JP2015199999A - Manufacturing method of sinter ore - Google Patents

Manufacturing method of sinter ore Download PDF

Info

Publication number
JP2015199999A
JP2015199999A JP2014080945A JP2014080945A JP2015199999A JP 2015199999 A JP2015199999 A JP 2015199999A JP 2014080945 A JP2014080945 A JP 2014080945A JP 2014080945 A JP2014080945 A JP 2014080945A JP 2015199999 A JP2015199999 A JP 2015199999A
Authority
JP
Japan
Prior art keywords
slag
molded product
sintering
mass
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014080945A
Other languages
Japanese (ja)
Other versions
JP6295796B2 (en
Inventor
泰英 山口
Yasuhide Yamaguchi
泰英 山口
弘孝 佐藤
Hirotaka Sato
弘孝 佐藤
松村 勝
Masaru Matsumura
勝 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014080945A priority Critical patent/JP6295796B2/en
Publication of JP2015199999A publication Critical patent/JP2015199999A/en
Application granted granted Critical
Publication of JP6295796B2 publication Critical patent/JP6295796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of sinter ore capable of improving sinterability or molded article quality during recycling in a sintering process of a steel slag.SOLUTION: There is provided a manufacturing method of sinter ore including a compression molding process of compression molding a steel slag having the iron content of 15 mass% or more, the POcontent of less than 5.5 mass%, the SiOcontent of 20 mass% or less to prepare a molded article having volume of over 0.0063 cmand less than 2.3 cmand a granulation process of mixing and granulating an iron-containing raw material, an auxiliary material, a return ore, a dust and a carbonaceous material and a process for firing with a downward suction type sintering machine after mixing granular obtained in the granulation process.

Description

本発明は、焼結鉱製造方法に関する。   The present invention relates to a method for producing sintered ore.

製鉄プロセスにおいては、スラグ、ダスト、スラッジ等の様々な副生物が発生する。これら副生物の多くは製鉄所系内で鉄源として再利用されたり、路盤材やセメント原料として製鉄所系外で利用されたりしている。また、再利用が困難な性状を有する副生物は、単純に埋め立て処理されることも多い。しかし、近年の環境保護の観点より、埋め立て処理されるような副生物も利材化処理を施し、可能な限り再利用することが要求されている。   In the iron making process, various by-products such as slag, dust and sludge are generated. Many of these by-products are reused as iron sources within the steelworks, and are used outside the steelworks as roadbed materials and cement materials. In addition, by-products having properties that are difficult to reuse are often simply landfilled. However, from the viewpoint of environmental protection in recent years, by-products such as landfill processing are also required to be recycled and reused as much as possible.

一方、世界的な鉄鋼生産量の増加に伴って良質資源の枯渇化が進行しており、鉄源である鉄鉱石中に含まれる不純物、具体的にはSiOやAl成分の含有量は年々上昇している。副生物を製鉄所系内で再利用する場合、スラグの発生源となるこれら成分を増加させない利材化方法が望まれる。またSiOやAl成分が特に高い副生物は製鉄所系外での再利用を可能とする利材化方法が望ましいといえる。 On the other hand, with the global increase in steel production, the depletion of high-quality resources is progressing. Impurities contained in iron ore, which is the iron source, specifically the inclusion of SiO 2 and Al 2 O 3 components The amount is increasing year by year. When the by-products are reused in the steelworks system, it is desirable to use a material that does not increase these components that are the source of slag. Moreover, it can be said that a by-product method that enables reuse of by-products with particularly high SiO 2 and Al 2 O 3 components outside the steelworks system is desirable.

副生物のうち、高炉スラグはほぼ全量が路盤材やセメント原料として製鉄所系外で再利用されているのに対し、製鋼スラグは再利用が困難な性状であるものも多く存在し、再利用が高炉スラグほど進んでいないのが現状である。
例えば、製鋼スラグのうち、溶銑予備処理工程で発生する脱硫スラグは、鉄分と石灰分を主成分としている。このため、脱硫スラグは、焼結プロセスにおける焼結原料である鉄鉱石や石灰石の一部と置き換えて再利用するのが有効と考えられる。
Of the by-products, almost all of the blast furnace slag is reused outside the steelworks as roadbed material and cement raw material, whereas many steelmaking slags are difficult to reuse. Is not as advanced as blast furnace slag.
For example, among the steelmaking slag, desulfurization slag generated in the hot metal preliminary treatment step is mainly composed of iron and lime. For this reason, it is considered effective to reuse the desulfurized slag by replacing it with a part of iron ore and limestone which are sintering raw materials in the sintering process.

焼結プロセスにおいては、鉄分を含む粉状の鉄鉱石原料(「粉鉱石」とも称する)、石灰分を含有する副原料、炭素分を含有する炭材などは銘柄毎にヤードに野積みされる。野積みされたこれらの原料は、原料槽へと搬送され、成分等が均一となるように、事前に計画された配合比率にしたがって原料槽より切り出される。切り出された原料は、ドラムミキサー内において水と混練、造粒されて、各種原料の集合体(以下、「擬似粒子」という場合がある)からなる配合原料となって焼結機に供給される。造粒される擬似粒子は、0.25〜10mm程度の粒度分布を有し、その平均粒径が3〜5mm程度である。   In the sintering process, powdered iron ore raw materials containing iron (also referred to as “fine ore”), auxiliary materials containing lime, carbon materials containing carbon, etc. are piled up in the yard for each brand. . These stacked raw materials are transported to a raw material tank and cut out from the raw material tank in accordance with a pre-planned mixing ratio so that the components and the like are uniform. The cut out raw material is kneaded and granulated with water in a drum mixer, and is supplied to the sintering machine as a mixed raw material composed of an aggregate of various raw materials (hereinafter sometimes referred to as “pseudo particles”). . The pseudo particles to be granulated have a particle size distribution of about 0.25 to 10 mm, and the average particle size is about 3 to 5 mm.

配合原料は、焼結機パレット内に装入され、焼結原料充填層(または単に「充填層」とも称する)が形成される。そして、上記充填層の表面に点火炉で着火することにより、充填層表面に存在する擬似粒子中に含まれる炭材の燃焼が開始され、焼結反応が始まる。
充填層は、給鉱側から排鉱側へと移動する間に、パレットの下方から吸引される。これにより、空気が充填層上部から流入し、流入した空気は、充填層内を下部に向かって通過する。その結果、炭材の燃焼部分は高温の燃焼帯を形成し、その燃焼帯は充填層の上部から下部に向かって移動する。この燃焼帯の移動に伴い、燃焼帯で発生する熱によって周囲の擬似粒子が昇温され、溶融及び同化反応を起こして焼結が進行する。
この溶融及び同化反応は、鉄分と石灰分の界面における、カルシウムフェライト系の初期融液(融点約1210℃)の生成を起点し、その初期融液に周囲の擬似粒子が溶け込んで進行する。最終的に溶融及び同化反応を経た充填層は、焼結ケーキを形成する。そして、形成された焼結ケーキは、焼結機の排鉱部から排鉱される。
The blended raw material is charged into a sintering machine pallet to form a sintered raw material packed layer (or simply referred to as “filled layer”). And by igniting the surface of the said packed bed with an ignition furnace, the combustion of the carbonaceous material contained in the pseudo particle which exists in the packed bed surface is started, and a sintering reaction starts.
The packed bed is sucked from below the pallet while moving from the supply side to the discharge side. Thereby, air flows in from the upper part of the packed bed, and the introduced air passes through the packed bed toward the lower part. As a result, the combustion part of the carbon material forms a high-temperature combustion zone, and the combustion zone moves from the upper part to the lower part of the packed bed. Along with the movement of the combustion zone, the surrounding pseudo particles are heated by the heat generated in the combustion zone, causing melting and assimilation reactions and sintering.
This melting and assimilation reaction starts from the formation of a calcium ferrite-based initial melt (melting point: about 1210 ° C.) at the interface between iron and lime, and the surrounding pseudo particles dissolve and proceed. The packed bed that has finally undergone the melting and assimilation reaction forms a sintered cake. The formed sintered cake is discharged from the discharge portion of the sintering machine.

