JP2015200525A - Gas monitor device - Google Patents

Gas monitor device Download PDF

Info

Publication number
JP2015200525A
JP2015200525A JP2014078125A JP2014078125A JP2015200525A JP 2015200525 A JP2015200525 A JP 2015200525A JP 2014078125 A JP2014078125 A JP 2014078125A JP 2014078125 A JP2014078125 A JP 2014078125A JP 2015200525 A JP2015200525 A JP 2015200525A
Authority
JP
Japan
Prior art keywords
gas
air
measurement chamber
chamber
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014078125A
Other languages
Japanese (ja)
Other versions
JP6380971B2 (en
Inventor
久郎 佐々木
Hisao Sasaki
久郎 佐々木
裕一 菅井
Yuichi Sugai
裕一 菅井
由和 内藤
Yoshikazu Naito
由和 内藤
英一郎 牧野
Eiichiro Makino
英一郎 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Chugai Technos Corp
Original Assignee
Kyushu University NUC
Chugai Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Chugai Technos Corp filed Critical Kyushu University NUC
Priority to JP2014078125A priority Critical patent/JP6380971B2/en
Publication of JP2015200525A publication Critical patent/JP2015200525A/en
Application granted granted Critical
Publication of JP6380971B2 publication Critical patent/JP6380971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a measurement method for measuring a gas flux evaporated from a ground or a rock layer and a gas concentration in a peripheral front layer surface atmosphere over a long period, a gas monitor device, and an alarm system for a gas leakage.SOLUTION: A gas monitor device includes: a bottom surface part opened to a ground of a detection object; an exhaust port 2b for exhausting the air; an intake port 2c for the intake air; opening/closing valves 5, 6a, and 6b arranged very nearby the exhaust port 2b and the intake port 2c; ventilation control means for ventilating the air; an exhaust chamber externally separated and exhausting the evaporated gas; and an intake chamber externally separated and taking-in a surface layer atmospheric air. The gas monitor device further collects a detection object gas evaporated from the ground or the rock layer via the opened bottom surface part and includes an internal circulation mode for agitating and mixing the evaporated gas by an air flow induced by the operation of the ventilation control means by simultaneously closing the exhaust opening/closing valves 6a, 6b and the intake opening/closing valve 5.

Description

本発明は、土壌または岩石層の表面から単位面積、単位時間に流出あるいは放散されるガスフラックス及びその周辺の表層大気中の当該ガス濃度を交互に測定する装置に関し、特に測定チャンバなどの装置内での結露や凍結による影響を換気によって少なくし、設置位置で長期間低電力で安定した信頼性の高い測定を実施するための測定手法とガスモニター装置及び警報システムに関する。   The present invention relates to an apparatus for alternately measuring a gas flux that flows out or dissipates per unit area and unit time from the surface of a soil or rock layer and the concentration of the gas in the surrounding surface atmosphere, and particularly in an apparatus such as a measurement chamber. The present invention relates to a measurement method, a gas monitor device, and an alarm system for reducing the influence of condensation and freezing in a room by ventilation, and performing stable and reliable measurement with low power for a long time at an installation position.

本発明は、土壌または岩石層表面から地表に流出あるいは放散される二酸化炭素やメタンガスなどの単位面積、単位時間あたりの放散量であるガスフラックス及びその周辺の表層大気中における当該ガス濃度を長期モニターし、その位置での土壌または岩石層から放散される二酸化炭素やメタンガスなどのガスフラックス及び大気中における当該ガス濃度の自然条件でのバックグランドデータを収集するとともに、二酸化炭素や石油・天然ガスなどが貯留されている地下の貯留層から大気中へ漏洩するガス放散を検出するモニター装置の構造と測定法並びにバックグランドデータの統計データに基づいた当該ガス放散の異常に関わる警報システムに関する。 The present invention provides a long-term monitor of unit area such as carbon dioxide and methane gas that flows or diffuses from the surface of the soil or rock layer to the surface, gas flux that is the amount of radiation per unit time, and the concentration of the gas in the surrounding surface atmosphere. In addition to collecting gas fluxes such as carbon dioxide and methane gas emitted from the soil or rock layer at that location and background data of the gas concentration in the atmosphere under natural conditions, carbon dioxide, oil and natural gas, etc. The present invention relates to a structure and a measuring method of a monitor device for detecting gas emission leaked from an underground reservoir in which gas is stored into the atmosphere, and an alarm system related to abnormality of the gas emission based on statistical data of background data.

地球温暖化ガスである二酸化炭素は、石炭・石油・天然ガスなどの化石燃料を利用する火力発電所、製鉄所ならびに製油所などから多く大気中に排出されている。また、温暖化係数が二酸化炭素よりも格段に大きいメタンガスは、石炭や石油・天然ガス採掘地域及びそれらの輸送地域並びに農業地帯などから大気中に放出されている。地球温暖化を抑制するためには、これらの事業所や地域から大気中に排出される二酸化炭素やメタンガスなどの温暖化ガス量を削減する必要がある。近年、二酸化炭素を分離して地下に貯留する技術として二酸化炭素回収・貯留技術(略称CCS)が有効な二酸化炭素の排出量削減方法として日本のみならず世界で実施されつつある。商業規模の二酸化炭素の地下貯留は、前述した産業活動などにおいて排出されるガス中から分離した二酸化炭素を体積比率で15〜30%の流体で満たされている石油・天然ガス層や帯水層などの地下貯留層に10から100万トン/年程度の割合で圧入して貯留する。このとき、地下貯留を実施する層として、上部層が流体浸透率の低いシール層を有する貯留層が選定されるが、地層探査で見つからない微細な岩石中の亀裂などを通して、圧入・貯留された二酸化炭素の一部が地表にガスとして漏出する確率はゼロではない。 A large amount of carbon dioxide, a global warming gas, is emitted into the atmosphere from thermal power plants, ironworks, and refineries that use fossil fuels such as coal, oil, and natural gas. In addition, methane gas having a much greater global warming potential than carbon dioxide is released into the atmosphere from coal, oil and natural gas mining areas, their transport areas, and agricultural areas. In order to suppress global warming, it is necessary to reduce the amount of greenhouse gases such as carbon dioxide and methane gas emitted from these offices and regions into the atmosphere. In recent years, carbon dioxide recovery and storage technology (abbreviated as CCS) as a technology for separating carbon dioxide and storing it underground is being implemented not only in Japan but also around the world. Underground storage of carbon dioxide on a commercial scale is an oil / natural gas or aquifer filled with 15-30% of the volume of carbon dioxide separated from the gas discharged in the industrial activities described above. For example, it is press-fitted into an underground reservoir such as 10 to 1 million tons / year for storage. At this time, a reservoir with an upper layer with a low fluid permeability seal layer is selected as a layer for underground storage, but it was injected and stored through cracks in fine rocks that could not be found by geological exploration. The probability that some of the carbon dioxide leaks to the surface as gas is not zero.

また、シェールガス開発が進められている米国では、不適切な水圧破砕が原因と考えられるシール層の亀裂が生じ、採掘地域の表層へのメタンガス漏洩が問題となっている。 In the US, where shale gas development is in progress, cracks in the seal layer, which may be caused by inappropriate hydraulic fracturing, have occurred, and methane gas leaks to the surface of the mining area.

そのため、周辺地域に居住している住民あるいは農業・林業・漁業などが営なまれている場合、周辺環境の安全性を確保できなくなるなど、多大な損害と地域社会の混乱が生じる。ただし、世界の耕地などの土壌または岩石から大気中に放散されている二酸化炭素量は、人類の活動によって排出されている二酸化炭素量の7〜8倍に及ぶというデータもある。さらに、土壌または岩石表層から大気へ放散される二酸化炭素などのガスフラックスは、その地域の温度や降水量などの気候の変動の影響を強く受ける。したがって、二酸化炭素やメタンガスが漏出しているかどうかを判定するためには、自然界のガス放散状況に照らして明確に区別できるガスフラックスの測定法及びモニター装置が不可欠であるほか、土壌または岩石などからのガスフラックスに関わる長期の測定データが不可欠であり、漏洩量に対する警報レベルの設定においても重要な基礎データであると判断される。 For this reason, if residents living in the surrounding area or agriculture, forestry, fishery, etc. are operated, the safety of the surrounding environment cannot be ensured, resulting in great damage and confusion in the community. However, there is data that the amount of carbon dioxide released into the atmosphere from soil or rocks such as cultivated land in the world is 7 to 8 times the amount of carbon dioxide emitted by human activities. In addition, gas fluxes such as carbon dioxide released from the soil or rock surface to the atmosphere are strongly affected by climate change such as local temperature and precipitation. Therefore, in order to determine whether carbon dioxide or methane gas is leaking, it is essential to have a gas flux measurement method and monitoring device that can be clearly distinguished in light of the natural gas emission situation, as well as from soil or rock. Long-term measurement data related to gas flux is indispensable, and it is judged to be important basic data in setting the alarm level for the leakage amount.

現在、二酸化炭素の漏洩検出法としては、a)土壌または岩石あるいは岩石中の二酸化炭素の同位体の測定、b)表層大気中の二酸化炭素濃度の測定、c)表層土壌または岩石中の二酸化炭素濃度の測定、d)土壌または岩石あるいは岩石から大気への二酸化炭素ガスフラックスの測定、などがある。a)の二酸化炭素の同位体を測定する方法では、化石燃料の燃焼排ガスから回収される二酸化炭素と土壌中などの自然界のバクテリアによって生じたものの同位体比率に明確な相違がなく、決定的な漏洩検知方法とはならない。b)の表層大気の二酸化炭素濃度の測定は簡易な構造で長期モニタリングに問題は少ないが、地表面の風、排気ガスや動物の呼気などの影響が大きく漏洩判定時の信頼度が低い。c)の土壌または岩石中などの二酸化炭素濃度の測定では漏洩ガスの有無の検出確度は高くなるが、ガス濃度と漏洩量との一意の関係がなく、さらに土壌または岩石などに含まれる水蒸気の結露あるいは水分の冬季凍結対策など長期の精度保持には課題がある。d)のガスフラックスを測定する方法では漏洩した二酸化炭素などの単位時間当たりのガス放散量データを直接測定することができるため、漏洩の判定基準としての信頼性が高く、米国LI―COR社などが製品化していることからも最も実フィールド測定に適した方法と判断される。 Currently, carbon dioxide leakage detection methods include: a) measurement of carbon dioxide isotope in soil or rock or rock, b) measurement of carbon dioxide concentration in surface air, c) carbon dioxide in surface soil or rock Concentration measurement, d) measurement of carbon dioxide gas flux from soil or rock or rock to the atmosphere. In the method of measuring the isotope of carbon dioxide in a), there is no clear difference in the isotope ratio between the carbon dioxide recovered from the combustion exhaust gas of fossil fuel and the natural bacteria such as in the soil, and it is decisive. It is not a leak detection method. The measurement of carbon dioxide concentration in the surface air of b) has a simple structure and has few problems in long-term monitoring, but it is highly affected by wind on the ground surface, exhaust gas, exhalation of animals, etc., and the reliability at the time of leak judgment is low. In the measurement of carbon dioxide concentration in soil or rock in c), the accuracy of detection of the presence or absence of leaked gas is high, but there is no unique relationship between the gas concentration and the amount of leak, and the water vapor contained in the soil or rock There are problems in maintaining accuracy for a long time, such as measures against condensation or moisture freezing in winter. In the method of measuring gas flux d), it is possible to directly measure gas emission amount data per unit time such as leaked carbon dioxide, so it is highly reliable as a judgment criterion for leakage, such as US LI-COR Is the most suitable method for actual field measurement.

