JP2015203119A - Hydrogen storage alloy, nickel hydrogen storage battery and production method of hydrogen storage alloy - Google Patents

Hydrogen storage alloy, nickel hydrogen storage battery and production method of hydrogen storage alloy Download PDF

Info

Publication number
JP2015203119A
JP2015203119A JP2014081593A JP2014081593A JP2015203119A JP 2015203119 A JP2015203119 A JP 2015203119A JP 2014081593 A JP2014081593 A JP 2014081593A JP 2014081593 A JP2014081593 A JP 2014081593A JP 2015203119 A JP2015203119 A JP 2015203119A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
nickel
alloy
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014081593A
Other languages
Japanese (ja)
Inventor
聖広 家口
Kiyohiro Yaguchi
聖広 家口
大川 和宏
Kazuhiro Okawa
和宏 大川
剛史 八尾
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2014081593A priority Critical patent/JP2015203119A/en
Priority to CN201510089793.3A priority patent/CN104979537B/en
Publication of JP2015203119A publication Critical patent/JP2015203119A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • H01M4/385Hydrogen absorbing alloys of the type LaNi5
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy capable of keeping power output characteristics of a nickel hydrogen storage battery at a high level, a nickel hydrogen storage battery provided with the hydrogen storage alloy as the negative pole electrode and a production method of a hydrogen storage alloy.SOLUTION: A hydrogen storage alloy is composed of ABtype alloy: element A is based on a rare earth element; and element B is based on nickel and contains aluminum and/or manganese. In the cross section of the hydrogen storage alloy, the ratio of regions where aluminum and manganese are present in relatively high concentrations is 0.5% or higher. The hydrogen storage alloy is used as the negative pole electrode of a nickel hydrogen storage battery.

Description

本発明は、水素吸蔵合金、該水素吸蔵合金を負極電極として備えるニッケル水素蓄電池、及び水素吸蔵合金の製造方法に関する。   The present invention relates to a hydrogen storage alloy, a nickel-metal hydride storage battery including the hydrogen storage alloy as a negative electrode, and a method for producing the hydrogen storage alloy.

一般に、ポータブル機器や携帯機器などの電源として、また電気自動車やハイブリッド自動車用の電源として、エネルギー密度が高く信頼性に優れた蓄電池であるニッケル水素蓄電池が広く用いられている。ニッケル水素蓄電池は、水酸化ニッケルを主成分とした正極と、水素吸蔵合金を主成分とした負極と、水酸化カリウムなどを含むアルカリ電解液とから構成されている。   In general, nickel-metal hydride storage batteries having high energy density and excellent reliability are widely used as power sources for portable devices and portable devices, and as power sources for electric vehicles and hybrid vehicles. The nickel-metal hydride storage battery is composed of a positive electrode mainly composed of nickel hydroxide, a negative electrode mainly composed of a hydrogen storage alloy, and an alkaline electrolyte containing potassium hydroxide and the like.

こうしたニッケル水素蓄電池の負極を構成する水素吸蔵合金は、水素の吸蔵放出サイクルにおいて膨張・収縮が繰り返されることにより微粉化を生じる。微粉化は、水素吸蔵合金を構成する金属間化合物又は金属元素の濃度分布が不均一となる偏析があるときに特に生じやすい。そして、水素吸蔵合金は、微粉化を生じたときにはその表面積の増大に応じてアルカリ電解液による腐食も促進されて寿命が低下する。すなわち、水素吸蔵合金の偏析は、ニッケル水素蓄電池におけるサイクル寿命の低下を生じる一因となる。そこで従来から、水素吸蔵合金の偏析を抑えて微粉化を生じ難くすることによりアルカリ電解液に対する水素吸蔵合金の耐腐食性を向上させる技術が提案されている(例えば、特許文献1参照)。   The hydrogen storage alloy constituting the negative electrode of such a nickel metal hydride storage battery is pulverized by repeated expansion and contraction in the hydrogen storage / release cycle. Micronization is particularly likely to occur when there is segregation in which the concentration distribution of intermetallic compounds or metal elements constituting the hydrogen storage alloy becomes non-uniform. When the hydrogen storage alloy is pulverized, the corrosion is accelerated by the alkaline electrolyte in accordance with the increase in the surface area and the life is shortened. That is, the segregation of the hydrogen storage alloy is a cause of reducing the cycle life of the nickel metal hydride storage battery. Thus, conventionally, a technique for improving the corrosion resistance of the hydrogen storage alloy with respect to the alkaline electrolyte by suppressing segregation of the hydrogen storage alloy and making it difficult to produce fine powder has been proposed (see, for example, Patent Document 1).

特開平5−156382号公報JP-A-5-156382

しかしながら、水素吸蔵合金の耐腐食性を向上させるために微粉化を生じ難くした場合には、水素吸蔵合金の微粉化に伴う表面積の増大が抑えられることにより、触媒として機能するニッケルの露出面積の増大が抑えられ、ニッケル水素蓄電池に用いた場合のニッケル水素蓄電池の電力の出力特性を十分に得られないことにもなりかねない。また、水素吸蔵合金の腐食が抑えられると、水素吸蔵合金のうち触媒として機能するニッケル以外の成分の溶解が抑えられてニッケルの露出面積の増大が抑えられることとなり、この点においてもニッケル水素蓄電池に用いた場合のニッケル水素蓄電池の電力の出力特性を十分に得られないことになりかねない。   However, in the case where pulverization is made difficult to improve the corrosion resistance of the hydrogen storage alloy, the increase in the surface area accompanying the pulverization of the hydrogen storage alloy is suppressed, so that the exposed area of nickel that functions as a catalyst is reduced. The increase is suppressed, and the power output characteristics of the nickel metal hydride storage battery when used in the nickel metal hydride storage battery may not be sufficiently obtained. Further, if the corrosion of the hydrogen storage alloy is suppressed, the dissolution of the components other than nickel that functions as a catalyst in the hydrogen storage alloy is suppressed, and the increase in the exposed area of nickel is also suppressed. The power output characteristics of the nickel-metal hydride storage battery when used in the case may not be sufficiently obtained.

なお、一般的な電気製品においては、充電率の使用範囲が0%付近や100%付近といった電池にとって負荷の高い範囲でも使用される。そのため、0%付近や100%付近で微粉化・腐食が起こりやすいので、上記した問題が生じにくい。しかし、ハイブリッド自動車(プラグインハイブリッド自動車を含む)の場合、充電率の使用範囲が20%〜80%であるため、微粉化・腐食が起こりにくく、上記した問題が生じやすい。   In general electrical products, the charging rate is used even in a range where the load is high for the battery, such as near 0% or near 100%. Therefore, pulverization / corrosion is likely to occur near 0% or 100%, so that the above-described problems are unlikely to occur. However, in the case of a hybrid vehicle (including a plug-in hybrid vehicle), since the charge rate usage range is 20% to 80%, pulverization and corrosion are unlikely to occur, and the above-described problems are likely to occur.