脱硫スラグを焼結原料としてリサイクルする方法に関して、以下のような技術がある。
脱硫スラグに、脱珪スラグを混合して脱水を行い、両スラグを破砕し磁選別を行うことで焼結原料として有効に利用する方法が開示されている(特許文献1)。
また、脱珪・脱硫スラグをそのSiO含有量に基づき、利用先を焼結機及び高炉のいずれかへの供給原料として振り分けを行う回収スラグの利用方法が開示されている(特許文献2)。
Regarding the method of recycling desulfurized slag as a sintering raw material, there are the following techniques.
A method is disclosed in which desulfurized slag is mixed with desiliconized slag and dehydrated, and both slags are crushed and magnetically sorted to effectively use them as sintering raw materials (Patent Document 1).
Further, there is disclosed a method for using recovered slag in which desiliconization / desulfurization slag is distributed as a feedstock to either a sintering machine or a blast furnace based on the SiO 2 content (Patent Document 2). .

また、酸化鉄及び金属鉄を含むダストと、水硬性バインダーと、塩化物を主体とする原料に水を加えて混合した後、成型し、該成型物を水和硬化させてダスト塊成化物とする方法が示されている(特許文献3)。
さらに、脱硫スラグを水没して冷却した後、乾燥して得た石膏含有脱硫スラグ粉に、粉コークス、ダスト等の粉体を配合すると共に水分を添加してパンペレタイザーで造粒する、脱硫スラグを用いた粉体の造粒方法が示されている(特許文献4)。
In addition, dust containing iron oxide and metallic iron, a hydraulic binder, and after adding water to a chloride-based raw material and mixing, then molding, hydrating and curing the molded product, The method to do is shown (patent document 3).
Furthermore, after desulfurization slag is submerged and cooled, it is dried and mixed with gypsum-containing desulfurization slag powder, and powder such as powder coke and dust is added, and moisture is added and granulated with a pan pelletizer. A method for granulating a powder using a powder is disclosed (Patent Document 4).

特公昭63−54663号公報Japanese Patent Publication No. 63-54663 特許第3617488号公報Japanese Patent No. 3617488 特開2009−179854号公報JP 2009-179854 A 特開2008−95167号公報JP 2008-95167 A

しかしながら、上記特許文献1,2では、脱硫スラグに脱珪スラグを組み合わせて処理するため、スラグ中のSiO含有量が高くなってしまい、SiOやAl成分が問題となっている昨今において、スラグ成分に合わせた再利用先の選定の観点から考えた場合に有効な処理方法とはいえない。
また、上記特許文献3では、水硬性バインダーとしてセメントを添加するため、SiOやAl成分を外部から持ち込むことになってしまう。さらに塩化物は焼結排ガスの煤塵の発生を増加させることが知られており、環境保護上その使用を避けるのが望ましい。また必要な強度を得るために養生が必要で、保持スペース等の確保が必要である。
さらに、上記特許文献4では、粉コークスやダストなどの粉体に、石膏含有脱硫スラグ粉をバインダーとして配合させているため、脱硫スラグの使用量が制限されることから、最適な利材化処理とはいえない。
However, in Patent Documents 1 and 2, since the desulfurization slag is combined with the desiliconization slag, the SiO 2 content in the slag becomes high, and the SiO 2 and Al 2 O 3 components are problematic. In recent years, it cannot be said that it is an effective processing method when considered from the viewpoint of selecting a reuse destination according to the slag component.
Further, in Patent Document 3, for adding cement as hydraulic binder, becomes bringing SiO 2 or Al 2 O 3 component from the outside. Furthermore, chloride is known to increase the generation of dust in sintered exhaust gas, and it is desirable to avoid its use for environmental protection. In addition, curing is necessary to obtain the required strength, and it is necessary to secure a holding space and the like.
Furthermore, in the above-mentioned patent document 4, since the gypsum-containing desulfurized slag powder is blended as a binder with powders such as powdered coke and dust, the amount of desulfurized slag used is limited. That's not true.

本発明の目的は、製鋼スラグの焼結プロセスでの再利用に際して、焼結性や成品品質を向上させることが可能な、焼結鉱製造方法を提供することである。   The objective of this invention is providing the sintered ore manufacturing method which can improve sinterability and product quality at the time of reuse in the sintering process of steelmaking slag.

本発明者らは、製鋼スラグの焼結プロセスでの再利用に際して、製鋼スラグを事前に成型し、その後に焼結原料として再利用する手法が有効であると考えた。
そして成型の方法、及び、成型した製鋼スラグの焼結プロセスでの再利用に際して焼結性や成品品質を維持改善可能な方法を見出すべく種々検討を行った。
その結果、特定の大きさとなるように圧縮成型することで、製鋼スラグを焼結リサイクルに適した成型物とすることができ、この成型物を焼結原料とすることができることを知見した。
The present inventors considered that a method of forming steelmaking slag in advance and reusing it as a sintering raw material after reuse in the sintering process of steelmaking slag was effective.
Various studies were conducted to find out a method that can maintain and improve the sinterability and product quality when reusing the molding method and the molded steelmaking slag in the sintering process.
As a result, it was found that the steelmaking slag can be made into a molding suitable for sintering recycling by compression molding so as to have a specific size, and this molding can be used as a sintering raw material.

本発明の要旨とするところは、以下のとおりである。
(1)鉄分含有量が15質量%以上、P含有量が5.5質量%未満、SiO含有量が20質量%以下の製鋼スラグを圧縮成型して体積0.0063cmを超え、2.3cm未満の成型物にする圧縮成型工程と、鉄含有原料、副原料、返鉱、ダスト及び炭材を混合、造粒する造粒工程と、を有し、前記圧縮成型工程で得られる成型物と、前記造粒工程で得られる造粒物とを混合した後に、下方吸引型焼結機で焼成する工程を実施することを特徴とする焼結鉱製造方法。
(2)前記製鋼スラグが脱硫スラグであることを特徴とする(1)に記載の焼結鉱製造方法。
(3)前記圧縮成型工程が、前記造粒工程で得られる造粒物の平均径から算出された体積と同等の体積以上、体積2.3cm未満の成型物に圧縮成型することを特徴とする(1)又は(2)に記載の焼結鉱製造方法。
The gist of the present invention is as follows.
(1) A steelmaking slag having an iron content of 15% by mass or more, a P 2 O 5 content of less than 5.5% by mass, and a SiO 2 content of 20% by mass or less is compression molded to exceed a volume of 0.0063 cm 3 A compression molding step for forming a molded product of less than 2.3 cm 3 and a granulation step for mixing and granulating the iron-containing raw material, auxiliary raw material, return mineral, dust and carbonaceous material, A method for producing a sintered ore, comprising: mixing a molded product to be obtained and a granulated product obtained in the granulation step, followed by firing with a downward suction type sintering machine.
(2) The method for producing sinter according to (1), wherein the steelmaking slag is desulfurization slag.
(3) The compression molding step is compression-molded into a molded product having a volume equal to or greater than the volume calculated from the average diameter of the granulated product obtained in the granulation step and less than 2.3 cm 3 in volume. The sintered ore manufacturing method according to (1) or (2).

