JP2015200845A - Optical system and image capturing device having the same - Google Patents

Optical system and image capturing device having the same Download PDF

Info

Publication number
JP2015200845A
JP2015200845A JP2014080999A JP2014080999A JP2015200845A JP 2015200845 A JP2015200845 A JP 2015200845A JP 2014080999 A JP2014080999 A JP 2014080999A JP 2014080999 A JP2014080999 A JP 2014080999A JP 2015200845 A JP2015200845 A JP 2015200845A
Authority
JP
Japan
Prior art keywords
lens
positive
optical system
refractive power
positive lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014080999A
Other languages
Japanese (ja)
Other versions
JP2015200845A5 (en
JP6440375B2 (en
Inventor
章 水間
Akira Mizuma
章 水間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014080999A priority Critical patent/JP6440375B2/en
Publication of JP2015200845A publication Critical patent/JP2015200845A/en
Publication of JP2015200845A5 publication Critical patent/JP2015200845A5/ja
Application granted granted Critical
Publication of JP6440375B2 publication Critical patent/JP6440375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical system which has a long back focus and wide view angle, and yet easily provides a high-quality image over an entire screen area.SOLUTION: An optical system comprises, in order from the object side to the image side, a front group having positive or negative refractive power, an aperture stop, and a rear group having positive refractive power, where the rear group comprises a cemented lens G3a comprising a positive lens G31 and a lens G32 cemented together, a positive lens G33, and a positive lens G34. A curvature radii R31f, R31r of an object-side surface and image-side surface of the positive lens G31, respectively, and an Abbe number and partial dispersion ratio νd31, θgF31 of a material of the positive lens G31 are each set appropriately.

Description

本発明は、光学系に関し、例えば銀塩フィルム用カメラ、デジタルスチルカメラ、デジタルビデオカメラ、監視用カメラ、TVカメラ等の撮像装置に用いられる撮像光学系に好適なものである。   The present invention relates to an optical system, and is suitable for an imaging optical system used in an imaging apparatus such as a silver salt film camera, a digital still camera, a digital video camera, a surveillance camera, and a TV camera.

近年、撮像装置に用いられる光学系は高解像度の画像が容易に得られること、また広画角で広範囲の撮影が容易であることが要求されている。また、最も像側のレンズ面と撮像面との間にローパスフィルターや色補正フィルター等の各種光学素子が配置されることから、比較的長いバックフォーカスを有すること等が要求されている。   In recent years, an optical system used in an imaging apparatus is required to easily obtain a high-resolution image and to easily capture a wide range with a wide angle of view. Further, since various optical elements such as a low-pass filter and a color correction filter are arranged between the lens surface closest to the image side and the imaging surface, it is required to have a relatively long back focus.

従来、物体側から像側へ順に正又は負の屈折力の前群、開口絞り、正の屈折力の後群からなり、広画角で全系の焦点距離がバックフォーカスより短いレトロフォーカス型の光学系が知られている(特許文献1,2)。特許文献1,2では長いバックフォーカスを有した広画角の光学系を開示している。   Conventionally, it consists of a front group of positive or negative refractive power in order from the object side to the image side, an aperture stop, and a rear group of positive refractive power, and is a retrofocus type with a wide angle of view and a shorter focal length than the back focus. Optical systems are known (Patent Documents 1 and 2). Patent Documents 1 and 2 disclose a wide-angle optical system having a long back focus.

特開平8−179196号公報JP-A-8-179196 特開2009−109723号公報JP 2009-109723 A 特開2012−123155号公報JP2012-123155A

レトロフォーカス型の光学系は長いバックフォーカスを確保しつつ広画角化を図るのが比較的容易である。しかしながらレトロフォーカス型の光学系では、開口絞りを挟んで非対称な屈折力配置となる。このため、コマ収差、歪曲、倍率色収差などの非対称に起因する諸収差の発生が多くなり、高い光学性能を得ることが難しくなる傾向がある。   A retrofocus optical system is relatively easy to achieve a wide angle of view while ensuring a long back focus. However, a retrofocus optical system has an asymmetric refractive power arrangement with an aperture stop interposed therebetween. For this reason, the occurrence of various aberrations due to asymmetry such as coma, distortion, and lateral chromatic aberration increases, and it tends to be difficult to obtain high optical performance.

バックフォーカスが長く、しかも広画角で、画面全体にわたり高い光学性能を得るには、光学系中の開口絞りの前後のレンズ群の屈折力やレンズ構成等を適切に設定することが重要になってくる。これらの設定が適切でないと広画角で高い光学性能の光学系を得るのが困難になってくる。   In order to obtain a long back focus, wide angle of view, and high optical performance over the entire screen, it is important to appropriately set the refractive power and lens configuration of the lens groups before and after the aperture stop in the optical system. Come. If these settings are not appropriate, it becomes difficult to obtain an optical system having a wide angle of view and high optical performance.

本発明は、バックフォーカスが長く広画角でありながら画面全域で高画質の画像を得るのが容易な光学系の提供を目的とする。   An object of the present invention is to provide an optical system that can easily obtain a high-quality image over the entire screen while having a long back focus and a wide angle of view.

本発明の光学系は、物体側から像側に順に、正又は負の屈折力の前群、開口絞り、正の屈折力の後群より構成され、前記後群は物体側から像側へ順に、正レンズG31と負レンズG32を接合した接合レンズG3a、正レンズG33、正レンズG34を有し、
前記正レンズG31の物体側のレンズ面と像側のレンズ面の曲率半径を各々R31f,R31r、前記正レンズG31の材料のアッベ数と部分分散比を各々νd31,θgF31とするとき、
1.0<(R31f+R31r)/(R31f−R31r)<10.0
νd31>70.0
θgF31−(−0.001682・νd31+0.6438)>0.0
なる条件式を満足することを特徴としている。
The optical system according to the present invention includes, in order from the object side to the image side, a front group having a positive or negative refractive power, an aperture stop, and a rear group having a positive refractive power, and the rear group is sequentially from the object side to the image side. A positive lens G31 and a negative lens G32, a cemented lens G3a, a positive lens G33, and a positive lens G34.
When the radius of curvature of the object-side lens surface and the image-side lens surface of the positive lens G31 is R31f and R31r, and the Abbe number and partial dispersion ratio of the material of the positive lens G31 are νd31 and θgF31, respectively.
1.0 <(R31f + R31r) / (R31f-R31r) <10.0
νd31> 70.0
θgF31 − (− 0.001682 · νd31 + 0.6438)> 0.0
It satisfies the following conditional expression.

本発明によれば、バックフォーカスが長く広画角でありながら画面全域で高画質の画像を得るのが容易な光学系が得られる。   According to the present invention, it is possible to obtain an optical system that can easily obtain a high-quality image over the entire screen while having a long back focus and a wide angle of view.

実施例1のレンズ断面図Lens sectional view of Example 1 実施例1の無限遠物体における収差図Aberration diagram of the object at infinity in Example 1 実施例2のレンズ断面図Lens sectional view of Example 2 実施例2の無限遠物体における収差図Aberration diagrams of the object at infinity in Example 2 実施例3のレンズ断面図Lens sectional view of Example 3 実施例3の無限遠物体における収差図Aberration diagrams of the object at infinity in Example 3 アッベ数νdと部分分散比θgFとの関係を示す図The figure which shows the relationship between Abbe number (nu) d and partial dispersion ratio (theta) gF. 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本発明の光学系は、物体側から像側に順に、正又は負の屈折力の前群、開口絞り、正の屈折力の後群を有する。本発明の光学系は、焦点距離がバックフォーカスよりも短いレトロフォーカス型の撮像光学系である。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The optical system of the present invention includes, in order from the object side to the image side, a front group having positive or negative refractive power, an aperture stop, and a rear group having positive refractive power. The optical system of the present invention is a retrofocus imaging optical system having a focal length shorter than the back focus.

