 9 inside each convex portion 25, 25 of this female spline 24, each of the female spline 24 The gaps 27 and 27 can be provided between the recesses 26 and 26 and the outer peripheral surface of the large-diameter portion 18 of the rivet 9 facing the recesses 26 and 26. As a result, even when nitriding is performed in the state of the intermediate assembly 17c, the recesses 26 and 26 of the female spline and the outer peripheral surface of the large-diameter portion 18 facing the recesses 26 and 26, A nitride layer can be formed. Therefore, the strength of the inner peripheral surface of each through-hole 12b of the one retainer element 8 and the outer peripheral surface of the large-diameter portion 18 of each rivet 9 can be ensured to ensure the durability of the retainer.

又、本例の場合、前記一方の保持器素子8の各貫通孔12bの内周面、及び、前記各リベット9の大径部18の一部に、窒化層を形成できる。この為、当該部分の強度が、他の部分よりも著しく低くなる事がない。この結果、前記各リベット9の先端部をかしめる際、前記大径部18の外径が、他の部分よりも大きく膨張する事を防止して、この大径部18の外径側に存在する前記各貫通孔12bの内周面に亀裂が発生する事を防止できる。   In the case of this example, a nitride layer can be formed on the inner peripheral surface of each through hole 12 b of the one retainer element 8 and a part of the large diameter portion 18 of each rivet 9. For this reason, the intensity | strength of the said part does not become remarkably lower than another part. As a result, when the tip of each rivet 9 is crimped, the outer diameter of the large-diameter portion 18 is prevented from expanding more than other portions, and is present on the outer-diameter side of the large-diameter portion 18. It is possible to prevent cracks from occurring on the inner peripheral surface of each through-hole 12b.

[実施の形態の第5例]
図13は、本発明の実施の形態の第5例を示している。本例の場合、保持器を構成する両保持器素子8、8のうち、一方の保持器素子8の各貫通孔12aの内周面を、円筒面としている。一方、各リベット9の頭部15(図12参照)寄り部分に、円周方向に亙る凹凸面である雄スプライン28を形成している。又、この雄スプライン28のうちの、凸部29、29の外径寸法(外接円直径)D29は、前記一方の保持器素子8の各貫通孔12aの内周面の内径寸法d12aよりも僅かに大きくしている(D29>d12a)。尚、前記各凸部29、29の先端面は、前記各貫通孔12aの内周面に締り嵌めにより嵌合可能な、部分円筒状凸面である。
[Fifth Example of Embodiment]
FIG. 13 shows a fifth example of the embodiment of the present invention. In the case of this example, the inner peripheral surface of each through-hole 12a of one retainer element 8 among the retainer elements 8 and 8 constituting the retainer is a cylindrical surface. On the other hand, a male spline 28, which is an uneven surface extending in the circumferential direction, is formed near the head 15 (see FIG. 12) of each rivet 9. Of the male spline 28, the outer diameter dimension (circumscribed circle diameter) D 29 of the convex portions 29, 29 is larger than the inner diameter dimension d 12a of the inner peripheral surface of each through hole 12a of the one retainer element 8. Is slightly larger (D 29 > d 12a ). In addition, the front end surface of each said convex parts 29 and 29 is a partial cylindrical convex surface which can be fitted to the inner peripheral surface of each said through-hole 12a by interference fitting.

一方、前記雄スプライン28の凹部30、30の底部の外径寸法(外接円直径)D30は、前記一方の保持器素子8の各貫通孔12aの内周面の内径寸法d12aよりも小さい(D30<d12a)。
従って、前記各雄スプライン28の各凸部29、29を前記一方の保持器素子8の各貫通孔12aの内側に圧入した状態で、前記雄スプライン28の凹部30、30と、これら各凹部30、30と対向する前記各貫通孔12aの内周面との間に隙間31、31が形成される。
尚、本例の場合、前述した実施の形態の第1例の場合と同様に、前記一方の保持器素子8の対向側面部20(各リベット9の頭部15の内側面19と対向する部分)のうち、前記各貫通孔12aの径方向に関して反対となる2箇所位置に、凸部21、21を形成している。その他の構成及び作用・効果に就いては、前述した実施の形態の第1例及び第4例の場合と同様である。
On the other hand, the outer diameter dimension (circumscribed circle diameter) D 30 of the bottom of the recess 30, 30 of the male spline 28 is smaller than the inner diameter d 12a of the inner peripheral surface of each through hole 12a of the one retainer element 8 (D 30 <d 12a).
Accordingly, the concave portions 30 and 30 of the male spline 28 and the concave portions 30 and 30 of the male spline 28 in a state where the convex portions 29 and 29 of the male spline 28 are press-fitted inside the through holes 12a of the one retainer element 8. , 30 and gaps 31, 31 are formed between the inner peripheral surfaces of the through holes 12a facing each other.
In the case of this example, as in the case of the first example of the embodiment described above, the opposing side surface portion 20 of the one retainer element 8 (the portion facing the inner side surface 19 of the head 15 of each rivet 9). ), Convex portions 21 and 21 are formed at two positions opposite to each other in the radial direction of each through hole 12a. Other configurations and operations / effects are the same as those in the first and fourth examples of the embodiment described above.