最も適した方法と判断された土壌または岩石層などからのガスフラックスの測定法は、大きく2種類に分類される。1つ目の方法は濃度勾配測定法と呼ばれる方法で、土壌または岩石中などにおける異なった深さの二酸化炭素濃度(ppm)を測り、その濃度差(ppm)と距離(m)から濃度勾配(ppm/m)を算定し、土壌または岩石あるいは岩石中の有効ガス拡散係数(m/s)を掛けて土壌または岩石ガスフラックス(mL/m2/s)求めるものである。この方法は適切な深さの選定と有効ガス拡散係数の推定誤差及び土壌または岩石中の水分の影響などによる不具合発生の課題をもつ。 There are roughly two types of methods for measuring gas flux from the soil or rock layer that are judged to be the most suitable methods. The first method is called a concentration gradient measurement method, which measures carbon dioxide concentrations (ppm) at different depths in soil or rocks, etc., and uses the concentration difference (ppm) and distance (m) to determine the concentration gradient ( ppm / m), and the soil or rock gas flux (mL / m 2 / s) is obtained by multiplying the effective gas diffusion coefficient (m 2 / s) in the soil or rock or rock. This method has problems of failure due to selection of appropriate depth, estimation error of effective gas diffusion coefficient, and influence of moisture in soil or rock.

前述の2つ目のガスフラックスの測定方法は、別名チャンバ法とも呼ばれる方法で、土壌または岩石層と大気との接触面から放散される二酸化炭素などのガスを受けとめる容器であるチャンバを用いる方法で、定常チャンバ法と、非定常チャンバ法に分類される。定常チャンバ法は、大気からチャンバ内に一定の空気量を流通させ大気へ放出するときの前後2つの二酸化炭素などのガス濃度差(ppm)と空気流量(m/s)の2つを掛けてチャンバ下部の開口面積S(m)で割って求めることから、最低でも3つのデータを正確に測定する必要があり、高精度な複数のセンサーを含む製作費が高額でかつ必要電力量も大きい。一方、非定常チャンバ法はチャンバ内の二酸化炭素濃度の時間勾配(ppm/s)を測定し、チャンバ内容積V(m)を掛け、開口面積S(m)で割ってガスフラックス(mL/m2/s)の値を測定する。非定常チャンバ法による測定は簡便であるが、1回の測定が終了した後にチャンバを機械的に開放してチャンバ内の空気を大気に晒しリセットすることが必要であるため、その機械的機構の構築と設置位置での長期測定実施を実現するための電力供給に課題をもつ。しかしながら、非定常チャンバ法はチャンバ内の空気の入れ替えがなされることで、土壌または岩石層から移流あるいは蒸散される水分の結露や凍結の不具合に関する問題を解決することができる。 The second gas flux measurement method described above is also called a chamber method, which uses a chamber that is a container for receiving gas such as carbon dioxide emitted from the contact surface between the soil or rock layer and the atmosphere. The stationary chamber method and the unsteady chamber method are classified. The steady chamber method multiplies two gas concentration differences (ppm) and air flow rate (m 3 / s), such as two carbon dioxides before and after the air is circulated from the atmosphere into the chamber and released to the atmosphere. since the determined by dividing the chamber bottom of the opening area S (m 2) Te, it is necessary to accurately measure the three data at a minimum, expensive and and required power amount production costs including the precise plurality of sensors also large. On the other hand, the unsteady chamber method measures the time gradient (ppm / s) of the carbon dioxide concentration in the chamber, multiplies the chamber volume V (m 3 ), divides it by the open area S (m 2 ), and gives the gas flux (mL / M 2 / s) is measured. The measurement by the unsteady chamber method is simple, but it is necessary to mechanically open the chamber after one measurement is completed and expose the air in the chamber to the atmosphere to reset it. There is a problem in power supply to realize long-term measurement implementation at the construction and installation position. However, the unsteady chamber method can solve the problems related to the dew condensation and freezing of water advected or transpiration from the soil or rock layer by replacing the air in the chamber.

以上に記述したように、二酸化炭素などの土壌または岩石層表面からのガスフラックスを安価に一定のインターバルで長期に測定を継続する信頼性の高い手法が確立しているとは云えず、地球温暖化を抑制する有効な技術として期待されているCCSやシェールガスなどの非在来型天然ガスの生産を推進するうえで不可欠な社会の受容性を高めるための測定法の工夫と、それを実現したガスモニター装置及び警報システムの開発が必要とされている。 As described above, it cannot be said that a reliable method has been established to continuously measure gas flux from the soil or rock layer surface such as carbon dioxide for a long period of time at a fixed interval. Devise measurement methods to increase social acceptability, which is indispensable for promoting the production of unconventional natural gas such as CCS and shale gas, which are expected as effective technologies There is a need to develop a gas monitor and alarm system.

そのため、例えば、特開2011−296215(特許文献1)では、測定チャンバ内部の空気をアルカリ溶液のガス洗浄瓶に導き、二酸化炭素を吸収させて、測定チャンバ内部の空気を自然大気に近い状態に戻す方法が提示されている。しかしながら、測定チャンバ内部の濃度を異なった空気の流通回路を設けて精度よく制御するために複雑化し、電力も多く必要とするため高コストとなる。さらに、アルカリ溶液を入れたガス洗浄瓶を用いるため長期のモニタリングや低温環境への対応が難しく、洗浄瓶での水分の添加による測定チャンバ内部の結露などによって生じる問題への対応も難しい。 Therefore, for example, in Japanese Patent Application Laid-Open No. 2011-296215 (Patent Document 1), the air inside the measurement chamber is guided to a gas cleaning bottle of an alkaline solution, carbon dioxide is absorbed, and the air inside the measurement chamber is brought into a state close to natural air. A way to return is presented. However, the concentration inside the measurement chamber is complicated in order to accurately control it by providing different air circulation circuits, and requires a lot of electric power, resulting in high cost. Furthermore, since a gas cleaning bottle containing an alkaline solution is used, it is difficult to cope with long-term monitoring and low-temperature environments, and it is also difficult to cope with problems caused by condensation inside the measurement chamber due to the addition of moisture in the cleaning bottle.

特開2008−203124(特許文献2)では、生物代謝により生成される二酸化炭素ガスと地下に圧入された二酸化炭素が地上へ漏洩した二酸化炭素ガスとを識別するため、測定チャンバ内の酸素濃度を正確に測定することで生物代謝による酸素消費量及び二酸化炭素排出量を計算し、二酸化炭素ガス量の収支の差異を算定することで、地下貯留層から地表に漏洩する二酸化炭ガス量を評価することを提案している。 In Japanese Patent Laid-Open No. 2008-203124 (Patent Document 2), in order to discriminate between carbon dioxide gas generated by biological metabolism and carbon dioxide gas leaked to the ground by carbon dioxide injected underground, the oxygen concentration in the measurement chamber is set. Evaluate the amount of carbon dioxide gas leaked from the underground reservoir to the ground surface by calculating the oxygen consumption and carbon dioxide emission due to biological metabolism by measuring accurately and calculating the difference in the balance of carbon dioxide gas amount Propose that.

しかしながら、発明者らは、九州大学伊都キャンパスにおける二酸化炭素ガスフラックス量を長期測定した結果、土壌表面から大気へ1平方メートル、1日当たり約0.5〜6リットル程度の二酸化炭素が放散されていることを明らかにしている。それらの二酸化炭素は、主に微生物活動によって土壌中の炭化水素成分が分解されて生成されたもので、土壌温度の季節変動及び土壌中に含まれる水分によっても変化することを確認している。このことから、微生物活動によって土壌中から大気に放散される二酸化炭素と地中貯留層から漏洩した二酸化炭素が混合している場合、それらを区別することは実質的に困難である。さらに、大気中には二酸化炭素が約400ppmの濃度で含まれ、地中貯留層から漏洩した二酸化炭素が土壌または岩石雰囲気ガスと混合した後に数パーセント以下の低濃度で地表に放散される場合には二酸化炭素の排出源を明確に定めることは難しい。 However, as a result of long-term measurement of the amount of carbon dioxide gas flux at the Ito Campus of Kyushu University, the inventors have found that about 0.5-6 liters of carbon dioxide per day is diffused from the soil surface to the atmosphere. It is revealed. These carbon dioxides are produced by the decomposition of hydrocarbon components in the soil mainly due to microbial activity, and it has been confirmed that they also change due to seasonal variations in soil temperature and moisture contained in the soil. For this reason, when carbon dioxide released from the soil to the atmosphere by microbial activity is mixed with carbon dioxide leaked from the underground reservoir, it is substantially difficult to distinguish them. In addition, when the atmosphere contains carbon dioxide at a concentration of about 400 ppm, the carbon dioxide leaked from the underground reservoir is mixed with the soil or rock atmosphere gas and released to the surface at a low concentration of several percent or less. It is difficult to clearly define the source of carbon dioxide emissions.

特開2011−296215号公報JP 2011-296215 A 特開2008−203124号公報JP 2008-203124 A

二酸化炭素やメタンガスなどの地下貯留が実施される地域や石油・天然ガスとくにシェールガスの開発地域などにおいては、地表に放散されるガスフラックス並びに表層大気中の当該ガス濃度を低電力で継続的に長期間測定し、自然界のバックグランドデータとしての年間変動パターンを定め、それからのズレとして二酸化炭素やメタンガスなどの地表への漏出の有無をモニタリングする装置が住民の安全・安心を図るために必要である。ただし、電力供給などの社会インフラが十分整わない地域においても長期に無人測定を実施できる装置でなければならない。 In areas where underground storage such as carbon dioxide and methane gas is carried out, and oil and natural gas, especially shale gas development areas, the gas flux released to the surface and the concentration of the gas in the surface atmosphere are continuously reduced with low power. In order to ensure the safety and security of the residents, long-term measurements, annual fluctuation patterns as background data of the natural world are established, and the presence or absence of carbon dioxide and methane gas leakage from the surface of the earth is monitored. is there. However, it must be a device that can perform unattended measurements over a long period of time even in areas where social infrastructure such as power supply is not sufficiently established.

しかしながら、従来の土壌または岩石からのガスフラックス測定は、非定常チャンバ法によってバッチ式で測定するか、高価なモニター装置で高精度のガス濃度や流通空気量などのセンサー出力を乗じて測定することから、固定した位置で長期信頼性を保ちながら安価にモニタリングを実施するのに適していない。また、長期の使用において、土壌または岩石層から蒸散した水分が測定装置内部やガスセンサーあるいは外部にあるガス濃度センサーへの空気供給手段での結露あるいは凍結によって測定機能が劣化し長期の使用が困難である。 However, the conventional measurement of gas flux from soil or rock must be performed batch-wise by the unsteady chamber method or by multiplying sensor output such as high-precision gas concentration and air flow with an expensive monitoring device. Therefore, it is not suitable for monitoring at low cost while maintaining long-term reliability at a fixed position. Also, in long-term use, moisture transpiration from the soil or rock layer is difficult to use for a long time because the measurement function deteriorates due to condensation or freezing in the air supply means inside the measuring device, gas sensor or external gas concentration sensor It is.

また、非定常チャンバ法を利用する装置では、測定チャンバ内の空気を大気にリセットするために駆動動力の大きい機械的な測定チャンバの開放機構を具備する必要があるため、多様な環境に対する信頼性の高い機械的な駆動装置と防御カバー並びにそれを実現する電力も必要とするため、社会インフラが整わない地域においても低電力で作動する簡潔な長期モニター装置としては適していない。 In addition, in an apparatus using the unsteady chamber method, it is necessary to provide a mechanical measurement chamber opening mechanism with a large driving power in order to reset the air in the measurement chamber to the atmosphere. Therefore, it is not suitable as a simple long-term monitoring device that operates at low power even in an area where social infrastructure is not established.

さらに、土壌または岩石層から放散されるガスフラックスと表層大気中の当該ガス濃度を1個のガス濃度センサーで交互に測定できるガスモニター装置はなかった。 Furthermore, there has been no gas monitoring device that can alternately measure the gas flux emitted from the soil or rock layer and the gas concentration in the surface atmosphere with a single gas concentration sensor.

本発明は前記課題を解消するためになされたものであり、土壌または岩石層から放散されるガスフラックスを、1回の設置により、設置後は人手を介することなく簡易に、低コストで長期間測定することを可能とする、土壌または岩石層表面から放散されるガスフラックスと周辺の表層大気中の当該ガス濃度を測定するための測定方法と構造を実現したガスモニター装置及びガス放散の異常に関わる警報システムの提供を目的とする。   The present invention has been made to solve the above-mentioned problems. The gas flux emitted from the soil or the rock layer is simply installed at a low cost for a long period of time without manual intervention after the installation. A gas monitoring device that realizes a measurement method and structure for measuring the gas flux emitted from the surface of the soil or rock layer and the concentration of the gas in the surrounding surface layer atmosphere, which can be measured, and abnormal gas emission The purpose is to provide related alarm systems.