図1は本発明の実施例1のレンズ断面図である。図2は実施例1の無限遠に合焦したときの縦収差である。図3は本発明の実施例2のレンズ断面図である。図4は実施例2の無限遠に合焦したときの縦収差である。図5は本発明の実施例3のレンズ断面図である。図6は実施例3の無限遠に合焦したときの縦収差である。図7は材料のアッベ数νdと部分分散比θgFとの関係を示す図である。図8は本発明の光学系を備えるカメラ(撮像装置)の概略図である。   FIG. 1 is a lens cross-sectional view of Embodiment 1 of the present invention. FIG. 2 shows longitudinal aberrations when focusing on infinity in Example 1. FIG. 3 is a lens cross-sectional view of Embodiment 2 of the present invention. FIG. 4 shows longitudinal aberrations when focusing on infinity in Example 2. FIG. 5 is a lens cross-sectional view of Embodiment 3 of the present invention. FIG. 6 shows longitudinal aberrations when focusing on infinity in Example 3. FIG. 7 is a graph showing the relationship between the Abbe number νd of the material and the partial dispersion ratio θgF. FIG. 8 is a schematic diagram of a camera (imaging device) including the optical system of the present invention.

各実施例の光学系は、デジタルスチルカメラ、デジタルビデオカメラ、銀塩フィルム用カメラ等の撮像装置(光学装置)に用いられる撮像光学系として好適なものである。レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。尚、各実施例の光学系をプロジェクターなどの投射レンズとして用いても良い。このときは左方がスクリーン側、右方が被投射画像側となる。   The optical system of each embodiment is suitable as an imaging optical system used in an imaging apparatus (optical apparatus) such as a digital still camera, a digital video camera, or a silver salt film camera. In the lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear). In addition, you may use the optical system of each Example as projection lenses, such as a projector. At this time, the left side is the screen side and the right side is the projected image side.

レンズ断面図において、LAは光学系である。光学系LAは開口絞りSPを挟んで物体側に正又は負の屈折力の前群LFと像側に正の屈折力の後群LRを有する構成よりなっている。前群LFは正又は負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2より構成されている。後群LRは正の屈折力の第3レンズ群L3より構成されている。フォーカシングに際して第2レンズ群L2と第3レンズ群L3が移動する。   In the lens cross-sectional view, LA is an optical system. The optical system LA has a configuration having a front group LF having positive or negative refractive power on the object side and a rear group LR having positive refractive power on the image side across the aperture stop SP. The front group LF includes a first lens unit L1 having a positive or negative refractive power and a second lens unit L2 having a positive refractive power. The rear group LR includes a third lens unit L3 having a positive refractive power. During the focusing, the second lens unit L2 and the third lens unit L3 move.

ここでレンズ群とはフォーカシングに際しての間隔変化を基準に分けられており、各レンズ群は1枚又は複数枚のレンズより構成されている。IPは像面であり、デジタルビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサなどの固体撮像素子(光電変換素子)の撮像面が、銀塩フィルム用カメラのときはフィルム面に相当する。   Here, the lens group is divided on the basis of a change in the distance during focusing, and each lens group is composed of one or a plurality of lenses. IP is an image plane. When used as an imaging optical system for a digital video camera or a digital still camera, an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is used for a silver salt film camera. Sometimes it corresponds to the film surface.

それぞれの縦収差図は、左から順に、球面収差、非点収差、歪曲、倍率色収差を表している。球面収差を示す図において、dはd線(587.6nm)、gはg線(435.8nm)を表している。また、非点収差を示す図において、Sはd線のサジタル方向、Mはd線のメリディオナル方向を表している。また、歪曲を示す図は、d線における歪曲を表している。倍率色収差はd線に対するg線について表している。FnoはFナンバー、ωは撮影画角の半画角(度)を示す。   Each longitudinal aberration diagram shows spherical aberration, astigmatism, distortion, and lateral chromatic aberration in order from the left. In the diagram showing spherical aberration, d represents the d-line (587.6 nm), and g represents the g-line (435.8 nm). In the diagram showing astigmatism, S represents the sagittal direction of the d line, and M represents the meridional direction of the d line. Moreover, the figure which shows distortion represents the distortion in d line | wire. The lateral chromatic aberration is shown for the g-line with respect to the d-line. Fno represents the F number, and ω represents the half angle of view (degrees) of the shooting angle of view.

各実施例の光学系は、物体側から像側に順に、正又は負の屈折力の前群LF、開口絞りSP、正の屈折力の後群LRより構成されている。後群LRは物体側から像側へ順に、正レンズG31と負レンズG32を接合した接合レンズG3a、正レンズG33、正レンズG34を有している。   The optical system of each embodiment includes, in order from the object side to the image side, a front group LF having a positive or negative refractive power, an aperture stop SP, and a rear group LR having a positive refractive power. The rear group LR includes, in order from the object side to the image side, a cemented lens G3a in which a positive lens G31 and a negative lens G32 are cemented, a positive lens G33, and a positive lens G34.

正レンズG31の物体側のレンズ面と像側のレンズ面の曲率半径を各々R31f,R31rとする。正レンズG31の材料のアッベ数と部分分散比を各々νd31,θgF31とする。このとき、
1.0<(R31f+R31r)/(R31f−R31r)<10.0・・・(1)
νd31>70.0 ・・・(2)
θgF31−(−0.001682・νd31+0.6438)>0.0・・・(3)
なる条件式を満足する。
The curvature radii of the object-side lens surface and the image-side lens surface of the positive lens G31 are R31f and R31r, respectively. The Abbe number and the partial dispersion ratio of the material of the positive lens G31 are νd31 and θgF31, respectively. At this time,
1.0 <(R31f + R31r) / (R31f−R31r) <10.0 (1)
νd31> 70.0 (2)
θgF31 − (− 0.001682 · νd31 + 0.6438)> 0.0 (3)
The following conditional expression is satisfied.

ここでアッベ数νdと部分分散比θgFは次のとおりである。g線(波長435.8nm)、F線(波長486.1nm)、d線(波長587.6nm)、C線(波長656.3nm)に対する材料の屈折率をそれぞれNg、NF、Nd、NCとする。このときアッベ数νdと部分分散比θgFは以下のように表すことができる。   Here, the Abbe number νd and the partial dispersion ratio θgF are as follows. The refractive indices of the materials for g-line (wavelength 435.8 nm), F-line (wavelength 486.1 nm), d-line (wavelength 587.6 nm), and C-line (wavelength 656.3 nm) are Ng, NF, Nd, and NC, respectively. To do. At this time, the Abbe number νd and the partial dispersion ratio θgF can be expressed as follows.

νd=(Nd−1)/(NF−NC) ・・・(a)
θgF=(Ng−NF)/(NF−NC) ・・・(b)
図7は材料のアッベ数νdと部分分散比θgFの関係を示したグラフである。図7では、株式会社オハラ社製の製品名:PBM2(νd=36.26、θgF=0.5828)と製品名:NSL7(νd=60.49、θgF=0.5436)を示す。図7において2つの材料の2点を結んだ線を基準線とする。低分散ガラスに関しては、基準線より上側に位置するものを使用するのが二次スペクトルの補正に対し効果的である。また基準線から離れるほど補正効果が高まる。
νd = (Nd−1) / (NF-NC) (a)
θgF = (Ng−NF) / (NF−NC) (b)
FIG. 7 is a graph showing the relationship between the Abbe number νd of the material and the partial dispersion ratio θgF. In FIG. 7, product name: PBM2 (νd = 36.26, θgF = 0.5828) and product name: NSL7 (νd = 60.49, θgF = 0.5436) manufactured by OHARA INC. Are shown. In FIG. 7, a line connecting two points of two materials is taken as a reference line. For the low dispersion glass, it is effective for correcting the secondary spectrum to use a glass that is located above the reference line. The correction effect increases as the distance from the reference line increases.

各実施例では、後群LRに用いる正レンズG31の材料のアッベ数と部分分散比を適切に設定し、かつ正レンズのレンズ形状を適切に設定することで、色収差を良好に補正しつつ、高い光学性能を得ている。特に、倍率色収差において、g線の曲がりを軽減している。   In each embodiment, by appropriately setting the Abbe number and partial dispersion ratio of the material of the positive lens G31 used for the rear lens group LR and appropriately setting the lens shape of the positive lens, the chromatic aberration can be corrected well. High optical performance is obtained. In particular, the bending of the g-line is reduced in the lateral chromatic aberration.

