JP2015203416A - Exhaust gas after-treatment system and method for exhaust gas after-treatment - Google Patents

Exhaust gas after-treatment system and method for exhaust gas after-treatment Download PDF

Info

Publication number
JP2015203416A
JP2015203416A JP2015081524A JP2015081524A JP2015203416A JP 2015203416 A JP2015203416 A JP 2015203416A JP 2015081524 A JP2015081524 A JP 2015081524A JP 2015081524 A JP2015081524 A JP 2015081524A JP 2015203416 A JP2015203416 A JP 2015203416A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
separator
heat exchanger
aftertreatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015081524A
Other languages
Japanese (ja)
Other versions
JP6636259B2 (en
Inventor
プラメン・トシェフ
Toshev Plamen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo SE filed Critical MAN Diesel and Turbo SE
Publication of JP2015203416A publication Critical patent/JP2015203416A/en
Application granted granted Critical
Publication of JP6636259B2 publication Critical patent/JP6636259B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/949Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a novel exhaust gas after-treatment system and a method for the novel exhaust gas after-treatment.SOLUTION: An exhaust gas after-treatment system (2) for an internal combustion engine (1) includes a separator (3) disposed at a downstream side of the internal combustion engine (1) and including a calcium-containing granular material for chemically adsorbing sulfur oxide, a gas-gas heat exchanger (4) to which exhaust gas is guided through the separator (3) at one end, and exhaust gas coming out from the internal combustion engine (1) is guided at the other end in order to increase a temperature of the exhaust gas coming out from the internal combustion engine (1), and a heating device (5) disposed at an upstream side of the separator (3) at a downstream side of the gas-gas heat exchanger (4) to further increase the temperature of the exhaust gas guided through the gas-gas heat exchanger (4).

Description

本発明は排気ガス後処理システムに関する。さらに、本発明は、排気ガス後処理のための方法に関する。   The present invention relates to an exhaust gas aftertreatment system. The invention further relates to a method for exhaust gas aftertreatment.

例えば発電所で用いられる静置された内燃機関における燃焼過程、および、例えば船舶で用いられるに静置されていない内燃機関における燃焼過程の間、SOおよびSOなどの硫黄酸化物が生成され、これらの硫黄酸化物は、典型的には、石炭、坑口炭、褐炭、油、または重油などの硫黄含有化石燃料の燃焼の間に形成される。そのため、このような内燃機関には、具体的には、内燃機関を出て行く排気ガスの脱硫に役立つ排気ガス後処理システムが設けられる。 Sulfur oxides such as SO 2 and SO 3 are produced during the combustion process in stationary internal combustion engines, for example used in power plants, and in the combustion process in non-stationary internal combustion engines, for example used in ships. These sulfur oxides are typically formed during the combustion of sulfur-containing fossil fuels such as coal, wellhead coal, lignite, oil, or heavy oil. Therefore, specifically, such an internal combustion engine is provided with an exhaust gas aftertreatment system useful for desulfurization of the exhaust gas leaving the internal combustion engine.

排気ガスを脱硫するために、吸収剤として、生石灰(CaO)、消石灰(Ca(OH))、または炭酸カルシウム(CaCO)を主に使用する吸収による方法が、先行技術から主に知られている。過程では、粉末または粒状体が形成され、硫酸カルシウム粉末を排気ガスから除去するために、フィルタ装置が脱硫の下流に用いられる必要がある。 Absorption methods using mainly quick lime (CaO), slaked lime (Ca (OH) 2 ) or calcium carbonate (CaCO 3 ) as absorbents to desulfurize exhaust gases are mainly known from the prior art. ing. In the process, a powder or granulate is formed and a filter device needs to be used downstream of the desulfurization to remove the calcium sulfate powder from the exhaust gas.

特許文献1から、二酸化窒素および粉末を含む排気ガスの処理のための方法および排気ガス後処理システムが知られている。   From patent document 1 a method and an exhaust gas aftertreatment system for the treatment of exhaust gases containing nitrogen dioxide and powder are known.

特許第3603365号公報Japanese Patent No. 3603365

このことから、本発明の目的は、新しい形の排気ガス後処理システムと、新しい形の排気ガス後処理のための方法とを作り出すことに基づいている。   From this, the object of the present invention is based on creating a new type of exhaust gas aftertreatment system and a new type of exhaust gas aftertreatment.

この目的は、請求項1による排気ガス後処理システムによって解決される。本発明による内燃機関用の排気ガス後処理システムは、内燃機関の下流に配置された、硫黄酸化物を化学吸着するためのカルシウム含有粒状体を含む分離器を備える。さらに、本発明による排気ガス後処理システムは、内燃機関を出て行く排気ガスの温度を上昇させるために、一方で分離器を通って導かれた排気ガスが導かれ、他方で内燃機関を出て行く排気ガスが導かれ得るように通るガス−ガス熱交換器を備える。さらに、本発明による排気ガス後処理システムは、ガス−ガス熱交換器を通って導かれた排気ガスの温度をさらに上昇させるために、ガス−ガス熱交換器の下流で分離器の上流に配置された加熱装置を備える。   This object is solved by an exhaust gas aftertreatment system according to claim 1. An exhaust gas aftertreatment system for an internal combustion engine according to the present invention comprises a separator that is arranged downstream of the internal combustion engine and includes calcium-containing granules for chemisorbing sulfur oxides. Furthermore, the exhaust gas aftertreatment system according to the present invention is directed to the exhaust gas led through the separator on the one hand and to exit the internal combustion engine on the other hand in order to raise the temperature of the exhaust gas leaving the internal combustion engine. A gas-to-gas heat exchanger is provided so that the exhaust gas can be directed. Furthermore, the exhaust gas aftertreatment system according to the invention is arranged downstream of the gas-gas heat exchanger and upstream of the separator in order to further increase the temperature of the exhaust gas guided through the gas-gas heat exchanger. Provided with a heating device.

分離器を使用することで、硫酸カルシウムの粉末または粒状体を排気ガスから除去するためのフィルタ装置を省略することが可能である。硫黄酸化物は、分離器のカルシウム含有粒状体と反応し、粒状体として排出できる。ガス−ガス熱交換器と、ガス−ガス熱交換器の下流に配置された加熱装置とが、分離器を通って導かれる排気ガスを、分離器における排気ガスの脱硫に最適な温度へと温度制御することができ、ガス−ガス熱交換器における排気ガスの温度制御に続くため、加熱装置の回路が縮小できる。分離器を通って導かれる排気ガスを、分離器における排気ガスの脱硫に最適な温度へと温度制御することによって、分離器において排気ガスを脱硫することは短い反応時間で確保される。これによってさらに、分離器で排気ガスを脱硫することに関しては、必要とされるカルシウム含有粒状体が比較的少なくて済むことが保証される。   By using a separator, it is possible to dispense with a filter device for removing calcium sulfate powder or granules from the exhaust gas. Sulfur oxide reacts with the calcium-containing granules in the separator and can be discharged as granules. A gas-to-gas heat exchanger and a heating device arranged downstream of the gas-to-gas heat exchanger bring the exhaust gas led through the separator to a temperature optimum for desulfurization of the exhaust gas in the separator. Since it can be controlled and follows the temperature control of the exhaust gas in the gas-gas heat exchanger, the circuit of the heating device can be reduced. By controlling the temperature of the exhaust gas guided through the separator to the optimum temperature for desulfurization of the exhaust gas in the separator, it is ensured that the exhaust gas is desulfurized in a short reaction time. This further guarantees that relatively little calcium-containing granules are required for the desulfurization of the exhaust gas in the separator.

優先的には、ガス−ガス熱交換器は、内燃機関を出て行く排気ガスを、330℃と350℃との間の温度、好ましくは340℃と350℃との間の温度まで加熱する。加熱装置は、排気ガスを、375℃と450℃との間の温度、好ましくは400℃と450℃との間の温度、最も好ましくは360℃と420℃との間の温度まで加熱する。排気ガスのこの温度制御は、効果的であり、特に、分離器における排気ガスの脱硫に関して有利である。   Preferentially, the gas-gas heat exchanger heats the exhaust gas leaving the internal combustion engine to a temperature between 330 ° C. and 350 ° C., preferably to a temperature between 340 ° C. and 350 ° C. The heating device heats the exhaust gas to a temperature between 375 ° C and 450 ° C, preferably between 400 ° C and 450 ° C, most preferably between 360 ° C and 420 ° C. This temperature control of the exhaust gas is effective and is particularly advantageous with respect to exhaust gas desulfurization in the separator.