本発明によれば、製鋼スラグの焼結プロセスでの再利用に際して、焼結性や成品品質を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, at the time of reuse in the sintering process of steelmaking slag, sinterability and product quality can be improved.

成型物体積と生産率との関係を示す図。The figure which shows the relationship between a molding volume and a production rate.

以下、本発明の実施形態を詳細に説明する。
(製鋼スラグ)
高炉製鉄法において、塊状の鉄鉱石、あるいは粉状の鉄鉱石を高炉装入に適した粒度及び強度とするべく処理された焼結鉱やペレットのような塊成鉱は、高炉内で還元され、銑鉄として高炉より排出される。銑鉄は、高温で溶融した状態で排出されることから溶銑ともいう。
この銑鉄は、炭素、リン、珪素、硫黄等の不純物を含有しており、高炉の次工程である製鋼工程において、不純物の除去をはじめとする成分調整が行われる。一般的な製鋼工程の流れでは、脱硫、脱珪を目的とした溶銑予備処理が行われた後に、転炉で脱炭、脱リン処理が行われる。
製鋼スラグの化学成分測定例を以下の表1に示す。
Hereinafter, embodiments of the present invention will be described in detail.
(Steel slag)
In the blast furnace ironmaking process, massive iron ore or agglomerated minerals such as sintered ore pellets, which have been processed to have a grain size and strength suitable for blast furnace charging, are reduced in the blast furnace. , Discharged as pig iron from the blast furnace. Pig iron is also called hot metal because it is discharged in a molten state at a high temperature.
This pig iron contains impurities such as carbon, phosphorus, silicon, and sulfur, and component adjustment including removal of impurities is performed in a steelmaking process that is the next process of the blast furnace. In a general steelmaking process flow, after hot metal pretreatment for desulfurization and desiliconization is performed, decarburization and dephosphorization are performed in a converter.
Table 1 below shows an example of measuring chemical components of steelmaking slag.

Figure 2015199999
Figure 2015199999

本実施形態では、製鋼スラグとして、鉄分含有量が15質量%以上、P含有量が5.5質量%未満、SiO含有量が20質量%以下のものを使用する。上記範囲は、表1における脱燐スラグ及び脱硅スラグを除く範囲である。ここで、脱燐スラグを除いたのは、製鉄プロセス内におけるPの循環を避けるためである。また、脱硅スラグを除いたのは、SiOのリサイクルによる高炉スラグ比の増加阻止のためである。このうち、脱硫スラグを使用することが、鉄分と石灰分を主成分としており、焼結プロセスにおける焼結原料である鉄鉱石や石灰石の一部と置き換えて再利用し易いため、好ましい。
脱硫スラグは、上記製鋼工程のうち、硫黄分の除去を主目的とした脱硫工程にて発生する副生物である。脱硫工程は、高炉から排出された溶銑を製鋼工程へと搬送する容器である混銑車(トーピードカー)内への脱硫剤投入や、脱硫処理用の装置、例えばインペラを有し、溶銑と脱硫剤を機械的に撹拌して両者を反応させる脱硫装置であるKR(Kanbara Reactor)にて行われる。
In the present embodiment, as the steelmaking slag, one having an iron content of 15% by mass or more, a P 2 O 5 content of less than 5.5% by mass, and an SiO 2 content of 20% by mass or less is used. The above range is a range excluding dephosphorization slag and desulfurization slag in Table 1. Here, the removal of the dephosphorization slag is to avoid the circulation of P in the iron making process. Moreover, the removal of the degassing slag is to prevent an increase in the blast furnace slag ratio by recycling SiO 2 . Of these, the use of desulfurized slag is preferable because it contains iron and lime as main components and can be easily reused by replacing part of iron ore and limestone which are sintering raw materials in the sintering process.
Desulfurization slag is a by-product generated in the desulfurization process whose main purpose is to remove sulfur in the steelmaking process. In the desulfurization process, a desulfurizing agent is introduced into a kneading vehicle (torpedo car), which is a container for conveying the hot metal discharged from the blast furnace to the steelmaking process, and an apparatus for desulfurization treatment, such as an impeller, is used. It is carried out in KR (Kanbara Reactor) which is a desulfurization device that reacts both mechanically by stirring.

脱硫剤には生石灰(CaO)が主に用いられる。CaOを用いた脱硫反応を以下の式(1)に示す。
CaO+[S]=CaS+1/2O↑ …(1)
CaOは高融点であり、CaO単体では反応効率が低いことから、NaCO、CaF、CaC等の脱硫補助剤が若干用いられる場合もある。
脱硫後の脱硫スラグは鍋に回収され、ピットで水冷された後に磁選される。磁選で選別された大塊や中塊はFe分が高いので転炉でリサイクルされ、残りの細粒部が焼結用の脱硫スラグとして焼結工場へ送られる。
Quick lime (CaO) is mainly used as the desulfurizing agent. The desulfurization reaction using CaO is shown in the following formula (1).
CaO + [S] = CaS + 1 / 2O 2 ↑ (1)
Since CaO has a high melting point and the reaction efficiency of CaO alone is low, desulfurization aids such as NaCO 3 , CaF 2 , and CaC may be used in some cases.
The desulfurized slag after desulfurization is collected in a pan, and after being cooled with water in a pit, it is magnetically selected. Large blocks and medium blocks selected by magnetic separation have a high Fe content, so they are recycled in a converter, and the remaining fine-grained parts are sent to a sintering plant as desulfurized slag for sintering.

上述の通り、脱硫工程における脱硫反応は反応効率が低く、脱硫後のスラグに含まれるF−CaOは約21質量%である。そして、投入された脱硫剤の大部分は、未溶融のCaO粉、もしくはCaOが水和反応して生成したCa(OH)粉として残留する。
このため、脱硫スラグは、未溶融の脱硫剤及び回収時に混入する溶銑地金等を主な構成物とする混合物であるといえる。
上記表1に示すように、脱硫スラグは、銑鉄に由来する金属鉄分(M−Fe)及び脱硫剤に由来するCaO成分が主成分であることを確認できる。
As described above, the desulfurization reaction in the desulfurization step has low reaction efficiency, and F-CaO contained in the slag after desulfurization is about 21% by mass. And most of the desulfurization agent supplied remains as unmelted CaO powder or Ca (OH) 2 powder generated by hydration reaction of CaO.
For this reason, it can be said that desulfurization slag is a mixture which has as a main component the unmelted desulfurization agent and the hot metal ingot mixed at the time of collection | recovery.
As shown in Table 1 above, it can be confirmed that the desulfurized slag is mainly composed of a metallic iron component (M-Fe) derived from pig iron and a CaO component derived from a desulfurizing agent.

焼結用の脱硫スラグは、ヤードにて野積みで保管されており、通常5質量%〜12質量%程度の水分量に保たれている。
本実施形態では、後述する脱硫スラグの圧縮成型にあたっては、脱硫スラグの水分は特別な調整を施す必要はなく、5質量%〜12質量%の範囲内で、そのまま成型に供することができる。
The desulfurization slag for sintering is stored in a yard and is usually kept at a moisture content of about 5% by mass to 12% by mass.
In the present embodiment, in compression molding of desulfurized slag, which will be described later, the moisture of the desulfurized slag does not need to be specially adjusted, and can be directly used for molding within the range of 5% by mass to 12% by mass.