[実施の形態の第6例]
図14は、本発明の実施の形態の第6例を示している。本例の場合、両保持器素子8、8のうちの、一方の保持器素子8の各平板部11に形成した各貫通孔12cを、この保持器素子8の径方向に長い楕円形状としている。又、前記各貫通孔12cの短軸の長さ寸法dは、各リベット9の杆部13の大径部18の外径寸法D18よりも僅かに小さくしている(d<D18)。又、本例の場合、前記各貫通孔12cの内周面のうち、前記短軸と交わる部分を中心に、円周方向両側に所定角度(約15度程度)ずつずれた範囲により構成される円弧状部分を、前記大径部18と締め代を有する状態で嵌合可能な嵌合部32、32としている。
[Sixth Example of Embodiment]
FIG. 14 shows a sixth example of the embodiment of the present invention. In the case of this example, each of the through holes 12 c formed in each flat plate portion 11 of one of the cage elements 8, 8 has an elliptical shape that is long in the radial direction of the cage element 8. . Further, the length d 1 of the minor axis of each through hole 12c is slightly smaller than the outer diameter D 18 of the large diameter portion 18 of the rod portion 13 of each rivet 9 (d 1 <D 18 ). In the case of this example, the inner circumferential surface of each through-hole 12c is configured by a range that is shifted by a predetermined angle (about 15 degrees) on both sides in the circumferential direction around the portion intersecting the minor axis. The arc-shaped portions are the fitting portions 32 and 32 that can be fitted with the large-diameter portion 18 in a state having a tightening allowance.

又、これら各貫通孔12cの長軸の長さ寸法dは、前記各リベット9の杆部13の大径部18の外径寸法D18よりも大きい(d>D18)。本例の場合、前記各貫通孔12cの内周面のうちの前記各嵌合部32、32以外の残部を、その内径寸法が、前記各リベット9の大径部18の外径寸法D18よりも大きい、非嵌合部33、33としている。即ち、前記各貫通孔12cの各嵌合部32、32に前記各リベット9の大径部18を圧入した状態で、前記各非嵌合部33、33と、前記各リベット9の大径部18の外周面との間に隙間34、34が形成される。
尚、本例の場合、前記両保持器素子8、8のうちの他方の保持器素子8(図24参照)の各貫通孔12は、前述した従来構造、先発明の構造、及び実施の形態の各例の構造と同様に円形に形成している。
Further, the length d 2 of the long axis of the respective through holes 12c, the greater than the outer diameter D 18 of the large diameter portion 18 of the rod portion 13 of each rivet 9 (d 2> D 18) . In the case of this example, the inner diameter of the remaining part of the inner peripheral surface of each through hole 12c other than the fitting parts 32, 32 is the outer diameter D 18 of the large diameter part 18 of each rivet 9. It is set as the non-fitting part 33 and 33 larger than this. That is, in a state in which the large-diameter portion 18 of each rivet 9 is press-fitted into each fitting portion 32, 32 of each through-hole 12c, each non-fitting portion 33, 33 and the large-diameter portion of each rivet 9 Clearances 34, 34 are formed between the outer peripheral surfaces of 18.
In the case of this example, each through-hole 12 of the other cage element 8 (see FIG. 24) of the cage elements 8, 8 has the above-described conventional structure, the structure of the prior invention, and the embodiment. Like the structure of each example, it is formed in a circular shape.

又、本例の場合、一方の保持器素子8の対向側面部20b{リベット9の頭部15(図24参照)の内側面19と対向する部分で、図14に斜格子で示す部分}のうち、前記各貫通孔12cの長軸方向の中間部で、短軸方向に関して反対となる2箇所位置に、凸部21、21を形成している。尚、これら各凸部21、21の形状は、前述した実施の形態の第1例の場合と同様である。又、これら各凸部21、21を形成する位置及び個数は、図14の場合に限定されるものではない。   In the case of this example, the opposing side surface portion 20b of one cage element 8 {the portion facing the inner side surface 19 of the head portion 15 of the rivet 9 (see FIG. 24), the portion indicated by the oblique lattice in FIG. 14} Among them, convex portions 21 and 21 are formed at two positions opposite to each other in the minor axis direction in the middle portion of each through hole 12c in the major axis direction. In addition, the shape of each of these convex parts 21 and 21 is the same as that of the case of the 1st example of embodiment mentioned above. Further, the positions and the number of the projections 21 and 21 are not limited to those shown in FIG.