条件式(1)は、後群LRを構成する接合レンズG3aの正レンズG31のレンズ形状(シェイプファクター)に関する。条件式(1)の上限を超えると、前群LFより球面収差が多く発生し、この収差補正が困難となり、高い光学性能を得るのが困難となる。又、軸外光線の正レンズG31への入射角がきつくなり、倍率色収差が増加し、g線の曲がりが大きくなる。また、条件式(1)の下限を超えると、球面収差が補正過剰となり、高い光学性能を維持することが困難となる。   Conditional expression (1) relates to the lens shape (shape factor) of the positive lens G31 of the cemented lens G3a constituting the rear group LR. If the upper limit of conditional expression (1) is exceeded, more spherical aberration occurs than in the front group LF, and this aberration correction becomes difficult, and it becomes difficult to obtain high optical performance. In addition, the incident angle of off-axis rays to the positive lens G31 becomes tight, the lateral chromatic aberration increases, and the curve of the g-line increases. If the lower limit of conditional expression (1) is exceeded, spherical aberration will be overcorrected and it will be difficult to maintain high optical performance.

条件式(2),(3)は、後群LRを構成する接合レンズG3aの正レンズG31の材料のアッベ数と部分分散比に関する。つまり、条件式(2),(3)を満足する材料は、低分散でありながら、異常分散性を有しているので、色収差を効果的に補正することができる。条件式(2)の下限を超えると、後群LRの色消しが不十分となり、色収差の補正が困難となる。条件式(3)の下限を超えると、正レンズG31の材料の異常分散性が小さくなり、倍率色収差の補正が困難となる。   Conditional expressions (2) and (3) relate to the Abbe number and partial dispersion ratio of the material of the positive lens G31 of the cemented lens G3a constituting the rear group LR. That is, since the material satisfying the conditional expressions (2) and (3) has anomalous dispersion while having low dispersion, chromatic aberration can be corrected effectively. When the lower limit of conditional expression (2) is exceeded, the achromaticity of the rear group LR becomes insufficient, and correction of chromatic aberration becomes difficult. When the lower limit of conditional expression (3) is exceeded, the anomalous dispersion of the material of the positive lens G31 becomes small, and it becomes difficult to correct lateral chromatic aberration.

更に好ましくは条件式(1),(2)の数値範囲を次の如く設定するのが良い。   More preferably, the numerical ranges of conditional expressions (1) and (2) are set as follows.

3.0<(R31f+R31r)/(R31f−R31r)<8.0・・・(1a)
νd3p>80.0 ・・・(2a)
各実施例によれば、以上のようにレンズ構成を特定することによって、球面収差、コマ収差、非点収差等の諸収差を良好に補正しつつ、軸上色収差、倍率色収差を良好に補正している。これにより長いバックフォーカスを有するレトロフォーカス型の広画角で高い光学性能を有する光学系を得ている。
3.0 <(R31f + R31r) / (R31f−R31r) <8.0 (1a)
νd3p> 80.0 (2a)
According to each embodiment, by specifying the lens configuration as described above, various chromatic aberrations such as spherical aberration, coma aberration, and astigmatism are corrected well, and axial chromatic aberration and lateral chromatic aberration are corrected well. ing. As a result, a retrofocus type optical system having a long back focus and a wide field angle and high optical performance is obtained.

各実施例では前群LFは、物体側から像側に順に、正又は負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2より構成され、後群LRは正の屈折力の第3レンズ群L3から構成されている。無限遠から近距離へのフォーカシングに際して第2レンズ群L2と第3レンズ群L3が物体側へ一体的に(同一の軌跡で)又は独立に(互いに異なった軌跡で)移動する。また第1レンズ群L1と第2レンズ群L2の間隔を変えながらフォーカスすることで、物体距離の変動によって生じる像面変動を軽減している。   In each embodiment, the front group LF includes, in order from the object side to the image side, a first lens group L1 having a positive or negative refractive power and a second lens group L2 having a positive refractive power, and the rear group LR is a positive group. The third lens unit L3 has a refractive power. During focusing from infinity to short distance, the second lens unit L2 and the third lens unit L3 move integrally (with the same trajectory) or independently (with different trajectories) toward the object side. Further, focusing while changing the distance between the first lens unit L1 and the second lens unit L2 reduces the image plane variation caused by the variation of the object distance.

また各実施例において、第3レンズ群L3は最も像側に正レンズを有し、該正レンズに非球面を設けることが好ましい。この正レンズに非球面を設けると、サジタル像面の倒れを少なくし、画面周辺まで良好な光学性能を得ることが容易となる。   In each embodiment, it is preferable that the third lens unit L3 has a positive lens closest to the image side, and the positive lens is provided with an aspherical surface. If the positive lens is provided with an aspherical surface, the sagittal image plane is less tilted and it is easy to obtain good optical performance up to the periphery of the screen.

各実施例において好ましくは次の条件式のうち1以上を満足するのが良い。負レンズG32の材料のアッベ数と部分分散比を各々νd32,θgF32とする。第2レンズ群L2は物体側から像側へ順に、正レンズG21、正レンズG22、正レンズG23、負レンズG24より構成することである。そして正レンズG22と正レンズG23、負レンズG24は接合された接合レンズG2aより構成するのが良い。このとき、正レンズG22の材料のアッベ数と部分分散比を各々νd22,θgF22とする。   In each embodiment, it is preferable to satisfy one or more of the following conditional expressions. The Abbe number and the partial dispersion ratio of the material of the negative lens G32 are νd32 and θgF32, respectively. The second lens unit L2 includes a positive lens G21, a positive lens G22, a positive lens G23, and a negative lens G24 in order from the object side to the image side. The positive lens G22, the positive lens G23, and the negative lens G24 are preferably composed of a cemented lens G2a. At this time, the Abbe number and the partial dispersion ratio of the material of the positive lens G22 are νd22 and θgF22, respectively.

正レンズG22又は正レンズG23の材料の異常部分分散性ΔθgF2piを材料のアッベ数νd2pi、部分分散比をθgF2piとし、
ΔθgF2pi=θgF2pi−(−1.665×10-7×νd2pi3+5.213×10-5×νd2pi2−5.656×10-3×νd2pi+7.278×10-1
とする。正レンズG33の材料又は正レンズG34の材料の屈折率をNd3pとする。このとき、次の条件式のうち1以上を満足するのが良い。
The anomalous partial dispersibility ΔθgF2pi of the material of the positive lens G22 or the positive lens G23 is the Abbe number νd2pi of the material, and the partial dispersion ratio is θgF2pi.
ΔθgF2pi = θgF2pi − (− 1.665 × 10 −7 × νd2pi 3 + 5.213 × 10 −5 × νd2pi 2 −5.656 × 10 −3 × νd2pi + 7.278 × 10 −1 )
And The refractive index of the material of the positive lens G33 or the material of the positive lens G34 is Nd3p. At this time, it is preferable to satisfy one or more of the following conditional expressions.

θgF32−(−0.001682・νd32+0.6458)<0.0・・・(4)
νd22>65.0 ・・・(5)
θgF22−(−0.001682・νd22+0.6438)>0.0・・・(6)
ΔθgF2pi>0.0272 ・・・(7)
Nd3p>1.80 ・・・(8)
次に前述の各条件式の技術的意味について説明する。
θgF32 − (− 0.001682 · νd32 + 0.6458) <0.0 (4)
νd22> 65.0 (5)
θgF22 − (− 0.001682 · νd22 + 0.6438)> 0.0 (6)
ΔθgF2pi> 0.0272 (7)
Nd3p> 1.80 (8)
Next, the technical meaning of each conditional expression described above will be described.

条件式(4)は、後群LRを構成する接合レンズG3aの負レンズG32の材料のアッベ数と部分分散比に関し、主に色収差を良好に補正するためのものである。条件式(4)の下限を超えると、負レンズG32の材料の異常分散性が大きくなりすぎて、倍率色収差を補正することが困難となる。条件式(5)、(6)は、第2レンズ群L2を構成する正レンズG22の材料のアッベ数と部分分散比に関し、主に色収差を良好に補正するためのものである。条件式(5)の下限を超えると、第2レンズ群L2内での色消しが不十分となり、色収差の補正が困難となる。   Conditional expression (4) is mainly for satisfactorily correcting chromatic aberration with respect to the Abbe number and partial dispersion ratio of the material of the negative lens G32 of the cemented lens G3a constituting the rear lens group LR. When the lower limit of conditional expression (4) is exceeded, the anomalous dispersion of the material of the negative lens G32 becomes too large, and it becomes difficult to correct lateral chromatic aberration. Conditional expressions (5) and (6) are mainly for favorably correcting chromatic aberration with respect to the Abbe number and partial dispersion ratio of the material of the positive lens G22 constituting the second lens unit L2. If the lower limit of conditional expression (5) is exceeded, achromaticity in the second lens unit L2 will be insufficient and correction of chromatic aberration will be difficult.