圧縮成型で得られる脱硫スラグ成型物の大きさは、脱硫スラグの性状、成型物自体の反応性、焼結時の周囲との反応性などを考慮して決定する必要がある。
(脱硫スラグ成型物自体の反応性)
先ず、脱硫スラグ成型物自体の反応性について、脱硫スラグ成型物のみを単独で電気炉に保持しその影響を観察した。電気炉は大気雰囲気とし、焼結プロセスにおける燃焼帯の温度履歴を模擬するべく、1300℃雰囲気下に5分間保持した。
電気炉保持後の脱硫スラグ成型物は、僅かに溶融反応が観察されたものの、鉄分と石灰分とが近接配置された構成であるにもかかわらず、圧縮成型時の形状を保ったままであった。上記結果から、脱硫スラグ成型物の溶融同化反応は、通常の焼結原料と比較して遅いことが確認された。これは、脱硫スラグに含まれるのは酸化鉄ではなくM−Fe成分であり、上記カルシウムフェライトを形成するには、一旦酸化してからCaO成分と反応する、2段階の反応が必要なためと推察される。
The size of the desulfurized slag molded product obtained by compression molding must be determined in consideration of the properties of the desulfurized slag, the reactivity of the molded product itself, the reactivity with the surroundings during sintering, and the like.
(Reactivity of desulfurized slag molding itself)
First, regarding the reactivity of the desulfurized slag molded product itself, only the desulfurized slag molded product was held alone in an electric furnace, and the influence was observed. The electric furnace was in an air atmosphere, and was kept in an atmosphere of 1300 ° C. for 5 minutes in order to simulate the temperature history of the combustion zone in the sintering process.
The desulfurized slag molded product after holding the electric furnace, although a slight melting reaction was observed, the shape at the time of compression molding was maintained despite the configuration in which the iron component and the lime component were arranged close to each other. . From the above results, it was confirmed that the melt assimilation reaction of the desulfurized slag molding was slower than that of a normal sintered raw material. This is because the desulfurized slag contains not the iron oxide but the M-Fe component, and the formation of the calcium ferrite requires a two-step reaction in which it is once oxidized and then reacted with the CaO component. Inferred.

(脱硫スラグ成型物と、粉状の鉄鉱石または石灰石との反応性)
実際の焼結プロセスにおいては、焼結原料充填層を形成すると、脱硫スラグ成型物の周囲には、他の焼結原料が存在し、脱硫スラグ成型物はそれらと接触した状態になる。この状態を模擬するべく、脱硫スラグ成型物を粉状の鉄鉱石または石灰石のベッド中に設置し、1300℃で10分間保持した。なお、保持時間を10分間としたのは、脱硫スラグ成型物以外に、粉状の鉄鉱石または石灰石を使用して試料の量が増加したことによって、昇温に時間がかかることを考慮したためである。
粉状の鉄鉱石のベッド中に設置した脱硫スラグ成型物は、電気炉保持後、溶融反応が進行しており、脱硫スラグ成型物の約半分がその周囲に存在する粉状の鉄鉱石と溶融同化していた。これは、脱硫スラグ成型物の表面に存在するCaO成分と、脱硫スラグ成型物の周囲に存在する粉状の鉄鉱石中の酸化鉄分との反応が速やかに進行し、生成された初期融液に脱硫スラグ成型物中のM−Fe成分が溶け込んでいったことによるものと推察される。
(Reactivity between desulfurized slag molding and powdered iron ore or limestone)
In the actual sintering process, when the sintered raw material packed layer is formed, other sintered raw materials exist around the desulfurized slag molded product, and the desulfurized slag molded product comes into contact with them. In order to simulate this state, the desulfurized slag molding was placed in a bed of powdered iron ore or limestone and held at 1300 ° C. for 10 minutes. The reason why the holding time was set to 10 minutes was that, in addition to the desulfurized slag molded product, it took into account that it took time to heat up due to the increase in the amount of the sample using powdered iron ore or limestone. is there.
The desulfurized slag molded product installed in the bed of powdered iron ore has undergone a melting reaction after holding the electric furnace, and about half of the desulfurized slag molded product is melted with the powdered iron ore present around it. It was assimilated. This is because the reaction between the CaO component present on the surface of the desulfurized slag molded product and the iron oxide content in the powdered iron ore existing around the desulfurized slag molded product proceeds rapidly, and the generated initial melt It is inferred that the M-Fe component in the desulfurized slag molding was dissolved.

一方、石灰石のベッド中に設置した脱硫スラグ成型物は、電気炉保持後、溶融反応が進行していなかった。上記脱硫スラグ成型物のみを単独で電気炉に保持した場合と同様に、脱硫スラグ成型物中のM−Fe成分と石灰石(CaO)との間の反応開始には、酸化反応を必要とし、これが反応の律速要因になったと推察される。
以上に示した電気炉保持試験結果から、脱硫スラグ成型物の焼結プロセスにおける反応特性は、鉄分含有粒子というよりはむしろ石灰分含有粒子と類似のふるまいを示す、すなわち燃焼帯においては周囲の鉄鉱石と反応するものと考えられる。
On the other hand, the desulfurization slag molded product installed in the limestone bed did not proceed with the melting reaction after holding the electric furnace. As in the case where only the desulfurized slag molded product is held alone in the electric furnace, the reaction between the M-Fe component in the desulfurized slag molded product and limestone (CaO) requires an oxidation reaction, It is inferred that it became the rate-limiting factor of the reaction.
From the electric furnace holding test results shown above, the reaction characteristics in the sintering process of desulfurized slag moldings show behavior similar to lime-containing particles rather than iron-containing particles, that is, the surrounding iron ore in the combustion zone It is thought to react with stones.

(圧縮成型工程)
本実施形態では、脱硫スラグを、所定の大きさの成型物に圧縮成型する。
焼結プロセスにおいては下方吸引により反応が進行するため、原料の粒度は大きい方が焼成速度の観点から有利である。しかしながら、石灰分含有粒子は、鉄分含有粒子と比較して焼結原料全体に占める配合比率が小さい。このため、石灰分含有粒子と類似のふるまいを示す脱硫スラグ成型物の粒度が大きすぎる場合、比表面積の低下によって鉄鉱石との接触界面が減少し、融液発生が妨げられたり偏ったりして最終的に成品焼結鉱の歩留を悪化させると予想される。
したがって、脱硫スラグ成型物を製造するにあたっては、最適な大きさが存在し、その適正粒度範囲も鉄分含有粒子を主体とする成型物とは異なると考えられる。
(Compression molding process)
In the present embodiment, the desulfurized slag is compression molded into a molded product having a predetermined size.
Since the reaction proceeds by downward suction in the sintering process, it is advantageous from the viewpoint of the firing rate that the raw material has a larger particle size. However, the mixing ratio of the lime-containing particles in the entire sintered raw material is smaller than that of the iron-containing particles. For this reason, when the particle size of the desulfurized slag molding that exhibits similar behavior to the lime-containing particles is too large, the contact interface with the iron ore is reduced due to the decrease in the specific surface area, and the generation of the melt is hindered or biased. Eventually, the yield of the sintered product ore is expected to deteriorate.
Therefore, in producing a desulfurized slag molded product, there is an optimum size, and the appropriate particle size range is considered to be different from the molded product mainly composed of iron-containing particles.

上記の考察を踏まえ、本実施形態では、脱硫スラグを圧縮成型して体積0.0063cmを超え、2.3cm未満の成型物にする。
上記範囲内となるように圧縮成型することで、焼結時、燃焼帯が通過する前は、焼結原料充填層の通気改善に寄与する。また、燃焼帯通過中においては、溶融同化反応が速やかに進行して十分な融液量を発生し焼結鉱製品歩留や強度を悪化させずに焼結鉱製造が可能になる。
Based on the above considerations, in this embodiment, it exceeds the volume 0.0063Cm 3 by compression molding the desulfurization slag and the molded article of less than 2.3 cm 3.
By compression molding so as to be within the above range, it contributes to the improvement of the ventilation of the sintered raw material packed layer before the combustion zone passes during sintering. Further, during the passage through the combustion zone, the melt assimilation reaction proceeds promptly to generate a sufficient amount of melt, and it becomes possible to produce sintered ore without deteriorating the yield or strength of the sintered ore product.