以上の様な構成を有する本例の波形保持器の製造方法に就いて、図14及び図24を参照しつつ説明する。
先ず、前述した先発明及び実施の形態の各例と同様に、図24(a)に示した中間組立体17aを組み立てる。具体的には、前記両保持器素子8、8のうち、一方の保持器素子8の外側に前記各リベット9の頭部15を配置すると共に、前記大径部18を、前記各貫通孔12cの各嵌合部32、32に内嵌する。この状態で、これら各貫通孔12cの各非嵌合部33、33と、前記各リベット9の大径部18の外周面との間には、前記各隙間34、34が形成されている。更に、前記各リベット9の頭部15の内側面19と、前記一方の保持器素子8の各凸部21、21の先端面22とが当接すると共に、前記内側面19と、この一方の保持器素子8の対向側面部20bのうちの、前記各凸部21、21以外の部分との間には、隙間23(図1参照)が形成されている。
次いで、上述の様に構成される中間組立体17aに対して窒化処理を施す。一方、前記両保持器素子8、8のうち、他方の保持器素子8には、単体の状態で窒化処理を施す。
The manufacturing method of the waveform holder of this example having the above-described configuration will be described with reference to FIGS.
First, the intermediate assembly 17a shown in FIG. 24 (a) is assembled in the same manner as the previous invention and the examples of the embodiment. Specifically, the head 15 of each rivet 9 is disposed outside one of the cage elements 8, 8, and the large diameter portion 18 is connected to each through-hole 12 c. It fits in each fitting part 32,32. In this state, the gaps 34 and 34 are formed between the non-fitting portions 33 and 33 of the through holes 12 c and the outer peripheral surface of the large-diameter portion 18 of the rivets 9. Further, the inner side surface 19 of the head portion 15 of each rivet 9 and the tip surface 22 of each convex portion 21, 21 of the one retainer element 8 come into contact with each other, and the inner side surface 19 and one of the holding surfaces thereof are held. A gap 23 (see FIG. 1) is formed between the opposing side surface portion 20b of the vessel element 8 and portions other than the convex portions 21 and 21.
Next, nitriding treatment is performed on the intermediate assembly 17a configured as described above. On the other hand, of the two cage elements 8 and 8, the other cage element 8 is subjected to nitriding in a single state.

この様な本例の場合、前記他方の保持器素子8は、その表面の全体に窒化層が形成されている。一方、前記中間組立体17aは、前記各貫通孔12cの各嵌合部32、32と、前記各リベット9の大径部18の周方向一部とが嵌合している為、当該部分には、窒化層が形成されていない。又、前記各貫通孔12cの各非嵌合部33、33とこれら各リベット9の大径部18の外周面との間には、前記各隙間34、34が形成されている為、当該部分には、窒化層が形成されている。更に、前記一方の保持器素子8の対向側面部20bのうち、前記各凸部21、21以外の部分及び、前記各リベット9の頭部15の内側面19のうち、前記各凸部21、21の先端面22と当接した部分以外の部分にも、窒化層が形成される。   In the case of this example, the other cage element 8 has a nitride layer formed on the entire surface thereof. On the other hand, the intermediate assembly 17a has the fitting portions 32 and 32 of the through holes 12c and a part of the circumferential direction of the large-diameter portion 18 of the rivets 9 fitted therein. The nitride layer is not formed. Further, since the gaps 34, 34 are formed between the non-fitting portions 33, 33 of the through holes 12c and the outer peripheral surface of the large diameter portion 18 of the rivets 9, A nitride layer is formed. Furthermore, among the opposing side surface portions 20b of the one cage element 8, the portions other than the convex portions 21 and 21 and the inner side surface 19 of the head portion 15 of the rivets 9, the convex portions 21, A nitrided layer is also formed in a portion other than the portion in contact with the tip surface 22 of 21.

次いで、図24(b)に示す様に、前記中間組立体17aを構成する一方の保持器素子8の平板部11と他方の保持器素子8の平板部11とを重ね合わせた状態で、これら両保持器素子8、8の曲板部10、10の内面同士の間に各玉6(図20参照)を挟み込む。そして、この状態で、前記各リベット9の先端部をかしめる事により、これら両保持器素子8、8同士を結合固定する。尚、この様なかしめ作業の際、前記各リベット9は、軸方向の押圧力を受けて、前記両保持器素子8、8の各貫通孔12c、12の内側で、径方向外方に膨張する様に塑性変形する。この様に前記各リベット9が塑性変形する事により、前記各隙間34、34を含む、これら各リベット9の外周面と前記各貫通孔12c、12の内周面との間に存在する隙間が消失する。この結果、前記両保持器素子8、8と前記各リベット9とは、がたつく事なく固定される。又、本例の場合も、前述した実施の形態の各例の場合と同様に、かしめ作業の際、前記一方の保持器素子8に形成された各凸部21、21は、前記各リベット9、9の頭部15の内側面19により押し潰される。この為、かしめ部14(図23参照)を形成した後の状態では、前記一方の保持器素子8の対向側面部20bと、前記各リベット9、9の頭部15の内側面19との間に存在していた前記隙間23が消失する。   Next, as shown in FIG. 24 (b), in a state where the flat plate portion 11 of one cage element 8 and the flat plate portion 11 of the other cage element 8 constituting the intermediate assembly 17a are overlapped, Each ball 6 (see FIG. 20) is sandwiched between the inner surfaces of the curved plate portions 10 and 10 of both cage elements 8 and 8. In this state, the retainer elements 8 and 8 are coupled and fixed to each other by caulking the tips of the rivets 9. In this caulking operation, each rivet 9 receives an axial pressing force and expands radially outward inside the through holes 12c, 12 of both the cage elements 8, 8. The plastic deformation occurs. As the rivets 9 are plastically deformed in this manner, gaps existing between the outer peripheral surfaces of the rivets 9 and the inner peripheral surfaces of the through holes 12c and 12 including the gaps 34 and 34 are formed. Disappear. As a result, both the cage elements 8, 8 and the rivets 9 are fixed without rattling. Also in this example, as in the case of each example of the above-described embodiment, during the caulking operation, each convex portion 21, 21 formed on the one retainer element 8 is replaced with each rivet 9. , 9 are crushed by the inner surface 19 of the head 15. For this reason, in a state after the caulking portion 14 (see FIG. 23) is formed, it is between the opposing side surface portion 20b of the one retainer element 8 and the inner side surface 19 of the head portion 15 of each of the rivets 9 and 9. The gap 23 that existed in the area disappears.