有利なさらなる発展形態によれば、SOをSOへと酸化するための酸化触媒コンバータが、加熱装置の下流で分離器の上流に位置付けられ、その酸化触媒コンバータを通って、加熱装置において加熱された排気ガスが、分離器の上流に導かれ得る。SOをSOへと酸化するための酸化触媒コンバータを使用することで、SOがSOよりも分離器のカルシウム含有粒状体とより素早く反応するため、分離器における排気ガスの滞留時間をずっと短くすることができる。これにより、排気ガスの特に効果的な脱硫を可能にする。 According to an advantageous further development, an oxidation catalytic converter for oxidizing SO 2 to SO 3 is positioned downstream of the heating device and upstream of the separator, through which it is heated in the heating device. The exhausted gas can be directed upstream of the separator. The SO 2 by using an oxidizing catalytic converter for oxidation to SO 3, since the SO 3 is more quickly react with the calcium-containing granulate separator than SO 2, the residence time of the exhaust gas in the separator Can be much shorter. This enables a particularly effective desulfurization of the exhaust gas.

さらに有利なさらなる発展形態によれば、加熱装置の下流で分離器の上流に装置が位置付けられ、その装置を通って、カルシウム含有および/またはナトリウム含有の粉末が、分離器の上流の加熱装置で加熱された排気ガスへと導入され得る。これにより、排気ガスの特に効果的な脱硫を可能にする。硫酸カルシウム粉末および/または硫酸ナトリウム粉末、あるいは、脱硫の間に形成される硫酸塩含有粒状体は、分離器を用いることで排気ガスから効果的に分離され得る。具体的には、カルシウム含有および/またはナトリウム含有の粉末または粒状体が、分離器の上流の加熱装置で加熱される排気ガスへと導入され得るように通る装置に加えて、酸化触媒コンバータも加熱装置の下流で分離器の上流に位置付けられる場合、カルシウム含有および/またはナトリウム含有の粉末または粒状体が排気ガスへと導入され得るように通る装置は、SOをSOへと酸化するための酸化触媒コンバータの下流で分離器の上流に位置付けられる。 According to a further advantageous further development, the device is positioned downstream of the heating device and upstream of the separator, through which the calcium-containing and / or sodium-containing powder is passed in the heating device upstream of the separator. It can be introduced into the heated exhaust gas. This enables a particularly effective desulfurization of the exhaust gas. Calcium sulfate powder and / or sodium sulfate powder, or sulfate-containing granules formed during desulfurization can be effectively separated from the exhaust gas by using a separator. Specifically, the oxidation catalytic converter is heated in addition to the device through which calcium- and / or sodium-containing powders or granules can be introduced into the exhaust gas heated by the heating device upstream of the separator. If downstream of the device positioned upstream of the separator, apparatus through such calcium-containing and / or sodium-containing powder or granules can be introduced into the exhaust gas, for the oxidation and the sO 2 to sO 3 Located downstream of the oxidation catalytic converter and upstream of the separator.

有利なさらなる発展形態によれば、排気ガス後処理システムはSCR触媒コンバータを備え、そのSCR触媒コンバータは、分離器の下流でガス−ガス熱交換器の上流に位置付けられるか、または、代替でガス−ガス熱交換器の下流に位置付けられるかのいずれかである。SCR触媒コンバータでは、排気ガスの脱窒と、それによる排気ガス排出物のさらなる低減とが行われる。   According to an advantageous further development, the exhaust gas aftertreatment system comprises an SCR catalytic converter, which is located downstream of the separator and upstream of the gas-gas heat exchanger or alternatively in the gas Either located downstream of the gas heat exchanger. In the SCR catalytic converter, exhaust gas denitrification and further reduction of exhaust gas emissions are performed.

本発明による排気ガス後処理のための方法が、請求項12で定められている。   A method for exhaust gas aftertreatment according to the invention is defined in claim 12.

本発明の好ましいさらなる発展形態は、従属請求項および以下の説明から得られる。本発明の例示の実施形態が、図面を用いるが、これに限定されることなく、より詳細に説明される。   Preferred further developments of the invention result from the dependent claims and the following description. Exemplary embodiments of the present invention will now be described in more detail without being limited thereto, using the drawings.

本発明による第1の排気ガス後処理システムのブロック図である。1 is a block diagram of a first exhaust gas aftertreatment system according to the present invention. FIG. 本発明による第2の排気ガス後処理システムのブロック図である。It is a block diagram of the 2nd exhaust-gas aftertreatment system by this invention. 本発明による第3の排気ガス後処理システムのブロック図である。It is a block diagram of the 3rd exhaust-gas aftertreatment system by this invention. 本発明による第4の排気ガス後処理システムのブロック図である。It is a block diagram of the 4th exhaust-gas aftertreatment system by this invention. 本発明によるさらなる排気ガス後処理システムのブロック図である。FIG. 3 is a block diagram of a further exhaust aftertreatment system according to the present invention.

本発明は、例えば、発電所に静置された内燃機関用、または、船舶の静置されていない内燃機関用といった、内燃機関用の排気ガス後処理システムに関する。   The present invention relates to an exhaust gas aftertreatment system for an internal combustion engine, for example, for an internal combustion engine stationary at a power plant or for an internal combustion engine where a ship is not stationary.

具体的には、排気ガス後処理システムは、重油で運転される船舶用ディーゼル機関で用いられる。   Specifically, exhaust gas aftertreatment systems are used in marine diesel engines that are operated on heavy oil.

図1は、内燃機関1の下流に配置された排気ガス後処理システム2の第1の例示の実施形態を示しており、本発明による排気ガス後処理システム2は、カルシウム含有粒状体または石灰に基づいた粒状体を含む分離器3を備えており、カルシウム含有粒状体または石灰に基づいた粒状体は、分離器3において硫黄酸化物を化学吸着するように作用する。分離器3は、いわゆる充填層反応器、または、いわゆる移動床反応器もしくは流動層反応器であってもよい。   FIG. 1 shows a first exemplary embodiment of an exhaust gas aftertreatment system 2 arranged downstream of an internal combustion engine 1, wherein the exhaust gas aftertreatment system 2 according to the invention is applied to calcium-containing granules or lime. A separator 3 is provided that contains the granule based on it, and the calcium-containing granule or granule based on lime acts to chemisorb sulfur oxides in the separator 3. The separator 3 may be a so-called packed bed reactor, or a so-called moving bed reactor or fluidized bed reactor.

硫黄酸化物を化学吸着するための分離器3で用いられる粒状体は、優先的には、CaOおよび/またはCa(OH)および/またはCaCOを含む。過程では、排気ガスの硫黄酸化物が、以下の反応式に従ってカルシウム含有粒状体と反応する。すなわち、Ca(OH)については、以下の反応式に従う。
Ca(OH)+SO⇔CaSO+H
Ca(OH)+SO+1/2O⇔CaSO+H
Ca(OH)+CO⇔CaCO+H
Ca(OH)+SO⇔CaSO+H
CaCOについては、以下の反応式に従う。
CaCO+SO⇔CaSO+CO
CaCO+SO+1/2O⇔CaSO+CO
CaCO+SO⇔CaSO+CO
The granules used in the separator 3 for chemisorbing sulfur oxides preferentially contain CaO and / or Ca (OH) 2 and / or CaCO 3 . In the process, the sulfur oxides of the exhaust gas react with the calcium-containing granules according to the following reaction formula. That is, for Ca (OH) 2 , the following reaction formula is followed.
Ca (OH) 2 + SO 2 ⇔CaSO 3 + H 2 O
Ca (OH) 2 + SO 2 + 1 / 2O 2 ⇔CaSO 4 + H 2 O
Ca (OH) 2 + CO 2 ⇔CaCO 3 + H 2 O
Ca (OH) 2 + SO 3 ⇔CaSO 4 + H 2 O
For CaCO 3 , it follows the following reaction formula.
CaCO 3 + SO 2 ⇔CaSO 3 + CO 2
CaCO 3 + SO 2 + 1 / 2O 2 ⇔CaSO 4 + CO 2
CaCO 3 + SO 3 ⇔CaSO 4 + CO 2