また、下方吸引の焼結プロセスにおいて、焼結機に充填される粒子のサイズは、焼成速度、ひいては焼結鉱の生産性を支配する重要な因子である。細粒は、充填層を閉塞させてしまい、その通気性を悪化させるため、結果として焼成速度が低下する。一方、粗粒は、通気性を向上させるため、結果として焼成速度を上昇させる。ここで、一般的な造粒プロセスで造粒される疑似粒子の平均径は3〜5mm程度である。
成型物を、造粒後の疑似粒子に添加混合するにあたっては、上述の焼成速度確保の観点から、後述する造粒工程で得られる造粒物(疑似粒子)の平均径と同等、望ましくはそれ以上のサイズとなるように圧縮成型することが好ましい。
Also, in the downward suction sintering process, the size of the particles filled in the sintering machine is an important factor that governs the firing rate and thus the productivity of the sintered ore. Fine particles clog the packed bed and deteriorate its air permeability, resulting in a decrease in the firing rate. On the other hand, coarse particles improve the air permeability and consequently increase the firing rate. Here, the average diameter of the pseudo particles granulated by a general granulation process is about 3 to 5 mm.
When the molded product is added to and mixed with the pseudo particles after granulation, the average diameter of the granulated product (pseudo particles) obtained in the granulation step described later is desirable, preferably from the viewpoint of securing the firing rate described above. It is preferable to perform compression molding so as to obtain the above size.

圧縮成型では、ダブルロール式のブリケットマシンを使用することが好ましい。また、成型時の線圧は、0.52t/cm以上0.66t/cm以下の範囲とすることが好ましい。線圧が下限値未満では圧力が不足するため、成型性が不良となるおそれがある。他方、線圧が上限値を超えると、圧力が高すぎる影響から成型物の中央部で破断する、いわゆるラミネーティングが発生するおそれがある。成型時のロール速度は、350cm/min程度とすることで、上記線圧の範囲で良好な成型効率が得られる。
なお、圧縮成型により得られた成型物の一部または全部が、例えば工程中に破砕して粉状物を発生した場合であっても、粉状物を含む成型物を篩分けして、上記範囲内のものだけを原料として使用することで、本発明の効果が得られる。
また、成型物の所望のサイズが、圧縮成型に使用するブリケットマシンのカップ形状よりも小さいサイズの場合には、先ず、圧縮成型工程で、所望のサイズよりも大きなカップを使用してサイズが大きい成型物を成型する。そして、得られた成型物を破砕し、この破砕物を篩分けして、上記所望のサイズとなるように分級すればよい。
In compression molding, it is preferable to use a double roll briquette machine. The linear pressure during molding is preferably in the range of 0.52 t / cm or more and 0.66 t / cm or less. If the linear pressure is less than the lower limit, the pressure is insufficient and the moldability may be poor. On the other hand, when the linear pressure exceeds the upper limit value, there is a possibility that so-called laminating occurs in which the pressure is too high, and the center portion of the molded product breaks. By setting the roll speed at the time of molding to about 350 cm / min, good molding efficiency can be obtained within the above linear pressure range.
In addition, even if a part or all of the molded product obtained by compression molding is, for example, crushed during the process to generate a powdered product, the molded product containing the powdered product is sieved, The effect of the present invention can be obtained by using only those within the range as raw materials.
When the desired size of the molded product is smaller than the cup shape of the briquette machine used for compression molding, first, in the compression molding process, the size is larger using a cup larger than the desired size. Mold the molding. Then, the obtained molded product is crushed, the crushed product is sieved, and classified so as to have the desired size.

(造粒工程)
次に、鉄含有原料、副原料、返鉱、ダスト及び炭材を混合、造粒する。
具体的には、脱硫スラグ以外の配合原料である鉄含有原料、副原料、返鉱、ダスト及び炭材をドラムミキサーに供給して、混合し、造粒することで造粒物を製造する。なお、造粒物は、混合ミキサーでいったん混合し、その後、造粒用ドラムミキサーで造粒することによって製造してもよい。
(Granulation process)
Next, an iron containing raw material, an auxiliary raw material, a return mineral, dust, and a carbon material are mixed and granulated.
Specifically, an iron-containing raw material, a secondary raw material, return mineral, dust, and a carbonaceous material other than desulfurized slag are supplied to a drum mixer, mixed, and granulated to produce a granulated product. In addition, you may manufacture a granulated material by once mixing with a mixing mixer, and granulating with a drum mixer for granulation after that.

(焼成工程)
そして、上記圧縮成型工程で得られる脱硫スラグの成型物と、上記造粒工程で得られる造粒物とを混合した後に、下方吸引型焼結機で焼成する。
脱硫スラグ成型物の配合量は、全原料に対して0質量%を超え6質量%以下の範囲とすることが好ましく、3質量%以下の範囲とすることが特に好ましい。脱硫スラグ成型物の配合量が上記範囲を超えると、脱硫スラグ中の硫黄分から発生するSOx系のガスが増加し、焼結プロセスにて通常行われる、脱SOx、NOx等の排ガス処理装置への負荷が増大するおそれがある。
また、CaO成分を含む脱硫スラグ成型物は、石灰石や生石灰の一部と置き換えて利用することになる。しかし、本実施形態で使用する脱硫スラグ成型物は、石灰石や生石灰などの大きさと比較して粒径が大きいため、脱硫スラグ成型物を上記範囲を超える配合量とし、石灰石や生石灰との置換量を増やしすぎると、焼結反応が不均一化してしまい、焼成が乱れるおそれがある。
(Baking process)
And after mixing the molding of the desulfurization slag obtained by the said compression molding process, and the granulation obtained by the said granulation process, it bakes with a downward suction type sintering machine.
The blending amount of the desulfurized slag molded product is preferably in the range of more than 0% by mass and 6% by mass or less, particularly preferably in the range of 3% by mass or less, with respect to all raw materials. If the amount of the desulfurized slag molding exceeds the above range, SOx-based gas generated from the sulfur content in the desulfurized slag increases, and the exhaust gas treatment equipment such as desulfurized SOx and NOx, which is normally performed in the sintering process, increases. The load may increase.
Moreover, the desulfurization slag molding containing a CaO component will be used by replacing a part of limestone or quicklime. However, since the desulfurized slag molded product used in this embodiment has a larger particle size compared to the size of limestone, quicklime, etc., the desulfurized slag molded product has a blending amount exceeding the above range, and the replacement amount with limestone or quicklime. If the amount is increased too much, the sintering reaction becomes non-uniform and firing may be disturbed.