条件式(6)の下限を超えると、正レンズG22の材料の異常分散性が小さくなり、軸上色収差を良好に補正するのが困難となる。条件式(7)で特定する材料の異常部分分散性(異常部分分散比)ΔθgFについて説明する。   If the lower limit of conditional expression (6) is exceeded, the anomalous dispersion of the material of the positive lens G22 will be small, and it will be difficult to satisfactorily correct axial chromatic aberration. The abnormal partial dispersion (abnormal partial dispersion ratio) ΔθgF of the material specified by the conditional expression (7) will be described.

アッベ数νd、部分分散比θgFは前述の(a)式,(b)式で表される。異常部分分散性ΔθgFは以下のように表すことができる。   The Abbe number νd and the partial dispersion ratio θgF are expressed by the aforementioned expressions (a) and (b). The abnormal partial dispersion ΔθgF can be expressed as follows.

ΔθgF=θgF−(−1.665×10-7×νd3+5.213×10-5×νd2−5.656×10-3×νd+7.278×10-1) ・・・(c)
条件式(7)は、第2レンズ群L2の正レンズG22又は正レンズG23の材料の異常部分分散性を表す。条件式(7)を満たす材料からなる正レンズを用いることで色収差を良好に補正することが容易となる。条件式(7)の下限を超えると、正レンズの材料の異常分散性が小さくなり、軸上色収差を良好に補正することが困難となる。
ΔθgF = θgF − (− 1.665 × 10 −7 × νd 3 + 5.213 × 10 −5 × νd 2 −5.656 × 10 −3 × νd + 7.278 × 10 −1 ) (c)
Conditional expression (7) represents the anomalous partial dispersion of the material of the positive lens G22 or the positive lens G23 of the second lens unit L2. By using a positive lens made of a material that satisfies the conditional expression (7), it becomes easy to correct chromatic aberration satisfactorily. If the lower limit of conditional expression (7) is exceeded, the anomalous dispersion of the material of the positive lens will be small, and it will be difficult to satisfactorily correct axial chromatic aberration.

条件式(7)を満たす光学材料の具体例として、例えばアクリル系UV硬化樹脂(Nd=1.545、νd=25.3、θgF=0.77)やN−ポリビニルカルバゾール(Nd=1.696、νd=17.7、θgF=0.69)がある。尚、条件式(7)を満足する材料であれば、これらの材料に限定するものではない。   Specific examples of the optical material that satisfies the conditional expression (7) include, for example, an acrylic UV curable resin (Nd = 1.545, νd = 25.3, θgF = 0.77) and N-polyvinylcarbazole (Nd = 1.696). , Νd = 17.7, θgF = 0.69). Note that the material is not limited to these materials as long as the material satisfies the conditional expression (7).

また、一般の硝材とは異なる特性を持つ光学材料として、下記の無機酸化物ナノ微粒子を合成樹脂中に分散させた混合体がある。TiO2(Nd=2.758、νd=9.54、θgF=0.76)等がある。TiO2微粒子を合成樹脂中に適切な体積比で分散させた場合、条件式(7)を満足する光学材料が得られる。なお、条件式(7)を満足する材料であれば、これらに限定するものではない。 Further, as an optical material having characteristics different from those of general glass materials, there is a mixture in which the following inorganic oxide nanoparticles are dispersed in a synthetic resin. TiO 2 (Nd = 2.758, νd = 9.54, θgF = 0.76) and the like. When TiO 2 fine particles are dispersed in a synthetic resin at an appropriate volume ratio, an optical material that satisfies the conditional expression (7) can be obtained. Note that the material is not limited to these as long as it satisfies the conditional expression (7).

TiO2は様々な用途で使われる材料であり、光学分野では反射防止膜などの光学薄膜を構成する蒸着用材料として用いられている。他にも光触媒、白色顔料などとして、またTiO2微粒子は化粧品材料として用いられている。 TiO 2 is a material used in various applications, and in the optical field, it is used as a vapor deposition material that constitutes an optical thin film such as an antireflection film. In addition, photocatalysts, white pigments, and the like, and TiO 2 fine particles are used as cosmetic materials.

各実施例において樹脂に分散させる微粒子の平均径は、散乱などの影響を考えると2nm〜50nm程度がよく、凝集を抑えるために分散剤などを添加しても良い。微粒子を分散させる媒体材料としては、ポリマーが良く、成形型等を用いて光重合成形または熱重合成形することにより高い量産性を得ることができる。ナノ微粒子を分散させた混合体の分散特性N(λ)は、良く知られたDrudeの式から導きだされた次式によって簡単に計算することができる。   In each example, the average diameter of the fine particles dispersed in the resin is preferably about 2 nm to 50 nm in consideration of the influence of scattering and the like, and a dispersant or the like may be added to suppress aggregation. The medium material for dispersing the fine particles is preferably a polymer, and high mass productivity can be obtained by photopolymerization molding or thermal polymerization molding using a mold or the like. The dispersion characteristic N (λ) of the mixture in which the nanoparticles are dispersed can be easily calculated by the following equation derived from the well-known Drude equation.

即ち、波長λにおける屈折率N(λ)は、
N(λ)=[1+V{Npar(λ)2−1}+(1−V){Npoly(λ)2−1}]1/2
である。ここで、λは任意の波長、Nparは微粒子の屈折率、Npolyはポリマーの屈折率、Vはポリマー体積に対する微粒子の総体積の分率である。このように樹脂や樹脂中に微粒子を分散させた有機複合物は条件式(7)を満たす光学材料である。
That is, the refractive index N (λ) at the wavelength λ is
N (λ) = [1 + V {Npar (λ) 2 −1} + (1-V) {Npoly (λ) 2 −1}] 1/2
It is. Here, λ is an arbitrary wavelength, Npar is the refractive index of the fine particles, Npoly is the refractive index of the polymer, and V is a fraction of the total volume of the fine particles with respect to the polymer volume. Thus, the resin or the organic composite in which the fine particles are dispersed in the resin is an optical material that satisfies the conditional expression (7).

各実施例では、前述の条件式(7)を満たす材料として前述の有機複合物を用いている。     In each example, the above-described organic composite is used as a material that satisfies the above-described conditional expression (7).

条件式(8)は光学系のペッツヴァール和を適切に設定するものである。条件式(8)の下限を超えると、ペッツヴァール和が正の方向に増大し、像面湾曲等の軸外収差を良好に補正するのが困難になる。更に好ましくは条件式(5),(7),(8)の数値範囲を次の如く設定するのが良い。   Conditional expression (8) sets the Petzval sum of the optical system appropriately. When the lower limit of conditional expression (8) is exceeded, the Petzval sum increases in the positive direction, and it becomes difficult to satisfactorily correct off-axis aberrations such as field curvature. More preferably, the numerical ranges of conditional expressions (5), (7), and (8) are set as follows.

νd22>67.0 ・・・(5a)
ΔθgF2pi>0.1 ・・・(7a)
Nd3p>1.84 ・・・(8a)
以上のように各実施例によれば、球面収差、コマ収差、非点収差等の諸収差を抑えながら、軸上色収差、倍率色収差を良好に補正した高画質でバックフォーカスの長いレトロフォーカスタイプの光学系が得られる。
νd22> 67.0 (5a)
ΔθgF2pi> 0.1 (7a)
Nd3p> 1.84 (8a)
As described above, according to each embodiment, a retrofocus type of a long back focus with high image quality in which axial chromatic aberration and lateral chromatic aberration are well corrected while suppressing various aberrations such as spherical aberration, coma aberration, and astigmatism. An optical system is obtained.

次に各実施例のレンズ構成について説明する。
[実施例1]
本発明の実施例1について説明する。実施例1は物体側から像側に順に、正の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、開口絞りSP、正の屈折力の第3レンズ群L3で構成されている。フォーカシングに際して第2レンズ群L2と第3レンズ群L3が移動する。
Next, the lens configuration of each example will be described.
[Example 1]
Example 1 of the present invention will be described. The first exemplary embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a positive refractive power, an aperture stop SP, and a third lens unit L3 having a positive refractive power. Has been. During the focusing, the second lens unit L2 and the third lens unit L3 move.