本願請求項1に開示するガスモニター装置は、土壌または岩石層表面から放散される検出対象ガスのフラックスを測定する機能を有し、前記検出対象の土壌または岩石層に対して開放された底面部を持つ測定チャンバと、排気のための排気口と、入気のための入気口と、当該排気口及び当該入気口の近傍に具備されるそれぞれの開閉弁と、換気を行う換気制御手段と、外部に隔離されて前記放散ガスを排気する排気チャンバと、前記放散ガスから隔離して表層大気(外気)を入気する入気チャンバとを有し、当該測定チャンバ下部の開放底面を介して土壌または岩石層から入り込む前記放散ガスを収集し、前記排気口及び前記入気口に具備されたそれぞれの前記開閉弁を閉じて前記換気制御手段の気流によって前記放散ガスを撹拌・混合させる内部循環モードを実現し、前記排気口及び前記排気チャンバを介して外気と連通し、同時に外気から前記入気チャンバ及び前記入気口を介して連通し、前記入気口を介して外気を導入すると共に、収集した前記放散ガスを含む空気を外部へ排出する換気モードの2種類の作動モードを実現する測定チャンバと、前記測定用チャンバ内部に配設され、前記2種類の作動モードにおいて検出対象のガス濃度を測定するガス濃度検出手段とを備え、前記ガス濃度検出手段が、前記測定チャンバ内の前記内部循環モードの初期ガス濃度時間勾配の算定値からガスフラックスを測定し、前記換気モードにおける周辺表層大気中の当該ガス濃度を交互に測定するものである。
なお、前記土壌または岩石層表面に対しては、降雨対策としてトレンチが施されていてもよい。また、前記ガス濃度検出手段は、前記測定用チャンバ内部でガス濃度を直接測定する手段(例えば、ガス濃度センサー)であってもよいし、前記測定用チャンバ内部の空気を、前記測定用チャンバ外部に設置されたガス濃度センサーに対してサンプルとして供給するために、前記測定用チャンバ外部へ送る手段であってもよい。
The gas monitor device disclosed in claim 1 of the present application has a function of measuring the flux of the detection target gas diffused from the surface of the soil or rock layer, and is a bottom surface portion opened to the detection target soil or rock layer. A measurement chamber having an exhaust, an exhaust port for exhaust, an intake port for intake, an on-off valve provided in the vicinity of the exhaust port and the intake port, and a ventilation control means for performing ventilation And an exhaust chamber that is isolated from the outside and exhausts the diffused gas, and an intake chamber that is isolated from the diffused gas and enters the surface atmosphere (outside air), through an open bottom surface at the bottom of the measurement chamber The emitted gas entering from the soil or rock layer is collected, and the opening and closing valves provided at the exhaust port and the intake port are closed, and the emitted gas is stirred and mixed by the air flow of the ventilation control means. Realizes internal circulation mode, communicates with the outside air through the exhaust port and the exhaust chamber, and simultaneously communicates from the outside air through the inlet chamber and the inlet port, and introduces the outside air through the inlet port And a measurement chamber that realizes two types of operation modes of a ventilation mode for exhausting the collected air containing the emitted gas to the outside, and a detection target in the two types of operation modes. Gas concentration detection means for measuring the gas concentration of the internal circulation mode in the measurement chamber, the gas concentration detection means for measuring the gas flux from the calculated value of the initial gas concentration time gradient in the internal circulation mode, in the ventilation mode The gas concentration in the surrounding surface atmosphere is measured alternately.
In addition, the trench may be given with respect to the said soil or rock layer surface as a rain countermeasure. Further, the gas concentration detection means may be a means (for example, a gas concentration sensor) for directly measuring the gas concentration inside the measurement chamber, and the air inside the measurement chamber is connected to the outside of the measurement chamber. In order to supply as a sample to the gas concentration sensor installed in the apparatus, a means for sending the gas concentration sensor outside the measurement chamber may be used.

すなわち、前記検出対象の土壌または岩石層に接触させて被せ、大気との連通経路を閉じた測定チャンバにおいて、土壌または岩石層に接して開放された前記測定チャンバ下部底面を介して土壌から前記放散ガスを前記測定チャンバ内に収集し、ガス濃度検出手段で前記検出対象ガス濃度を一定時間測定し、その初期のガス濃度時間勾配の算定値からガスフラックスを測定する。その後に、当該の放散ガスを含む測定チャンバ内の空気を排気口と排気チャンバを経て大気へ排出すると同時に、大気と連通する入気チャンバ及び入気口(及び、必要に応じて入気筒)を経て表層大気を吸引することで前記測定チャンバ内を換気し、表層大気と同一となった前記測定チャンバ中の空気を当該ガス濃度を前記ガス濃度検出手段で測定する。   That is, in a measurement chamber that is placed in contact with the soil or rock layer to be detected and has a closed communication path with the atmosphere, the radiation is emitted from the soil through the bottom bottom surface of the measurement chamber that is opened in contact with the soil or rock layer. The gas is collected in the measurement chamber, the gas concentration detection means measures the gas concentration to be detected for a certain time, and the gas flux is measured from the calculated value of the initial gas concentration time gradient. After that, the air in the measurement chamber containing the diffused gas is discharged to the atmosphere through the exhaust port and the exhaust chamber, and at the same time, the inlet chamber and the inlet port (and the inlet cylinder if necessary) communicating with the atmosphere are provided. Then, the inside of the measurement chamber is ventilated by sucking the surface layer atmosphere, and the gas concentration of the air in the measurement chamber that is the same as the surface layer atmosphere is measured by the gas concentration detection means.

以上の一連の操作によって、土壌または岩石層から流出あるいは放散されるガスフラックスと表層大気中のガス濃度を前記ガス濃度検出手段で交互に測定することを特徴とするものである。 By the series of operations described above, the gas flux flowing out or released from the soil or rock layer and the gas concentration in the surface atmosphere are alternately measured by the gas concentration detecting means.

このように、本願に開示するガスモニター装置によれば、前記ガス濃度検出手段で前記測定チャンバ内の前記検出対象ガスを検出した後に、前記入気チャンバから測定チャンバに大気中の新鮮な外気が導入されると共に、前記排気チャンバから前記測定チャンバ内の前記放散ガス及び水蒸気を含む空気が外部に排出される。 As described above, according to the gas monitoring device disclosed in the present application, after the detection gas in the measurement chamber is detected by the gas concentration detection unit, fresh outside air in the atmosphere is transferred from the inlet chamber to the measurement chamber. While being introduced, air containing the diffused gas and water vapor in the measurement chamber is exhausted from the exhaust chamber to the outside.

以上のことから、前記測定チャンバ内のガスが混合した空気が排出され、同時に大気からの新鮮な空気による換気がなされることとなり、放散ガスのフラックスを測定後に、換気のための機械的開放作業を不要とし、土壌または岩石層表面から放散される検出対象ガスのフラックスを、低コストかつ低電力で、長期間安定して測定することができる。 From the above, air mixed with gas in the measurement chamber is discharged, and ventilation with fresh air from the atmosphere is performed at the same time. After measuring the flux of the emitted gas, mechanical opening work for ventilation is performed. The flux of the detection target gas diffused from the surface of the soil or rock layer can be stably measured at low cost and low power for a long period of time.

また、本願に開示するガスモニター装置は、前記換気制御手段を備えることから、当該換気制御手段によって前記測定チャンバ内に生じる気流により、放散ガス濃度の均一化が促進されることとなり、より高速かつ正確に、検出対象であるガスフラックスを測定することができる。 In addition, since the gas monitoring device disclosed in the present application includes the ventilation control unit, the air flow generated in the measurement chamber by the ventilation control unit promotes the uniformization of the diffused gas concentration. It is possible to accurately measure the gas flux as the detection target.

本願請求項2に開示するガスモニター装置は、前記測定チャンバを前記開閉弁によって閉鎖し、下部から放散される前記放散ガスを前記測定チャンバ内に留めて撹拌・混合する内部循環モード、並びに前記測定チャンバ内の放散ガスを含む空気を前記開閉弁、前記排気口及び前記排気チャンバを介して外部に排出すると共に前記入気チャンバ、前記入気口及び前記開閉弁を介して前記測定チャンバに表層大気を導入し、前記測定チャンバの内部空気の入れ替えを行い、地下からの放散される前記放散ガスや水蒸気を排除する前記開閉弁による換気モードを実現する換気制御手段を備えるものである。   The gas monitor device disclosed in claim 2 is an internal circulation mode in which the measurement chamber is closed by the on-off valve, and the diffused gas diffused from below is retained in the measurement chamber and stirred and mixed, and the measurement Air containing the diffused gas in the chamber is exhausted to the outside through the on-off valve, the exhaust port, and the exhaust chamber, and the surface air is supplied to the measurement chamber through the inlet chamber, the inlet port, and the on-off valve. And a ventilation control means for realizing a ventilation mode by the on-off valve for exchanging the internal air of the measurement chamber and excluding the diffused gas and water vapor diffused from underground.

本願請求項3に開示するガスモニター装置は、前記換気制御手段が、前記測定チャンバ内部における入気口と前記ガス濃度検出手段との間に配設され、前記測定チャンバの排気口が、前記換気制御手段の空気流の下流側に配設され、前記入気口が気流のわずかな負圧で開放状態となる開閉弁で形成されると共に、前記排気口が気流の風圧で開放状態となる開閉弁で形成する機構を有する前記測定チャンバを具備するものである。   In the gas monitor disclosed in claim 3 of the present application, the ventilation control means is disposed between the inlet and the gas concentration detecting means inside the measurement chamber, and the exhaust outlet of the measurement chamber is connected to the ventilation. An opening / closing valve disposed on the downstream side of the air flow of the control means, wherein the inlet is formed by an on-off valve that is opened by a slight negative pressure of the air flow, and the opening / closing is opened by the wind pressure of the air flow. The measuring chamber having a mechanism formed by a valve is provided.

すなわち、本願に開示するガスモニター装置は、必要に応じて、前記換気制御手段が前記測定チャンバの入気口と前記ガス濃度検出手段との間に配設し、前記入気口がわずかな負圧(例えば、1mm水柱程度)で開放状態となる開閉弁で形成されると共に、前記測定チャンバ内の空気流の下流側に配設された排出口が前記換気制御手段によるわずかな風圧(例えば、1mm水柱程度)で開放状態となる開閉弁で形成させることができる。このように、本願に開示するガスモニター装置によれば、前記換気制御手段が前記測定チャンバと前記排気チャンバとの接続部分、並びに、前記測定チャンバと前記入気筒との接続部分に配設され、入気流は概ね下方向に、排気流は概ね水平方向(半径方向)となるように前記測定チャンバの換気がなされる。すなわち、前記入気口と排出口が、前記測定チャンバの空気流の力学的作用で自動で開閉し、外的な制御によらず前記測定チャンバ内部の放散ガスと水蒸気を含む空気と外気との換気をより低電力で、簡便な構造で実現でき、短時間にガスフラックスと表層大気中のガス濃度を測定することができる。 That is, in the gas monitoring device disclosed in the present application, if necessary, the ventilation control means is disposed between the inlet of the measurement chamber and the gas concentration detecting means, and the inlet is slightly negative. It is formed by an on-off valve that is open at a pressure (for example, about 1 mm water column), and a discharge port disposed on the downstream side of the air flow in the measurement chamber has a slight air pressure (for example, It can be formed with an on-off valve that opens in about 1 mm water column). Thus, according to the gas monitor device disclosed in the present application, the ventilation control means is disposed at the connection portion between the measurement chamber and the exhaust chamber, and at the connection portion between the measurement chamber and the inlet cylinder, The measurement chamber is ventilated so that the incoming airflow is generally downward and the exhaust airflow is generally horizontal (radial direction). That is, the inlet and outlet are automatically opened and closed by the mechanical action of the air flow of the measurement chamber, and the air containing the diffused gas and water vapor inside the measurement chamber and the outside air are not controlled by external control. Ventilation can be realized with a simple structure with lower power, and the gas flux and gas concentration in the surface air can be measured in a short time.