分離器3を通って導かれた排気ガスは、後で分離器3を通って導かれる必要がある内燃機関1を出て行く排気ガスと同時に、排気ガス後処理システム2のガス−ガス熱交換器4を通って導かれ得る。分離器3において硫黄酸化物を化学吸着する間、熱が発熱反応の結果として発生し、その結果、分離器3を通ってすでに導かれた排気ガスは、内燃機関1を出て行く排気ガスより高い温度を有しており、その結果、ガス−ガス熱交換器4では、後で分離器3を通って導かれる必要がある内燃機関1を出て行く排気ガスは、分離器3を通ってすでに導かれた排気ガスによって加熱できる。ガス−ガス熱交換器4の下流で分離器3の上流に、本発明による排気ガス後処理システム2の加熱装置5が位置付けられ、加熱装置5は、ガス−ガス熱交換器4を通って導かれ、ガス−ガス熱交換器4ですでに加熱された排気ガスの温度をさらに上昇させるように機能する。   The exhaust gas guided through the separator 3 is gas-gas heat exchange of the exhaust gas aftertreatment system 2 simultaneously with the exhaust gas leaving the internal combustion engine 1 that needs to be guided through the separator 3 later. It can be guided through the vessel 4. During the chemisorption of sulfur oxides in the separator 3, heat is generated as a result of the exothermic reaction, so that the exhaust gas already led through the separator 3 is more than the exhaust gas leaving the internal combustion engine 1. As a result, in the gas-gas heat exchanger 4, the exhaust gas leaving the internal combustion engine 1 that has to be led through the separator 3 later passes through the separator 3. It can be heated by exhaust gas already introduced. A heating device 5 of the exhaust gas aftertreatment system 2 according to the invention is positioned downstream of the gas-gas heat exchanger 4 and upstream of the separator 3, and the heating device 5 is conducted through the gas-gas heat exchanger 4. In addition, it functions to further increase the temperature of the exhaust gas already heated in the gas-gas heat exchanger 4.

したがって、分離器3の上流で内燃機関1を出て行く排気ガスの加熱が、一方でガス−ガス熱交換器4において、そして、ガス−ガス熱交換器4の下流で加熱装置5においての2段階で起こる。ガス−ガス熱交換器4では、分離器3を通ってすでに導かれた排気ガスの上昇した温度が、内燃機関1を出て行く排気ガスを加熱するために利用される。内燃機関1を出て行く排気ガスは、典型的には、320℃未満の温度を有している。ガス−ガス熱交換器4によって、内燃機関1を出て行く排気ガスは、330℃と350℃との間の温度、好ましくは340℃と350℃との間の温度まで加熱され得る。分離器3の上流での排気ガスのさらなる加熱およびそれに伴う温度の上昇は、前記の温度の高さから開始して、ガス−ガス熱交換器4の下流に位置付けられた加熱装置5を介して起こり、加熱装置5は、排気ガスを、375℃と450℃との間の温度、好ましくは400℃と450℃との間の温度まで加熱する。   Thus, the heating of the exhaust gas leaving the internal combustion engine 1 upstream of the separator 3 takes place in the gas-gas heat exchanger 4 on the one hand and in the heating device 5 downstream of the gas-gas heat exchanger 4. Happens in stages. In the gas-gas heat exchanger 4, the elevated temperature of the exhaust gas already introduced through the separator 3 is used to heat the exhaust gas leaving the internal combustion engine 1. The exhaust gas leaving the internal combustion engine 1 typically has a temperature of less than 320 ° C. By the gas-gas heat exchanger 4, the exhaust gas leaving the internal combustion engine 1 can be heated to a temperature between 330 ° C. and 350 ° C., preferably to a temperature between 340 ° C. and 350 ° C. Further heating of the exhaust gas upstream of the separator 3 and the accompanying increase in temperature are started via the heating device 5 located downstream of the gas-gas heat exchanger 4 starting from the high temperature mentioned above. Occurring, the heating device 5 heats the exhaust gas to a temperature between 375 ° C. and 450 ° C., preferably to a temperature between 400 ° C. and 450 ° C.

硫黄酸化物を化学吸着するために、排気ガスの硫黄酸化物が分離器3のカルシウム含有粒状体と反応する分離器3の上流での排気ガスの温度制御によって、排気ガスの硫黄酸化物は、分離器3における排気ガスの滞留時間が可能とされ得るように、最適な過程温度で分離器3のカルシウム含有粒状体と反応できる。さらに、具体的には、分離器3で処理される排気ガスが上記の排気ガス温度において分離器3を通って導かれるとき、比較的少ない還元剤、したがって、比較的少ないカルシウム含有粒状体が、硫黄酸化物を化学吸着するために、分離器3で必要とされる。したがって、全体として、分離器3において、非常に効果的な排気ガス後処理または排気ガスの脱硫が確保できる。   In order to chemisorb sulfur oxides, the exhaust gas sulfur oxides react with the calcium-containing particulates of the separator 3 to control the temperature of the exhaust gas upstream of the separator 3. The residence time of the exhaust gas in the separator 3 can be reacted with the calcium-containing granules of the separator 3 at an optimum process temperature. More specifically, when the exhaust gas treated in the separator 3 is directed through the separator 3 at the exhaust gas temperature described above, relatively less reducing agent, and therefore relatively less calcium-containing granules, It is required in the separator 3 to chemisorb sulfur oxides. Therefore, as a whole, very effective exhaust gas aftertreatment or exhaust gas desulfurization can be ensured in the separator 3.

すでに先に説明したように、分離器3における硫黄酸化物の化学吸着、つまり、分離器3におけるカルシウム含有粒状体との排気ガスの硫黄酸化物の反応は、分離器3を通って導かれる排気ガスに留意した発熱反応である。分離器3での発熱反応の間に放出されるこの熱エネルギーは、内燃機関1を出て行く排気ガスを中間温度へとすでに上昇させたものとするために、ガス−ガス熱交換器4で利用される。このため、優先的には、燃料運転される燃焼器、または、電気加熱装置であり得る加熱装置5が、小形化され得る。このため、本発明による排気ガス後処理システム2の効率が高められ得る。   As already described above, the chemisorption of sulfur oxides in the separator 3, that is, the reaction of the sulfur oxides of the exhaust gas with the calcium-containing particulate matter in the separator 3, is an exhaust gas that is led through the separator 3. This is an exothermic reaction with attention to gas. This thermal energy released during the exothermic reaction in the separator 3 is the gas-gas heat exchanger 4 in order to increase the exhaust gas leaving the internal combustion engine 1 to an intermediate temperature. Used. For this reason, preferentially, the heating device 5 which can be a fuel-operated combustor or an electric heating device can be miniaturized. For this reason, the efficiency of the exhaust gas aftertreatment system 2 according to the present invention can be increased.

図1に示す例示の実施形態では、SCR触媒コンバータ6が、排気ガスを脱硫するように機能する分離器3の下流に位置付けられており、SCR触媒コンバータ6は、排気ガスを脱窒するように機能する。したがって、SCR触媒コンバータ6は、図1において、分離器3の下流でガス−ガス熱交換器4の上流に位置付けられている。   In the exemplary embodiment shown in FIG. 1, the SCR catalytic converter 6 is positioned downstream of the separator 3 that functions to desulfurize the exhaust gas, so that the SCR catalytic converter 6 denitrifies the exhaust gas. Function. Accordingly, the SCR catalytic converter 6 is positioned downstream of the separator 3 and upstream of the gas-gas heat exchanger 4 in FIG.

SCR触媒コンバータ6では、アンモニアが還元剤として利用されている。SCR触媒コンバータ6で利用されるアンモニアは、分離器3とSCR触媒コンバータ6との間のノズルによって、SCR触媒コンバータ6の上流で排気ガスへと直接噴射されてもよいし、代わりに、排気ガスにおいてアンモニアへと変換されるアンモニアの前駆物質が、分離器3の下流でSCR触媒コンバータ6の上流に導入されてもよい。このような前駆物質は、具体的には尿素である。   In the SCR catalytic converter 6, ammonia is used as a reducing agent. Ammonia used in the SCR catalytic converter 6 may be directly injected into the exhaust gas upstream of the SCR catalytic converter 6 by a nozzle between the separator 3 and the SCR catalytic converter 6, or alternatively, the exhaust gas. A precursor of ammonia that is converted to ammonia in step may be introduced downstream of the separator 3 and upstream of the SCR catalytic converter 6. Such a precursor is specifically urea.

図1の例示の実施形態では、排熱回収装置7がガス−ガス熱交換器4の下流に位置付けられており、排気ガスの残留熱が、排気ガス後処理システム2の効率をさらに高めるために、および、おおよそ100℃の温度を有する排気ガスを排気ガス後処理システム2の下流の環境へと案内するために、ガス−ガス熱交換器4の下流で利用される。   In the exemplary embodiment of FIG. 1, the exhaust heat recovery device 7 is positioned downstream of the gas-gas heat exchanger 4 so that the residual heat of the exhaust gas further increases the efficiency of the exhaust gas aftertreatment system 2. And downstream of the gas-gas heat exchanger 4 to guide the exhaust gas having a temperature of approximately 100 ° C. to the environment downstream of the exhaust gas aftertreatment system 2.