第1レンズ群L1は物体側より像側へ順に、メニスカス形状の負の屈折力のレンズ(負レンズ)、負レンズ、正の屈折力のレンズ(正レンズ)、負レンズ、正レンズ、正レンズと負レンズを接合した接合レンズを有している。第2レンズ群L2は物体側より像側へ順に、正レンズG21、正レンズG22と正レンズG23と負レンズG24の3つのレンズを接合した接合レンズG2aを有している。また、接合レンズG2aを構成する正レンズG23は樹脂や樹脂中に微粒子を分散させた有機複合物を含んだ材料よりなっている。   The first lens unit L1 is, in order from the object side to the image side, a meniscus lens having a negative refractive power (negative lens), a negative lens, a lens having a positive refractive power (positive lens), a negative lens, a positive lens, and a positive lens. And a negative lens. The second lens unit L2 includes, in order from the object side to the image side, a cemented lens G2a in which three lenses of a positive lens G21, a positive lens G22, a positive lens G23, and a negative lens G24 are cemented. The positive lens G23 constituting the cemented lens G2a is made of a resin or a material containing an organic composite in which fine particles are dispersed in the resin.

第3レンズ群L3は物体側より像側へ順に、正レンズG31と負レンズG32を接合した接合レンズG3a、正レンズG33、正レンズG34を有している。各収差図から明らかなように実施例1では諸収差が良好に補正されている。   The third lens unit L3 includes, in order from the object side to the image side, a cemented lens G3a in which a positive lens G31 and a negative lens G32 are cemented, a positive lens G33, and a positive lens G34. As is apparent from the respective aberration diagrams, in the first embodiment, various aberrations are corrected satisfactorily.

[実施例2]
本発明の実施例2について説明する。実施例2は物体側から像側に順に、正の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、開口絞りSP、正の屈折力の第3レンズ群L3で構成されている。フォーカシングに際して第2レンズ群L2と第3レンズ群L3が移動する。第1レンズ群L1は物体側より像側へ順に、メニスカス形状の負レンズ、負レンズ、正レンズ、負レンズと正レンズを接合した接合レンズ、正レンズと負レンズを接合した接合レンズを有している。
[Example 2]
A second embodiment of the present invention will be described. The second exemplary embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a positive refractive power, an aperture stop SP, and a third lens unit L3 having a positive refractive power. Has been. During the focusing, the second lens unit L2 and the third lens unit L3 move. The first lens unit L1 includes, in order from the object side to the image side, a meniscus negative lens, a negative lens, a positive lens, a cemented lens in which the negative lens and the positive lens are cemented, and a cemented lens in which the positive lens and the negative lens are cemented. ing.

第2レンズ群L2のレンズ構成は実施例1と同じである。第3レンズ群L3のレンズ構成は実施例1と同じである。各収差図から明らかなように実施例2では諸収差が良好に補正されている。   The lens configuration of the second lens unit L2 is the same as that of the first embodiment. The lens configuration of the third lens unit L3 is the same as that of the first embodiment. As is apparent from each aberration diagram, various aberrations are corrected favorably in Example 2.

[実施例3]
本発明の実施例3について説明する。実施例3は物体側から像側に順に、負の屈折力の第1レンズ群L1、正の屈折力の第2レンズ群L2、開口絞りSP、正の屈折力の第3レンズ群L3で構成されている。フォーカシングに際して第2レンズ群L2と第3レンズ群L3が移動する。
[Example 3]
A third embodiment of the present invention will be described. The third exemplary embodiment includes, in order from the object side to the image side, a first lens unit L1 having a negative refractive power, a second lens unit L2 having a positive refractive power, an aperture stop SP, and a third lens unit L3 having a positive refractive power. Has been. During the focusing, the second lens unit L2 and the third lens unit L3 move.

第1レンズ群L1は物体側より像側へ順に、メニスカス形状の負レンズ、負レンズ、正レンズ、負レンズと正レンズを接合した接合レンズを有している。第2レンズ群L2のレンズ構成は実施例1と同じである。第3レンズ群L3のレンズ構成は実施例1と同じである。各収差図から明らかなように実施例3では諸収差が良好に補正されている。   The first lens unit L1 includes, in order from the object side to the image side, a meniscus negative lens, a negative lens, a positive lens, and a cemented lens in which the negative lens and the positive lens are cemented. The lens configuration of the second lens unit L2 is the same as that of the first embodiment. The lens configuration of the third lens unit L3 is the same as that of the first embodiment. As is apparent from each aberration diagram, various aberrations are corrected favorably in Example 3.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

次に、本発明の光学系を用いた一眼レフカメラシステム(撮像装置)の実施例を、図8を用いて説明する。   Next, an embodiment of a single-lens reflex camera system (imaging device) using the optical system of the present invention will be described with reference to FIG.

図8において、10は一眼レフカメラ本体、11は本発明による光学系を撮像光学系として搭載した交換レンズである。12は交換レンズ11を通して得られる被写体像を受光するフィルムや撮像素子などの記録手段である。13は交換レンズ11からの被写体像を観察するファインダー光学系、14は交換レンズ11で形成された被写体像を記録手段12とファインダー光学系13に切り替えて伝送するための回動するクイックリターンミラーである。   In FIG. 8, reference numeral 10 denotes a single-lens reflex camera body, and 11 denotes an interchangeable lens on which the optical system according to the present invention is mounted as an imaging optical system. Reference numeral 12 denotes recording means such as a film or an image sensor for receiving a subject image obtained through the interchangeable lens 11. Reference numeral 13 denotes a finder optical system for observing a subject image from the interchangeable lens 11, and reference numeral 14 denotes a rotating quick return mirror for switching the subject image formed by the interchangeable lens 11 to the recording means 12 and the finder optical system 13 for transmission. is there.

ファインダーで被写体像を観察する場合は、クイックリターンミラー14を介してピント板15に結像した被写体像をペンタプリズム16で正立像としたのち、接眼光学系17で拡大して観察する。撮影時にはクイックリターンミラー14が矢印方向に回動して被写体像は記録手段12に結像して記録される。18はサブミラー、19は焦点検出装置である。   When observing the subject image with the finder, the subject image formed on the focusing plate 15 via the quick return mirror 14 is made into an erect image with the pentaprism 16 and then magnified and observed with the eyepiece optical system 17. At the time of shooting, the quick return mirror 14 rotates in the direction of the arrow, and the subject image is formed and recorded on the recording means 12. Reference numeral 18 denotes a submirror, and 19 denotes a focus detection device.

このように本発明の光学系を一眼レフカメラ等の交換レンズ等の撮像光学系として適用することにより、高い光学性能を有した撮像装置を得ている。また、本撮像装置は、クイックリターンミラー14等を有さないミラ−レスの一眼レフカメラや、レンズ交換式ではない撮像装置には同様に適用することができる。   As described above, by applying the optical system of the present invention as an imaging optical system such as an interchangeable lens such as a single-lens reflex camera, an imaging apparatus having high optical performance is obtained. In addition, the present imaging apparatus can be similarly applied to a mirrorless single-lens reflex camera that does not have the quick return mirror 14 or the like, or an imaging apparatus that is not a lens interchangeable type.

以下に、実施例1乃至3に各々対応する数値実施例1乃至3を示す。各数値実施例において、iは物体側からの面の順番を示し、riは第i番目(第i面)の曲率半径、diは第i面と第i+1面との間の間隔、ndi、νdiはそれぞれd線を基準とした屈折率、アッベ数を示す。BFはバックフォーカスである。   In the following, numerical examples 1 to 3 corresponding to the first to third examples will be described. In each numerical example, i indicates the order of the surfaces from the object side, ri is the i-th (i-th surface) radius of curvature, di is the distance between the i-th surface and the (i + 1) -th surface, ndi, νdi Represents a refractive index and an Abbe number based on the d-line, respectively. BF is a back focus.