本発明は、このような実情に鑑みてなされたものであり、その目的は、ニッケル水素蓄電池の電力の出力特性を高く維持することのできる水素吸蔵合金、該水素吸蔵合金を負極電極として備えるニッケル水素蓄電池、及び水素吸蔵合金の製造方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a hydrogen storage alloy capable of maintaining high power output characteristics of a nickel metal hydride storage battery, and a nickel including the hydrogen storage alloy as a negative electrode. It is providing the manufacturing method of a hydrogen storage battery and a hydrogen storage alloy.

上記課題を解決する水素吸蔵合金は、AB系合金からなる水素吸蔵合金であって、A元素は希土類元素を主成分とするとともに、B元素はニッケルを主成分としてアルミニウム及びマンガンの少なくとも一方を含有し、前記水素吸蔵合金の断面においてアルミニウム及びマンガンが前記断面中に相対的に高濃度に存在する領域の比率が0.5%以上である。 A hydrogen storage alloy that solves the above-mentioned problem is a hydrogen storage alloy made of an AB 5 series alloy, wherein the A element has a rare earth element as a main component, the B element has nickel as a main component, and at least one of aluminum and manganese. And the ratio of the region where aluminum and manganese are present in a relatively high concentration in the cross section in the cross section of the hydrogen storage alloy is 0.5% or more.

上記構成によれば、アルミニウム及びマンガンが断面中に相対的に高濃度に存在する領域の比率が適度に担保される。そのため、水素吸蔵合金の微粉化に伴う表面積の増大によって水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性の向上が図られる。   According to the said structure, the ratio of the area | region where aluminum and manganese exist in comparatively high concentration in a cross section is ensured moderately. Therefore, the power output characteristics of the nickel-metal hydride storage battery using the hydrogen storage alloy can be improved by increasing the surface area accompanying the pulverization of the hydrogen storage alloy.

上記水素吸蔵合金の好ましい構成として、アルミニウム及びマンガンが前記断面中に相対的に高濃度に存在する領域の比率が4.0%以下である。
上記構成によれば、アルミニウム及びマンガンが断面中に相対的に高濃度に存在する領域の比率の上限が制限される。そのため、水素吸蔵合金における腐食の生じやすさに一定の制限が加わることにより、水素吸蔵合金における電解液に対する耐腐食性と、この水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性との両立を図ることができる。
As a preferable configuration of the hydrogen storage alloy, a ratio of a region where aluminum and manganese are present in a relatively high concentration in the cross section is 4.0% or less.
According to the said structure, the upper limit of the ratio of the area | region where aluminum and manganese exist in comparatively high concentration in a cross section is restrict | limited. Therefore, by adding a certain limit to the likelihood of corrosion in hydrogen storage alloys, it is possible to achieve both corrosion resistance to electrolytes in hydrogen storage alloys and power output characteristics of nickel-metal hydride batteries using this hydrogen storage alloy. Can be achieved.

上記水素吸蔵合金の好ましい構成として、アルミニウム及びマンガンの両方を含有する。
上記構成によれば、アルミニウム及びマンガンの両方が断面中に相対的に高濃度に存在する領域の比率が適度に担保される。そのため、水素吸蔵合金の微粉化に伴う表面積の増大によって水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性の更なる向上が図られる。
As a preferable structure of the hydrogen storage alloy, both aluminum and manganese are contained.
According to the said structure, the ratio of the area | region where both aluminum and manganese exist in a comparatively high density | concentration in a cross section is ensured moderately. Therefore, the power output characteristics of the nickel-metal hydride storage battery using the hydrogen storage alloy can be further improved by increasing the surface area accompanying the pulverization of the hydrogen storage alloy.

上記水素吸蔵合金の好ましい構成として、断面を複数の領域に分割したときに、各領域におけるアルミニウム及びマンガンが相対的に高濃度に存在する領域の比率の標準偏差が同比率の平均値よりも小さい。   As a preferred configuration of the hydrogen storage alloy, when the cross section is divided into a plurality of regions, the standard deviation of the ratio of the regions where aluminum and manganese are present in a relatively high concentration in each region is smaller than the average value of the same ratio .

上記構成によれば、アルミニウム及びマンガンの少なくとも一方が断面中に偏って存在することが抑えられる。そのため、水素吸蔵合金の微粉化に伴う、より安定した表面積の増大を促すことができる。   According to the said structure, it can suppress that at least one of aluminum and manganese exists unevenly in a cross section. Therefore, it is possible to promote a more stable increase in surface area accompanying the pulverization of the hydrogen storage alloy.

上記課題を解決するニッケル水素蓄電池は、水素吸蔵合金を負極電極として備えるニッケル水素蓄電池であって、前記水素吸蔵合金として上記構成の水素吸蔵合金を用いる。
上記構成によれば、微粉化・腐食の起こりやすい水素吸蔵合金を用いた負極電極を備えることにより、ニッケル水素蓄電池の電力の出力特性の向上を図ることができる。
A nickel-metal hydride storage battery that solves the above-described problems is a nickel-metal hydride storage battery that includes a hydrogen storage alloy as a negative electrode, and the hydrogen storage alloy having the above-described configuration is used as the hydrogen storage alloy.
According to the above configuration, the power output characteristics of the nickel-metal hydride storage battery can be improved by providing the negative electrode using the hydrogen storage alloy that is likely to be pulverized and corroded.

上記ニッケル水素蓄電池の好ましい構成として、内燃機関及びモータを駆動源として備えるハイブリッド自動車に搭載されて、前記モータに電力を供給する。
上記構成によれば、ハイブリッド自動車の駆動源となるモータに対する供給電力の信頼性を維持しつつその出力特性を向上することができる。
As a preferable configuration of the nickel-metal hydride storage battery, the nickel-metal hydride storage battery is mounted on a hybrid vehicle including an internal combustion engine and a motor as drive sources, and supplies electric power to the motor.
According to the above configuration, the output characteristics can be improved while maintaining the reliability of the power supplied to the motor serving as the drive source of the hybrid vehicle.

上記ニッケル水素蓄電池の好ましい構成として、充電率が20%〜80%の範囲で使用される。
一般に、ニッケル水素蓄電池の充電率の使用範囲が20%〜80%に収まる条件下では水素吸蔵合金の微粉化が起こり難い。この点、上記構成によれば、アルミニウム及びマンガンの少なくとも一方が断面中に相対的に高濃度に存在する領域の比率が適度に担保されることにより、このような条件下にあっても水素吸蔵合金の微粉化が促される。その結果、水素吸蔵合金の微粉化に伴う表面積の増大によって水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性の向上が図られる。したがって、ニッケル水素蓄電池の充電率の使用範囲が20%〜80%に収まる条件下であっても、車両の駆動源となるモータに対する供給電力の出力特性を向上する構成を好適に実現できる。
As a preferable configuration of the nickel-metal hydride storage battery, a charge rate is used in a range of 20% to 80%.
Generally, pulverization of the hydrogen storage alloy is unlikely to occur under the condition that the usage range of the charging rate of the nickel metal hydride storage battery is within 20% to 80%. In this regard, according to the above configuration, the ratio of the region where at least one of aluminum and manganese is present in a relatively high concentration in the cross section is appropriately secured, so that even under such conditions, hydrogen storage is possible. The alloy is pulverized. As a result, the power output characteristics of the nickel-metal hydride storage battery using the hydrogen storage alloy can be improved by increasing the surface area accompanying the pulverization of the hydrogen storage alloy. Therefore, even under the condition where the usage range of the charging rate of the nickel-metal hydride storage battery is within 20% to 80%, a configuration that improves the output characteristics of the power supplied to the motor serving as the drive source of the vehicle can be suitably realized.