上述の様な本例によれば、前記一方の保持器素子8に前記各リベット9を組み付けた状態(中間組立体17aの状態)で窒化処理を施した場合でも、前記一方の保持器素子8の各貫通孔12cの内周面及び前記各リベット9の大径部18の一部に窒化層を形成して、耐久性に優れた構造を実現できる。
即ち、本例の場合、前記各リベット9に大径部18を設けると共に、前記一方の保持器素子8の各貫通孔12cの内周面に、前記各嵌合部32、32と前記各非嵌合部33、33とを設けている。この為、これら各嵌合部32、32に、前記各リベット9の大径部18を嵌合する事により構成した前記中間組立体17aの状態で、前記各非嵌合部33、33と、これら各リベット9の大径部18の外周面との間に前記各隙間34、34を設ける事ができる。この結果、前記中間組立体17aの状態で、窒化処理を施した場合でも、前記各非嵌合部33、33、及び、これら各非嵌合部33、33と対向する前記大径部18の外周面に、窒化層を形成できる。従って、前記一方の保持器素子8の各貫通孔12cの内周面、及び、前記各リベット9の大径部18の外周面の強度を確保して、保持器の耐久性を確保できる。その他の構成及び作用・効果に就いては、前述した実施の形態の第1例及び第4例の場合と同様である。
According to this example as described above, even when nitriding is performed in a state where the rivets 9 are assembled to the one retainer element 8 (the state of the intermediate assembly 17a), the one retainer element 8 A nitride layer is formed on the inner peripheral surface of each through-hole 12c and a part of the large-diameter portion 18 of each rivet 9, so that a structure with excellent durability can be realized.
That is, in the case of this example, each rivet 9 is provided with a large-diameter portion 18, and each fitting portion 32, 32 and each non-removal portion are formed on the inner peripheral surface of each through-hole 12 c of the one cage element 8. The fitting parts 33 and 33 are provided. For this reason, in the state of the intermediate assembly 17a configured by fitting the large-diameter portion 18 of the rivet 9 to the fitting portions 32, 32, the non-fitting portions 33, 33, The gaps 34 and 34 can be provided between the outer peripheral surfaces of the large-diameter portions 18 of the rivets 9. As a result, even when nitriding is performed in the state of the intermediate assembly 17a, the non-fitting portions 33 and 33 and the large-diameter portion 18 facing the non-fitting portions 33 and 33 are provided. A nitride layer can be formed on the outer peripheral surface. Therefore, the strength of the inner peripheral surface of each through-hole 12c of the one retainer element 8 and the outer peripheral surface of the large-diameter portion 18 of each rivet 9 can be ensured to ensure the durability of the retainer. Other configurations and operations / effects are the same as those in the first and fourth examples of the embodiment described above.

[実施の形態の第7例]
図15は、本発明の実施の形態の第7例を示している。本例の場合、保持器を構成する両保持器素子8、8のうち、一方の保持器素子8の貫通孔12dの形状を、この保持器素子8の周方向に長い楕円形状としている。言い換えれば、本願発明の場合、一方の保持器素子8の貫通孔12dの形状及び凸部21、21を形成する位置を、前述した実施の形態の第6例の貫通孔12cを、90度回転させた如き形状としている。その他の部分の構成及び作用・効果に就いては、前述した実施の形態の第1例及び第6例の場合とほぼ同様である。
[Seventh example of embodiment]
FIG. 15 shows a seventh example of the embodiment of the invention. In the case of this example, the shape of the through hole 12 d of one of the cage elements 8, 8 constituting the cage is an elliptical shape that is long in the circumferential direction of the cage element 8. In other words, in the case of the present invention, the shape of the through hole 12d of one of the cage elements 8 and the position where the convex portions 21 and 21 are formed are rotated by 90 degrees with respect to the through hole 12c of the sixth example of the above-described embodiment. It has a shape as shown. About the structure of another part, an effect | action, and an effect, it is substantially the same as the case of the 1st example and 6th example of embodiment mentioned above.

[実施の形態の第8例]
図16は、本発明の実施の形態の第8例を示している。本例の場合、保持器を構成する両保持器素子8、8のうち、一方の保持器素子8の貫通孔12eの形状を、四隅に隅R部を形成した略正方形状としている。
この様な本例の場合、各貫通孔12eを構成する内側面のうち、前記一方の保持器素子8の径方向(図16の上下方向)に対向する内側面同士の距離H、及び、円周方向(図16の左右方向)に対向する内側面同士の距離Hを各リベット9の杆部13の大径部18の外径寸法D18よりも僅かに小さくしている(H<D18、H<D18)。そして、本例の場合、前記各貫通孔12eの各内側面の中央部を、前記大径部18と締め代を有する状態で嵌合可能な嵌合部32a、32aとしている。
[Eighth Example of Embodiment]
FIG. 16 shows an eighth example of the embodiment of the present invention. In the case of this example, the shape of the through-hole 12e of one retainer element 8 out of both retainer elements 8 and 8 constituting the retainer is a substantially square shape in which corner R portions are formed at four corners.
In the case of this example, the distance H 1 between the inner surfaces facing each other in the radial direction (vertical direction in FIG. 16) of the one retainer element 8 among the inner surfaces constituting each through-hole 12e, and the distance of H 2 inner surfaces facing each other in the circumferential direction (lateral direction in FIG. 16) are slightly smaller than the outer diameter D 18 of the large diameter portion 18 of the rod portion 13 of each rivet 9 (H 1 <D 18 , H 2 <D 18 ). And in the case of this example, the center part of each inner surface of each said through-hole 12e is made into the fitting parts 32a and 32a which can be fitted in the state which has the interference diameter with the said large diameter part 18. As shown in FIG.