可変となっている間隔は撮影倍率によって変化する。また、非球面は面番号の後に、*の符号を付加して表している。非球面形状は、Xを光軸方向の面頂点からの変位量、hを光軸と垂直な方向の光軸からの高さ、rを近軸曲率半径、Kを円錐定数、A4、A6、A8、A10、A12を各次数の非球面係数とするとき、   The variable interval varies depending on the shooting magnification. An aspheric surface is represented by adding a symbol * after the surface number. In the aspherical shape, X is the amount of displacement from the surface vertex in the optical axis direction, h is the height from the optical axis in the direction perpendicular to the optical axis, r is the paraxial radius of curvature, K is the conic constant, A4, A6, When A8, A10, and A12 are aspherical coefficients of respective orders,

で表す。なお、各非球面係数における「E±XX」は「×10±XX」を意味している。また、前述の各条件式に関係した数値を表1に示す。更に、表2に条件式(7)に関する材料の屈折率を示す。 Represented by Note that “E ± XX ” in each aspheric coefficient means “× 10 ± XX ”. Table 1 shows numerical values related to each conditional expression described above. Further, Table 2 shows the refractive index of the material related to the conditional expression (7).

(数値実施例1)
単位 mm
面データ
面番号 r d nd νd
1 73.355 3.50 1.58313 59.4
2* 27.700 11.46
3 -307.490 1.85 1.48749 70.2
4 52.694 5.39
5 -260.875 4.01 1.90366 31.3
6 -73.913 3.89
7 -41.457 1.85 1.60342 38.0
8 110.769 0.20
9 74.880 6.93 1.91082 35.3
10 -112.546 0.20
11 90.943 10.39 1.59522 67.7
12 -38.225 1.70 1.73800 32.3
13 -81.837 (可変)
14 47.083 5.24 1.91082 35.3
15 -1364.203 1.40
16 196.395 4.08 1.59522 67.7
17 -75.554 1.00 1.54493 25.3
18 -51.514 1.55 1.69895 30.1
19 29.651 (可変)
20(絞り) ∞ 6.96
21 -22.117 4.42 1.49700 81.5
22 -16.399 1.50 1.73800 32.3
23 -52.708 0.13
24 123.246 7.39 1.59522 67.7
25 -31.376 0.14
26* -103.187 4.35 1.85400 40.4
27 -38.560 (可変)
像面 ∞
(Numerical example 1)
Unit mm
Surface data surface number rd nd νd
1 73.355 3.50 1.58313 59.4
2 * 27.700 11.46
3 -307.490 1.85 1.48749 70.2
4 52.694 5.39
5 -260.875 4.01 1.90366 31.3
6 -73.913 3.89
7 -41.457 1.85 1.60342 38.0
8 110.769 0.20
9 74.880 6.93 1.91082 35.3
10 -112.546 0.20
11 90.943 10.39 1.59522 67.7
12 -38.225 1.70 1.73800 32.3
13 -81.837 (variable)
14 47.083 5.24 1.91082 35.3
15 -1364.203 1.40
16 196.395 4.08 1.59522 67.7
17 -75.554 1.00 1.54493 25.3
18 -51.514 1.55 1.69895 30.1
19 29.651 (variable)
20 (Aperture) ∞ 6.96
21 -22.117 4.42 1.49700 81.5
22 -16.399 1.50 1.73800 32.3
23 -52.708 0.13
24 123.246 7.39 1.59522 67.7
25 -31.376 0.14
26 * -103.187 4.35 1.85400 40.4
27 -38.560 (variable)
Image plane ∞

非球面データ
第2面
K = 0.00000e+000 A 4=-8.44469e-007 A 6=-1.40474e-009 A 8=-1.12523e-012 A10= 9.45006e-016 A12=-3.55532e-018

第26面
K = 0.00000e+000 A 4=-6.94362e-006 A 6=-1.20811e-009 A 8= 8.28446e-013 A10=-2.15964e-014 A12= 2.93999e-017

焦点距離 34.30
Fナンバー 1.45
半画角(度) 32.25
像高 21.64
レンズ全長 142.82
BF 38.99

INF NEAR(0.3m)
d13 8.46 1.87
d19 5.83 5.83
d27 38.99 45.58

レンズ群データ
群 始面 焦点距離
1 1 145.81
2 14 757.69
3 20 46.16
Aspheric data 2nd surface
K = 0.00000e + 000 A 4 = -8.44469e-007 A 6 = -1.40474e-009 A 8 = -1.12523e-012 A10 = 9.45006e-016 A12 = -3.55532e-018

26th page
K = 0.00000e + 000 A 4 = -6.94362e-006 A 6 = -1.20811e-009 A 8 = 8.28446e-013 A10 = -2.15964e-014 A12 = 2.93999e-017

Focal length 34.30
F number 1.45
Half angle of view (degrees) 32.25
Statue height 21.64
Total lens length 142.82
BF 38.99

INF NEAR (0.3m)
d13 8.46 1.87
d19 5.83 5.83
d27 38.99 45.58

Lens group data group Start surface Focal length
1 1 145.81
2 14 757.69
3 20 46.16

(数値実施例2)
単位 mm
面データ
面番号 r d nd νd
1 58.880 3.50 1.58313 59.4
2* 25.574 11.77
3 -8571.522 1.85 1.48749 70.2
4 45.855 5.78
5 -290.363 4.23 1.90366 31.3
6 -61.704 3.36
7 -40.401 1.85 1.60342 38.0
8 48.751 6.53 1.91082 35.3
9 -744.267 0.20
10 72.017 11.11 1.59522 67.7
11 -37.051 1.70 1.73800 32.3
12 -58.399 (可変)
13 49.989 5.04 1.91082 35.3
14 -1201.246 1.96
15 203.633 3.92 1.59522 67.7
16 -79.188 1.00 1.54493 25.3
17 -52.680 1.55 1.69895 30.1
18 31.002 (可変)
19(絞り) ∞ 6.96
20 -22.067 4.36 1.49700 81.5
21 -16.489 1.50 1.73800 32.3
22 -52.550 0.13
23 112.424 7.46 1.59522 67.7
24 -31.650 0.14
25* -104.966 4.30 1.85400 40.4
26 -39.119 (可変)
像面 ∞
(Numerical example 2)
Unit mm
Surface data surface number rd nd νd
1 58.880 3.50 1.58313 59.4
2 * 25.574 11.77
3 -8571.522 1.85 1.48749 70.2
4 45.855 5.78
5 -290.363 4.23 1.90366 31.3
6 -61.704 3.36
7 -40.401 1.85 1.60342 38.0
8 48.751 6.53 1.91082 35.3
9 -744.267 0.20
10 72.017 11.11 1.59522 67.7
11 -37.051 1.70 1.73800 32.3
12 -58.399 (variable)
13 49.989 5.04 1.91082 35.3
14 -1201.246 1.96
15 203.633 3.92 1.59522 67.7
16 -79.188 1.00 1.54493 25.3
17 -52.680 1.55 1.69895 30.1
18 31.002 (variable)
19 (Aperture) ∞ 6.96
20 -22.067 4.36 1.49700 81.5
21 -16.489 1.50 1.73800 32.3
22 -52.550 0.13
23 112.424 7.46 1.59522 67.7
24 -31.650 0.14
25 * -104.966 4.30 1.85400 40.4
26 -39.119 (variable)
Image plane ∞

非球面データ
第2面
K = 0.00000e+000 A 4=-5.95247e-007 A 6=-3.22391e-009 A 8= 7.57366e-012 A10=-1.94579e-014 A12= 1.29887e-017

第25面
K = 0.00000e+000 A 4=-7.01689e-006 A 6=-1.74541e-010 A 8=-8.57313e-012 A10= 1.08161e-014 A12=-1.14301e-017

焦点距離 34.30
Fナンバー 1.45
半画角(度) 32.25
像高 21.64
レンズ全長 142.47
BF 38.99

INF NEAR(0.3m)
d12 7.60 1.02
d18 5.67 5.67
d26 38.99 45.57

レンズ群データ
群 始面 焦点距離
1 1 140.52
2 13 1011.41
3 19 46.03
Aspheric data 2nd surface
K = 0.00000e + 000 A 4 = -5.95247e-007 A 6 = -3.22391e-009 A 8 = 7.57366e-012 A10 = -1.94579e-014 A12 = 1.29887e-017

25th page
K = 0.00000e + 000 A 4 = -7.01689e-006 A 6 = -1.74541e-010 A 8 = -8.57313e-012 A10 = 1.08161e-014 A12 = -1.14301e-017

Focal length 34.30
F number 1.45
Half angle of view (degrees) 32.25
Statue height 21.64
Total lens length 142.47
BF 38.99

INF NEAR (0.3m)
d12 7.60 1.02
d18 5.67 5.67
d26 38.99 45.57

Lens group data group Start surface Focal length
1 1 140.52
2 13 1011.41
3 19 46.03