上記課題を解決する水素吸蔵合金の製造方法は、AB系合金からなる水素吸蔵合金の製造方法であって、A元素の主成分となる希土類元素と、B元素の主成分となるニッケルと、B元素を構成する成分となるアルミニウム及びマンガンの少なくとも一方とを所定の組成で含む原料組成物を準備する準備工程と、前記準備工程において準備された原料組成物に対して溶融急冷法により、前記水素吸蔵合金の断面においてアルミニウム及びマンガンが前記断面中に相対的に高濃度に存在する領域の比率が0.5%以上となるように水素吸蔵合金を生成する生成工程とを含む。 Method for producing a hydrogen-absorbing alloy to solve the above problems is a method for producing a hydrogen-absorbing alloy comprising AB 5 type alloy, a rare earth element as a main component of the A element, and nickel as a main component of the element B, A preparation step of preparing a raw material composition containing at least one of aluminum and manganese as a component constituting the B element in a predetermined composition, and a melting and quenching method for the raw material composition prepared in the preparation step, Generating a hydrogen storage alloy so that a ratio of a region where aluminum and manganese are present in a relatively high concentration in the cross section of the hydrogen storage alloy is 0.5% or more.

上記製造方法によれば、水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性の向上を図ることができる。   According to the said manufacturing method, the improvement of the output characteristic of the electric power of the nickel hydride storage battery using a hydrogen storage alloy can be aimed at.

本発明によれば、ニッケル水素蓄電池の電力の出力特性を高く維持することができる。   According to the present invention, the power output characteristic of the nickel-metal hydride storage battery can be maintained high.

ニッケル水素蓄電池の一実施の形態について、水素吸蔵合金におけるアルミニウム及びマンガンの偏析率と−30℃でのDC−IR(直流内部抵抗)との相関関係を示すグラフ。The graph which shows the correlation with the segregation rate of aluminum and manganese in hydrogen storage alloy, and DC-IR (DC internal resistance) at -30 degreeC about one Embodiment of a nickel hydride storage battery.

以下、ニッケル水素蓄電池の一実施の形態について説明する。
ニッケル水素蓄電池は、密閉型電池であり、エンジンとモータの2つの動力源を持つハイブリッド自動車において、モータを駆動するための電源として用いられる電池である。このニッケル水素蓄電池は、例えば、水素吸蔵合金を成分とする所定枚数の負極板と、水酸化ニッケルを成分とする所定枚数の正極板とを、耐アルカリ性樹脂の不織布から構成されるセパレータを介して積層した電極群を集電板に接続し、水酸化カリウムを主成分とする電解液とともに樹脂製の電槽内に収容して構成される。
Hereinafter, an embodiment of a nickel metal hydride storage battery will be described.
The nickel metal hydride storage battery is a sealed battery, and is a battery used as a power source for driving a motor in a hybrid vehicle having two power sources of an engine and a motor. This nickel-metal hydride storage battery includes, for example, a predetermined number of negative electrode plates composed of a hydrogen storage alloy and a predetermined number of positive electrode plates composed of nickel hydroxide via a separator made of an alkali-resistant resin nonwoven fabric. The laminated electrode group is connected to a current collector plate and is housed in a resin battery case together with an electrolyte mainly composed of potassium hydroxide.

次に、負極板に用いられる水素吸蔵合金について説明する。
水素吸蔵合金は、AB系の結晶構造を有し、本実施の形態では、MmNi(Mm:ミッシュメタル)を原型とし、Ni(ニッケル)の一部を他の元素で置換して構成されている。ミッシュメタルは、La(ランタン)及びCe(セリウム)等の希土類元素の合金である。Niを置換する元素としては、例えば、Co(コバルト)、Mn(マンガン)、Fe(鉄)、Cu(銅)、Ti(チタン)から選ばれる少なくとも一つの元素を用いることができる。なお、本実施の形態では、水素吸蔵合金として、Mm、Ni、Co、Al及びMnを含む合金等が用いられている。
Next, the hydrogen storage alloy used for the negative electrode plate will be described.
The hydrogen storage alloy has an AB 5 type crystal structure, and in this embodiment, MmNi 5 (Mm: Misch metal) is used as a prototype, and a part of Ni (nickel) is replaced with another element. ing. Misch metal is an alloy of rare earth elements such as La (lanthanum) and Ce (cerium). As an element that substitutes Ni, for example, at least one element selected from Co (cobalt), Mn (manganese), Fe (iron), Cu (copper), and Ti (titanium) can be used. In this embodiment, an alloy containing Mm, Ni, Co, Al, and Mn is used as the hydrogen storage alloy.

以下、実施例について詳細に説明する。この実施例では下記の条件でニッケル水素蓄電池を作製し、その特性を評価した。
水素吸蔵合金は以下の方法で作製した。まず、La、Ce、Pr(プラセオジム)、Nd(ネオジム)、Sm(サマリウム)などの希土類元素、詳しくはランタン系元素の混合物が合金化されたミッシュメタルを用意した。そして、準備工程として、このミッシュメタルと、Ni、Co、Mn及びAlとを、所定の組成になるように配合して原料組成物を準備した。さらに、生成工程として、準備した原料組成物を溶融した上で溶融状態から凝固までの冷却速度を1000℃/秒以上とするいわゆる溶融急冷法を行うことにより水素吸蔵合金を生成した。この場合、溶融した原料組成物が急速に冷却されることにより、組成成分の分布のばらつきの小さい水素吸蔵合金が生成される。また、水素吸蔵合金の全体に対するAl及びMnの重量比が調整されることにより、水素吸蔵合金の断面のうちAl及びMnが偏析して相対的に高濃度に存在する断面箇所の比率が制御される。そして、生成した水素吸蔵合金をボールミルで粉砕し、水素吸蔵合金粉末を作製した。
Hereinafter, examples will be described in detail. In this example, a nickel metal hydride storage battery was produced under the following conditions, and its characteristics were evaluated.
The hydrogen storage alloy was produced by the following method. First, a misch metal prepared by alloying a mixture of rare earth elements such as La, Ce, Pr (praseodymium), Nd (neodymium), and Sm (samarium), specifically, a lanthanum element was prepared. And as a preparatory process, this misch metal and Ni, Co, Mn, and Al were mix | blended so that it might become a predetermined composition, and the raw material composition was prepared. Further, as a production process, a hydrogen storage alloy was produced by performing a so-called melt quenching method in which the prepared raw material composition was melted and the cooling rate from the molten state to solidification was 1000 ° C./second or more. In this case, the melted raw material composition is rapidly cooled to produce a hydrogen storage alloy having a small variation in composition component distribution. In addition, by adjusting the weight ratio of Al and Mn to the entire hydrogen storage alloy, the ratio of the cross-sectional locations where Al and Mn are segregated and exist at a relatively high concentration in the cross section of the hydrogen storage alloy is controlled. The And the produced | generated hydrogen storage alloy was grind | pulverized with the ball mill, and hydrogen storage alloy powder was produced.