一方、前記各貫通孔12eの内側面のうちの前記各嵌合部32a、32a以外の残部を、非嵌合部33a、33aとしている。即ち、前記各貫通孔12eの嵌合部32a、32aに前記各リベット9の大径部18を圧入した状態で、前記各非嵌合部33a、33aと、前記各リベット9の大径部18の外周面との間に隙間34a、34aが形成されている。
又、本例の場合、前記一方の保持器素子8の対向側面部20d(各リベット9の頭部15の内側面19と対向する部分で、図16に斜格子で示す部分)のうち、前記一方の保持器素子8の径方向に関して対向した2箇所位置に、凸部21、21を形成している。尚、これら各凸部21、21を形成する位置及び個数は、図16の場合に限定されるものではない。その他の部分の構成及び作用・効果に就いては、前述した実施の形態の第1例及び第6例の場合とほぼ同様である。
On the other hand, the remaining portions other than the fitting portions 32a and 32a on the inner side surfaces of the through holes 12e are non-fitting portions 33a and 33a. That is, in a state where the large-diameter portion 18 of each rivet 9 is press-fitted into the fitting portions 32a and 32a of each through-hole 12e, the non-fitting portions 33a and 33a and the large-diameter portion 18 of each rivet 9 are pressed. Clearances 34a, 34a are formed between the outer peripheral surfaces of the two.
Further, in the case of this example, among the opposing side surface portions 20d of the one retainer element 8 (the portion facing the inner side surface 19 of the head 15 of each rivet 9 and the portion indicated by the oblique lattice in FIG. 16), Convex portions 21 and 21 are formed at two positions facing each other in the radial direction of one cage element 8. Note that the positions and the number of the projections 21 and 21 are not limited to those shown in FIG. About the structure of another part, an effect | action, and an effect, it is substantially the same as the case of the 1st example and 6th example of embodiment mentioned above.

[実施の形態の第9例]
図17は、本発明の実施の形態の第9例を示している。本例の場合、保持器を構成する両保持器素子8、8のうち、一方の保持器素子8の貫通孔12fの形状を、四隅に隅R部を形成した略菱形状としている。言い換えれば、本例の場合、一方の保持器素子8の貫通孔12fの形状、及び凸部21、21を形成する位置を、前述した実施の形態の第8例の場合と比べて、45度回転させている。その他の部分の構成及び作用・効果に就いては、前述した実施の形態の第1例及び第6例の場合とほぼ同様である。
[Ninth Embodiment]
FIG. 17 shows a ninth example of the embodiment of the invention. In the case of this example, the shape of the through hole 12f of one of the cage elements 8 and 8 constituting the cage is a substantially rhombus shape in which corner R portions are formed at the four corners. In other words, in the case of this example, the shape of the through-hole 12f of one cage element 8 and the positions where the convex portions 21 and 21 are formed are 45 degrees compared to the case of the eighth example of the above-described embodiment. It is rotating. About the structure of another part, an effect | action, and an effect, it is substantially the same as the case of the 1st example and 6th example of embodiment mentioned above.

[実施の形態の第10例]
図18は、本発明の実施の形態の第10例を示している。本例の場合、保持器を構成する両保持器素子8、8のうち、一方の保持器素子8の貫通孔12gの形状を、六角形状としている。
この様な本例の場合、各貫通孔12gを構成する内側面のうち、対向する各内側面同士の距離Hを、各リベット9の杆部13の大径部18の外径寸法D18よりも僅かに小さくしている(H<D18)。そして、本例の場合、前記各貫通孔12cの各内側面の中央部を、前記大径部18と締め代を有する状態で嵌合可能な嵌合部32b、32bとしている。
一方、前記各貫通孔12gの内側面のうちの前記各嵌合部32b、32b以外の残部を、非嵌合部33b、33bとしている。即ち、前記各貫通孔12gの嵌合部32b、32bに前記各リベット9の大径部18を圧入した状態で、前記各非嵌合部33b、33bと、前記各リベット9の大径部18の外周面との間に隙間34b、34bが形成されている。
[Tenth example of embodiment]
FIG. 18 shows a tenth example of the embodiment of the present invention. In the case of this example, the shape of the through hole 12g of one of the cage elements 8 out of the two cage elements 8 and 8 constituting the cage is a hexagonal shape.
In the case of this example, the distance H 3 between the opposing inner surfaces among the inner surfaces constituting each through hole 12g is set to the outer diameter D 18 of the large diameter portion 18 of the flange portion 13 of each rivet 9. (H 3 <D 18 ). And in the case of this example, the center part of each inner surface of each said through-hole 12c is made into the fitting parts 32b and 32b which can be fitted in the state which has the interference diameter with the said large diameter part 18. As shown in FIG.
On the other hand, the remaining portions other than the fitting portions 32b and 32b in the inner surface of the through holes 12g are set as non-fitting portions 33b and 33b. That is, in a state where the large diameter portion 18 of each rivet 9 is press-fitted into the fitting portions 32b, 32b of each through hole 12g, each non-fitting portion 33b, 33b and the large diameter portion 18 of each rivet 9 are pressed. Clearances 34b and 34b are formed between the outer peripheral surfaces of the two.