本明細書では、SCR触媒コンバータ6が、ガス−ガス熱交換器4の下流で排気ガス後処理装置7の上流に位置付けられてもよいことが注目される。この場合、分離器3を出て行く排気ガスは、最初にガス−ガス熱交換器4を通って、次にSCR触媒コンバータ6を通って導かれる。   It is noted here that the SCR catalytic converter 6 may be positioned downstream of the gas-gas heat exchanger 4 and upstream of the exhaust gas aftertreatment device 7. In this case, the exhaust gas leaving the separator 3 is led first through the gas-gas heat exchanger 4 and then through the SCR catalytic converter 6.

図2は、内燃機関1の下流に配置された排気ガス後処理システム2の第2の例示の実施形態であり、図2の排気ガス後処理システム2は、図2の例示の実施形態では、酸化触媒コンバータ8が分離器3の上流で加熱装置5の下流に位置付けられている点において、図1の排気ガス後処理システム2と異なっている。   FIG. 2 is a second exemplary embodiment of an exhaust gas aftertreatment system 2 disposed downstream of the internal combustion engine 1, and the exhaust gas aftertreatment system 2 of FIG. 1 differs from the exhaust gas aftertreatment system 2 of FIG. 1 in that the oxidation catalytic converter 8 is positioned upstream of the separator 3 and downstream of the heating device 5.

酸化触媒コンバータ8では、以下の反応式に従って、SOがSOへと反応する。
2SO+O→2SO
In the oxidation catalytic converter 8, SO 2 reacts to SO 3 according to the following reaction formula.
2SO 3 + O 2 → 2SO 2

以下の化学元素が、SOをSOへと酸化するために、酸化触媒コンバータ8における活性成分として用いられている。すなわち、V(バナジウム)、および/または、白金/パラジウム、および/または、Fe(鉄)、および/または、Ce(セリウム)、および/または、Cs(セシウム)、および/または、これらの元素の酸化物である。バナジウム(V)の成分は、優先的には、5%超、好ましくは7%超、最も好ましくは9%超までとなる。 The following chemical elements are used as active components in the oxidation catalytic converter 8 to oxidize SO 2 to SO 3 . That is, V (vanadium) and / or platinum / palladium and / or Fe (iron) and / or Ce (cerium) and / or Cs (cesium) and / or of these elements It is an oxide. The vanadium (V) component is preferentially more than 5%, preferably more than 7%, most preferably more than 9%.

基材として、酸化触媒コンバータ8は、WO(酸化タングステン)によって優先的に安定化されたTiO(酸化チタン)および/またはSiO(酸化ケイ素)を用いる。 As the base material, the oxidation catalytic converter 8 uses TiO 2 (titanium oxide) and / or SiO 2 (silicon oxide) preferentially stabilized by WO 3 (tungsten oxide).

SOがSOよりも素早く分離器3のカルシウム含有粒状体と反応するため、分離器3の上流に、SOをSOへと酸化するための酸化触媒コンバータ8が配置されることは有利である。このため、脱硫の効果が高められ得る。優先的には、酸化触媒コンバータ8においてSOをSOへと酸化することは、酸化触媒コンバータ8の下流で、排気ガスのすべての硫黄酸化物(SO)中のSOの成分が、少なくとも20%、好ましくは40%超、最も好ましくは60%超となるようなやり方で達成される。 Since SO 3 reacts with the calcium-containing granulate quickly separator 3 than SO 2, upstream of the separator 3, is advantageous to the oxidation catalytic converter 8 for the oxidation and the SO 2 to SO 3 is arranged It is. For this reason, the effect of desulfurization can be enhanced. Preferentially, oxidation of SO 2 to SO 3 in the oxidation catalytic converter 8 means that the component of SO 3 in all the sulfur oxides (SO X ) of the exhaust gas is downstream of the oxidation catalytic converter 8. It is achieved in such a way that it is at least 20%, preferably more than 40%, most preferably more than 60%.

図3は、図1の例示の実施形態の代替の有利なさらなる発展形態を示しており、図3の排気ガス後処理システム2は、加熱装置5の下流で分離器3の上流に、装置9が位置付けられている点において、図1の排気ガス後処理システム2と異なっている。装置9を通って、カルシウム含有および/またはナトリウム含有の粉末が、カルシウム含有粒状体を含む分離器3の上流の加熱装置5で加熱された排気ガスへと導入され得る。   FIG. 3 shows an alternative advantageous further development of the exemplary embodiment of FIG. 1, in which the exhaust gas aftertreatment system 2 of FIG. 3 is arranged downstream of the heating device 5 and upstream of the separator 3. Is different from the exhaust gas aftertreatment system 2 of FIG. Through the device 9, calcium-containing and / or sodium-containing powder can be introduced into the exhaust gas heated by the heating device 5 upstream of the separator 3 containing the calcium-containing granules.

図3の排気ガス後処理システム2の装置9は、カルシウム含有および/またはナトリウム含有の粉末を内燃機関1の排気ガスへと導入するように機能し、1mm未満の粒径、優先的には0.5mm未満の粒径、最も好ましくは0.25mm未満の粒径のカルシウム含有および/またはナトリウム含有の粉末を排気ガスへと導入し、カルシウム含有および/またはナトリウム含有の粉末のカルシウムおよび/またはナトリウムは、少なくとも酸化段階+1を有する。   The device 9 of the exhaust gas aftertreatment system 2 in FIG. 3 functions to introduce calcium-containing and / or sodium-containing powder into the exhaust gas of the internal combustion engine 1 and has a particle size of less than 1 mm, preferentially 0. A calcium-containing and / or sodium-containing powder having a particle size of less than 5 mm, most preferably less than 0.25 mm, is introduced into the exhaust gas, and calcium and / or sodium of the calcium-containing and / or sodium-containing powder Has at least an oxidation stage +1.

優先的には、カルシウム含有および/またはナトリウム含有の粉末は、CaOおよび/またはCa(OH)および/またはCaCOおよび/またはNaHCOを含んでいる。 Preferentially, the calcium-containing and / or sodium-containing powder contains CaO and / or Ca (OH) 2 and / or CaCO 3 and / or NaHCO 3 .

装置9は、カルシウム含有および/またはナトリウム含有の粉末を、搬送ガスとして空気を用いるエアロゾルとして乾燥して、または、溶剤として水を用いるエマルションとして湿らせてかのいずれかで、排気ガスへと導入できる。   Device 9 introduces calcium-containing and / or sodium-containing powder into the exhaust gas either as an aerosol using air as the carrier gas or wet as an emulsion using water as the solvent. it can.

このようなカルシウム含有および/またはナトリウム含有の粉末を吸着剤として使用すること、および、装置9を通じて排気ガスへとカルシウム含有および/またはナトリウム含有の粉末を上記のように導入することは、カルシウム含有および/またはナトリウム含有の粉末が、内燃機関1の排気ガスに含まれる硫黄酸化物と、つまり、SOおよびSOと反応するための大きな表面積を確保し、その結果、硫黄酸化物は、硫酸カルシウムCaSOおよび/または硫酸ナトリウムNaSOへと効果的に変換され得る。カルシウム含有および/またはナトリウム含有の粉末のSOおよびSOとの反応は、典型的には、以下の反応式に従ってもたらされる。すなわち、Ca(OH)については、以下の反応式に従う。
Ca(OH)+SO⇔CaSO+H
Ca(OH)+SO+1/2O⇔CaSO+H
Ca(OH)+CO⇔CaCO+H
Ca(OH)+SO⇔CaCO+H
CaCOについては、以下の反応式に従う。
CaCO+SO⇔CaSO+CO
CaCO+SO+1/2O⇔CaSO+CO
CaCO+SO⇔CaSO+CO
NaHCOについては、以下の反応式に従う。
2NaHCO→NaCO+CO+H
NaCO+SO+1/2O→NaSO+CO
NaCO+SO→NaSO+CO
Using such a calcium-containing and / or sodium-containing powder as an adsorbent and introducing the calcium-containing and / or sodium-containing powder into the exhaust gas through the device 9 as described above And / or the sodium-containing powder ensures a large surface area for reacting with the sulfur oxides contained in the exhaust gas of the internal combustion engine 1, that is, SO 2 and SO 3. It can be effectively converted to calcium CaSO 4 and / or sodium sulfate Na 2 SO 4 . The reaction of calcium-containing and / or sodium-containing powders with SO 2 and SO 3 is typically effected according to the following reaction equation: That is, for Ca (OH) 2 , the following reaction formula is followed.
Ca (OH) 2 + SO 2 ⇔CaSO 3 + H 2 O
Ca (OH) 2 + SO 2 + 1 / 2O 2 ⇔CaSO 4 + H 2 O
Ca (OH) 2 + CO 2 ⇔CaCO 3 + H 2 O
Ca (OH) 2 + SO 3 ⇔CaCO 4 + H 2 O
For CaCO 3 , it follows the following reaction formula.
CaCO 3 + SO 2 ⇔CaSO 3 + CO 2
CaCO 3 + SO 2 + 1 / 2O 2 ⇔CaSO 4 + CO 2
CaCO 3 + SO 3 ⇔CaSO 4 + CO 2
For NaHCO 3 , the following reaction formula is followed:
2NaHCO 3 → Na 2 CO 3 + CO 2 + H 2 O
Na 2 CO 3 + SO 2 + 1 / 2O 2 → Na 2 SO 4 + CO 2
Na 2 CO 3 + SO 3 → Na 2 SO 4 + CO 2