次に、水素吸蔵合金粉末をアルカリ水溶液に浸漬して攪拌した後に水洗および乾燥した。さらに、乾燥した水素吸蔵合金粉末にポリビニルアルコール溶液を加えて混練しペーストを作製した。そして、このペーストをパンチングメタルに塗布し、乾燥、圧延および切断することにより負極板を作製した。   Next, the hydrogen storage alloy powder was immersed in an alkaline aqueous solution and stirred, and then washed and dried. Furthermore, a polyvinyl alcohol solution was added to the dried hydrogen storage alloy powder and kneaded to prepare a paste. And this paste was apply | coated to the punching metal, and the negative electrode plate was produced by drying, rolling, and cut | disconnecting.

正極板については、発泡ニッケル基板に水酸化ニッケルを主成分とする活物質ペーストを充填した上で乾燥、圧延および切断することにより正極板を作製した。そして、上記した正極板・負極板を耐アルカリ性樹脂の不織布から構成されるセパレータを介して複数枚積層し、水酸化カリウム(KOH)を主成分とするアルカリ電解液とともに電槽内に収容することで、ニッケル水素蓄電池を作製した。
(直流に対する内部抵抗値(DC−IR)の測定方法)
まず、常温の下でニッケル水素蓄電池の充電率(SOC:State Of Charge)が60%になるまで充電を実施する。そして、ニッケル水素蓄電池を−30℃まで冷却した後、一定の電流値で5秒間放電した際の電圧降下(ΔV)を用い、ニッケル水素蓄電池の直流内部抵抗(DC−IR)を「ΔV/電流値」によって算出する。
(水素吸蔵合金におけるAl及びMnの偏析率の測定方法)
水素吸蔵合金におけるAl及びMnの偏析率Xは電子線マイクロプローブアナライザ(EPMA)によって所定の条件で測定される元素の分布を用いて算出される。元素の分布の測定には、電子線マイクロプローブアナライザJXA−8100(日本電子製)が用いられる。なお、本実施例では、所定の条件として、加速電圧=15kV、照射電流=0.1μA、観察倍率=400倍が採用されている。そして、この所定の条件において、水素吸蔵合金の断面からAlに固有のX線の強度信号を検出し、その値が60CPS以上の場合、その断面箇所にAlが偏析して相対的に高濃度に存在している旨が判定される。また、この所定の条件において、水素吸蔵合金の断面からMnに固有のX線の強度信号を検出し、その値が20CPS以上の場合、その断面箇所にMnが偏析して相対的に高濃度に存在している旨が判定される。そして、水素吸蔵合金の断面のうち、Alが偏析して相対的に高濃度に存在していると判定された断面箇所の比率と、Mnが偏析して相対的に高濃度に存在していると判定された断面箇所の比率との合計値が偏析率Xとして測定される。
For the positive electrode plate, a positive electrode plate was prepared by filling a foamed nickel substrate with an active material paste mainly composed of nickel hydroxide, followed by drying, rolling and cutting. Then, a plurality of the positive and negative electrode plates described above are laminated via a separator made of a non-woven fabric of alkali-resistant resin, and housed in a battery case together with an alkaline electrolyte mainly composed of potassium hydroxide (KOH). Thus, a nickel metal hydride storage battery was produced.
(Measurement method of internal resistance (DC-IR) against direct current)
First, charging is performed at a normal temperature until the state of charge (SOC) of the nickel metal hydride storage battery reaches 60%. And after cooling a nickel hydride storage battery to -30 degreeC, the direct current internal resistance (DC-IR) of a nickel hydride storage battery is used as "(DELTA) V / current, using the voltage drop ((DELTA) V) at the time of discharging for 5 second with a fixed electric current value. Calculated by “value”.
(Measurement method of segregation rate of Al and Mn in hydrogen storage alloy)
The segregation rate X of Al and Mn in the hydrogen storage alloy is calculated using the distribution of elements measured under predetermined conditions by an electron beam microprobe analyzer (EPMA). An electron beam microprobe analyzer JXA-8100 (manufactured by JEOL) is used for the measurement of the element distribution. In the present embodiment, acceleration voltage = 15 kV, irradiation current = 0.1 μA, and observation magnification = 400 times are employed as the predetermined conditions. Then, under this predetermined condition, an X-ray intensity signal specific to Al is detected from the cross section of the hydrogen storage alloy, and when the value is 60 CPS or more, Al is segregated in the cross section to a relatively high concentration. It is determined that it exists. Further, under this predetermined condition, an X-ray intensity signal specific to Mn is detected from the cross section of the hydrogen storage alloy, and when the value is 20 CPS or more, Mn segregates at the cross section and the concentration is relatively high. It is determined that it exists. And in the cross section of the hydrogen storage alloy, Al is segregated and the ratio of the cross-section portions determined to be present at a relatively high concentration, and Mn is segregated and exists at a relatively high concentration. The total value with the ratio of the cross-sectional locations determined as is measured as the segregation rate X.

なお、上記60CPS及び20CPSとの値は、合金断面の平均レベルの2倍以上の値が検出されるように設定した値である。つまり、請求項でいう「相対的に高濃度に存在する領域」とは、AlやMnが、合金断面全体の平均濃度の2倍以上の濃度で存在している領域のことをいう。   The values of 60 CPS and 20 CPS are values set so as to detect a value that is twice or more the average level of the alloy cross section. In other words, the “region existing at a relatively high concentration” in the claims refers to a region where Al or Mn exists at a concentration twice or more the average concentration of the entire alloy cross section.

また、AlやMnの濃度は、合金断面全体の平均濃度の4倍以下であることが好ましい。4倍を超えると、濃度分布が不均一になって好ましくないからである。なお、4倍を超える濃度は、EPMAの値がAlの場合には87CPSを超える値、Mnの場合には57CPSを超える値を示すが、本実施例では、このような値を示す領域はなかった。   The concentration of Al or Mn is preferably 4 times or less of the average concentration of the entire alloy cross section. This is because if it exceeds 4 times, the concentration distribution becomes non-uniform. A concentration exceeding 4 times indicates a value exceeding 87 CPS when the EPMA value is Al, and a value exceeding 57 CPS when the value is Mn. In this example, there is no region showing such a value. It was.