(数値実施例3)
単位 mm
面データ
面番号 r d nd νd
1 57.537 3.00 1.64000 60.1
2 26.533 11.82
3 30275.720 3.00 1.58313 59.4
4* 33.009 2.80
5 62.337 7.05 1.91082 35.3
6 -100.178 5.49
7 -49.964 1.50 1.69895 30.1
8 41.962 6.69 1.91082 35.3
9 -163.205 (可変)
10 53.176 5.83 1.88300 40.8
11 -177.927 2.19
12 68.697 5.71 1.59522 67.7
13 -76.651 1.02 1.69934 26.4
14 -50.341 1.55 1.69895 30.1
15 31.098 (可変)
16(絞り) ∞ 6.96
17 -22.290 4.52 1.49700 81.5
18 -16.536 1.50 1.73800 32.3
19 -43.827 0.13
20 91.538 7.63 1.59522 67.7
21 -32.553 0.30
22* -94.707 4.45 1.85400 40.4
23 -40.988 (可変)
像面 ∞
(Numerical Example 3)
Unit mm
Surface data surface number rd nd νd
1 57.537 3.00 1.64000 60.1
2 26.533 11.82
3 30275.720 3.00 1.58313 59.4
4 * 33.009 2.80
5 62.337 7.05 1.91082 35.3
6 -100.178 5.49
7 -49.964 1.50 1.69895 30.1
8 41.962 6.69 1.91082 35.3
9 -163.205 (variable)
10 53.176 5.83 1.88300 40.8
11 -177.927 2.19
12 68.697 5.71 1.59522 67.7
13 -76.651 1.02 1.69934 26.4
14 -50.341 1.55 1.69895 30.1
15 31.098 (variable)
16 (Aperture) ∞ 6.96
17 -22.290 4.52 1.49700 81.5
18 -16.536 1.50 1.73800 32.3
19 -43.827 0.13
20 91.538 7.63 1.59522 67.7
21 -32.553 0.30
22 * -94.707 4.45 1.85400 40.4
23 -40.988 (variable)
Image plane ∞

非球面データ
第4面
K = 0.00000e+000 A 4=-4.72094e-006 A 6=-4.59421e-009 A 8= 9.92671e-013 A10=-4.41856e-015

第22面
K = 0.00000e+000 A 4=-7.55876e-006 A 6= 4.60713e-009 A 8=-4.19026e-011 A10= 1.07707e-013 A12=-1.18808e-016

焦点距離 34.28
Fナンバー 1.45
半画角(度) 32.26
像高 21.64
レンズ全長 135.83
BF 38.99

INF NEAR(0.3m)
d 9 8.10 0.79
d15 5.62 5.62
d23 38.99 46.30
ズームレンズ群データ
群 始面 焦点距離
1 1 -147.21
2 10 90.29
3 16 43.84

Aspheric data 4th surface
K = 0.00000e + 000 A 4 = -4.72094e-006 A 6 = -4.59421e-009 A 8 = 9.92671e-013 A10 = -4.41856e-015

22nd page
K = 0.00000e + 000 A 4 = -7.55876e-006 A 6 = 4.60713e-009 A 8 = -4.19026e-011 A10 = 1.07707e-013 A12 = -1.18808e-016

Focal length 34.28
F number 1.45
Half angle of view (degrees) 32.26
Statue height 21.64
Total lens length 135.83
BF 38.99

INF NEAR (0.3m)
d 9 8.10 0.79
d15 5.62 5.62
d23 38.99 46.30
Zoom lens group data group Start surface Focal length
1 1 -147.21
2 10 90.29
3 16 43.84

LA 光学系 LF 前群 LR 後群 SP 開口絞り
L1 第1レンズ群 L2 第2レンズ群 L3 第3レンズ群
LA optical system LF Front group LR Rear group SP Aperture stop L1 First lens group L2 Second lens group L3 Third lens group

Claims (7)

物体側から像側に順に、正又は負の屈折力の前群、開口絞り、正の屈折力の後群より構成され、前記後群は物体側から像側へ順に、正レンズG31と負レンズG32を接合した接合レンズG3a、正レンズG33、正レンズG34を有し、
前記正レンズG31の物体側のレンズ面と像側のレンズ面の曲率半径を各々R31f,R31r、前記正レンズG31の材料のアッベ数と部分分散比を各々νd31,θgF31とするとき、
1.0<(R31f+R31r)/(R31f−R31r)<10.0
νd31>70.0
θgF31−(−0.001682・νd31+0.6438)>0.0
なる条件式を満足することを特徴とする光学系。
A front group having a positive or negative refractive power, an aperture stop, and a rear group having a positive refractive power are arranged in order from the object side to the image side. The rear group is arranged in order from the object side to the image side, and a positive lens G31 and a negative lens. Having a cemented lens G3a, a positive lens G33, and a positive lens G34 joined with G32.
When the radius of curvature of the object-side lens surface and the image-side lens surface of the positive lens G31 is R31f and R31r, and the Abbe number and partial dispersion ratio of the material of the positive lens G31 are νd31 and θgF31, respectively.
1.0 <(R31f + R31r) / (R31f-R31r) <10.0
νd31> 70.0
θgF31 − (− 0.001682 · νd31 + 0.6438)> 0.0
An optical system that satisfies the following conditional expression:
前記前群は、物体側から像側に順に、正又は負の屈折力の第1レンズ群、正の屈折力の第2レンズ群より構成され、前記後群は正の屈折力の第3レンズ群より構成され、フォーカシングに際して前記第2レンズ群と前記第3レンズ群が移動することを特徴とする請求項1に記載の光学系。   The front group includes, in order from the object side to the image side, a first lens group having a positive or negative refractive power and a second lens group having a positive refractive power, and the rear group is a third lens having a positive refractive power. The optical system according to claim 1, wherein the second lens group and the third lens group move during focusing. 前記負レンズG32の材料のアッベ数と部分分散比を各々νd32,θgF32とするとき、
θgF32−(−0.001682・νd32+0.6458)<0.0
なる条件式を満足することを特徴とする請求項1又は請求項2に記載の光学系。
When the Abbe number and the partial dispersion ratio of the material of the negative lens G32 are νd32 and θgF32, respectively.
θgF32 − (− 0.001682 · νd32 + 0.6458) <0.0
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記前群は、物体側から像側に順に、正又は負の屈折力の第1レンズ群、正の屈折力の第2レンズ群より構成され、前記後群は正の屈折力の第3レンズ群より構成され、フォーカシングに際して前記第2レンズ群と前記第3レンズ群が移動し、
前記第2レンズ群は物体側から像側へ順に、正レンズG21、正レンズG22、正レンズG23、負レンズG24より構成され、
前記正レンズG22と前記正レンズG23、前記負レンズG24は接合された接合レンズG2aより構成され、
前記正レンズG22の材料のアッベ数と部分分散比を各々νd22,θgF22とするとき、
νd22>65.0
θgF22−(−0.001682・νd22+0.6438)>0.0
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載の光学系。
The front group includes, in order from the object side to the image side, a first lens group having a positive or negative refractive power and a second lens group having a positive refractive power, and the rear group is a third lens having a positive refractive power. And the second lens group and the third lens group move during focusing,
The second lens group includes, in order from the object side to the image side, a positive lens G21, a positive lens G22, a positive lens G23, and a negative lens G24.
The positive lens G22, the positive lens G23, and the negative lens G24 are configured by a cemented lens G2a,
When the Abbe number and partial dispersion ratio of the material of the positive lens G22 are νd22 and θgF22, respectively.
νd22> 65.0
θgF22 − (− 0.001682 · νd22 + 0.6438)> 0.0
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記正レンズG22又は前記正レンズG23の材料の異常部分分散性ΔθgF2piを材料のアッベ数νdpi、部分分散比をθgF2piとし、
ΔθgF2pi=θgF2pi−(−1.665×10-7×νd2pi3+5.213×10-5×νd2pi2−5.656×10-3×νd2pi+7.278×10-1
とするとき、
ΔθgF2pi>0.0272
なる条件式を満足することを特徴とする請求項4に記載の光学系。
The abnormal partial dispersion ΔθgF2pi of the material of the positive lens G22 or the positive lens G23 is defined as the Abbe number νdpi of the material, and the partial dispersion ratio is θgF2pi.
ΔθgF2pi = θgF2pi − (− 1.665 × 10 −7 × νd2pi 3 + 5.213 × 10 −5 × νd2pi 2 −5.656 × 10 −3 × νd2pi + 7.278 × 10 −1 )
And when
ΔθgF2pi> 0.0272
The optical system according to claim 4, wherein the following conditional expression is satisfied.
前記正レンズG33の材料又は前記正レンズG34の材料の屈折率をNd3pとするとき、
Nd3p>1.80
なる条件式を満足することを特徴とする請求項1乃至5のいずれか1項に記載の光学系。
When the refractive index of the material of the positive lens G33 or the material of the positive lens G34 is Nd3p,
Nd3p> 1.80
The optical system according to claim 1, wherein the following conditional expression is satisfied.
請求項1乃至6のいずれか1項の光学系と、該光学系によって形成される像を受光する光電変換素子とを備えることを特徴とする撮像装置。   An imaging apparatus comprising: the optical system according to claim 1; and a photoelectric conversion element that receives an image formed by the optical system.
JP2014080999A 2014-04-10 2014-04-10 Optical system and imaging apparatus having the same Active JP6440375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080999A JP6440375B2 (en) 2014-04-10 2014-04-10 Optical system and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080999A JP6440375B2 (en) 2014-04-10 2014-04-10 Optical system and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2015200845A true JP2015200845A (en) 2015-11-12
JP2015200845A5 JP2015200845A5 (en) 2017-06-01
JP6440375B2 JP6440375B2 (en) 2018-12-19

Family

ID=54552121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080999A Active JP6440375B2 (en) 2014-04-10 2014-04-10 Optical system and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP6440375B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116763A (en) * 2015-12-25 2017-06-29 株式会社タムロン Optical and imaging apparatus
JP2020008628A (en) * 2018-07-04 2020-01-16 キヤノン株式会社 Optical system and image capturing device
US10838201B2 (en) 2017-10-16 2020-11-17 Canon Kabushiki Kaisha Optical system and image pickup apparatus

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185307A (en) * 1983-04-06 1984-10-20 Asahi Optical Co Ltd Wide angle lens
JPS59202424A (en) * 1983-04-30 1984-11-16 Minolta Camera Co Ltd High power projection lens for projection inspecting device
JPH09138348A (en) * 1995-11-14 1997-05-27 Nikon Corp Variable power optical system
JPH10260346A (en) * 1997-03-18 1998-09-29 Fuji Photo Optical Co Ltd Retrofocus type lens
JPH11500834A (en) * 1994-12-07 1999-01-19 コーニング インコーポレイテッド Telecentric lens system for forming an image of an object consisting of pixels
JP2001141999A (en) * 1999-11-11 2001-05-25 Canon Inc Zoom lens
JP2002543468A (en) * 1999-05-04 2002-12-17 ユーエス プレシジョン レンズ インコーポレイテッド Projection lens with low lateral chromatic aberration used in combination with a pixelated panel
JP2004258511A (en) * 2003-02-27 2004-09-16 Nikon Corp Zoom lens
JP2005037576A (en) * 2003-07-18 2005-02-10 Minolta Co Ltd Imaging lens device
JP2008164887A (en) * 2006-12-28 2008-07-17 Fujinon Corp Imaging lens
JP2008287181A (en) * 2007-05-21 2008-11-27 Fujinon Corp Projection lens and projection type display device using the same
JP2009104048A (en) * 2007-10-25 2009-05-14 Fujinon Corp Projection lens and projection type display device using the same
JP2009122418A (en) * 2007-11-15 2009-06-04 Fujinon Corp Zoom lens and imaging apparatus
JP2011102906A (en) * 2009-11-11 2011-05-26 Canon Inc Optical device and optical system having the same
JP2011154193A (en) * 2010-01-27 2011-08-11 Fujifilm Corp Projection lens and projection type display device using the same
JP2012501004A (en) * 2008-08-25 2012-01-12 アーツェーエム・プロジェクテンツヴィックルング・ゲーエムベーハー Objective lens system
JP2013190453A (en) * 2012-03-12 2013-09-26 Canon Inc Zoom lens and image capturing device having the same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185307A (en) * 1983-04-06 1984-10-20 Asahi Optical Co Ltd Wide angle lens
JPS59202424A (en) * 1983-04-30 1984-11-16 Minolta Camera Co Ltd High power projection lens for projection inspecting device
JPH11500834A (en) * 1994-12-07 1999-01-19 コーニング インコーポレイテッド Telecentric lens system for forming an image of an object consisting of pixels
JPH09138348A (en) * 1995-11-14 1997-05-27 Nikon Corp Variable power optical system
JPH10260346A (en) * 1997-03-18 1998-09-29 Fuji Photo Optical Co Ltd Retrofocus type lens
JP2002543468A (en) * 1999-05-04 2002-12-17 ユーエス プレシジョン レンズ インコーポレイテッド Projection lens with low lateral chromatic aberration used in combination with a pixelated panel
JP2001141999A (en) * 1999-11-11 2001-05-25 Canon Inc Zoom lens
JP2004258511A (en) * 2003-02-27 2004-09-16 Nikon Corp Zoom lens
JP2005037576A (en) * 2003-07-18 2005-02-10 Minolta Co Ltd Imaging lens device
JP2008164887A (en) * 2006-12-28 2008-07-17 Fujinon Corp Imaging lens
JP2008287181A (en) * 2007-05-21 2008-11-27 Fujinon Corp Projection lens and projection type display device using the same
JP2009104048A (en) * 2007-10-25 2009-05-14 Fujinon Corp Projection lens and projection type display device using the same
JP2009122418A (en) * 2007-11-15 2009-06-04 Fujinon Corp Zoom lens and imaging apparatus
JP2012501004A (en) * 2008-08-25 2012-01-12 アーツェーエム・プロジェクテンツヴィックルング・ゲーエムベーハー Objective lens system
JP2011102906A (en) * 2009-11-11 2011-05-26 Canon Inc Optical device and optical system having the same
JP2011154193A (en) * 2010-01-27 2011-08-11 Fujifilm Corp Projection lens and projection type display device using the same
JP2013190453A (en) * 2012-03-12 2013-09-26 Canon Inc Zoom lens and image capturing device having the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116763A (en) * 2015-12-25 2017-06-29 株式会社タムロン Optical and imaging apparatus
US10838201B2 (en) 2017-10-16 2020-11-17 Canon Kabushiki Kaisha Optical system and image pickup apparatus
JP2020008628A (en) * 2018-07-04 2020-01-16 キヤノン株式会社 Optical system and image capturing device
JP7140571B2 (en) 2018-07-04 2022-09-21 キヤノン株式会社 Optical system and imaging device

Also Published As

Publication number Publication date
JP6440375B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP5388446B2 (en) Optical system and optical apparatus having the same
JP4881035B2 (en) Zoom lens and imaging apparatus having the same
JP5495800B2 (en) Optical system and imaging apparatus having the same
JP4630645B2 (en) Optical system
JP5074790B2 (en) Zoom lens and imaging apparatus having the same
JP5197242B2 (en) Zoom lens and imaging apparatus having the same
JP4819447B2 (en) Optical system and imaging apparatus having the same
JP4745707B2 (en) Optical system
JP6566646B2 (en) Zoom lens and imaging apparatus having the same
JP5031378B2 (en) Zoom lens and optical apparatus having the same
JP4776988B2 (en) Optical system and optical apparatus having the same
JP4829668B2 (en) Zoom lens and imaging apparatus having the same
JP5196822B2 (en) Zoom lens and imaging apparatus having the same
JP4898307B2 (en) Optical system and optical apparatus having the same
JP5224894B2 (en) Optical system and optical apparatus having the same
JP2015018073A (en) Zoom lens and optical equipment having the same
JP2009169249A (en) Cemented lens and optical system having the same
JP2011070032A (en) Optical element and optical apparatus
JP2005316047A (en) Zoom lens
JP6253379B2 (en) Optical system and imaging apparatus having the same
JP2008139645A (en) Optical system and optical apparatus with same
JP2011145566A (en) Zoom lens and optical apparatus having the same
JP2018004726A (en) Optical system and image capturing device having the same
JP2018072367A (en) Zoom lens and imaging apparatus having the same
JP6440375B2 (en) Optical system and imaging apparatus having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181120

R151 Written notification of patent or utility model registration

Ref document number: 6440375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03