又、本例の場合、前記一方の保持器素子8の対向側面部20f(各リベット9の頭部15の内側面19と対向する部分で、図18に斜格子で示す部分)のうち、前記一方の保持器素子8の径方向に関して反対となる2箇所位置に、凸部21、21を形成している。尚、これら各凸部21、21を形成する位置及び個数は、図18の場合に限定されるものではない。その他の部分の構成及び作用・効果に就いては、前述した実施の形態の第1例及び第6の場合とほぼ同様である。   Further, in the case of this example, among the opposing side surface portions 20f of the one cage element 8 (the portion facing the inner side surface 19 of the head 15 of each rivet 9 and the portion shown by the oblique lattice in FIG. 18), Convex portions 21 and 21 are formed at two positions opposite to each other in the radial direction of one cage element 8. Note that the positions and the number of the projections 21 and 21 are not limited to those shown in FIG. About the structure of another part, an effect | action, and an effect, it is substantially the same as that of the 1st example and 6th case of embodiment mentioned above.

[実施の形態の第11例]
図19は、本発明の実施の形態の第11例を示している。本例の場合も、保持器を構成する両保持器素子8、8のうち、一方の保持器素子8の貫通孔12hの形状を、六角形状としている。但し、本例の場合、一方の保持器素子8の貫通孔12hの形状、及び凸部21、21を形成する位置を、前述した実施の形態の第10例の場合と比べて、30度回転させている。その他の部分の構成及び作用・効果に就いては、前述した実施の形態の第1例及び第6例の場合とほぼ同様である。
[Eleventh example of embodiment]
FIG. 19 shows an eleventh example of the embodiment of the present invention. Also in the case of this example, the shape of the through hole 12h of one of the cage elements 8 and 8 constituting the cage is a hexagonal shape. However, in the case of this example, the shape of the through-hole 12h of one cage element 8 and the position where the convex portions 21 and 21 are formed are rotated by 30 degrees compared to the case of the tenth example of the above-described embodiment. I am letting. About the structure of another part, an effect | action, and an effect, it is substantially the same as the case of the 1st example and 6th example of embodiment mentioned above.

本発明を実施する場合に、一方の保持器の対向側面部に形成する凸部の位置、個数は前述した実施の形態の各例に限定されるものではない。又、前述した実施の形態の各例の構造は、適宜組み合わせて実施する事ができる。
又、本発明の波形保持器の製造方法及び波形保持器は、前述した一般的な波形保持器に限らず、各ポケットの両端の開口幅のうち、一方の開口幅のみが、これら各ポケット内に保持すべき玉の直径よりも小さくなっており、他方の開口幅が、これら各玉の直径よりも大きくなっている様な構造を含め、各種波形保持器を対象として実施する事ができる。
When practicing the present invention, the position and the number of convex portions formed on the opposing side surface portion of one of the cages are not limited to the above examples of the embodiment. In addition, the structures of the examples of the above-described embodiments can be implemented in appropriate combination.
Further, the corrugated cage manufacturing method and corrugated cage of the present invention are not limited to the general corrugated cage described above, and only one of the opening widths at both ends of each pocket is in the inside of each pocket. The present invention can be implemented for various corrugated cages including a structure in which the diameter of the ball to be held is smaller and the other opening width is larger than the diameter of each ball.

1 玉軸受
2 内輪軌道
3 内輪
4 外輪軌道
5 外輪
6 玉
7 保持器
8 保持器素子
9 リベット
10 曲板部
11 平板部
12、12a、12b、12c、12d、12e、12f、12g、12h 貫通孔
13 杆部
14 かしめ部
15 頭部
16 ポケット
17、17a、17b、17c 中間組立体
18 大径部
19 内側面
20、20a、20b、20c、20d、20e、20f 対向側面部
21、21a、21b 凸部
22 先端面
23 隙間
24 雌スプライン
25 凸部
26 凹部
27 隙間
28 雄スプライン
29 凸部
30 凹部
31 隙間
32、32a、32b 嵌合部
33、33a、33b 非嵌合部
34、34a、34b 隙間
35 窒化層
DESCRIPTION OF SYMBOLS 1 Ball bearing 2 Inner ring raceway 3 Inner ring 4 Outer raceway 5 Outer ring 6 Ball 7 Cage 8 Cage element 9 Rivet 10 Curved plate part 11 Flat plate part 12, 12a, 12b, 12c, 12d, 12e, 12f, 12g, 12h Through-hole 13 collar part 14 caulking part 15 head part 16 pocket 17, 17a, 17b, 17c intermediate assembly 18 large diameter part 19 inner side surface 20, 20a, 20b, 20c, 20d, 20e, 20f opposing side surface part 21, 21a, 21b convex Portion 22 Front end surface 23 Clearance 24 Female spline 25 Convex 26 Concave 27 Clearance 28 Male spline 29 Convex 30 Concave 31 Clearance 32, 32a, 32b Fitting 33, 33a, 33b Non-fitting 34, 34a, 34b Clearance 35 Nitride layer