また、偏析率Xは、合金中のAl及びMnの比率で調整することができる。つまり、Al及びMnの比率を増加させることで、偏析率Xも増加させることができる。
また、測定対象とされている水素吸蔵合金の断面をN個(本実施例では9個)の領域に等分割したときに、各領域のうちAl及びMnが偏析して相対的に高濃度に存在している部分の面積の比率が領域ごとの偏析率X1〜XNとして算出される。そして、これらの偏析率X1〜XNの平均値に対する偏析率X1〜XNの標準偏差δXの比率が偏析ばらつき(変動係数)Xrとして算出される。なお、偏析ばらつきXrは、溶融急冷法の鋳湯速度で調整することができる。つまり、鋳湯速度を遅くすることにより、偏析ばらつきXrを低くすることができる。
(測定結果)
本実施例のニッケル水素蓄電池について、水素吸蔵合金におけるアルミニウム及びマンガンの偏析率とDC−IRの測定結果との対応関係を図1に示している。
The segregation rate X can be adjusted by the ratio of Al and Mn in the alloy. That is, the segregation rate X can be increased by increasing the ratio of Al and Mn.
In addition, when the cross section of the hydrogen storage alloy to be measured is equally divided into N (9 in this embodiment) regions, Al and Mn segregate in each region to a relatively high concentration. The ratio of the area of the existing part is calculated as the segregation rates X1 to XN for each region. The ratio of the standard deviation δX of the segregation rates X1 to XN with respect to the average value of these segregation rates X1 to XN is calculated as the segregation variation (variation coefficient) Xr. The segregation variation Xr can be adjusted by the casting speed of the melt quenching method. That is, the segregation variation Xr can be lowered by slowing down the casting speed.
(Measurement result)
About the nickel metal hydride storage battery of a present Example, the correspondence of the segregation rate of aluminum and manganese in a hydrogen storage alloy and the measurement result of DC-IR is shown in FIG.

図1に示すように、本実施例では、Al及びMnの偏析率とDC−IRとの対応関係について4つの測定点P1,P2,P3,P4が測定されている。各測定点P1,P2,P3,P4における偏析率及びDC−IRの値は、偏析率の低い測定点から順に、P1(0.2、20.5)、P2(0.6、19.0)、P3(1.2、18.6)、P4(2.8、18.2)となっている。そして、これらの測定点P1,P2,P3,P4に基づき、本実施例のニッケル水素蓄電池における偏析率とDC−IRとの相関関係を示す近似曲線Lが算出される。   As shown in FIG. 1, in this example, four measurement points P1, P2, P3, and P4 are measured for the correspondence between the segregation rates of Al and Mn and DC-IR. The segregation rate and DC-IR value at each measurement point P1, P2, P3, P4 are P1 (0.2, 20.5) and P2 (0.6, 19.0) in order from the measurement point with the lowest segregation rate. ), P3 (1.2, 18.6), P4 (2.8, 18.2). Then, based on these measurement points P1, P2, P3, P4, an approximate curve L indicating the correlation between the segregation rate and the DC-IR in the nickel-metal hydride storage battery of this example is calculated.

そして、本実施例では、偏析率が0.5%以上の範囲にあるときに、DC−IRが19.5mΩ以下となることが近似曲線Lに基づき把握される。DC−IRが19.5mΩ以下の場合、ハイブリッド自動車に要求される出力特性として好適なものとなる。なお、各測定点P1,P2,P3,P4のうち、偏析率が0.5%以上となる3つの測定点P2,P3,P4におけるDC−IRの値はほぼ一定となっている。これに対し、偏析率が0.5%未満となる測定点P1におけるDC−IRの値は、他の測定点P2,P3,P4におけるDC−IRの値とは大きく乖離している。   In the present embodiment, it is understood based on the approximate curve L that the DC-IR is 19.5 mΩ or less when the segregation rate is in the range of 0.5% or more. When DC-IR is 19.5 mΩ or less, it is suitable as output characteristics required for a hybrid vehicle. Of the measurement points P1, P2, P3, and P4, the DC-IR values at the three measurement points P2, P3, and P4 at which the segregation rate is 0.5% or more are substantially constant. On the other hand, the DC-IR value at the measurement point P1 where the segregation rate is less than 0.5% is greatly different from the DC-IR values at the other measurement points P2, P3, and P4.

また、本実施例では、水素吸蔵合金における偏析率の値が4%以下となる範囲を好ましい範囲としている。偏析率の値が4%を超えると、AlやMnが腐食しやすくなる。この場合、AlやMnが溶け出して析出し、ニッケル水素蓄電池にした際に短絡が発生するおそれがあるため、好ましくない。そのため、このように水素吸蔵合金における腐食の生じやすさに一定の制限を加えることにより、水素吸蔵合金における電解液に対する耐腐食性と、この水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性との両立を図っている。   In this example, the range in which the value of the segregation rate in the hydrogen storage alloy is 4% or less is a preferable range. When the value of the segregation rate exceeds 4%, Al and Mn are easily corroded. In this case, since Al and Mn are melted and deposited, and there is a possibility that a short circuit may occur when a nickel metal hydride storage battery is used, it is not preferable. Therefore, by adding a certain limit to the likelihood of corrosion in the hydrogen storage alloy in this way, the corrosion resistance to the electrolyte in the hydrogen storage alloy and the power output characteristics of the nickel metal hydride storage battery using this hydrogen storage alloy To achieve both.

また、本実施例では、4つの測定点P1,P2,P3,P4における偏析ばらつきXrの値は、偏析率の低い測定点から順に、P1(100%)、P2(68%)、P3(59%)、P4(24%)となっている。すなわち、全ての測定点P1,P2,P3,P4における偏析ばらつきXrの値が100%以下に設定されている。そのため、水素吸蔵合金におけるAl及びMnの分布の均一性が担保されることにより、その特性にばらつきを生じることが抑えられている。特に、本実施例の測定点P2,P3,P4における偏析ばらつきXrの値が70%以下に設定されている。そのため、水素吸蔵合金におけるAl及びMnの分布の均一性がより一層担保されることとなり、その特性にばらつきを生じることが特に抑えられている。   In this example, the values of the segregation variation Xr at the four measurement points P1, P2, P3, and P4 are P1 (100%), P2 (68%), and P3 (59) in order from the measurement point with the lowest segregation rate. %) And P4 (24%). That is, the value of the segregation variation Xr at all the measurement points P1, P2, P3, and P4 is set to 100% or less. Therefore, by ensuring the uniformity of the distribution of Al and Mn in the hydrogen storage alloy, variation in the characteristics is suppressed. In particular, the value of the segregation variation Xr at the measurement points P2, P3, P4 of the present example is set to 70% or less. Therefore, the uniformity of Al and Mn distribution in the hydrogen storage alloy is further ensured, and variation in the characteristics is particularly suppressed.