分離器3の上流の装置9を介してカルシウム含有および/またはナトリウム含有の粉末を排気ガスへと導入することで、粉末の硫酸カルシウムCaSOおよび/または硫酸ナトリウムNaSOが形成され、移動床反応器または流動層反応器として形成された分離器3の粒状体と共に排出され得る。 By introducing calcium-containing and / or sodium-containing powder into the exhaust gas via the device 9 upstream of the separator 3, powdered calcium sulfate CaSO 4 and / or sodium sulfate Na 2 SO 4 is formed and transferred. It can be discharged with the granulate of the separator 3 formed as a bed reactor or a fluidized bed reactor.

分離器3では、装置9を通って排気ガスへと導入されるカルシウム含有および/またはナトリウム含有の粉末と比較して、比較的大きな粒径、すなわち、2mm超の粒径、好ましくは3mm超の粒径、最も好ましくは4mm超の粒径を有する粒状体が用いられる。   The separator 3 has a relatively large particle size, i.e. a particle size of more than 2 mm, preferably more than 3 mm, compared to calcium-containing and / or sodium-containing powder introduced into the exhaust gas through the device 9. Granules having a particle size, most preferably greater than 4 mm, are used.

分離器3の粒状体は、カルシウムを含むがナトリウムを含んではいない。したがって、分離器3の粒状体はNaHCOをまったく含んでいない。NaHCOは、せいぜい、分離器3の上流の装置9を通って、比較的細かい粒の粉末として排気ガスへと導入され得る。 The granule of the separator 3 contains calcium but does not contain sodium. Therefore, the granule of the separator 3 does not contain any NaHCO 3 . NaHCO 3 can at best be introduced into the exhaust gas through a device 9 upstream of the separator 3 as a relatively fine-grained powder.

分離器3には、優先的には、粒状体を介して捕捉され、移動床反応器または流動床反応器として設計された分離器3から粒状体と共に排出される硫酸カルシウムを、移動床または流動床において粒状体から分離するために、図示されていない装置が設けられる。この装置は、例えば、ドラム剥離器、ドラムスクリーン、または粉砕器であり得る。これに続いて、硫酸カルシウムのなくなった粒状体が、粒状体回路を形成するために、および、粒状体を効果的に利用するために、移動床反応器または流動床反応器へと再び供給され得る。   The separator 3 preferentially receives calcium sulphate which is trapped via the granulate and discharged together with the granulate from the separator 3 designed as a moving bed reactor or fluidized bed reactor. In order to separate from the granulate in the bed, a device not shown is provided. This device can be, for example, a drum stripper, a drum screen, or a grinder. Following this, the granulate depleted of calcium sulfate is again fed to the moving bed reactor or fluidized bed reactor to form the granule circuit and to effectively utilize the granulate. obtain.

内燃機関1の下流に配置された排気ガス後処理システム2のさらなる例示の実施形態が図4に示されており、図4の例示の実施形態は、図2および図3の例示の実施形態の組立体を組み合わせている。したがって、図4の排気ガス後処理システム2は、一方でSOをSOへと酸化するための酸化触媒コンバータ8と、他方でカルシウム含有および/またはナトリウム含有の粉末を排気ガスへと導入するための装置9とを備えている。図4によれば、装置9は、それを通ってカルシウム含有および/またはナトリウム含有の粉末が排気ガスへと導入でき、酸化触媒コンバータ8の下流に位置付けられている。したがって、酸化触媒コンバータ8は加熱装置5の下流に位置付けられており、装置9は、酸化触媒コンバータ8の下流で分離器3の上流に位置付けられている。 A further exemplary embodiment of an exhaust gas aftertreatment system 2 arranged downstream of the internal combustion engine 1 is shown in FIG. 4, and the exemplary embodiment of FIG. 4 is that of the exemplary embodiment of FIGS. 2 and 3. Combine the assembly. Therefore, the exhaust gas aftertreatment system 2 of FIG. 4 introduces, on the one hand, an oxidation catalytic converter 8 for oxidizing SO 2 to SO 3 and on the other hand calcium- and / or sodium-containing powders into the exhaust gas. And a device 9 for the purpose. According to FIG. 4, the device 9 is positioned downstream of the oxidation catalytic converter 8 through which calcium- and / or sodium-containing powder can be introduced into the exhaust gas. Therefore, the oxidation catalytic converter 8 is positioned downstream of the heating device 5, and the device 9 is positioned downstream of the oxidation catalytic converter 8 and upstream of the separator 3.

内燃機関用の排気ガス後処理システム2のさらなる例示の実施形態が図5によって示されており、図5の排気ガス後処理システム2は、図2の排気ガス後処理システム2と同様に、酸化触媒コンバータ8を備え、さらにはガス状のアンモニア(NH)を排気ガスへと導入するための装置10も備えており、ガス状のNHを排気ガスへと導入するためのこの装置10は、酸化触媒コンバータ8の下流に配置されており、その結果、NHは、酸化触媒コンバータ8の上流で内燃機関1の排気ガスへと導入される。 A further exemplary embodiment of an exhaust gas aftertreatment system 2 for an internal combustion engine is illustrated by FIG. 5, which is similar to the exhaust gas aftertreatment system 2 of FIG. The apparatus 10 includes a catalytic converter 8 and further includes an apparatus 10 for introducing gaseous ammonia (NH 3 ) into the exhaust gas. The apparatus 10 for introducing gaseous NH 3 into the exhaust gas includes: Are arranged downstream of the oxidation catalytic converter 8, and as a result, NH 3 is introduced into the exhaust gas of the internal combustion engine 1 upstream of the oxidation catalytic converter 8.

ここで、NHそのものをガス状の形態で排気ガス流へと直接的に導入すること、または、例えば尿素などのNH前駆物質を排気ガス流へと噴射し、排気ガス流でNH前駆物質をNHへと蒸発させることが、提供され得る。ガス状のNHを酸化触媒コンバータ8の上流への排気ガス流へと導入することは、これによって行われる排気ガスの脱窒によって、続く脱硫が改善され得るという利点を有している。 Here, NH 3 itself is introduced directly into the exhaust gas stream in gaseous form, or an NH 3 precursor such as urea is injected into the exhaust gas stream, and the NH 3 precursor is injected into the exhaust gas stream. Evaporating the material to NH 3 can be provided. The introduction of gaseous NH 3 into the exhaust gas stream upstream of the oxidation catalytic converter 8 has the advantage that the subsequent desulfurization can be improved by the denitrification of the exhaust gas carried out thereby.

図1から図5に示す排気ガス後処理システム2では、移動床反応器または流動床反応器として設計された多段分離器3が、硫酸カルシウムと、適切な場合には硫酸ナトリウムとの分離を改善するために用いられてもよく、具体的には、多段分離器3が使用される場合、異なる粒径の粒状体が、分離器3の個々の段で使用される。したがって、分離器3の個々の段では、粒状体の粒径が互いと異なっている。優先的には、直交流分離器として設計された分離器3が利用される。   In the exhaust gas aftertreatment system 2 shown in FIGS. 1 to 5, a multi-stage separator 3 designed as a moving bed or fluidized bed reactor improves separation of calcium sulfate and, where appropriate, sodium sulfate. Specifically, when a multi-stage separator 3 is used, granules with different particle sizes are used in the individual stages of the separator 3. Therefore, in the individual stages of the separator 3, the particle diameters of the granular materials are different from each other. Preferentially, a separator 3 designed as a cross flow separator is used.