本願請求項4に開示するガスモニター装置は、前記測定チャンバが、円形状の下方開口部分からなる半円球体で形成され、当該半円球体の頂部に前記入気口を配設されると共に、当該半円球体の外周辺近傍に排気口が配設されるものである。このように、前記測定チャンバが、円形状の下方開口部分からなる半円球体で形成され、当該半円球体の頂部に前記入気口を配設されると共に、当該半円球体の外周辺近傍に排気口が配設されることから、前記測定チャンバ内の気流が均一化され易くなることとなり、より短時間で、ガスフラックスと周辺の表層大気中の当該ガス濃度を測定することができる。   In the gas monitor disclosed in claim 4 of the present application, the measurement chamber is formed of a semicircular sphere having a circular lower opening, and the inlet is disposed at the top of the semispherical sphere. An exhaust port is disposed in the vicinity of the outer periphery of the semispherical sphere. As described above, the measurement chamber is formed of a semispherical sphere having a circular lower opening portion, and the inlet is disposed at the top of the semispherical sphere, and the vicinity of the outer periphery of the semispherical sphere. Since the exhaust port is disposed in the air outlet, the air flow in the measurement chamber is easily made uniform, and the gas flux and the gas concentration in the surrounding surface air can be measured in a shorter time.

すなわち、本願に開示するガスモニター装置は、必要に応じて、前記測定チャンバが、円形状の下方開口部分からなる半円球体で形成され、当該半円球体の頂部に前記入気口を配設されると共に、当該半円球体の外周辺近傍に排出口を配設されるものである。このように、本願に開示するガスモニター装置によれば、前記測定チャンバが例えば円形状の下方開口部分からなる半円球体で形成され、当該半円球体の頂部に前記入気口を配設されると共に、当該半円球体の外周辺近傍に排出口を配設されることから、前記測定チャンバ内の土壌などからの放散ガスを含む気流が、偏りなく、より速く均一化されることとなり、より高い効率性で、放散ガスのフラックスを短時間に測定することができる。 That is, in the gas monitor device disclosed in the present application, the measurement chamber is formed as a semicircular sphere having a circular lower opening portion as necessary, and the inlet is disposed at the top of the semispherical sphere. In addition, a discharge port is disposed in the vicinity of the outer periphery of the semispherical sphere. As described above, according to the gas monitoring device disclosed in the present application, the measurement chamber is formed of, for example, a semicircular sphere having a circular lower opening portion, and the inlet is disposed at the top of the semispherical sphere. In addition, since the discharge port is disposed in the vicinity of the outer periphery of the hemispherical body, the airflow including the diffused gas from the soil or the like in the measurement chamber is uniformed more quickly without unevenness, With higher efficiency, the flux of the emitted gas can be measured in a short time.

本願請求項5に開示するガスモニター装置は、前記ガス濃度検出手段によって測定する土壌または岩石層から放散される前記ガスフラックスと周辺の表層大気中の当該ガス濃度における自然条件下での測定データの変動値を統計処理して求めたバックグランドの確率密度分布に対し、危険率を設定して土壌または岩石層からのガス放散量の異常を判断し警報を出力するものである。このように、前記ガス濃度検出手段による測定データに基づいて、自然条件下での変動データの統計値である確率密度分布に対して危険率を設定して土壌または岩石層からのガスフラックスまたは表層大気中の当該ガス濃度の異常を判断し警報を出力することから、異常が発生した場合に迅速に警報がされることとなり、放散ガスによる危険を回避することができる。   The gas monitoring device disclosed in claim 5 of the present invention is a method for measuring data under natural conditions in the gas flux diffused from the soil or rock layer measured by the gas concentration detection means and the gas concentration in the surrounding surface atmosphere. A risk factor is set for the background probability density distribution obtained by statistically processing the fluctuation value, an abnormality in gas emission from the soil or rock layer is judged, and an alarm is output. Thus, based on the measurement data by the gas concentration detection means, the gas flux from the soil or rock layer or the surface layer is set by setting the risk factor for the probability density distribution which is the statistical value of the fluctuation data under natural conditions. Since the abnormality of the gas concentration in the atmosphere is judged and an alarm is output, an alarm is promptly issued when an abnormality occurs, and the danger caused by the emitted gas can be avoided.

本発明の土壌または岩石層表面のガスフラックス及び周辺の表層大気中の当該ガス濃度を測定するガスモニター装置は、表層土壌または岩石に接触させて置かれた測定チャンバに周辺の表層大気(外気)を入気させる入気口と入気開閉弁及び測定チャンバ内部空気を排気するための適切な位置に複数の排気口に電磁力で作動する機械式開閉弁あるいは内部の空気流の状況によって開閉するフィルム開閉弁を具備し、開閉弁を全て閉じることで土壌または岩石表層面から放散されるガスを測定チャンバ内部に留めると同時に換気制御手段によって均一な放散ガス濃度に撹拌・混合する内部循環モードと、開閉弁を全て開けることで周辺の表層大気から新鮮外気を測定チャンバ内に導入すると共に放散ガスを含む測定チャンバ内の空気を外部に排出する換気モードを適切な時間サイクルで切り替えて、それぞれのモードにおいてチャンバ内に具備した1個のガス濃度検出手段による測定チャンバ内の空気中の当該ガス濃度の測定データに基づき土壌または岩石層から放散されるガスフラックス及び表層大気中のガス濃度を交互に測定する方法とガスモニター装置及び放散ガスの異常を判定する警報システムを特徴とする。 The gas monitor device for measuring the gas flux on the surface of the soil or rock layer of the present invention and the concentration of the gas in the surrounding surface atmosphere is a surrounding surface atmosphere (outside air) in a measurement chamber placed in contact with the surface soil or rock. Inlet and outlet valves that allow air to enter, and a mechanical on-off valve that is operated by electromagnetic force at multiple exhaust ports at appropriate positions for exhausting the air inside the measurement chamber, or opens and closes depending on the state of internal air flow An internal circulation mode that has a film on-off valve and that closes all the on-off valves to keep the gas emitted from the surface of the soil or rock surface inside the measurement chamber and at the same time agitates and mixes to a uniform emission gas concentration by the ventilation control means Open all the open / close valves to introduce fresh outside air from the surrounding surface layer atmosphere into the measurement chamber and exhaust the air in the measurement chamber containing the emitted gas to the outside. The ventilation mode to be switched is switched at an appropriate time cycle, and in each mode, the gas is detected from the soil or rock layer based on the measurement data of the gas concentration in the air in the measurement chamber by one gas concentration detection means provided in the chamber. It is characterized by a method for alternately measuring the gas flux and the gas concentration in the surface layer atmosphere, a gas monitoring device, and an alarm system for judging abnormalities in the emitted gas.

本発明の換気モードと内部循環モードを切り替えることができる機能を有した測定チャンバを具備するガスモニター装置と測定方法により、土壌または岩石層表面から放散されるガスフラックス並びに周辺の表層大気中の当該ガス濃度を約30秒以上の時間サイクルで交互に連続的に長期測定することができる。 According to the gas monitor apparatus and the measurement method having a measurement chamber having a function capable of switching between the ventilation mode and the internal circulation mode of the present invention, the gas flux emitted from the surface of the soil or the rock layer and the surrounding surface atmosphere The gas concentration can be measured continuously over a long period of time with a time cycle of about 30 seconds or more.

とくに、測定チャンバ内に、土壌または岩石層表面から放散されるガスを収集し均一ガス濃度に撹拌する内部循環モードと周辺表層大気中の新鮮外気を導入して当該放散ガスを含む空気及び水蒸気を排出する換気モードの2種類のモードを約30秒以上に設定した時間サイクルで切り替えることにより、換気モードにおいて測定チャンバ内に下部の土壌または岩石層から蒸散する水蒸気を定期的に排出し、ガスモニター装置およびその内部温度を周辺の表層大気温度と同一にするように熱伝達がなされることから、モニター装置を構成する内壁面やガス濃度センサーのセンシング部分への結露や凍結を防止でき、ガス濃度センサーなどのガス濃度検出手段の健全性と寿命を延ばすことができる。 In particular, an internal circulation mode that collects gas released from the surface of the soil or rock layer and stirs it to a uniform gas concentration and fresh outside air in the surrounding surface layer atmosphere are introduced into the measurement chamber, and air and water vapor containing the released gas are introduced. By switching between the two modes of the ventilation mode to be discharged with a time cycle set to about 30 seconds or more, water vapor that evaporates from the lower soil or rock layer is periodically discharged into the measurement chamber in the ventilation mode, and the gas monitor Since heat transfer is performed so that the temperature of the device and its internal temperature are the same as the ambient surface air temperature, it is possible to prevent condensation and freezing on the inner wall of the monitor device and the sensing part of the gas concentration sensor. The soundness and life of gas concentration detection means such as sensors can be extended.

また、本発明によって、土壌または岩石表層からのガスフラックスを測定すると同時に表層大気中のガス濃度を約30秒以上に設定したサイクルで交互に測定することで、高い信頼性をもつガス漏出の有無を判定するバックグランドデータを長期に継続して測定でき、かつ測定された大気中のガス濃度データに基づいてガス濃度センサーの校正あるいは健全性の判定データとしても用いることができる。例えば、大気中の二酸化炭素ガス濃度が通常340ppm〜400ppmであることを利用し、出力から濃度に変換するための係数あるいはゼロ濃度の出力値の調整が可能である。ただし、本発明の測定法では当該ガスの絶対濃度ではなく、濃度データの時間勾配に基づいてガスフラックスを求める方式であることから、ガス濃度センサー出力のズレによる精度低下が極めて小さい特徴をもつ。 In addition, according to the present invention, by measuring the gas flux from the surface of the soil or rock surface and simultaneously measuring the gas concentration in the surface atmosphere in a cycle set to about 30 seconds or more, there is no gas leakage with high reliability. Can be measured continuously for a long period of time, and can also be used as calibration data for the gas concentration sensor or as soundness determination data based on the measured gas concentration data in the atmosphere. For example, using the fact that the carbon dioxide gas concentration in the atmosphere is usually 340 ppm to 400 ppm, it is possible to adjust a coefficient for converting from output to concentration or an output value of zero concentration. However, since the measurement method of the present invention is a method for obtaining the gas flux based on the time gradient of the concentration data, not the absolute concentration of the gas, the accuracy drop due to the deviation of the gas concentration sensor output is extremely small.

さらに、検出対象とする当該のガス濃度センサーを最低一種類、一個具備すればよいが、例えば二酸化炭素及びメタンなどの複数のガス濃度検出手段を具備することで複数の放散ガスのフラックスと大気中濃度を同時に測定できる。地中貯留のために分離・回収された二酸化炭素に水素ガスなどが含まれる場合にも水素センサーとすることもできる。測定チャンバ内に同一ガス濃度センサーを複数設置することで、センサーの故障に対するバックアップシステムを構築することも可能である。また、ガス濃度検出手段は測定チャンバ内部のガス濃度を内部に設置してガス濃度センサーで直接測定する構成でもよいが、測定チャンバ内の空気をその外部に誘引して測定する構成でもよい。 Furthermore, it is sufficient to provide at least one type of the gas concentration sensor to be detected. For example, by providing a plurality of gas concentration detection means such as carbon dioxide and methane, a plurality of flue gas fluxes and the atmosphere Concentration can be measured simultaneously. A hydrogen sensor can also be used when hydrogen gas or the like is contained in carbon dioxide separated and collected for underground storage. By installing a plurality of the same gas concentration sensors in the measurement chamber, it is possible to construct a backup system against sensor failure. In addition, the gas concentration detection means may be configured to directly measure the gas concentration inside the measurement chamber and directly measure with the gas concentration sensor, but may be configured to attract and measure the air in the measurement chamber to the outside.

以上、本発明によれば、二酸化炭素やメタンなどの地球温暖化ガスの地下の土壌層あるいは岩石の表面層から大気中へ放出されるガスフラックスの測定に関し、測定チャンバに簡潔な機構を具備することによって換気モードと内部循環モードを実現し、結露などの不具合を防ぎつつ当該ガスのガスフラックスと大気中ガス濃度を、低コストかつ低電力で長期間測定する測定方法とガスモニター装置及び漏出検出システムを提供することができる。 As described above, according to the present invention, the measurement chamber has a simple mechanism for measuring the gas flux released from the underground soil layer or rock surface layer of global warming gas such as carbon dioxide and methane into the atmosphere. Measurement method, gas monitor device, and leak detection for realizing long-term measurement of gas flux and atmospheric gas concentration of the gas at low cost and low power while realizing ventilation mode and internal circulation mode. A system can be provided.