次に、上述したニッケル水素蓄電池の作用について説明する。
水素吸蔵合金については、Al及びMnの偏析率Xが高くなると微粉化及び腐食が起こり易くなるため、電解液に対するNiの露出面積の増大に伴って反応速度が向上する。その結果、水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性が向上することにより、ニッケル水素蓄電池のDC−IRの値が低下する。そして、上記実施例で用いたニッケル水素蓄電池によれば、水素吸蔵合金におけるAl及びMnの偏析率Xが0.5%以上の範囲にあるときに、DC−IRが19.5mΩ以下となることが確認された。そのため、ニッケル水素蓄電池がハイブリッド自動車に搭載されるときには、水素吸蔵合金におけるAl及びMnの偏析率が0.5%以上の範囲にあれば水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性が十分に得られることとなる。
Next, the effect | action of the nickel hydride storage battery mentioned above is demonstrated.
As for the hydrogen storage alloy, when the segregation rate X of Al and Mn increases, pulverization and corrosion are likely to occur. Therefore, the reaction rate is improved as the exposed area of Ni to the electrolytic solution increases. As a result, the power output characteristic of the nickel-metal hydride storage battery using the hydrogen storage alloy is improved, so that the DC-IR value of the nickel-metal hydride battery is lowered. According to the nickel metal hydride storage battery used in the above examples, when the segregation ratio X of Al and Mn in the hydrogen storage alloy is in the range of 0.5% or more, the DC-IR becomes 19.5 mΩ or less. Was confirmed. Therefore, when the nickel-metal hydride storage battery is mounted on a hybrid vehicle, the power output characteristics of the nickel-metal hydride storage battery using the hydrogen storage alloy are sufficient if the segregation rate of Al and Mn in the hydrogen storage alloy is in the range of 0.5% or more. It will be sufficient.

また、水素吸蔵合金については、Al及びMnの偏析ばらつきXrが高くなるとAl及びMnの分布の均一性が担保されなくなり、その特性にばらつきが生じやすくなる。そして、上記実施例で用いたニッケル水素蓄電池によれば、水素吸蔵合金におけるAl及びMnの偏析ばらつきXrの値が100%以下、つまり水素吸蔵合金の断面を複数に分割したときに、各領域におけるAl及びMnが相対的に高濃度に存在する領域の比率である偏析率X1〜XNの標準偏差δXが偏析率X1〜XNの平均値よりも小さくなるように設定されたときには、水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性が安定することが確認された。そのため、水素吸蔵合金におけるAl及びMnの偏析ばらつきXrが100%以下の範囲にあれば水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性についての信頼性が十分に得られることとなる。また、偏析ばらつきXrが70%以下に設定されていることにより、上記出力特性の信頼性はさらに十分なものとなる。   In addition, as for the hydrogen storage alloy, when the segregation variation Xr of Al and Mn is increased, the uniformity of Al and Mn distribution is not ensured, and the characteristics tend to vary. Then, according to the nickel metal hydride storage battery used in the above example, when the value of the segregation variation Xr of Al and Mn in the hydrogen storage alloy is 100% or less, that is, when the cross section of the hydrogen storage alloy is divided into a plurality of regions, When the standard deviation δX of the segregation rates X1 to XN, which is the ratio of the regions where Al and Mn are present in a relatively high concentration, is set to be smaller than the average value of the segregation rates X1 to XN, the hydrogen storage alloy It was confirmed that the power output characteristics of the nickel hydride storage battery used were stable. Therefore, if the segregation variation Xr of Al and Mn in the hydrogen storage alloy is in the range of 100% or less, the reliability of the power output characteristics of the nickel hydride storage battery using the hydrogen storage alloy can be sufficiently obtained. Further, since the segregation variation Xr is set to 70% or less, the reliability of the output characteristics is further sufficient.

なお一般に、ニッケル水素蓄電池がハイブリッド自動車に搭載されるときには、ニッケル水素蓄電池の充電率の使用範囲が、0%付近や100%付近にまで及ぶ一般的な電気製品とは異なり、20%〜80%に収まることとなる。水素吸蔵合金の微粉化・腐食は充電率が0%付近や100%付近といった、電池に対する負荷が大きい環境下で主に起こるため、この充電率の使用範囲では、水素吸蔵合金における微粉化及び腐食が起こり難い。この点、上記実施例で用いたニッケル水素蓄電池によれば、水素吸蔵合金におけるAl及びMnの偏析率を0.5%以上の範囲として水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性を向上させることにより、充電率の使用範囲が20%〜80%に収まる場合であっても水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性が十分に得られることとなる。なお、ハイブリッド自動車に搭載されるニッケル水素蓄電池の充電率が20%〜80%の範囲で用いられるのは、過充電・過放電を防止するためである。   Generally, when a nickel metal hydride storage battery is mounted on a hybrid vehicle, the use range of the charge rate of the nickel metal hydride storage battery is 20% to 80%, unlike a general electric product that extends to near 0% or 100%. Will fit in. Since pulverization / corrosion of hydrogen storage alloys occurs mainly in environments where the load on the battery is high, such as near 0% or 100%, the pulverization and corrosion of hydrogen storage alloys within this usage range of the charge rate. Is unlikely to occur. In this regard, according to the nickel metal hydride storage battery used in the above example, the output characteristics of the power of the nickel metal hydride storage battery using the hydrogen storage alloy with the segregation rate of Al and Mn in the hydrogen storage alloy being in the range of 0.5% or more. By improving, the output characteristics of the electric power of the nickel-metal hydride storage battery using the hydrogen storage alloy can be sufficiently obtained even when the usage range of the charging rate falls within 20% to 80%. The reason why the charge rate of the nickel metal hydride storage battery mounted on the hybrid vehicle is used in the range of 20% to 80% is to prevent overcharge / overdischarge.

以上説明したように、上記実施の形態のニッケル水素蓄電池によれば、以下に示す効果を得ることができる。
(1)水素吸蔵合金におけるAl及びMnの偏析率Xが0.5%以上の範囲に設定されるため、水素吸蔵合金の断面においてAl及びMnが断面中に相対的に高濃度に存在する領域の比率が適度に担保される。そのため、水素吸蔵合金の微粉化に伴う表面積の増大によって水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性の向上が図られる。
As described above, according to the nickel-metal hydride storage battery of the above embodiment, the following effects can be obtained.
(1) Since the segregation ratio X of Al and Mn in the hydrogen storage alloy is set in a range of 0.5% or more, a region where Al and Mn are present in a relatively high concentration in the cross section of the hydrogen storage alloy The ratio is moderately secured. Therefore, the power output characteristics of the nickel-metal hydride storage battery using the hydrogen storage alloy can be improved by increasing the surface area accompanying the pulverization of the hydrogen storage alloy.