Claims (2)

1対の保持器素子と、複数のリベットとを備え、
このうちの両保持器素子はそれぞれ、金属板により全体を波形の円環状に造られて、円周方向複数箇所に部分球面状の曲板部を、円周方向に隣り合う曲板部同士の間に平板部を、これら各平板部の一部に貫通孔を、それぞれ備えており、
前記各リベットはそれぞれ、金属製で、杆部と、この杆部の基端部に設けられた、この杆部よりも大径の頭部とを備えており、
前記両保持器素子の各平板部同士を互いに重ね合わせると共に、互いに重ね合わせたこれら各平板部の貫通孔に前記各リベットの杆部を挿通した状態で、これら各杆部の先端部を押し潰して、これら各杆部よりも大径のかしめ部を形成し、互いに重ね合わせた前記各平板部同士を前記各リベットの頭部とかしめ部とで挟持する事により接合して、前記各曲板部に囲まれた部分を、それぞれ玉を転動自在に保持する為のポケットとする波形保持器の製造方法であって、
前記かしめ部を形成する以前の状態の、前記各保持器素子のうちの一方の保持器素子の外側面のうちの、前記各貫通孔の周囲で、このリベットの頭部の内側面と対向する対向側面部の少なくとも1箇所位置に凸部が形成されており、
前記リベットの杆部を、前記一方の保持器素子の貫通孔に、前記頭部の内側面と前記凸部とが当接するまで圧入する事により、前記対向側面部のうちのこの凸部以外の部分と前記頭部の内側面との間に隙間が形成された中間組立体を構成し、
この中間組立体に対して表面硬化処理を施すと共に、前記両保持器素子のうちの他方の保持器素子に対して、単体のまま表面硬化処理を施した後、
前記中間組立体を構成する各リベットの杆部のうちの前記一方の保持器素子の各貫通孔から突出した部分を前記他方の保持器素子の各貫通孔に挿通すると共に前記両保持器素子の平板部同士を重ね合わせた状態で、前記頭部により前記凸部を押し潰すと共に、前記杆部の先端部に前記かしめ部を形成する事を特徴とする波形保持器の製造方法。
A pair of retainer elements and a plurality of rivets;
Both of these cage elements are each made of a metal plate into a corrugated annular shape, with partial spherical curved plate portions at multiple locations in the circumferential direction, and between adjacent curved plate portions in the circumferential direction. A flat plate portion is provided in between, a through hole is provided in a part of each flat plate portion,
Each of the rivets is made of metal, and includes a flange portion and a head portion having a diameter larger than that of the flange portion provided at a proximal end portion of the flange portion,
The flat plate portions of the two cage elements are overlapped with each other, and the tip portions of the hook portions are crushed in a state where the hook portions of the rivets are inserted into the through holes of the flat plate portions overlapped with each other. The caulking portions having a diameter larger than those of the flange portions are joined together by sandwiching the flat plate portions overlapped with each other between the head portion and the caulking portion of each rivet, A method of manufacturing a corrugated cage, wherein the portion surrounded by the portion is a pocket for holding each ball so as to freely roll,
Before the caulking portion is formed, the outer surface of one of the cage elements is opposed to the inner side surface of the head of the rivet around the through hole. A convex portion is formed at least at one position on the opposite side surface portion,
By press-fitting the flange portion of the rivet into the through hole of the one retainer element until the inner side surface of the head and the convex portion come into contact with each other, other than the convex portion of the opposing side surface portion. Constituting an intermediate assembly in which a gap is formed between the portion and the inner surface of the head;
A surface hardening treatment is performed on the intermediate assembly, and the other one of the cage elements is subjected to a surface hardening treatment as it is,
Of the rivet of each rivet constituting the intermediate assembly, a portion protruding from each through hole of the one retainer element is inserted into each through hole of the other retainer element, and A method of manufacturing a corrugated cage, characterized in that, in a state in which flat plate portions are overlapped with each other, the convex portion is crushed by the head portion, and the caulking portion is formed at a distal end portion of the flange portion.
1対の保持器素子と、複数のリベットとを備え、
このうちの両保持器素子はそれぞれ、金属板により全体を波形の円環状に造られて、円周方向複数箇所に部分球面状の曲板部を、円周方向に隣り合う曲板部同士の間に平板部を、これら各平板部の一部に貫通孔を、それぞれ備えており、
前記各リベットはそれぞれ、金属製で、杆部と、この杆部の基端部に設けられた、この杆部よりも大径の頭部とを備えており、
前記両保持器素子の各平板部の内側面同士を互いに突き合わせると共に、互いに突き合わせたこれら各平板部の貫通孔に前記各リベットの杆部を挿通した状態で、これら各杆部の先端部を押し潰して、これら各杆部よりも大径のかしめ部を形成し、互いに突き合わせた前記各平板部同士を前記各リベットの頭部とかしめ部とで挟持する事により接合して、前記各曲板部に囲まれた部分を、それぞれ玉を転動自在に保持する為のポケットとした波形保持器であって
前記かしめ部を形成する以前の状態の、前記各保持器素子のうちの一方の保持器素子の外側面のうちの、前記各貫通孔の周囲で、このリベットの頭部の内側面と対向する対向側面部の少なくとも1箇所位置に凸部が形成されており、
前記各リベットと前記一方の保持器素子とは、前記リベットの杆部を、前記一方の保持器素子の貫通孔に、前記頭部の内側面と前記凸部とが当接するまで圧入する事により、前記対向側面部のうちのこの凸部以外の部分と前記頭部の内側面との間に隙間が形成された中間組立体の状態で表面硬化処理を施されたものであり、
前記両保持器素子のうちの他方の保持器素子は、単体のまま表面硬化処理を施されたものであり、
前記中間組立体を構成する各リベットの杆部のうちの前記一方の保持器素子の各貫通孔から突出した部分を前記他方の保持器素子の各貫通孔に挿通すると共に前記両保持器素子の平板部同士を重ね合わせて、前記かしめ部が形成された状態で、前記凸部が前記頭部により押し潰されている事を特徴とする波形保持器。
A pair of retainer elements and a plurality of rivets;
Both of these cage elements are each made of a metal plate into a corrugated annular shape, with partial spherical curved plate portions at multiple locations in the circumferential direction, and between adjacent curved plate portions in the circumferential direction. A flat plate portion is provided in between, a through hole is provided in a part of each flat plate portion,
Each of the rivets is made of metal, and includes a flange portion and a head portion having a diameter larger than that of the flange portion provided at a proximal end portion of the flange portion,
The inner side surfaces of the flat plate portions of the two retainer elements are butted against each other, and the leading end portions of the rib portions are inserted into the through holes of the flat plate portions butted with the rib portions of the rivets. Crushing to form a caulking portion having a diameter larger than each of the flange portions, and joining the flat plate portions that are butted against each other by sandwiching the head portion and the caulking portion of each rivet, A corrugated cage in which a portion surrounded by a plate portion is a pocket for holding a ball so as to roll freely, and is in a state before the caulking portion is formed. A convex portion is formed at the position of at least one of the opposing side surfaces facing the inner side surface of the head of the rivet around each through-hole of the outer surface of the cage element,
Each of the rivets and the one retainer element are press-fitted into the through hole of the one retainer element until the inner surface of the head and the convex portion are in contact with each other. The surface hardening treatment is performed in a state of an intermediate assembly in which a gap is formed between a portion other than the convex portion of the opposed side surface portion and the inner surface of the head portion,
Of the two cage elements, the other cage element has been subjected to surface hardening treatment as it is,
Of the rivet of each rivet constituting the intermediate assembly, a portion protruding from each through hole of the one retainer element is inserted into each through hole of the other retainer element, and A waveform holder, wherein the convex portions are crushed by the head in a state where the flat plate portions are overlapped to form the caulking portion.
JP2014082285A 2014-04-11 2014-04-11 Process of manufacture of waveform cage, and the waveform cage Pending JP2015203438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014082285A JP2015203438A (en) 2014-04-11 2014-04-11 Process of manufacture of waveform cage, and the waveform cage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014082285A JP2015203438A (en) 2014-04-11 2014-04-11 Process of manufacture of waveform cage, and the waveform cage

Publications (1)

Publication Number Publication Date
JP2015203438A true JP2015203438A (en) 2015-11-16

Family

ID=54597012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014082285A Pending JP2015203438A (en) 2014-04-11 2014-04-11 Process of manufacture of waveform cage, and the waveform cage

Country Status (1)

Country Link
JP (1) JP2015203438A (en)

Similar Documents

Publication Publication Date Title
JP6098720B2 (en) Manufacturing method of waveform cage and components before caulking of waveform cage and waveform cage
WO2012002247A1 (en) Tapered roller bearing
JP2005147365A (en) Retainer for conical roller bearing and assembling method of conical roller bearing
JP2014070669A (en) Cage for ball bearing, and ball bearing
JP6555426B2 (en) Hub unit bearing and manufacturing method thereof, and automobile and manufacturing method thereof
WO2013157543A1 (en) Ribbon cage and method for manufacturing same
JP2015044220A (en) Method for manufacturing waveform retainer and waveform retainer
JP2009008164A (en) Cage manufacturing method, cage, and rolling bearing
JP2015031359A (en) Cage, taper roller bearing, and method of manufacturing taper roller bearing
JP2015203438A (en) Process of manufacture of waveform cage, and the waveform cage
JP2015045371A (en) Manufacturing method of corrugated cage and corrugated cage
JP2015055274A (en) Thrust roller bearing, and method of manufacturing thrust roller bearing
JP5909918B2 (en) Roller bearing cage
JP6127621B2 (en) Bearing device
JP2015064100A (en) Method of manufacturing retainer, and retainer
JP4480639B2 (en) Needle roller bearing and outer ring manufacturing method
JP4578441B2 (en) Thrust roller bearing
JP2017150584A (en) Ball bearing
JP2006342883A (en) Holder for radial needle bearing and radial needle bearing
JP2015148278A (en) Holder for thrust needle bearing, and thrust needle bearing
JP4983410B2 (en) Ball bearing cage and ball bearing
JP2018054023A (en) Cage for ball bearing
JP2017223270A (en) Thrust roller bearing and thrust roller bearing holder
JP2010031935A (en) Thrust roller-bearing and its retainer
JP2009168180A (en) Cage for roller bearing