本発明は、排気ガスターボ過給機を備える排気ガス過給内燃機関で用いられてもよい。したがって、このような場合、少なくとも粒子分離器3は、図示されていない排気ガスターボ過給機のタービンの下流に位置付けられることが、優先的に提供される。適切な場合には、酸化触媒コンバータ8は、タービンの上流にある高圧と排気流の高温とが酸化触媒コンバータ8におけるSOのSOへの酸化に好ましいため、優先的には、このようなタービンの上流に位置付けられる。 The present invention may be used in an exhaust gas supercharged internal combustion engine equipped with an exhaust gas turbocharger. Therefore, in such a case, it is preferentially provided that at least the particle separator 3 is positioned downstream of the turbine of an exhaust gas turbocharger not shown. Where appropriate, the oxidation catalytic converter 8 preferentially has such a high pressure upstream of the turbine and the high temperature of the exhaust stream is preferred for the oxidation of SO 2 to SO 3 in the oxidation catalytic converter 8. Located upstream of the turbine.

本発明は、内燃機関用の排気ガス後処理システムと、内燃機関を出て行く排気ガスの排気ガス後処理のための方法とを提案し、排気ガスの脱硫が、カルシウム含有粒状体を備える分離器3で実施される。   The present invention proposes an exhaust gas aftertreatment system for an internal combustion engine and a method for exhaust gas aftertreatment of the exhaust gas leaving the internal combustion engine, the exhaust gas desulfurization comprising a calcium-containing granule Implemented in vessel 3.

分離器3において最適な運転条件でこの脱硫を実施するために、内燃機関1を出て行く排気ガスが、分離器3の上流で、優先的には400℃と450℃との間のプロセス温度へと、つまり、多段において、最初にガス−ガス熱交換器4で次に加熱装置5において、加熱される。ガス−ガス熱交換器4は、内燃機関1を出て行く排気ガスを中間温度へと加熱するために、脱硫の間に分離器3で受け取った熱エネルギーを利用し、その結果として、加熱装置5の熱出力が低減できる。加熱装置5は、電気的に運転される加熱装置、または、具体的に重油といった、ガス状もしくは液状の燃料で運転される燃焼器であり得る。   In order to carry out this desulfurization at optimum operating conditions in the separator 3, the exhaust gas leaving the internal combustion engine 1 is preferentially at a process temperature between 400 ° C. and 450 ° C. upstream of the separator 3. In other words, in the multistage, the gas is first heated in the gas-gas heat exchanger 4 and then in the heating device 5. The gas-gas heat exchanger 4 uses the thermal energy received by the separator 3 during desulfurization to heat the exhaust gas leaving the internal combustion engine 1 to an intermediate temperature, and as a result, a heating device 5 thermal output can be reduced. The heating device 5 can be an electrically operated heating device or a combustor operated with a gaseous or liquid fuel, such as specifically heavy oil.

すでに上記で説明したように、分離器3のカルシウム含有粒状体または石灰に基づいた粒状体での硫黄酸化物の化学吸着は、充填層反応器として、または、移動床反応器として具体化された、カルシウム含有粒状体を含む分離器3で起こり、この反応は発熱し、したがって熱エネルギーを放出する。分離器3は、分離器3での熱損失を低減するために二重壁で具体化され得る。したがって、分離器3は、内燃機関を出て行く排気ガスをガス−ガス熱交換器で加熱するための、発熱反応によって解放された熱エネルギーを、よりよく利用できる。   As already explained above, the chemisorption of sulfur oxides in the calcium-containing granules or lime-based granules of the separator 3 was embodied as a packed bed reactor or as a moving bed reactor. Occurs in the separator 3, which contains calcium-containing granules, and this reaction is exothermic and thus releases heat energy. Separator 3 can be embodied with double walls to reduce heat loss in separator 3. Therefore, the separator 3 can better utilize the heat energy released by the exothermic reaction for heating the exhaust gas leaving the internal combustion engine with the gas-gas heat exchanger.

分離器3の下流のSCR触媒コンバータ6の任意の利用は、排気ガスの脱窒を可能にし、具体的には、アンモニア前駆物質としての尿素は、分離器3の下流かつSCR触媒コンバータ6の上流で排気ガスへと導入されるとき、粒子分離器3の下流にある高い温度のため、尿素にとっての短い蒸発距離は適切である。すでに脱窒された排気ガスがSCR触媒コンバータ6を通って導かれるという事実のため、SCR触媒コンバータ6の目詰まりの危険性はない。   The optional use of the SCR catalytic converter 6 downstream of the separator 3 enables exhaust gas denitrification, specifically, urea as an ammonia precursor is downstream of the separator 3 and upstream of the SCR catalytic converter 6. Due to the high temperature downstream of the particle separator 3, a short evaporation distance for urea is appropriate when introduced into the exhaust gas. Due to the fact that the exhaust gas already denitrified is directed through the SCR catalytic converter 6, there is no risk of clogging of the SCR catalytic converter 6.

すべての示した実施形態では、任意の排熱回収装置7が、ガス−ガス熱交換器4の下流に位置付けられている。これは、例えば、排気ガスの残留熱が電力を発生させるために利用される蒸気タービンであり得る。先に実施された排気ガスの脱硫のため、落下するHSOによる腐食が排熱回収装置7の領域で成長する危険性はない。 In all illustrated embodiments, an optional exhaust heat recovery device 7 is located downstream of the gas-gas heat exchanger 4. This can be, for example, a steam turbine where the residual heat of the exhaust gas is utilized to generate power. Due to the exhaust gas desulfurization performed earlier, there is no risk that corrosion due to falling H 2 SO 4 grows in the region of the exhaust heat recovery device 7.

前述のように、本発明による排気ガス後処理システム2は、最適に適合された温度管理によって特徴付けられる。内燃機関1を出て行く排気ガスは、典型的には、320℃未満の温度を有している。内燃機関1を出て行く排気ガスの温度は、例えば、影響する排気ガスの絞り、または、ウェイストゲートによるといった、エンジン側での内燃機関1における干渉によって、ある程度まで上昇され得る。内燃機関1を出て行く排気ガスは、ガス−ガス熱交換器4を通って、おおよそ350℃の温度まで加熱され得る。加熱装置5の領域では、排気ガスは、分離器3で硫黄酸化物を化学吸着するための最適なプロセス温度を提供するために、優先的には、360℃と450℃との間の温度まで続いて加熱される。分離器3でのこの化学吸着は、発熱反応であり、分離器3を出て行く排気ガスはより高い温度を有する。すでに分離器3を通って導かれた排気ガスのこの上昇した温度は、ガス−ガス熱交換器4で利用される。任意で存在し、示した例示の実施形態では分離器3とガス−ガス熱交換器4との間に位置付けられたSCR触媒コンバータ6では、排気ガスの温度の小さな低下しか起こらない。ガス−ガス熱交換器4の下流では、排気ガスの残留熱が、電気エネルギーを発生するための排気ガス後処理装置7で有利に利用されている。排熱回収装置7の下流の温度は、最大でおおよそ120℃である。   As mentioned above, the exhaust gas aftertreatment system 2 according to the invention is characterized by optimally adapted temperature management. The exhaust gas leaving the internal combustion engine 1 typically has a temperature of less than 320 ° C. The temperature of the exhaust gas leaving the internal combustion engine 1 can be raised to some extent due to interference in the internal combustion engine 1 on the engine side, for example by means of a throttling of the affected exhaust gas or a wastegate. The exhaust gas leaving the internal combustion engine 1 can be heated through the gas-gas heat exchanger 4 to a temperature of approximately 350 ° C. In the region of the heating device 5, the exhaust gas is preferentially up to a temperature between 360 ° C. and 450 ° C. in order to provide the optimum process temperature for chemisorbing sulfur oxides in the separator 3. Then it is heated. This chemisorption in the separator 3 is an exothermic reaction and the exhaust gas exiting the separator 3 has a higher temperature. This elevated temperature of the exhaust gas already introduced through the separator 3 is utilized in the gas-gas heat exchanger 4. In the SCR catalytic converter 6, which is optionally present and is located between the separator 3 and the gas-gas heat exchanger 4 in the illustrated exemplary embodiment, only a small decrease in the temperature of the exhaust gas occurs. Downstream of the gas-gas heat exchanger 4, the residual heat of the exhaust gas is advantageously used in an exhaust gas aftertreatment device 7 for generating electrical energy. The temperature downstream of the exhaust heat recovery device 7 is approximately 120 ° C. at the maximum.