(2)水素吸蔵合金におけるAl及びMnの偏析率Xが4.0%以下の範囲に設定される。そのため、水素吸蔵合金における腐食の生じやすさに一定の制限が加わることにより、水素吸蔵合金における電解液に対する耐腐食性と、この水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性との両立を図ることができる。   (2) The segregation ratio X of Al and Mn in the hydrogen storage alloy is set in a range of 4.0% or less. Therefore, by adding a certain limit to the likelihood of corrosion in hydrogen storage alloys, it is possible to achieve both corrosion resistance to electrolytes in hydrogen storage alloys and power output characteristics of nickel-metal hydride batteries using this hydrogen storage alloy. Can be achieved.

(3)水素吸蔵合金におけるAl及びMnの偏析ばらつきXrの値が100%以下に設定されるため、水素吸蔵合金の断面においてAl及びMnの少なくとも一方が断面中に偏って存在することが抑えられる。そのため、水素吸蔵合金の微粉化に伴う、より安定した表面積の増大を促すことができる。   (3) Since the value of the segregation variation Xr of Al and Mn in the hydrogen storage alloy is set to 100% or less, it is possible to suppress the presence of at least one of Al and Mn in the cross section of the hydrogen storage alloy. . Therefore, it is possible to promote a more stable increase in surface area accompanying the pulverization of the hydrogen storage alloy.

(4)微粉化・腐食の起こりやすい水素吸蔵合金を用いた負極電極を備えることにより、ニッケル水素蓄電池の電力の出力特性の向上を図ることができる。
(5)ニッケル水素蓄電池は、内燃機関及びモータを駆動源として備えるハイブリッド自動車に搭載されてモータに電力を供給する。そのため、ハイブリッド自動車の駆動源となるモータに対する供給電力の信頼性を維持しつつその出力特性を向上することができる。
(4) By providing a negative electrode using a hydrogen storage alloy that is likely to be pulverized and corroded, it is possible to improve the power output characteristics of the nickel-metal hydride storage battery.
(5) The nickel metal hydride storage battery is mounted on a hybrid vehicle including an internal combustion engine and a motor as drive sources, and supplies electric power to the motor. Therefore, the output characteristics can be improved while maintaining the reliability of the power supplied to the motor serving as the drive source of the hybrid vehicle.

(6)ニッケル水素蓄電池の充電率の使用範囲が水素吸蔵合金の微粉化・腐食が起こりにくい20%〜80%に収まる条件下であっても、車両の駆動源となるモータに対する供給電力の出力特性を向上する構成を好適に実現できる。   (6) Output of power supplied to the motor that is the driving source of the vehicle even when the charging range of the nickel metal hydride storage battery is within the range of 20% to 80% where the hydrogen storage alloy is less likely to be pulverized and corroded. The structure which improves a characteristic can be implement | achieved suitably.

(7)Al及びMnを所定の組成で含む原料組成物に対して溶融急冷法を行うことにより、偏析ばらつきXrが100%以下の、Al及びMnの分布の均一性が担保された水素吸蔵合金を得ることができる。それにより、水素吸蔵合金の微粉化・腐食によるニッケル水素蓄電池の出力特性の増大を確実に生じさせることができる。   (7) A hydrogen storage alloy in which the uniformity of Al and Mn distribution is ensured by performing a melting and quenching method on a raw material composition containing Al and Mn in a predetermined composition and having a segregation variation Xr of 100% or less. Can be obtained. Thereby, the increase in the output characteristics of the nickel-metal hydride storage battery due to the pulverization and corrosion of the hydrogen storage alloy can be reliably caused.

なお、上記実施の形態は、以下のような形態にて実施することもできる。
・上記実施の形態では、水素吸蔵合金の断面のうち、Alが偏析して相対的に高濃度に存在している断面箇所の比率と、Mnが偏析して相対的に高濃度に存在している断面箇所の比率との合計値を偏析率Xとして規定した。ただし、水素吸蔵合金がAl及びMnのうちの一方の元素のみを含むときには、水素吸蔵合金の断面のうち、Al及びMnの一方の元素が偏析して相対的に高濃度に存在している断面箇所の比率を偏析率として規定し、この偏析率の値を0.5%以上の範囲に設定してもよい。この場合であっても、水素吸蔵合金の断面においてAl又はMnが断面中に相対的に高濃度に存在する領域の比率が適度に担保される。そのため、水素吸蔵合金の微粉化に伴う表面積の増大によって水素吸蔵合金を用いたニッケル水素蓄電池の電力の出力特性の向上が図られる。
In addition, the said embodiment can also be implemented with the following forms.
In the above embodiment, the ratio of cross-sectional locations where Al segregates and exists at a relatively high concentration in the cross section of the hydrogen storage alloy, and Mn segregates and exists at a relatively high concentration. The total value with the ratio of the cross-sectional locations is defined as the segregation rate X. However, when the hydrogen storage alloy contains only one element of Al and Mn, the cross section in which one element of Al and Mn segregates and exists at a relatively high concentration in the cross section of the hydrogen storage alloy. The ratio of the locations may be defined as a segregation rate, and the value of this segregation rate may be set to a range of 0.5% or more. Even in this case, the ratio of the region where Al or Mn is present in a relatively high concentration in the cross section in the cross section of the hydrogen storage alloy is appropriately secured. Therefore, the power output characteristics of the nickel-metal hydride storage battery using the hydrogen storage alloy can be improved by increasing the surface area accompanying the pulverization of the hydrogen storage alloy.

L…近似曲線、P1,P2,P3,P4…測定点。   L: approximate curve, P1, P2, P3, P4: measurement points.

Claims (8)

AB系合金からなる水素吸蔵合金であって、
A元素は希土類元素を主成分とするとともに、B元素はニッケルを主成分としてアルミニウム及びマンガンの少なくとも一方を含有し、
前記水素吸蔵合金の断面においてアルミニウム及びマンガンが前記断面中に相対的に高濃度に存在する領域の比率が0.5%以上であることを特徴とする水素吸蔵合金。
A hydrogen storage alloy composed of an AB 5- based alloy,
The element A contains a rare earth element as a main component, and the element B contains nickel as a main component and contains at least one of aluminum and manganese.
The hydrogen storage alloy, wherein a ratio of a region where aluminum and manganese are present in a relatively high concentration in the cross section in the cross section of the hydrogen storage alloy is 0.5% or more.
アルミニウム及びマンガンが前記断面中に相対的に高濃度に存在する領域の比率が4.0%以下である請求項1に記載の水素吸蔵合金。   The hydrogen storage alloy according to claim 1, wherein a ratio of a region where aluminum and manganese are present in a relatively high concentration in the cross section is 4.0% or less. アルミニウム及びマンガンの両方を含有する請求項1又は請求項2に記載の水素吸蔵合金。   The hydrogen storage alloy according to claim 1 or 2, comprising both aluminum and manganese. 断面を複数の領域に分割したときに、各領域におけるアルミニウム及びマンガンが相対的に高濃度に存在する領域の比率の標準偏差が同比率の平均値よりも小さい請求項1〜3の何れか一項に記載の水素吸蔵合金。   When the cross section is divided into a plurality of regions, the standard deviation of the ratio of the regions where aluminum and manganese are present in a relatively high concentration in each region is smaller than the average value of the ratios. The hydrogen storage alloy according to item. 水素吸蔵合金を負極電極として備えるニッケル水素蓄電池であって、
前記水素吸蔵合金として請求項1〜4の何れか一項に記載の水素吸蔵合金を用いることを特徴とするニッケル水素蓄電池。
A nickel-metal hydride storage battery comprising a hydrogen storage alloy as a negative electrode,
The nickel hydride storage battery using the hydrogen storage alloy as described in any one of Claims 1-4 as said hydrogen storage alloy.
内燃機関及びモータを駆動源として備えるハイブリッド自動車に搭載されて、前記モータに電力を供給する請求項5に記載のニッケル水素蓄電池。   The nickel metal hydride storage battery according to claim 5, wherein the nickel hydride storage battery is mounted on a hybrid vehicle including an internal combustion engine and a motor as drive sources and supplies electric power to the motor. 充電率が20%〜80%の範囲で使用される請求項6に記載のニッケル水素蓄電池。   The nickel-metal hydride storage battery according to claim 6, wherein the charge rate is in a range of 20% to 80%. AB系合金からなる水素吸蔵合金の製造方法であって、
A元素の主成分となる希土類元素と、B元素の主成分となるニッケルと、B元素を構成する成分となるアルミニウム及びマンガンの少なくとも一方とを所定の組成で含む原料組成物を準備する準備工程と、
前記準備工程において準備された原料組成物に対して溶融急冷法により、前記水素吸蔵合金の断面においてアルミニウム及びマンガンが前記断面中に相対的に高濃度に存在する領域の比率が0.5%以上となるように水素吸蔵合金を生成する生成工程と
を含む水素吸蔵合金の製造方法。
A method for producing a hydrogen storage alloy comprising an AB 5 alloy,
A preparation step of preparing a raw material composition containing a rare earth element as a main component of the A element, nickel as a main component of the B element, and at least one of aluminum and manganese as a component constituting the B element in a predetermined composition When,
The ratio of the region where aluminum and manganese are present in a relatively high concentration in the cross section in the cross section of the hydrogen storage alloy is 0.5% or more by the melt quenching method for the raw material composition prepared in the preparation step A production process for producing a hydrogen storage alloy so as to produce a hydrogen storage alloy.
JP2014081593A 2014-04-11 2014-04-11 Hydrogen storage alloy, nickel hydrogen storage battery and production method of hydrogen storage alloy Pending JP2015203119A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014081593A JP2015203119A (en) 2014-04-11 2014-04-11 Hydrogen storage alloy, nickel hydrogen storage battery and production method of hydrogen storage alloy
CN201510089793.3A CN104979537B (en) 2014-04-11 2015-02-27 The manufacture method of hydrogen bearing alloy, nickel-hydrogen accumulator and hydrogen bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081593A JP2015203119A (en) 2014-04-11 2014-04-11 Hydrogen storage alloy, nickel hydrogen storage battery and production method of hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JP2015203119A true JP2015203119A (en) 2015-11-16

Family

ID=54275834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081593A Pending JP2015203119A (en) 2014-04-11 2014-04-11 Hydrogen storage alloy, nickel hydrogen storage battery and production method of hydrogen storage alloy

Country Status (2)

Country Link
JP (1) JP2015203119A (en)
CN (1) CN104979537B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658660B2 (en) * 2016-09-26 2020-05-19 Primearth Ev Energy Co., Ltd. Nickel-metal hydride battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223408A (en) * 1990-01-25 1991-10-02 Sanyo Electric Co Ltd Manufacture of hydrogen storage alloy for alkaline battery
JPH0745279A (en) * 1993-08-02 1995-02-14 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
JPH0797648A (en) * 1992-09-14 1995-04-11 Toshiba Corp Hydrogen storage alloy for battery, production thereof, and nickel-hydrogen secondary battery
JPH10284071A (en) * 1997-04-02 1998-10-23 Sanyo Electric Co Ltd Sintered hydrogen storage alloy electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209065A (en) * 1994-11-07 1997-08-12 Santoku Kinzoku Kogyo Kk Age precipitation type rare earth metal-nickel alloy, its production, and nickel-hydrogen secondary battery negative pole
CN1050154C (en) * 1996-07-11 2000-03-08 南开大学 Spherical hydrogen-storage alloy and mfg. method thereof
JP3992075B1 (en) * 2007-01-30 2007-10-17 中央電気工業株式会社 Hydrogen storage alloy and electrode for nickel-hydrogen battery
JP4337905B2 (en) * 2007-04-18 2009-09-30 トヨタ自動車株式会社 Cooling device for electric equipment mounted on vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223408A (en) * 1990-01-25 1991-10-02 Sanyo Electric Co Ltd Manufacture of hydrogen storage alloy for alkaline battery
JPH0797648A (en) * 1992-09-14 1995-04-11 Toshiba Corp Hydrogen storage alloy for battery, production thereof, and nickel-hydrogen secondary battery
JPH0745279A (en) * 1993-08-02 1995-02-14 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
JPH10284071A (en) * 1997-04-02 1998-10-23 Sanyo Electric Co Ltd Sintered hydrogen storage alloy electrode

Also Published As

Publication number Publication date
CN104979537B (en) 2018-04-10
CN104979537A (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5642577B2 (en) Alkaline storage battery and alkaline storage battery system
JP2009054514A (en) Hydrogen storage alloy electrode, and alkaline storage battery using the same
JP2009176712A (en) Hydrogen storage alloy, and alkaline battery using the same as negative electrode active material
JP6407783B2 (en) Nickel metal hydride storage battery and hybrid vehicle
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP6343393B2 (en) Hydrogen storage alloy
JP2013114888A (en) Alkali storage battery, and alkali storage battery system with the same
JP2008053223A (en) Negative active material for nickel hydrogen battery and nickel hydrogen battery, and treating method of negative active material for nickel hydrogen battery
US6773667B2 (en) Hydrogen-occluding alloy and process for producing the same
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP2015203119A (en) Hydrogen storage alloy, nickel hydrogen storage battery and production method of hydrogen storage alloy
JP6201307B2 (en) Hydrogen storage alloy, electrode, nickel metal hydride storage battery, and method for producing hydrogen storage alloy
JP2016069691A (en) Hydrogen storage material, electrode and nickel hydride storage battery
US9525169B2 (en) Nickel-hydrogen storage battery
CN104584313B (en) Battery system
JP5769578B2 (en) Method for producing negative electrode active material for lithium secondary battery
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
JP2022034130A (en) Hydrogen storage alloy
EP1059684B1 (en) Process for producing a hydrogen absorbing alloy, and hydrogen absorbing alloy electrodes
JP5542308B2 (en) Hydrogen storage alloy electrode, method for producing hydrogen storage alloy electrode, and alkaline storage battery
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP5455297B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JP7146710B2 (en) Negative electrode for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
JP2004218017A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109