チャンバにおける内部循環モードでの土壌からのガスフラックスの測定状況Measurement status of gas flux from soil in internal circulation mode in chamber チャンバにおける換気モードでの土壌からのガスフラックスの測定状況を示す図である。It is a figure which shows the measurement condition of the gas flux from the soil in the ventilation mode in a chamber. 機械式あるいは電磁気を利用した入気・排気口の弁機能によって換気モードと内部循環モードを制御し、警報を出力するシステムの全体を示す図である。図中の実線の矢印は開閉弁の制御と電力供給ライン並びに警報回路との情報ラインを表し、破線の矢印はガス濃度センサーへの電力供給と測定信号ラインを表す。It is a figure which shows the whole system which controls a ventilation mode and an internal circulation mode by the valve function of the air intake / exhaust port using a mechanical type or electromagnetic, and outputs an alarm. The solid line arrows in the figure represent the control line of the on-off valve, the power supply line, and the information line for the alarm circuit, and the broken line arrows represent the power supply to the gas concentration sensor and the measurement signal line. ファン及びフィルムを用いた入気・排気口の弁機能によって換気モードを実現した実施例を示す図である。It is a figure which shows the Example which implement | achieved ventilation mode by the valve function of the air intake / exhaust port using a fan and a film. ファン及びフィルムを用いた入気・排気口の弁機能によって換気モードが実現した実施例を示す図である。It is a figure which shows the Example which ventilation mode was implement | achieved by the valve function of the air intake / exhaust port using a fan and a film. 実際のフィールドでのチュンバー内部の二酸化炭素濃度の時間変化曲線の測定例を示す図である。It is a figure which shows the example of a measurement of the time change curve of the carbon dioxide concentration inside the chamber in the actual field. 九州大学伊都キャンパスの試験フィールドで測定した土壌水分量及び土壌温度と二酸化炭素ガスフラックスの関係についての測定結果を示した図である。データの一部として、カナダ・エドモントン市での測定結果も含めて示している。It is the figure which showed the measurement result about the relationship between the soil moisture content measured in the test field of Kyushu University Ito campus, soil temperature, and a carbon dioxide gas flux. As part of the data, the measurement results in Edmonton, Canada are included.

(第1の実施形態)
以下、本発明を実施するための形態を図1及び図2に示す。まず、図1及び図2を参照して、本実施形態に係るガスフラックス及び表層大気中のガス濃度を測定するガス濃度モニター装置の全体構成について説明する。
(First embodiment)
Hereinafter, the form for implementing this invention is shown in FIG.1 and FIG.2. First, with reference to FIG. 1 and FIG. 2, the overall configuration of a gas concentration monitoring apparatus for measuring the gas flux and the gas concentration in the surface air according to the present embodiment will be described.

本実施形態に係るガスモニター装置は、図1に示すように、降雨対策としてトレンチBが施された土壌または岩石層Aから放散されるガスに含まれる検出対象ガスのフラックスを測定するガス濃度検出装置であって、検出対象の前記土壌または岩石層Aに対して開放された底面部を有し、当該開放された底面開口部2aを介して前記土壌または岩石層Aから前記放散ガスを収集し、測定チャンバ1を閉鎖した状態で内部循環及び換気制御手段4(ファン)で下部からの放散ガスを撹拌・混合し、ガス濃度検出手段3によって測定したガス濃度の初期時間勾配の算定値からガスフラックスを測定する。前記測定チャンバ1には当該放散ガスが含まれる測定チャンバ内の空気を外部に排出する排気口2b及び外気を導入する入気口2cを備え、前記測定チャンバ1と前記排気口2b及び前記入気口2cを介して連通し、外気に対して開放された外気開口部15a、15b、8a、及び8bを有する。ここで、外気開口部15a及び外気開口部15bを纏めて入気筒7を構成し、外気開口部8a及び外気開口部8bを纏めて大気への排出口8を構成し、前記入気筒7と排出口8は電気信号によって作動する機械式の入気開閉弁5及び排気口2bと排気開閉弁6によって連動して空気の流れを制御する。これにより、当該外気開口部13a及び14a、入気チャンバ21と入気筒7、入気口2cを介して外気を前記測定チャンバ1に導入すると共に、前記測定チャンバ1内の放散ガスを含む空気を排気チャンバ20を介して外部に排出し、前記測定チャンバ1の内部に配設されたガス濃度検出手段3によって測定チャンバ1に導入された周辺表層大気中のガス濃度を測定する。図1および図2における入気口2cと入気開閉弁5は一個所のみとしているが、環境条件によっては複数個所あってもよく、図2に示す前記測定チャンバー1の入気方向と排気方向を逆転させる機構とすることでもよい。   As shown in FIG. 1, the gas monitor apparatus according to the present embodiment is configured to detect a gas concentration to measure a flux of a detection target gas contained in a gas diffused from soil or a rock layer A to which a trench B is applied as a rain countermeasure. An apparatus having a bottom surface open to the soil or rock layer A to be detected, and collecting the emitted gas from the soil or rock layer A through the open bottom opening 2a. From the calculated value of the initial time gradient of the gas concentration measured by the gas concentration detection means 3, the gas released from the lower part is stirred and mixed by the internal circulation and ventilation control means 4 (fan) with the measurement chamber 1 closed. Measure the flux. The measurement chamber 1 is provided with an exhaust port 2b for exhausting the air in the measurement chamber containing the diffused gas to the outside and an inlet port 2c for introducing outside air, and the measurement chamber 1, the exhaust port 2b, and the intake air are provided. It has outside air openings 15a, 15b, 8a, and 8b that communicate with each other through the mouth 2c and are open to the outside air. Here, the outside air opening portion 15a and the outside air opening portion 15b are collectively configured as the inlet cylinder 7, and the outside air opening portion 8a and the outside air opening portion 8b are collectively configured as the exhaust port 8 to the atmosphere. The outlet 8 controls the flow of air in conjunction with the mechanical inlet / outlet valve 5, the exhaust port 2 b and the exhaust on / off valve 6, which are actuated by electric signals. As a result, outside air is introduced into the measurement chamber 1 through the outside air openings 13a and 14a, the inlet chamber 21 and the inlet cylinder 7, and the inlet 2c, and air containing the diffused gas in the measuring chamber 1 is introduced. The gas concentration in the surrounding surface atmosphere introduced into the measurement chamber 1 is measured by the gas concentration detection means 3 which is discharged to the outside through the exhaust chamber 20 and disposed inside the measurement chamber 1. 1 and 2 have only one inlet 2c and an inlet on / off valve 5. However, there may be a plurality of inlets depending on environmental conditions. The inlet and exhaust directions of the measurement chamber 1 shown in FIG. A mechanism for reversing the rotation may be used.

電気的信号で開閉を制御する機械式開閉弁を使用しない実施例として、測定チャンバ1の内部に正逆回転制御可能ファン41を備え、前記ファン41が前記測定チャンバ1の内部における入気口2cと前記ガス濃度検出手段3との間に配設され、前記測定チャンバ1の排気口2bが、前記正逆回転制御可能ファン41の換気送風方向の下流側に配設され、負圧で前記入気口2cの入気フィルム開閉弁200が開くと共に、正の風圧で前記排気口2bの排気フィルム開閉弁210も開くことで換気モードとなり、正逆回転制御可能ファン41を反対方向の気流となるように作動させるときには、入気フィルム開閉弁200及び排気フィルム開閉弁210が共に閉じ、測定チャンバ1の内部が空気流が循環する内部循環モードに転換する。 As an embodiment that does not use a mechanical on-off valve that controls opening and closing by an electrical signal, a fan 41 capable of forward / reverse rotation control is provided inside the measurement chamber 1, and the fan 41 is an inlet 2 c inside the measurement chamber 1. The exhaust port 2b of the measurement chamber 1 is disposed on the downstream side of the ventilating air blowing direction of the forward / reverse rotation controllable fan 41, and the input is made with a negative pressure. When the air inlet film opening / closing valve 200 of the air opening 2c is opened and the exhaust film opening / closing valve 210 of the air outlet 2b is also opened with a positive wind pressure, the ventilation mode is set, and the forward / reverse rotation controllable fan 41 becomes an air flow in the opposite direction. When operating in this manner, both the inlet film on-off valve 200 and the exhaust film on-off valve 210 are closed, and the inside of the measurement chamber 1 is switched to the internal circulation mode in which the air flow circulates.

なお、本実施形態は、例えば、CCS事業において、地中貯留された二酸化炭素の地上への漏出モニター装置として使用することができるが、これに限定されるものではなく、各種のガスフラックスを検出することが可能である。例えば、石油増進回収法による石油・天然ガスの開発生産地域やシェールガス開発地域などにおける、水、二酸化炭素、炭化水素ガスなどを圧入する場合などにおいても、対象の貯留層から地表面への漏洩を検出するガスモニター装置として同様に適用できる。 In addition, although this embodiment can be used as a leak monitor device to the ground of carbon dioxide stored underground, for example in a CCS business, it is not limited to this and detects various gas fluxes Is possible. For example, leakage of water, carbon dioxide, hydrocarbon gas, etc. from the target reservoir to the ground surface in the oil / natural gas development / production area or shale gas development area by the Enhanced Oil Recovery Law It can be similarly applied as a gas monitor device for detecting the above.

地下の地層に接続する土壌または岩石層A上に固定された測定チャンバ1の上部に設けた入気口2cと入気開閉弁5及び測定チャンバ1の側面下方に2から4か所程度の複数個所に排気口2bと排気開閉弁6を設け、測定チャンバ1の内側に内部循環及び換気制御手段4及びガス濃度検出手段3を配置して測定系を構成する。測定チャンバ1の形状は、下部の土壌または岩石層との接触する底部開口面積S(m)とその内部容積V(m)が規定できる円筒,四角形、半球などの種々の形状を有してもよい。 An inlet 2c and an inlet opening / closing valve 5 provided in the upper part of the measurement chamber 1 fixed on the soil or rock layer A connected to the underground stratum A and a plurality of two to four below the side of the measurement chamber 1 An exhaust port 2b and an exhaust opening / closing valve 6 are provided at a location, and an internal circulation and ventilation control means 4 and a gas concentration detection means 3 are arranged inside the measurement chamber 1 to constitute a measurement system. The shape of the measurement chamber 1 has various shapes such as a cylinder, a quadrangle, and a hemisphere capable of defining the bottom opening area S (m 2 ) that contacts the lower soil or rock layer and the internal volume V (m 3 ). May be.

図1は測定チャンバ1がその下部の土壌または岩石層Aとの接触面を除いて遮断された閉鎖系での内部循環モードを表す。同図中の矢印はチャンバ内の空気の循環流れを示す。測定チャンバ1の上部に設けた入気開閉弁5及び測定チャンバ1の側面下方に2から4か所程度の複数個所に設けた排気開閉弁6a、6bが全て閉じられた状況で測定チャンバ1の底面開口部2aから内部に放散されるガスと内部空気が一様な濃度になるように内部の換気制御手段4を稼働させて撹拌・混合する内部循環モードで、その開始時刻から測定チャンバ1の内部空気中の当該ガス濃度をガス濃度検出手段3で適当な時間測定し、初期ガス濃度時間勾配を導出することで、当該のガスフラックスを以下の数式1から算定する。 FIG. 1 represents an internal circulation mode in a closed system in which the measurement chamber 1 is interrupted except for the contact surface with the soil or rock layer A below it. The arrows in the figure indicate the circulating flow of air in the chamber. The inlet / outlet valve 5 provided at the top of the measurement chamber 1 and the exhaust opening / closing valves 6a and 6b provided at a plurality of two to four locations below the side surface of the measurement chamber 1 are all closed. In the internal circulation mode in which the internal ventilation control means 4 is operated and stirred and mixed so that the gas diffused from the bottom opening 2a and the internal air have a uniform concentration, from the start time of the measurement chamber 1 The gas concentration in the internal air is measured for an appropriate time by the gas concentration detection means 3, and the initial gas concentration time gradient is derived, whereby the gas flux is calculated from Equation 1 below.