1 内燃機関
2 排気ガス後処理システム
3 分離器
4 ガス−ガス熱交換器
5 加熱装置
6 SCR触媒コンバータ
7 排熱回収装置、排気ガス後処理装置
8 酸化触媒コンバータ
9 装置
10 装置
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust gas aftertreatment system 3 Separator 4 Gas-gas heat exchanger 5 Heating device 6 SCR catalytic converter 7 Exhaust heat recovery device, Exhaust gas aftertreatment device 8 Oxidation catalytic converter 9 Device 10 Device

Claims (13)

内燃機関用の排気ガス後処理システム(2)であって、
内燃機関(1)の下流に配置された、硫黄酸化物を化学吸着するためのカルシウム含有粒状体を含む分離器(3)と、
ガス−ガス熱交換器であって、前記内燃機関(1)を出て行く排気ガスの温度を上昇させるために、一方で前記分離器(3)を通って導かれた排気ガスが当該ガス−ガス熱交換器を通って導かれ、他方で前記内燃機関(1)を出て行く前記排気ガスが導かれ得るように通る、ガス−ガス熱交換器(4)と、
前記ガス−ガス熱交換器(4)を通って導かれた前記排気ガスの温度をさらに上昇させるために、前記ガス−ガス熱交換器(4)の下流で前記分離器(3)の上流に配置された加熱装置(5)と
を備える排気ガス後処理システム。
An exhaust gas aftertreatment system (2) for an internal combustion engine,
A separator (3) disposed downstream of the internal combustion engine (1), including calcium-containing granules for chemisorbing sulfur oxides;
A gas-gas heat exchanger, in order to raise the temperature of the exhaust gas leaving the internal combustion engine (1), on the other hand, the exhaust gas introduced through the separator (3) A gas-gas heat exchanger (4) which is led through a gas heat exchanger and on the other hand passes so that the exhaust gas leaving the internal combustion engine (1) can be led;
In order to further increase the temperature of the exhaust gas led through the gas-gas heat exchanger (4), it is downstream of the gas-gas heat exchanger (4) and upstream of the separator (3). An exhaust gas aftertreatment system comprising a heating device (5) arranged.
前記加熱装置(5)が、前記排気ガスを、375℃と450℃との間の温度、好ましくは400℃と450℃との間の温度まで加熱することを特徴とする、請求項1に記載の排気ガス後処理システム。   2. The heating device (5) according to claim 1, characterized in that the exhaust gas heats the exhaust gas to a temperature between 375 [deg.] C and 450 [deg.] C, preferably between 400 [deg.] C and 450 [deg.] C. Exhaust gas aftertreatment system. 前記ガス−ガス熱交換器(4)が、前記排気ガスを、330℃と350℃との間の温度、好ましくは340℃と350℃との間の温度まで加熱することを特徴とする、請求項1または2に記載の排気ガス後処理システム。   The gas-gas heat exchanger (4) heats the exhaust gas to a temperature between 330 ° C and 350 ° C, preferably to a temperature between 340 ° C and 350 ° C. Item 3. The exhaust gas aftertreatment system according to Item 1 or 2. 前記分離器(3)の下流に、SCR触媒コンバータ(6)が位置付けられ、前記分離器(3)を出て行く排気ガスが、先ず前記SCR触媒コンバータ(6)を介して案内され、次に前記ガス−ガス熱交換器(4)を介して案内され得ることを特徴とする、請求項1から3のいずれか一項に記載の排気ガス後処理システム。   An SCR catalytic converter (6) is positioned downstream of the separator (3), and the exhaust gas exiting the separator (3) is first guided through the SCR catalytic converter (6), and then 4. The exhaust gas aftertreatment system according to claim 1, wherein the exhaust gas aftertreatment system can be guided via the gas-gas heat exchanger (4). 5. 前記ガス−ガス熱交換器(4)の上流に、SCR触媒コンバータ(6)が位置付けられ、前記分離器(3)を出て行く排気ガスが、先ず前記ガス−ガス熱交換器(4)を介して案内され、次に前記SCR触媒コンバータ(6)を介して案内され得ることを特徴とする、請求項1から3のいずれか一項に記載の排気ガス後処理システム。   An SCR catalytic converter (6) is positioned upstream of the gas-gas heat exchanger (4), and the exhaust gas exiting the separator (3) first passes through the gas-gas heat exchanger (4). 4. The exhaust gas aftertreatment system according to claim 1, characterized in that it can be guided through and then through the SCR catalytic converter (6). 前記ガス−ガス熱交換器(4)の下流に、排気ガス後処理装置(7)が位置付けられることを特徴とする、請求項1から5のいずれか一項に記載の排気ガス後処理システム。   6. The exhaust gas aftertreatment system according to any one of claims 1 to 5, characterized in that an exhaust gas aftertreatment device (7) is positioned downstream of the gas-gas heat exchanger (4). 前記加熱装置(5)の下流で前記分離器(3)の上流に、SOをSOへと酸化するための酸化触媒コンバータ(8)が位置付けられ、前記酸化触媒コンバータ(8)を通って、前記加熱装置(5)において加熱された前記排気ガスが、前記分離器(3)の上流に案内され得ることを特徴とする、請求項1から6のいずれか一項に記載の排気ガス後処理システム。 An oxidation catalytic converter (8) for oxidizing SO 2 to SO 3 is positioned downstream of the heating device (5) and upstream of the separator (3), and passes through the oxidation catalytic converter (8). The exhaust gas after the exhaust gas according to any one of claims 1 to 6, characterized in that the exhaust gas heated in the heating device (5) can be guided upstream of the separator (3). Processing system. 前記加熱装置(5)の下流で前記分離器(3)の上流に装置(9)が位置付けられ、前記装置(9)を通って、カルシウム含有および/またはナトリウム含有の粉末が、前記分離器(3)の上流の前記加熱装置(5)で加熱された前記排気ガスへと導入され得ることを特徴とする、請求項1から7のいずれか一項に記載の排気ガス後処理システム。   A device (9) is positioned downstream of the heating device (5) and upstream of the separator (3), through which the calcium-containing and / or sodium-containing powder is passed through the separator (9). The exhaust gas aftertreatment system according to any one of claims 1 to 7, characterized in that it can be introduced into the exhaust gas heated by the heating device (5) upstream of 3). カルシウム含有および/またはナトリウム含有の粉末が前記排気ガスへと導入され得るように通る装置(9)は、SOをSOへと酸化するための酸化触媒コンバータ(8)の下流で前記分離器(3)の上流に位置付けられることを特徴とする、請求項7または8に記載の排気ガス後処理システム。 A device (9) through which calcium-containing and / or sodium-containing powder can be introduced into the exhaust gas, the separator downstream of the oxidation catalytic converter (8) for oxidizing SO 2 to SO 3 The exhaust gas aftertreatment system according to claim 7 or 8, wherein the exhaust gas aftertreatment system is positioned upstream of (3). 前記装置(9)を通って前記排気ガスの流れへと導入された前記カルシウム含有および/またはナトリウム含有の粉末が、CaOおよび/またはCa(OH)および/またはCaCOおよび/またはNaHCOを含み、前記装置(9)を通って前記排気ガスの流れへと導入される前記カルシウム含有および/またはナトリウム含有の粉末の粒径が、1mm未満、好ましくは0.5mm未満、最も好ましくは0.25mm未満となることを特徴とする、請求項8または9に記載の排気ガス後処理システム。 The calcium-containing and / or sodium-containing powder introduced into the exhaust gas stream through the device (9) is CaO and / or Ca (OH) 2 and / or CaCO 3 and / or NaHCO 3 . And the particle size of the calcium-containing and / or sodium-containing powder introduced into the exhaust gas stream through the device (9) is less than 1 mm, preferably less than 0.5 mm, most preferably 0. The exhaust gas aftertreatment system according to claim 8 or 9, wherein the exhaust gas aftertreatment system is less than 25 mm. 充填層反応器として、または、移動床反応器として優先的に設計された前記分離器(3)の粒状体が、CaOおよび/またはCa(OH)および/またはCaCOを含み、前記分離器(3)の粒状体の粒径が、2mm超、好ましくは3mm超、最も好ましくは4mm超となることを特徴とする、請求項1から10のいずれか一項に記載の排気ガス後処理システム。 Granules of the separator (3) preferentially designed as a packed bed reactor or as a moving bed reactor contain CaO and / or Ca (OH) 2 and / or CaCO 3 and the separator The exhaust gas aftertreatment system according to any one of claims 1 to 10, characterized in that the particle size of the granular material of (3) is more than 2 mm, preferably more than 3 mm, most preferably more than 4 mm. . 内燃機関を出て行く排気ガスの排気ガス後処理のための方法であって、
前記排気ガスが、硫黄酸化物を化学吸着するためのカルシウム含有粒状体を含む分離器を通って導かれ、
前記内燃機関を出て行く前記排気ガスの温度を上昇させるために、前記分離器を通って導かれた前記排気ガスと、他方で前記内燃機関を出て行く前記排気ガスとが、ガス−ガス熱交換器を通って導かれ、
前記ガス−ガス熱交換器で加熱された前記排気ガスが、温度をさらに上昇させるために、前記ガス−ガス熱交換器の下流で前記分離器の上流に配置された加熱装置を通るように導かれる方法。
A method for exhaust gas aftertreatment of exhaust gas leaving an internal combustion engine,
The exhaust gas is directed through a separator containing calcium-containing granules for chemisorbing sulfur oxides;
In order to increase the temperature of the exhaust gas leaving the internal combustion engine, the exhaust gas led through the separator and on the other hand the exhaust gas leaving the internal combustion engine are gas-gas Led through heat exchanger and
The exhaust gas heated by the gas-gas heat exchanger is directed through a heating device disposed downstream of the gas-gas heat exchanger and upstream of the separator to further increase the temperature. How to be taken.
請求項1から11のいずれか一項に記載の排気ガス後処理システムを用いて同様に実施されることを特徴とする、請求項12に記載の方法。   13. A method according to claim 12, characterized in that it is carried out in the same way using the exhaust gas aftertreatment system according to any one of claims 1-11.
JP2015081524A 2014-04-14 2015-04-13 Exhaust gas aftertreatment system and method for exhaust gas aftertreatment Expired - Fee Related JP6636259B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014005418.7A DE102014005418A1 (en) 2014-04-14 2014-04-14 Exhaust after-treatment system and exhaust aftertreatment process
DE102014005418.7 2014-04-14