本実施形態の焼結鉱製造方法では、製鋼スラグ、好ましくは脱硫スラグを使用し、この脱硫スラグを体積0.0063cmを超え、2.3cm未満の成型物に圧縮成型し、これを別途造粒して得られる造粒物と混合し、焼結に供するものである。
このように、脱硫スラグの性状、成型物自体の反応性、焼結時の周囲との反応性などを考慮して、焼結に適した大きさとなるように脱硫スラグを圧縮成型したので、このような脱硫スラグ成型物を焼結プロセスで再利用することで、焼結性や製品品質を向上させることができる。
なお、上記実施形態では、脱硫スラグを用いて説明したが、脱硫スラグのみの使用にとどまらず、上記範囲の製鋼スラグであれば、例えば、脱炭スラグのみを使用してもよいし、脱硫スラグと脱炭スラグとを併用してもよい。
The sinter manufacturing method of this embodiment, steel slag, preferably using the desulfurization slag, the desulfurization slag exceeds the volume 0.0063Cm 3, and compression molded into molded product of less than 2.3 cm 3, which separately It is mixed with a granulated product obtained by granulation and used for sintering.
In this way, the desulfurized slag was compression molded to a size suitable for sintering in consideration of the properties of the desulfurized slag, the reactivity of the molded product itself, the reactivity with the surroundings during sintering, etc. By reusing such desulfurized slag moldings in the sintering process, the sinterability and product quality can be improved.
In the above embodiment, the desulfurization slag has been described. However, the desulfurization slag is not limited to the use of only the desulfurization slag. For example, only the decarburization slag may be used as long as the steelmaking slag is within the above range. And decarburized slag may be used in combination.

次に実施例により本発明をさらに詳しく説明する。なお、本発明はこれらの例によって何ら制限されるものではない。
焼結プロセスを実験室規模でシミュレートが可能な焼結鍋試験により、脱硫スラグ成型物が焼結性に及ぼす影響を確認した。
(焼結原料)
原料には、脱硫スラグと、一般的な焼結原料である、粉鉱石、副原料及び炭材を用いた。使用した原料の種類並びに配合条件を以下の表2に示す。なお、表2中の「その他粉鉱石・雑鉱」は、配合割合が小さい鉱石銘柄や塊鉱石の篩下粉等の、比較的配合量が小さい原料の集合である。
Next, the present invention will be described in more detail with reference to examples. In addition, this invention is not restrict | limited at all by these examples.
The effect of desulfurized slag molding on sinterability was confirmed by a sintering pot test that can simulate the sintering process on a laboratory scale.
(Sintering raw material)
As raw materials, desulfurized slag and general sintered raw materials such as fine ore, auxiliary raw materials, and carbon materials were used. Table 2 below shows the types of raw materials used and the blending conditions. Note that “other fine ores and miscellaneous ores” in Table 2 is a collection of raw materials having a relatively small blending amount, such as ore brands having a small blending ratio and lump ore under sieve powder.

Figure 2015199999
Figure 2015199999

脱硫スラグには、製鉄所の焼結原料ヤードから採取した、焼結リサイクル向けの脱硫スラグを使用した。焼結リサイクル向けの脱硫スラグとは、脱硫工程で発生した脱硫スラグを篩や磁選によって分級したうちの、焼結リサイクルに適する粒度の部分、例えば、15mm以下や10mm以下の部分を回収したものである。ここでは、15mm以下の部分を回収したものを使用した。なお、それより粗粒の部分は、製鋼用の鉄源として再利用される。
使用した焼結リサイクル向けの脱硫スラグの粒度分布を以下の表3に示す。
For desulfurization slag, desulfurization slag for sintering recycling, which was collected from the sintering raw material yard of the steelworks, was used. Desulfurization slag for sintering recycling is a part of the desulfurization slag generated in the desulfurization process, classified by sieving or magnetic separation, and having a particle size suitable for sintering recycling, such as 15 mm or less or 10 mm or less. is there. Here, what collected the part 15 mm or less was used. The coarser portion is reused as an iron source for steelmaking.
The particle size distribution of the used desulfurized slag for sintering recycling is shown in Table 3 below.

Figure 2015199999
Figure 2015199999

そして、分級して得られた焼結リサイクル向けの脱硫スラグを、水分量が11.0質量%になるように事前に調整した。水分量の調整方法は、分級した脱硫スラグをミキサーに装入し、注水しながら1分間混合撹拌することにより行った。   And the desulfurization slag for sintering recycling obtained by classification was adjusted in advance so that the water content was 11.0% by mass. The water content was adjusted by charging the classified desulfurized slag into a mixer and mixing and stirring for 1 minute while pouring water.

(圧縮成型工程)
次に、水分量調整後の脱硫スラグを、ダブルロール式のブリケットマシンに装入して圧縮成型した。圧縮成型に使用したブリケットマシンでは、ロール寸法がロール径228mm及びロール幅76.2mm(有効幅38mm)、カップ形状がアーモンド状、カップサイズが約1.7cm及び約3.0cmの2種類のロールを用いた。
圧縮成型条件は、回転数が5rpm、圧縮荷重が4〜5tf(約40kN〜約50kN)とした。なお、上記回転数とした場合のロール速度は358cm/minである。また、線圧(荷重÷ロール幅)は0.52〜0.66t/cmである。
そして、上記2種類のカップで圧縮成型した成型物と、上記2種類のカップで成型した成型物を破砕し、所定の粒度に篩分けしたものとを用意し、脱硫スラグ成型物を体積で整理した合計6水準のサイズに調整して用いた(成型物1〜6)。
(Compression molding process)
Next, the desulfurized slag after moisture content adjustment was charged into a double roll briquette machine and compression molded. In the briquette machine used for compression molding, the roll size is 228 mm and the roll width is 76.2 mm (effective width 38 mm), the cup shape is almond shape, the cup size is about 1.7 cm 3 and about 3.0 cm 3 The roll of was used.
The compression molding conditions were a rotation speed of 5 rpm and a compression load of 4 to 5 tf (about 40 kN to about 50 kN). In addition, the roll speed at the time of the said rotation speed is 358 cm / min. The linear pressure (load / roll width) is 0.52 to 0.66 t / cm.
Then, a molded product compression molded with the above two types of cups and a molded product molded with the above two types of cups are crushed and sieved to a predetermined particle size, and the desulfurized slag molded product is organized by volume. The total size was adjusted to 6 levels and used (molded products 1 to 6).

(造粒工程)
次に、脱硫スラグ成型物を除く原料を、600mm長、500mm径のドラム型ミキサーに投入し、2分間転動して各原料を混合した後、水分量が7.0質量%になるように、ミキサー内に所定量の水を注水しながら25rpmで4分間転動し、造粒を行った。これを実施例及び比較例の造粒物とした。また、脱硫スラグ粉状物を粉体状態のままで、脱硫スラグ成型物を除く原料と混合した以外は、上記と同様にして、造粒を行った。これを従来例の造粒物とした。なお、従来例は、ここで得られた造粒物が焼結原料となる。
造粒工程で得られた造粒物の一部をサンプリングした。そしてサンプルを105℃で水分量が0質量%になるまで乾燥させ、乾燥させたサンプルをロータップふるい振とう機に設置し、タップをせずに15秒間篩いに掛けることで、その粒度分布(以下、疑似粒度分布と称する)を求めた。その結果を以下の表4に示す。
(Granulation process)
Next, the raw materials excluding the desulfurized slag molded product are put into a drum mixer having a length of 600 mm and a diameter of 500 mm, and after rolling for 2 minutes, the raw materials are mixed so that the water content becomes 7.0% by mass. The mixture was granulated by rolling for 4 minutes at 25 rpm while pouring a predetermined amount of water into the mixer. This was made into the granulated material of an Example and a comparative example. Further, granulation was performed in the same manner as above except that the desulfurized slag powder was kept in a powder state and mixed with the raw material excluding the desulfurized slag molding. This was used as a granulated product of a conventional example. In the conventional example, the granulated product obtained here is a sintering raw material.
A part of the granulated product obtained in the granulation process was sampled. Then, the sample was dried at 105 ° C. until the water content became 0% by mass, and the dried sample was placed on a low-tap sieve shaker and sieved for 15 seconds without tapping, whereby the particle size distribution (below) , Called pseudo particle size distribution). The results are shown in Table 4 below.

Figure 2015199999
Figure 2015199999

表4における従来例は、脱硫スラグ粉状物を他の原料とともに配合し造粒することで疑似粒子化した、脱硫スラグを含む疑似粒度分布である。また、実施例及び比較例は、脱硫スラグ成型物を除く、他の原料を配合し造粒することで疑似粒子化した疑似粒度分布である。
得られた疑似粒度分布から荷重平均径を算出したところ、従来例の荷重平均径は3.64mm、実施例及び比較例の荷重平均径は3.78mmであった。一般的な疑似粒子の平均径は3mm〜5mm程度であり、本試験における原料配合及び造粒条件で、一般的な疑似粒子が造粒されていることが確認できる。
The conventional example in Table 4 is a pseudo particle size distribution including desulfurized slag, which is obtained by blending and granulating desulfurized slag powder together with other raw materials. Moreover, an Example and a comparative example are the pseudo particle size distribution which made the pseudo particle by mix | blending and granulating the other raw material except a desulfurization slag molding.
When the load average diameter was calculated from the obtained pseudo particle size distribution, the load average diameter of the conventional example was 3.64 mm, and the load average diameter of the example and the comparative example was 3.78 mm. The average diameter of the general pseudo particles is about 3 mm to 5 mm, and it can be confirmed that the general pseudo particles are granulated under the raw material composition and granulation conditions in this test.

(焼結鍋試験)
上記の表2に示す配合割合に基づいて脱硫スラグ成型物と造粒物とを配合し、得られた焼結原料を用いて焼結鍋試験を実施した。なお、脱硫スラグは、従来例(未成型粉)、比較例1(成型物1)、実施例1(成型物2)、実施例2(成型物3)、実施例3(成型物4)、比較例2(成型物5)、比較例3(成型物6)の組み合わせで使用した。
なお、焼結鍋試験とは、任意の面積及び高さを有する容器に焼結原料を装入し、容器内に形成された焼結原料層の表面を点火するとともに、容器下部に配置された風箱(ウインドボックス)からブロワーで空気を吸引することで、焼結プロセスをシミュレートする試験である。風箱とブロワーとの間に、オリフィス等を設置することで、風量もしくは負圧を計測並びに制御することができる。
(Sintering pot test)
Based on the blending ratio shown in Table 2 above, a desulfurized slag molded product and a granulated product were blended, and a sintering pot test was performed using the obtained sintering raw material. In addition, desulfurization slag is a conventional example (unmolded powder), Comparative Example 1 (molded product 1), Example 1 (molded product 2), Example 2 (molded product 3), Example 3 (molded product 4), A combination of Comparative Example 2 (Molded product 5) and Comparative Example 3 (Molded product 6) was used.
In the sintering pot test, a sintering raw material is charged into a container having an arbitrary area and height, and the surface of the sintering raw material layer formed in the container is ignited and disposed at the lower part of the container. This test simulates the sintering process by sucking air from a wind box with a blower. By installing an orifice or the like between the wind box and the blower, the air volume or the negative pressure can be measured and controlled.

先ず、直径300mm、高さ500mmの円筒容器に焼結原料を装入して、原料充填層を形成した。そして、バーナーで原料装入層の表面を1分間点火し、円筒容器下部から負圧9.8kPa(1000mmHO)で下方吸引することにより焼成を行った。
なお、円筒容器には一定の層高毎に熱電対を挿入し、その温度変化測定値から、燃焼前線降下速度(FFS:Flame Front Speed)を算出した。また、風箱にも熱電対を配置し、排ガス温度が最大値を示した時間の3分後を焼成終了時間とした。
焼成終了後に得られた焼結ケーキは、高さ2mから4回落下させた後、直径5mmの角型の篩で分級し、その篩上を成品焼結鉱として、+5mm成品歩留を評価した。また、焼成終了時間と成品歩留から、生産率を算出した。更に、成品歩留評価後の成品焼結鉱を更に篩で分級し、回転強度指数TIをそれぞれ測定した。その結果を以下の表5に示す。
First, a sintering raw material was charged into a cylindrical container having a diameter of 300 mm and a height of 500 mm to form a raw material packed layer. Then, the surface of the raw material charging layer was ignited with a burner for 1 minute, and calcination was performed by sucking downward at a negative pressure of 9.8 kPa (1000 mmH 2 O) from the lower part of the cylindrical container.
In addition, the thermocouple was inserted into the cylindrical container for every fixed layer height, and the combustion front descending speed (FFS: Flame Front Speed) was calculated from the temperature change measurement value. Further, a thermocouple was also arranged in the wind box, and the firing end time was defined as 3 minutes after the time when the exhaust gas temperature showed the maximum value.
The sintered cake obtained after the completion of firing was dropped 4 times from a height of 2 m, and then classified by a square sieve having a diameter of 5 mm, and the product yield was evaluated using the sieve as a product sintered ore. . The production rate was calculated from the firing end time and the product yield. Further, the product sintered ore after product yield evaluation was further classified with a sieve, and the rotational strength index TI was measured. The results are shown in Table 5 below.

Figure 2015199999
Figure 2015199999

表5に示すように、未成型粉をそのまま原料に用いた従来例と比較して、成型物2,3,4を用いた実施例1〜3では生産率が上昇する結果が得られた。
一方、成型物1を用いた比較例1では、成型物の体積が小さすぎたためか、生産率は粉状物である未成型粉の例よりも低下する結果となった。また、体積が大きい成型物5,6を用いた比較例2,3では、生産率は粉状物である未成型粉の例よりも若干低下する結果となった。これは、成品の回転強度指数TIや成品歩留が低下している結果も踏まえると、充填層中に体積が大きい成型物が存在することによって、局所的に通気や焼成の不安定な箇所が発生したものと推察される。
As shown in Table 5, compared with the conventional example which used unshaped powder | flour as a raw material as it was, the result in which the production rate rose in Examples 1-3 using the moldings 2, 3, and 4 was obtained.
On the other hand, in Comparative Example 1 using the molded product 1, the production rate was lower than in the case of the unmolded powder which is a powdery product because the volume of the molded product was too small. Moreover, in Comparative Examples 2 and 3 using the molded products 5 and 6 having a large volume, the production rate was slightly lower than that of the unmolded powder as a powder. This is because, based on the result that the rotational strength index TI of the product and the product yield are reduced, the presence of a molded article having a large volume in the packed bed causes locally unstable portions of ventilation and firing. Presumed to have occurred.

横軸に成型物体積(対数目盛表示)、縦軸に生産率をとって整理した結果を図1に示す。なお、図1に示すデータ点は、左からそれぞれ成型物1,2,3…を使用した例を表している。また、生産率34t/d/m位置の横破線は、従来例(未成型粉)の生産率を示している。体積0.0063cm位置の縦破線は、使用した脱硫スラグの加重平均径2.29mmにおける、球体近似した場合の体積を示している。
上記表3に示すように、脱硫スラグは幅広い粒度分布を持っているが、従来例で用いた未成型粉の加重平均径は2.29mmである。また、直径2.29mmの球体の体積は約0.0063cmになる。
図1に示すように、未成型粉の加重平均径における球体の体積は、成型物1を用いた比較例1と成型物2を用いた実施例1との間に位置する。また、未成型粉を用いた従来例の生産率は、成型物1を用いた比較例1の生産率と成型物2を用いた実施例1の生産率との間に位置している。この結果から、脱硫スラグは、体積0.0063cmを超える大きさ、即ち、成型する原料自身の加重平均径から球形近似で求めた体積以上に成型することで、生産率が上昇することが判る。
また、成型物の大きさが2.3cm以上になると、生産率は未成型粉を用いた従来例の同等以下にまで低下する結果となった。このように成型物の大きさが粗大すぎると、焼成を不安定化させてしまうものと推察される。
以上より、脱硫スラグを圧縮成型して得られる成型物は、体積が0.0063cmを超える大きさ、即ち、用いる製鋼スラグ自身の加重平均粒度から算出した体積以上で、2.3cmより小さい範囲であることが、生産率維持の観点より望ましい。
FIG. 1 shows the result of arranging the molded product volume (logarithmic scale display) on the horizontal axis and the production rate on the vertical axis. The data points shown in FIG. 1 represent examples in which molded articles 1, 2, 3,... Are used from the left. Moreover, the horizontal broken line at the production rate of 34 t / d / m 2 indicates the production rate of the conventional example (unmolded powder). The vertical broken line at the position of volume 0.0063 cm 3 indicates the volume when the sphere is approximated in the weighted average diameter 2.29 mm of the used desulfurized slag.
As shown in Table 3 above, desulfurized slag has a wide particle size distribution, but the weight average diameter of the green powder used in the conventional example is 2.29 mm. The volume of a sphere with a diameter of 2.29 mm is about 0.0063 cm 3 .
As shown in FIG. 1, the volume of the sphere at the weighted average diameter of the unmolded powder is located between Comparative Example 1 using the molded product 1 and Example 1 using the molded product 2. Further, the production rate of the conventional example using unmolded powder is located between the production rate of Comparative Example 1 using the molded product 1 and the production rate of Example 1 using the molded product 2. From this result, it can be seen that the desulfurized slag has a volume exceeding 0.0063 cm 3 , that is, the production rate is increased by molding the desulfurized slag to a volume larger than that obtained by spherical approximation from the weighted average diameter of the raw material to be molded .
Further, when the size of the molded product was 2.3 cm 3 or more, the production rate was reduced to the same or lower than that of the conventional example using unmolded powder. Thus, if the size of the molded product is too large, it is presumed that the firing becomes unstable.
Is the above molded product obtained by compression molding the desulfurization slag, size volume exceeds 0.0063Cm 3, i.e., at least the volume calculated from the weighted average particle size of steelmaking slag itself used, 2.3 cm 3 less than The range is desirable from the viewpoint of maintaining the production rate.

Claims (3)

鉄分含有量が15質量%以上、P含有量が5.5質量%未満、SiO含有量が20質量%以下の製鋼スラグを圧縮成型して体積0.0063cmを超え、2.3cm未満の成型物にする圧縮成型工程と、
鉄含有原料、副原料、返鉱、ダスト及び炭材を混合、造粒する造粒工程と、
を有し、
前記圧縮成型工程で得られる成型物と、前記造粒工程で得られる造粒物とを混合した後に、下方吸引型焼結機で焼成する工程を実施することを特徴とする焼結鉱製造方法。
1. Steelmaking slag having an iron content of 15% by mass or more, a P 2 O 5 content of less than 5.5% by mass, and a SiO 2 content of 20% by mass or less is compression molded to exceed a volume of 0.0063 cm 3 . A compression molding process for forming a molded product of less than 3 cm 3 ;
A granulation step of mixing and granulating iron-containing raw materials, auxiliary raw materials, return ore, dust and carbonaceous materials,
Have
A method for producing a sintered ore, comprising: mixing a molded product obtained in the compression molding step and a granulated product obtained in the granulation step, and then firing the mixture in a downward suction type sintering machine. .
前記製鋼スラグが脱硫スラグであることを特徴とする請求項1に記載の焼結鉱製造方法。   The method for producing sintered ore according to claim 1, wherein the steelmaking slag is desulfurization slag. 前記圧縮成型工程が、前記造粒工程で得られる造粒物の平均径から算出された体積と同等の体積以上、体積2.3cm未満の成型物に圧縮成型することを特徴とする請求項1又は請求項2に記載の焼結鉱製造方法。 The compression-molding step is compression-molded into a molded product having a volume equal to or larger than a volume calculated from an average diameter of the granulated product obtained in the granulating step and less than 2.3 cm 3 in volume. The sintered ore manufacturing method according to claim 1 or 2.
JP2014080945A 2014-04-10 2014-04-10 Sinter ore manufacturing method Active JP6295796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080945A JP6295796B2 (en) 2014-04-10 2014-04-10 Sinter ore manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080945A JP6295796B2 (en) 2014-04-10 2014-04-10 Sinter ore manufacturing method

Publications (2)

Publication Number Publication Date
JP2015199999A true JP2015199999A (en) 2015-11-12
JP6295796B2 JP6295796B2 (en) 2018-03-20

Family

ID=54551546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080945A Active JP6295796B2 (en) 2014-04-10 2014-04-10 Sinter ore manufacturing method

Country Status (1)

Country Link
JP (1) JP6295796B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354663B2 (en) * 1983-08-10 1988-10-28 Nippon Steel Corp
JP2011106031A (en) * 2000-09-14 2011-06-02 Jfe Steel Corp Refining agent and refining method
JP2011208256A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Method for producing agglomerate or granule of powder granular raw material
JP2011246781A (en) * 2010-05-28 2011-12-08 Sumitomo Metal Ind Ltd Method of manufacturing sintered ore
JP2013245377A (en) * 2012-05-25 2013-12-09 Jfe Steel Corp Method for producing sintered ore
JP2014001438A (en) * 2012-06-20 2014-01-09 Jfe Steel Corp Production method for sintered ore

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354663B2 (en) * 1983-08-10 1988-10-28 Nippon Steel Corp
JP2011106031A (en) * 2000-09-14 2011-06-02 Jfe Steel Corp Refining agent and refining method
JP2011208256A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Method for producing agglomerate or granule of powder granular raw material
JP2011246781A (en) * 2010-05-28 2011-12-08 Sumitomo Metal Ind Ltd Method of manufacturing sintered ore
JP2013245377A (en) * 2012-05-25 2013-12-09 Jfe Steel Corp Method for producing sintered ore
JP2014001438A (en) * 2012-06-20 2014-01-09 Jfe Steel Corp Production method for sintered ore

Also Published As

Publication number Publication date
JP6295796B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
KR101145603B1 (en) Process for producing reduced iron pellets, and process for producing pig iron
JP5950098B2 (en) Method for producing sintered ore
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
US10407744B2 (en) Production method of granular metallic iron
JP4781807B2 (en) Manufacturing method of dephosphorizing agent for steel making using sintering machine
JP2020158848A (en) Method for using steel slag in sintering
KR20140002218A (en) Method for manufacturing pellet for blast firnace
JP6020832B2 (en) Sintering raw material manufacturing method
JP6295796B2 (en) Sinter ore manufacturing method
JP6020840B2 (en) Sintering raw material manufacturing method
JP6043271B2 (en) Method for producing reduced iron
JP6477167B2 (en) Method for producing sintered ore
JP5729256B2 (en) Non-calcined hot metal dephosphorization method and hot metal dephosphorization method using non-fired hot metal dephosphorization material
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP6004191B2 (en) Sintering raw material manufacturing method
JP5131058B2 (en) Iron-containing dust agglomerate and hot metal production method
JP4992549B2 (en) Hot metal production method using vertical scrap melting furnace
JP5867428B2 (en) Hot metal manufacturing method using vertical melting furnace
JP5200422B2 (en) Hot metal production method using vertical scrap melting furnace
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP4661077B2 (en) Method for producing sintered ore
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP2008088533A (en) Method for manufacturing sintered ore
JP2018066046A (en) Manufacturing method of sintered ore
JP5867427B2 (en) Hot metal manufacturing method using vertical melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180205

R151 Written notification of patent or utility model registration

Ref document number: 6295796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350