Gflux: 土壌または岩石層から放散されるガスフラックス(mL/s/m2)
Cchamber: 測定チャンバ内の空気中の放散ガス濃度 (ppm)
t : 内部循環モードに設定開始した時刻からの経過時間 (s)
V : 測定チャンバの内部容積 (m3)
S : 測定チャンバ下部の土壌または岩石層と接触する底部開口面積 (m2)
G flux : Gas flux emitted from soil or rock layer (mL / s / m 2 )
Cchamber: Emission gas concentration (ppm) in the air in the measurement chamber
t: Elapsed time from the start of setting the internal circulation mode (s)
V: Internal volume of measurement chamber (m 3 )
S: Open area of the bottom (m 2 ) in contact with the soil or rock layer below the measurement chamber

図2は測定チャンバ1の内部における空気を大気中の空気に入れ替える換気モードが実現された状況を示す。同図中の矢印はモニター装置全体と測定チャンバ1の内部における空気の流れ方向を示す。測定チャンバ1の上部に設けた入気口2c及び入気開閉弁5は入気筒7に接続し、スクリーン(フィルター)9a〜9e、入気筒カバー10、入気筒防護カバー12、上部防御筒13により、雨や雪あるいはゴミを取り除いて表層大気を導入し、測定チャンバ1下方に設けた排気口2bと排気開閉弁6a及び6bから下部防御筒14の側面に開けた大気への排出口8a及び8b、入気筒カバー10の構成によって、雨などの天候に左右されずに測定チャンバ1の内部空気を周辺大気へ排出する換気モードとなる。測定チャンバ1の換気が終了する時刻において、その内部に設置されたガス濃度検出手段3によって周辺表層大気中の当該ガス濃度が測定される。図2に示すガスモニター装置に複数のスクリーン(フィルター)9a〜9eを具備した構成を示しているが、モニター装置が設置される地域の環境条件に応じて、気流の経路に9a〜9eなどの前記スクリーン(フィルター)を適宜挿入し、清浄な表層大気(外気)を測定チャンバ1に測定精度に影響を与えない十分に小さな圧力損失で導くように配置する。 FIG. 2 shows a situation where a ventilation mode is realized in which the air inside the measurement chamber 1 is replaced with air in the atmosphere. The arrows in the figure indicate the direction of air flow in the entire monitor device and in the measurement chamber 1. The inlet 2c and the inlet on / off valve 5 provided at the upper part of the measurement chamber 1 are connected to the inlet cylinder 7, and are connected by screens (filters) 9a to 9e, an inlet cylinder cover 10, an inlet cylinder protection cover 12, and an upper protection cylinder 13. The surface air is introduced by removing rain, snow or dust, and the exhaust port 8a and 8b opened to the side of the lower defense cylinder 14 from the exhaust port 2b and the exhaust on-off valves 6a and 6b provided below the measurement chamber 1. According to the configuration of the in-cylinder cover 10, a ventilation mode is set in which the internal air of the measurement chamber 1 is discharged to the surrounding atmosphere without being influenced by weather such as rain. At the time when the ventilation of the measurement chamber 1 ends, the gas concentration in the surrounding surface layer atmosphere is measured by the gas concentration detection means 3 installed in the measurement chamber 1. Although the gas monitor apparatus shown in FIG. 2 includes a plurality of screens (filters) 9a to 9e, depending on the environmental conditions in the area where the monitor apparatus is installed, the air flow path includes 9a to 9e. The screen (filter) is appropriately inserted and arranged so that clean surface air (outside air) is guided to the measurement chamber 1 with a sufficiently small pressure loss that does not affect the measurement accuracy.

(第2の実施形態)
図3は、電磁力を利用して開閉する機械式の入気開閉弁50及び排気開閉弁60の作動を制御することで換気モードと内部循環モードを実現するシステム例を示したものである。本実施形態に係るガスモニター装置は、上記第1の実施形態で述べた構成に加え、さらに、前記測定チャンバ1が、例えば円形状の下方開口部分からなる半円球体で形成され、当該半円球体の頂部に前記入気口2cとしての入気開閉弁50を配設されると共に、当該半円球体の外周辺近傍に排気口2bとしての排気開閉弁60を配設されるものである。測定チャンバ1の形状は半円球体状のもののほか、下部の面積Sと内部容積Vが判明している円筒や四角柱の形状をもつものでもよい。
(Second Embodiment)
FIG. 3 shows an example of a system that realizes the ventilation mode and the internal circulation mode by controlling the operation of the mechanical intake opening / closing valve 50 and the exhaust opening / closing valve 60 that are opened and closed using electromagnetic force. In the gas monitor device according to the present embodiment, in addition to the configuration described in the first embodiment, the measurement chamber 1 is formed of a semicircular sphere including, for example, a circular lower opening portion. An inlet on / off valve 50 as the inlet 2c is provided at the top of the sphere, and an exhaust on / off valve 60 as an outlet 2b is provided in the vicinity of the outer periphery of the semicircular sphere. The shape of the measurement chamber 1 may be not only a semispherical shape but also a cylindrical or quadrangular prism shape whose bottom area S and internal volume V are known.

モニター装置全体の計測データ処理及びモード切替制御装置100によって、排気弁及び入気弁の制御・電源回路120を制御することで電磁力によって開閉を制御した入気開閉弁50及び排気開閉弁60を操作することで、換気モードと内部循環モードをある時間サイクルで交互に実現する。このとき、また換気制御手段4による空気流は、測定チャンバ1の上部から下部に向かう流れであり、十分な換気流と内部循環流を実現できる性能をもつように設計される。ガス濃度検出手段3の電源と信号をガス濃度検出手段の計測アンプ及びデータ伝送に関わる回路110でガス濃度を信号としてモニター全体の計測データ処理及びモード切替制御装置100に伝送し、ガスフラックス及び大気中のガス濃度データが分析され、本体に記録するか、外部の回路へデータ転送を行う。機械式あるいは電磁気式の入気開閉弁50と排気開閉弁60の例として、電気信号によって開閉を駆動できる機械式シャッター弁あるいはバタフライ弁などが該当する。前記ガス濃度検出手段の計測アンプ及びデータ伝送に関わる回路110はガスフラックスの異常判定をする警報回路140に測定したガスフラックスと表層大気中のガス濃度データを伝送し、過去のバックグランドデータの変動特性の確率密度分布に照らして、適切な危険率を設定することで土壌または岩石層Aからのガスフラックスの異常に関わる警報信号を発するシステムを具備する。   The monitoring data processing and mode switching control device 100 of the entire monitoring device controls the exhaust valve / intake valve control / power supply circuit 120 to control the intake / exhaust valve 50 and the exhaust on / off valve 60 controlled to open and close by electromagnetic force. By operating, ventilation mode and internal circulation mode are realized alternately in a certain time cycle. At this time, the air flow by the ventilation control means 4 is a flow from the upper part to the lower part of the measurement chamber 1 and is designed to have a performance capable of realizing a sufficient ventilation flow and internal circulation flow. The power and signal of the gas concentration detection means 3 are transmitted to the measurement data processing and mode switching control device 100 of the entire monitor as a signal by the circuit 110 relating to the measurement amplifier and data transmission of the gas concentration detection means, and the gas flux and the atmosphere. The gas concentration data inside is analyzed and recorded in the main body or transferred to an external circuit. Examples of the mechanical or electromagnetic intake on / off valve 50 and the exhaust on / off valve 60 include a mechanical shutter valve or a butterfly valve that can be opened and closed by an electric signal. The circuit 110 relating to the measurement amplifier and data transmission of the gas concentration detecting means transmits the measured gas flux and the gas concentration data in the surface layer atmosphere to the alarm circuit 140 for judging the abnormality of the gas flux, and the fluctuation of the past background data. In light of the probability density distribution of the characteristics, a system is provided that issues an alarm signal related to an abnormality in gas flux from the soil or rock layer A by setting an appropriate risk factor.

機械式のの入気開閉弁50と排気開閉弁60を利用する場合は、測定チャンバ1の内部に設置する換気制御手段4の回転を変更することはとくに必要としない。また、測定チャンバ1内部に設置するガス濃度センサーは注目するガスの濃度センサーを用いればよく、それらを複数設置することでマルチガスモニター装置とすることも可能である。ただし、利用できる電力量に限りがある場合では、次節で示す図4及び図5に示す空気流の流体圧によってフィルムを変形させて弁の開閉機能を実現する装置構成をとってもよい。 When using the mechanical inlet / outlet valve 50 and the exhaust on / off valve 60, it is not particularly necessary to change the rotation of the ventilation control means 4 installed in the measurement chamber 1. The gas concentration sensor installed in the measurement chamber 1 may be a gas concentration sensor of interest, and a multi-gas monitor device can be formed by installing a plurality of them. However, when there is a limit to the amount of power that can be used, an apparatus configuration that realizes the valve opening / closing function by deforming the film by the fluid pressure of the airflow shown in FIGS.

図4及び図5は、電磁気力で作動する弁を使わずに換気モードと内部循環モードの切り替えを行うことが可能な測定チャンバ1の実施例を示したものである。前記測定チャンバ1の上部に配置した入気口2cの内側の両端にそれぞれ片止めされた薄く適度な弾力を持つ二枚のフィルムを用いた入気フィルム開閉弁200を、測定チャンバ1の下部側面の排気口61の外側から片止めした薄いフィルムを用いた排気フィルム開閉弁210を具備することにより入気と排気を制御する。これらのフィルムは片端のみをチャンバに固定し、もう一方の端は自由端とすることにより、チャンバ内の換気制御手段4の空気流の方向によって負荷される微小な空気圧の変化により容易に開閉がなされる構造となる。 4 and 5 show an embodiment of the measurement chamber 1 capable of switching between a ventilation mode and an internal circulation mode without using a valve operated by electromagnetic force. An inlet film opening / closing valve 200 using two thin and moderately elastic films that are respectively fixed at both ends inside the inlet port 2c arranged at the upper part of the measuring chamber 1 is provided on the lower side surface of the measuring chamber 1. Intake and exhaust are controlled by including an exhaust film opening / closing valve 210 using a thin film that is stopped from the outside of the exhaust port 61. These films are fixed at one end only to the chamber, and the other end is set as a free end so that the film can be easily opened and closed by a minute change in air pressure applied depending on the direction of air flow of the ventilation control means 4 in the chamber. The structure is made.

図4に示すように、正逆回転制御可能ファン41で空気流を上部方向に誘起するときには前記入気フィルム開閉弁200が入気口2cを閉じ、前記排気フィルム開閉弁210が排気口61を閉じることで、測定チャンバ1の空気は内部循環する(内部循環モード)。この内部循環モードにおいては、土壌または岩石層Aから測定チャンバ1に放散されるガスは内部の循環気流によって撹拌・混合され、速やかに一様なガス濃度になる。内部循環モードが開始された時刻から約30〜100秒程度のガス濃度上昇データをモニター装置全体の計測データ処理及びモード切替制御装置100のメモリに記録し、線形近似式に基づく数値データ処理によってガス濃度勾配を求め、数式1からガスフラックスを計算する。 As shown in FIG. 4, when the air flow is induced upward by the forward / reverse rotation controllable fan 41, the inlet film opening / closing valve 200 closes the inlet 2c, and the exhaust film opening / closing valve 210 opens the outlet 61. By closing, the air in the measurement chamber 1 circulates internally (internal circulation mode). In this internal circulation mode, the gas diffused from the soil or rock layer A to the measurement chamber 1 is agitated and mixed by the internal circulation air flow, and quickly becomes a uniform gas concentration. Gas concentration increase data of about 30 to 100 seconds from the time when the internal circulation mode is started is recorded in the measurement data processing of the entire monitor device and the memory of the mode switching control device 100, and the gas is processed by numerical data processing based on a linear approximation formula. The concentration gradient is obtained, and the gas flux is calculated from Equation 1.

このとき、正逆回転制御可能ファン41で空気流を下部方向に誘起するとき、入気フィルム開閉弁200に具備された二枚のフィルムが下方に曲がって変形し、入気口2cから表層大気の空気が測定チャンバ1に誘引され、同時に複数の排気フィルム開閉弁210のフィルムも外側に変形することで排気口2bから測定チャンバ1の内部の空気が大気へ排出される換気モードとなる。このとき、チャンバ内に設置されたガス濃度検出手段3の周辺空気は表層大気と同一となるので、ガス濃度検出手段3によって表層大気中の当該ガス濃度を測定することができる。 At this time, when the air flow is induced in the lower direction by the forward / reverse rotation controllable fan 41, the two films provided in the air inlet film opening / closing valve 200 are bent downward and deformed, and the atmospheric air from the air inlet 2c is deformed. The air is attracted to the measurement chamber 1, and at the same time, the films of the plurality of exhaust film opening / closing valves 210 are also deformed to the outside, whereby the ventilation mode in which the air inside the measurement chamber 1 is exhausted from the exhaust port 2 b to the atmosphere. At this time, since the ambient air around the gas concentration detection means 3 installed in the chamber is the same as the surface atmosphere, the gas concentration detection means 3 can measure the gas concentration in the surface atmosphere.

本発明のガスフラックスの測定方法を具体化したプロトタイプのガスモニター装置を用いて、九州大学伊都キャンパスの実際の試験フィールドにおいて、同試験フィールドにおける土壌から放散される自然状態での二酸化炭素ガスフラックスのバックグランドデータを半球の直径18.5cm、高さ9.5cm、内部容積2.0リットルのチャンバを用いて約1年間測定した。 Using a prototype gas monitor device that embodies the gas flux measurement method of the present invention, in the actual test field of Kyushu University Ito Campus, the carbon dioxide gas flux in the natural state released from the soil in the test field Background data were measured for about one year using a chamber with a hemisphere diameter of 18.5 cm, a height of 9.5 cm, and an internal volume of 2.0 liters.

図6は、同じく九州大学伊都キャンパスの実際の試験フィールドにおいて、年間を通じた測定結果を土壌水分量並びに土壌温度に対する二酸化炭素ガスフラックスの変化をプロットしたものである。土壌温度が20℃での二酸化炭素ガスフラックスは平均2μmol/s/m の値を示し,温度上昇に伴いそのガスフラックス値が上昇する傾向が明らかである。これは,土壌中における微生物活動が温度の上昇にともなって活発化することで土壌中の二酸化炭素濃度を上昇させ,結果的に二酸化炭素ガスの分子拡散による大気への放散量が増加したためである。土壌温度のほか,土壌水分,地表の風速などの影響も認められた。また、一年を通じて、10μmol/s/m以上の測定値が観測されなかったことから、究極的な危険率の設定として、これの値以上の測定値が観測される場合には土壌中の自然状態での二酸化炭素ガス放散に何らかの他の排出源からの二酸化炭素が混入し異常が生じていると判断する警報システムを想定できる。 FIG. 6 is a plot of changes in carbon dioxide gas flux versus soil moisture content and soil temperature in the actual test field of Kyushu University Ito Campus. The carbon dioxide gas flux at a soil temperature of 20 ° C. shows an average value of 2 μmol / s / m 2 , and it is clear that the gas flux value tends to increase as the temperature rises. This is because the microbial activity in the soil is activated as the temperature rises, increasing the carbon dioxide concentration in the soil, resulting in an increase in the amount of carbon dioxide gas released into the atmosphere due to molecular diffusion. . In addition to soil temperature, effects such as soil moisture and surface wind speed were also observed. In addition, since measured values of 10 μmol / s / m 2 or more were not observed throughout the year, as a setting of the ultimate risk factor, when measured values exceeding these values are observed, It is possible to assume an alarm system that determines that an abnormality occurs due to carbon dioxide from some other emission source mixed in the carbon dioxide emission in the natural state.

二酸化炭素地下貯留の実施領域に近い陸域での二酸化炭素漏洩監視モニタリング及び二酸化炭素や炭化水素ガスなどを用いて石油・天然ガスの増産を図る採油増進回収(EOR)を実施する地域やシェールガス開発地域での二酸化炭素、メタンガスなどの炭化水素ガスの地上への漏洩監視モニタリング、並びに農業地帯の耕作地土壌の二酸化炭素ガスフラックスのモニタリングなど広範な利用に供することができる。 Regions and shale gas that carry out enhanced oil recovery and recovery (EOR) to monitor production and increase of oil and natural gas by using carbon dioxide and hydrocarbon gas, etc. It can be used for a wide range of applications, such as monitoring monitoring of leakage of hydrocarbon gas such as carbon dioxide and methane gas to the ground in the development area, and monitoring of carbon dioxide gas flux of cultivated soil in agricultural areas.

A 土壌または岩石層
B 降雨対策のためのトレンチ
1 測定チャンバ
2a 底面開口部
2b 排気口
2c 入気口
3 ガス濃度検出手段(ガス濃度センサーあるいは外部にあるガス濃度センサーへの空気供給手段)
4 換気制御手段(ファン)
5 入気開閉弁
6a、6b 排気開閉弁
7 入気筒
8a、8b 8 大気への排出口
9a、9b、9c、9d、9e スクリーン(フィルター)
10 入気筒カバー
11 測定チャンバ用防護カバー
12 入気筒防護カバー
13 上部防御筒
13a、13b 外気開口部
14 下部防御筒
14a、14b 外気開口部
15a、15b 外気開口部
20 排気チャンバ (8a、8b、9d、9e、11、14、14a、14bを纏めたもの)
21 入気チャンバ (9a、9b、9c、10、12、13、13a、13b、15a、15bを纏めたもの)
41 正逆回転制御可能ファン
50 電磁力を利用して開閉する入気開閉弁
60 電磁力を利用して開閉する排気開閉弁
100 モニター装置全体の計測データ処理及びモード切替制御装置
110 ガス濃度検出手段の計測アンプ及びデータ伝送に関わる回路
120 排気弁及び入気弁の制御・電源回路
130 チャンバ内部のファン制御・電源回路
140 ガスフラックスの異常判定をする警報回路
200 片止めされた薄い弾力性のある二枚のフィルムを用いた入気フィルム開閉弁(入気フィルム開閉弁)
210 片止めした薄い弾力性のあるフィルムを用いた排気フィルム開閉弁(排気フィルム開閉弁)
A Soil or rock layer B Trench for rain prevention 1 Measurement chamber 2a Bottom opening 2b Exhaust port 2c Inlet port 3 Gas concentration detection means (gas supply sensor or air supply means to external gas concentration sensor)
4 Ventilation control means (fan)
5 Inlet air on / off valve 6a, 6b Exhaust on / off valve 7 Inlet cylinder 8a, 8b 8 Air outlet 9a, 9b, 9c, 9d, 9e Screen (filter)
DESCRIPTION OF SYMBOLS 10 Entry cylinder cover 11 Measurement chamber protection cover 12 Entry cylinder protection cover 13 Upper defense cylinder 13a, 13b Outside air opening 14 Lower defense cylinder 14a, 14b Outside air opening 15a, 15b Outside air opening 20 Exhaust chamber (8a, 8b, 9d 9e, 11, 14, 14a, 14b)
21 Intake chamber (9a, 9b, 9c, 10, 12, 13, 13a, 13b, 15a, 15b)
41 Forward / reverse rotation controllable fan 50 Inlet on / off valve 60 that opens / closes using electromagnetic force Exhaust on / off valve 100 that opens / closes using electromagnetic force Measurement data processing and mode switching control device 110 for the entire monitoring device Measurement amplifier and circuit 120 related to data transmission control of exhaust valve and intake valve / power supply circuit 130 fan control / power supply circuit 140 inside the chamber alarm circuit 200 for judging abnormality of gas flux Inlet film on / off valve using two films (Inlet film on / off valve)
210 Exhaust film opening / closing valve (exhaust film opening / closing valve) using thin elastic film

Claims (5)

土壌または岩石層からの放散ガスに含まれる検出対象ガスの単位面積、単位時間当たりのガスフラックス及び表層大気中の当該ガス濃度を測定するガスモニター装置において、
前記検出対象の土壌または岩石層に接して開放された底面部と、排気のための排気口と、入気のための入気口と、当該排気口及び当該入気口のごく近傍位置に具備されるそれぞれの開閉弁と、内部循環と換気を行う換気制御手段と、外部に隔離されて前記放散ガスを排気する排気チャンバと、外部に隔離されて前記表層大気(外気)を入気する入気チャンバとを有し、
前記測定チャンバ下部の開放された底面部を介して、土壌から前記放散ガスを収集し、前記排気口及び前記入気口に具備されたそれぞれの前記開閉弁を閉じて前記換気制御手段の気流によって前記放散ガスを撹拌・混合させる内部循環モードを実現し、前記排気口及び前記排気チャンバを介して外気と連通し、同時に外気から前記入気チャンバ及び前記入気口を介して連通し、前記入気口を介して外気を導入すると共に、収集した前記放散ガスを含む空気を外部へ排出する換気モードの2種類の作動モードを実現する測定チャンバと、
前記測定用チャンバの内部に配設され、前記2種類の作動モードにおいて検出対象のガス濃度を測定するガス濃度検出手段とを備え、
前記ガス濃度検出手段が、前記測定チャンバ内の前記内部循環モードの初期ガス濃度時間勾配の算定値からガスフラックスを測定し、前記換気モードにおける大気中のガス濃度を交互に測定する
ことを特徴とするガスモニター装置。
In a gas monitor device that measures the unit area of the detection target gas contained in the gas emitted from the soil or rock layer, the gas flux per unit time and the gas concentration in the surface layer atmosphere,
Provided at a position near the detection target soil or rock layer, an opening for exhaust, an inlet for inlet, an inlet for the inlet, and the inlet and the inlet. Each open / close valve, ventilation control means for performing internal circulation and ventilation, an exhaust chamber that is isolated outside and exhausts the emitted gas, and an outside that is isolated outside and enters the surface atmosphere (outside air) A gas chamber,
The emitted gas is collected from the soil through the open bottom surface of the lower part of the measurement chamber, and the on-off valves provided at the exhaust port and the intake port are closed, and the air flow of the ventilation control means is used. An internal circulation mode that stirs and mixes the emitted gas is realized, communicates with the outside air through the exhaust port and the exhaust chamber, and simultaneously communicates from the outside air through the intake chamber and the intake port. A measurement chamber that realizes two types of operation modes, a ventilation mode that introduces outside air through a vent and exhausts the collected air containing the emitted gas to the outside;
A gas concentration detection means disposed inside the measurement chamber and measuring a gas concentration of a detection target in the two types of operation modes;
The gas concentration detection means measures gas flux from the calculated value of the initial gas concentration time gradient in the internal circulation mode in the measurement chamber, and alternately measures the gas concentration in the atmosphere in the ventilation mode. Gas monitor device.
請求項1に記載のガスモニター装置において、
前記測定チャンバを前記開閉弁によって閉鎖し、下部から放散される前記放散ガスを前記測定チャンバ内に留めて撹拌・混合する内部循環モード、並びに前記測定チャンバ内の放散ガスを含む空気を前記開閉弁、前記排気口及び前記排気チャンバを介して外部に排出すると共に前記入気チャンバ、前記入気口及び前記開閉弁を介して前記測定チャンバに表層大気を導入し、前記測定チャンバの内部空気の入れ替えを行い、地下からの放散される前記放散ガスや水蒸気を排除する前記開閉弁による換気モードを実現する換気制御手段を備える
ことを特徴とするガスモニター装置。
The gas monitor device according to claim 1,
An internal circulation mode in which the measurement chamber is closed by the on-off valve and the diffused gas diffused from below is kept in the measurement chamber and stirred and mixed, and air including the diffused gas in the measurement chamber is supplied to the on-off valve. The exhaust air is exhausted to the outside through the exhaust port and the exhaust chamber, and the surface air is introduced into the measurement chamber through the intake chamber, the intake port and the on-off valve, and the internal air of the measurement chamber is replaced. And a ventilation control means for realizing a ventilation mode by the on-off valve that eliminates the emitted gas and water vapor diffused from underground.
請求項1又は請求項2に記載のガスモニター装置において、
前記換気制御手段が、前記測定チャンバ内部における入気口と前記ガス濃度検出手段との間に配設され、
前記測定チャンバの排気口が、前記換気制御手段の空気流の下流方向側に配設され、
前記入気口が気流のわずかな負圧で開放状態となる開閉弁で形成されると共に、前記排気口が気流の風圧で開放状態となる開閉弁で形成する機構を有する前記測定チャンバを具備する
ことを特徴とするガスモニター装置。
In the gas monitor device according to claim 1 or 2,
The ventilation control means is disposed between the inlet in the measurement chamber and the gas concentration detection means;
An exhaust port of the measurement chamber is disposed on the downstream side of the air flow of the ventilation control means;
The measurement chamber has a mechanism in which the inlet is formed by an opening / closing valve that is opened by a slight negative pressure of the airflow, and the exhaust port is formed by an opening / closing valve that is opened by the wind pressure of the airflow. A gas monitor device characterized by that.
請求項3に記載のガスモニター装置において、
前記測定チャンバが、円形状の下方開口部分からなる半円球体で形成され、当該半円球体の頂部に前記入気口を配設されると共に、当該半円球体の外周辺近傍に排気口が配設される
ことを特徴とするガスモニター装置。
The gas monitor device according to claim 3, wherein
The measurement chamber is formed of a semispherical sphere having a circular lower opening portion, the inlet is disposed at the top of the semispherical sphere, and an exhaust outlet is provided near the outer periphery of the semispherical sphere. A gas monitor device that is arranged.
請求項1から4に記載のガスモニター装置において、
前記ガス濃度検出手段が、土壌または岩石層から放散される前記ガスフラックスと表層大気中のガス濃度における自然条件でのバックグランド測定データの変動値を統計処理し、危険率を設定して土壌または岩石層からのガスフラックスの異常を判断し警報を出力する
ことを特徴とするガスモニター装置。
The gas monitor device according to claim 1,
The gas concentration detection means statistically processes the fluctuation value of the background measurement data in the natural conditions in the gas flux emitted from the soil or rock layer and the gas concentration in the surface layer atmosphere, and sets the risk factor to the soil or A gas monitor device that judges an abnormality of gas flux from a rock layer and outputs an alarm.
JP2014078125A 2014-04-04 2014-04-04 Gas monitor device Active JP6380971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078125A JP6380971B2 (en) 2014-04-04 2014-04-04 Gas monitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078125A JP6380971B2 (en) 2014-04-04 2014-04-04 Gas monitor device

Publications (2)

Publication Number Publication Date
JP2015200525A true JP2015200525A (en) 2015-11-12
JP6380971B2 JP6380971B2 (en) 2018-08-29

Family

ID=54551909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078125A Active JP6380971B2 (en) 2014-04-04 2014-04-04 Gas monitor device

Country Status (1)

Country Link
JP (1) JP6380971B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271473A (en) * 2017-08-22 2017-10-20 中国科学院寒区旱区环境与工程研究所 The indoor simulated system that frozen-thaw process influences on soil environment
CN107478801A (en) * 2017-06-08 2017-12-15 赵明春 A kind of intelligent soil gas flux monitoring system and monitoring method
CN108828158A (en) * 2018-07-31 2018-11-16 北京市水科学技术研究院 The measuring device of Carbon flux under a kind of artificial rainfall condition
CN110312903A (en) * 2017-02-24 2019-10-08 开利公司 Methane security system for transport refrigeration unit
CN111398518A (en) * 2019-10-16 2020-07-10 杭州超钜科技有限公司 Gas flux continuous measurement system and measurement method thereof
CN111912747A (en) * 2019-05-09 2020-11-10 中国石油化工股份有限公司 Combustible gas safety control device, combustible gas diffusion coefficient measuring device and method
CN113447611A (en) * 2021-05-20 2021-09-28 南京云联信息科技有限公司 Gas detection early warning system and device based on industrial internet
CN113562116A (en) * 2021-07-16 2021-10-29 李泽恒 Atmospheric detection alarm device
CN113623006A (en) * 2021-09-22 2021-11-09 华北科技学院(中国煤矿安全技术培训中心) Gas concentration monitoring and early warning device for coal mine gas extraction
CN114354290A (en) * 2021-12-16 2022-04-15 中国科学院生态环境研究中心 Device and method for dynamically measuring greenhouse gas emission flux of water body
GB2601148A (en) * 2020-11-19 2022-05-25 Zorrox Consulting Ltd Gas measurement device
RU215699U1 (en) * 2021-12-06 2022-12-22 Федеральное государственное бюджетное учреждение науки Федеральный исполнительный центр "Карельский научный центр Российской академии наук" Chamber for measuring gas emissions from the soil surface
CN116642137A (en) * 2023-06-19 2023-08-25 兰州工业学院 Monitoring equipment for large-scale wind power base safety operation
CN116818440A (en) * 2023-08-28 2023-09-29 四川国齐检测技术有限公司 Indoor multi-point dynamic environment quality detection system and method
KR102604807B1 (en) * 2022-12-30 2023-11-22 주식회사 이알지 Environmental monitoring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333129A (en) * 1994-06-03 1995-12-22 Norin Suisansyo Hokuriku Nogyo Shikenjo Gas flux measuring method and apparatus
JP2001074680A (en) * 1999-09-08 2001-03-23 Teeiku Wan Sogo Jimusho:Kk Method and apparatus for indirect measurement of concentration of ozone contained in liquid or gas
JP2005055336A (en) * 2003-08-06 2005-03-03 Atsuo Nozaki Indoor chemical material measuring apparatus
WO2008070922A1 (en) * 2006-12-14 2008-06-19 Co2Crc Technologies Pty Ltd Flux chamber
JP2012233837A (en) * 2011-05-09 2012-11-29 Daiki Rika Kogyo Kk Generated gas detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333129A (en) * 1994-06-03 1995-12-22 Norin Suisansyo Hokuriku Nogyo Shikenjo Gas flux measuring method and apparatus
JP2001074680A (en) * 1999-09-08 2001-03-23 Teeiku Wan Sogo Jimusho:Kk Method and apparatus for indirect measurement of concentration of ozone contained in liquid or gas
JP2005055336A (en) * 2003-08-06 2005-03-03 Atsuo Nozaki Indoor chemical material measuring apparatus
WO2008070922A1 (en) * 2006-12-14 2008-06-19 Co2Crc Technologies Pty Ltd Flux chamber
JP2012233837A (en) * 2011-05-09 2012-11-29 Daiki Rika Kogyo Kk Generated gas detection device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11268472B2 (en) 2017-02-24 2022-03-08 Carrier Corporation Methane safety systems for transport refrigeration units
CN110312903A (en) * 2017-02-24 2019-10-08 开利公司 Methane security system for transport refrigeration unit
CN107478801A (en) * 2017-06-08 2017-12-15 赵明春 A kind of intelligent soil gas flux monitoring system and monitoring method
CN107271473A (en) * 2017-08-22 2017-10-20 中国科学院寒区旱区环境与工程研究所 The indoor simulated system that frozen-thaw process influences on soil environment
CN107271473B (en) * 2017-08-22 2023-06-30 中国科学院西北生态环境资源研究院 Indoor simulation system for influence of freeze thawing process on soil environment
CN108828158A (en) * 2018-07-31 2018-11-16 北京市水科学技术研究院 The measuring device of Carbon flux under a kind of artificial rainfall condition
CN108828158B (en) * 2018-07-31 2024-01-30 北京市水科学技术研究院 Measurement device for carbon flux under artificial rainfall condition
CN111912747A (en) * 2019-05-09 2020-11-10 中国石油化工股份有限公司 Combustible gas safety control device, combustible gas diffusion coefficient measuring device and method
CN111398518A (en) * 2019-10-16 2020-07-10 杭州超钜科技有限公司 Gas flux continuous measurement system and measurement method thereof
CN111398518B (en) * 2019-10-16 2022-09-27 杭州超钜科技有限公司 Gas flux continuous measurement system and measurement method thereof
GB2601148B (en) * 2020-11-19 2023-05-17 Zorrox Consulting Ltd A gas measurement device
GB2601148A (en) * 2020-11-19 2022-05-25 Zorrox Consulting Ltd Gas measurement device
WO2022106803A1 (en) * 2020-11-19 2022-05-27 Zorrox Consulting Limited A gas measurement device
CN113447611A (en) * 2021-05-20 2021-09-28 南京云联信息科技有限公司 Gas detection early warning system and device based on industrial internet
CN113447611B (en) * 2021-05-20 2024-01-26 南京云联信息科技有限公司 Gas detection early warning system and device based on industrial Internet
CN113562116A (en) * 2021-07-16 2021-10-29 李泽恒 Atmospheric detection alarm device
CN113623006A (en) * 2021-09-22 2021-11-09 华北科技学院(中国煤矿安全技术培训中心) Gas concentration monitoring and early warning device for coal mine gas extraction
CN113623006B (en) * 2021-09-22 2024-02-13 华北科技学院(中国煤矿安全技术培训中心) Gas concentration monitoring and early warning device for coal mine gas extraction
RU215699U1 (en) * 2021-12-06 2022-12-22 Федеральное государственное бюджетное учреждение науки Федеральный исполнительный центр "Карельский научный центр Российской академии наук" Chamber for measuring gas emissions from the soil surface
CN114354290A (en) * 2021-12-16 2022-04-15 中国科学院生态环境研究中心 Device and method for dynamically measuring greenhouse gas emission flux of water body
CN114354290B (en) * 2021-12-16 2023-11-24 中国科学院生态环境研究中心 Device and method for dynamically measuring water body greenhouse gas emission flux
KR102604807B1 (en) * 2022-12-30 2023-11-22 주식회사 이알지 Environmental monitoring system
CN116642137A (en) * 2023-06-19 2023-08-25 兰州工业学院 Monitoring equipment for large-scale wind power base safety operation
CN116642137B (en) * 2023-06-19 2023-10-20 兰州工业学院 Monitoring equipment for large-scale wind power base safety operation
CN116818440A (en) * 2023-08-28 2023-09-29 四川国齐检测技术有限公司 Indoor multi-point dynamic environment quality detection system and method
CN116818440B (en) * 2023-08-28 2023-11-10 四川国齐检测技术有限公司 Indoor multi-point dynamic environment quality detection system and method

Also Published As

Publication number Publication date
JP6380971B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6380971B2 (en) Gas monitor device
US11340146B2 (en) Gas sampling and management system
US10150146B2 (en) Portable gas monitor
Rochette et al. Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques
US8163242B2 (en) Portable gas monitor
JP5069772B2 (en) Non-saturated carbon dioxide concentration sensing device, monitoring system and monitoring method for a site where carbon dioxide is stored underground
US20130291622A1 (en) Gas flux measurement system and method
CN106198117B (en) The in-site detecting device and measuring method of gas parameter
US11872609B2 (en) Portable gas monitor
Jordan et al. Ecosystem respiration, methane and nitrous oxide fluxes from ecotopes in a rewetted extracted peatland in Sweden.
AU2007332157A1 (en) Flux chamber
KR101191862B1 (en) System and method for monitoring heat environments at the tidal flat in coastal wetland
Parravicini et al. Full-scale quantification of N2 O and CH4 emissions from urban water systems
Dahlbom The impact of permafrost degradation on methane fluxes: a field study in Abisko
US20230324264A1 (en) Air sampling system and method
KR100885973B1 (en) Carbon dioxide supply system using subsurface air
CA3202802A1 (en) Greenhouse gas emissions control
JP6066405B2 (en) Quantitative measurement system for oil-contaminated soil
Amonette et al. Measurement of advective soil gas flux: results of field and laboratory experiments with CO 2
Covington et al. Cave airflow patterns control calcite dissolution rates within a cave stream: Blowing Springs Cave, Arkansas, USA
Wali Methods for Understanding GHG Flux from Floodplain Wetlands in Dry Landscapes
KR102410859B1 (en) Surface seawater collection system for microplastics suspended on the surface of seawater
Mastepanov et al. Laboratory investigations of methane buildup in, and release from, shallow peats
Agnelli et al. Use of diffusive gradients in thin films (DGT) as an early detection tool of low‐intensity leakage from CO2 storage
Hartland et al. Geochemistry of Waipuna Cave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180725

R150 Certificate of patent or registration of utility model

Ref document number: 6380971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250