Publications (2)

Publication Number Publication Date
JP2015203416A true JP2015203416A (en) 2015-11-16
JP6636259B2 JP6636259B2 (en) 2020-01-29

Family

ID=54192949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015081524A Expired - Fee Related JP6636259B2 (en) 2014-04-14 2015-04-13 Exhaust gas aftertreatment system and method for exhaust gas aftertreatment

Country Status (6)

Country Link
JP (1) JP6636259B2 (en)
KR (1) KR20150118546A (en)
CN (1) CN105041431B (en)
DE (1) DE102014005418A1 (en)
DK (1) DK179506B1 (en)
FI (1) FI20155268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190107773A (en) * 2018-03-12 2019-09-23 한국에너지기술연구원 Flue gas treatment system capable of manipulating the inlet temperature of the absorption reactor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016003742A1 (en) * 2016-03-31 2017-10-05 Man Diesel & Turbo Se Exhaust after-treatment system, internal combustion engine and method for operating the same
DE102019102928A1 (en) * 2019-02-06 2020-08-06 Volkswagen Aktiengesellschaft Exhaust gas aftertreatment system and method for exhaust gas aftertreatment of an internal combustion engine
DE102019108008A1 (en) * 2019-03-28 2020-10-01 Volkswagen Aktiengesellschaft Exhaust aftertreatment system and process for exhaust aftertreatment of an internal combustion engine
NL2029161B1 (en) 2021-09-09 2023-03-23 Daf Trucks Nv An exhaust after treatment assembly.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082103A (en) * 2002-08-27 2004-03-18 Asahi Glass Co Ltd Method of treating gas containing so2
JP2005125275A (en) * 2003-10-27 2005-05-19 Babcock Hitachi Kk Device for treating diesel exhaust gas and method therefor
JP2007527783A (en) * 2004-02-04 2007-10-04 バッテル メモリアル インスティチュート Sulfur oxide adsorbent and emission control
JP2011509366A (en) * 2007-05-03 2011-03-24 マック・トラックス・インコーポレイテッド Exhaust aftertreatment system
JP2014043814A (en) * 2012-08-27 2014-03-13 National Maritime Research Institute Exhaust gas purification system and vessel mounted with the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178022A (en) 1985-02-05 1986-08-09 Mitsubishi Heavy Ind Ltd Simultaneous treatment of so2, so3 and dust
US5687565A (en) * 1995-11-29 1997-11-18 Amoco Corporation Control of exhaust emissions from an internal combustion engine
DE19720205B4 (en) * 1997-05-14 2006-05-18 Johannes Schedler Plant for cleaning exhaust gases laden with nitrogen oxides
DE102008041530A1 (en) * 2008-08-25 2010-03-04 Dirk Dombrowski Process and exhaust system for the purification of SOx-containing exhaust gases, in particular marine propulsion engines
DE102010042419A1 (en) * 2010-10-13 2012-04-19 Wolfgang Bengel Method for cleaning exhaust gas mass flow of marine engine, involves utilizing fine dust filter behind marine engine for cleaning of exhaust gases of marine engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082103A (en) * 2002-08-27 2004-03-18 Asahi Glass Co Ltd Method of treating gas containing so2
JP2005125275A (en) * 2003-10-27 2005-05-19 Babcock Hitachi Kk Device for treating diesel exhaust gas and method therefor
JP2007527783A (en) * 2004-02-04 2007-10-04 バッテル メモリアル インスティチュート Sulfur oxide adsorbent and emission control
JP2011509366A (en) * 2007-05-03 2011-03-24 マック・トラックス・インコーポレイテッド Exhaust aftertreatment system
JP2014043814A (en) * 2012-08-27 2014-03-13 National Maritime Research Institute Exhaust gas purification system and vessel mounted with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190107773A (en) * 2018-03-12 2019-09-23 한국에너지기술연구원 Flue gas treatment system capable of manipulating the inlet temperature of the absorption reactor
KR102037083B1 (en) 2018-03-12 2019-10-29 한국에너지기술연구원 Flue gas treatment system capable of manipulating the inlet temperature of the absorption reactor

Also Published As

Publication number Publication date
FI20155268A (en) 2015-10-15
CN105041431B (en) 2019-01-01
DE102014005418A1 (en) 2015-10-15
CN105041431A (en) 2015-11-11
JP6636259B2 (en) 2020-01-29
DK201570213A1 (en) 2015-11-02
DK179506B1 (en) 2019-01-25
KR20150118546A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
DK2719440T3 (en) Process for removing contaminants from exhaust gases by the addition of ozone
JP6636259B2 (en) Exhaust gas aftertreatment system and method for exhaust gas aftertreatment
EP3043112B1 (en) Boiler system and electric power generation plant provided with same
CA2924319C (en) Treatment of nitrogen oxides in flue gas streams
US8877150B1 (en) Single-step process for the simultaneous removal of CO2, SOx and NOx from a gas mixture
US20140165888A1 (en) SIMULTANEOUS TREATMENT OF FLUE GAS WITH SOx ABSORBENT REAGENT AND NOx REDUCING AGENT
KR101401421B1 (en) The Method of the Simultaneous Removal of NOx and N2O by the Multi Stage Reactions in Fluidized Bed Combustor
TW201231147A (en) Exhaust gas treatment method and apparatus
JP2006205128A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
JP2009507632A (en) Removal of sulfur trioxide from exhaust gas stream
CA2960344A1 (en) Methods for removing contaminants from exhaust gases
CN101632897A (en) Method for simultaneously removing sulfur oxides and nitric oxides in flue gas
KR102271576B1 (en) Exhaust gas after-treatment system and method for the exhaust gas after-treatment
JP2019535516A (en) Removal of impurities from process streams by contact with oxidants and water streams
EP0933516B1 (en) Gasification power generation process and equipment
JP2008030017A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
KR102323266B1 (en) Exhaust gas after-treatment system and method for the exhaust gas after-treatment
JPH11300164A (en) Boiler plant having denitration device, and denitration method
EP3043890A1 (en) Treatment of nitrogen oxides in flue gas streams
KR101456853B1 (en) Exhaustion gas processing apparatus
JPH08141360A (en) Desulfurization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191218

R150 Certificate of patent or registration of utility model

Ref document number: 6636259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees