JP2015199970A - Silver coated spherical resin particle, method for manufacturing the same, and conductive composition using silver coated spherical resin particle - Google Patents

Silver coated spherical resin particle, method for manufacturing the same, and conductive composition using silver coated spherical resin particle Download PDF

Info

Publication number
JP2015199970A
JP2015199970A JP2014077428A JP2014077428A JP2015199970A JP 2015199970 A JP2015199970 A JP 2015199970A JP 2014077428 A JP2014077428 A JP 2014077428A JP 2014077428 A JP2014077428 A JP 2014077428A JP 2015199970 A JP2015199970 A JP 2015199970A
Authority
JP
Japan
Prior art keywords
silver
spherical resin
resin particles
coated
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014077428A
Other languages
Japanese (ja)
Other versions
JP6386767B2 (en
Inventor
謙介 影山
Kensuke Kageyama
謙介 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical Mitsubishi Materials Electronic Chemicals Co Ltd
Priority to JP2014077428A priority Critical patent/JP6386767B2/en
Publication of JP2015199970A publication Critical patent/JP2015199970A/en
Application granted granted Critical
Publication of JP6386767B2 publication Critical patent/JP6386767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silver coated spherical resin particle capable of enhancing the adhesion of a silver coating to a spherical resin particle to improve conductivity, a method for manufacturing the same, and a conductive composition using the silver coated spherical resin particle.SOLUTION: The silver coated spherical resin particle comprises: a spherical acrylic, phenol or styrene resin particle; and a silver coated layer consisting of an aggregate of silver particles formed on the surfaces of the spherical resin particle. The amount of silver included in the silver coated layer is 2-80 pts.mass to the silver coated spherical resin particles of 100 pts.mass. The spherical resin particle has a roughened surface, and silver particles constituting a silver coated layer contacted with the surface of the spherical resin particle out of the silver coated layer are entered into the roughened surface of the spherical resin particle.

Description

本発明は、球状樹脂粒子と銀の被覆との密着性をより高めて導電性を向上した銀被覆球状樹脂粒子及びその製造方法並びに銀被覆球状樹脂粒子を用いた導電性組成物に関する。   The present invention relates to a silver-coated spherical resin particle having improved adhesion by further improving the adhesion between the spherical resin particle and a silver coating, a method for producing the same, and a conductive composition using the silver-coated spherical resin particle.

鉛はんだの各種代替材料として導電性接着剤が検討されている。導電性接着剤は樹脂と金属の導電性粒子が混合したもので、代表的なものとして導電性フィルム及び導電性ペーストがある。導電性フィルム及び導電性ペーストは、応力吸収、低温実装、微小ピッチの導電、絶縁及びフラックスを使用しない等の作業性に優れ、液晶ディスプレイ、タッチパネル基板、キーボード等の電極接続に使用されてきた。このような導電性フィルム、導電性ペーストを更に使いやすくするために、導電性粒子として樹脂粒子に金属を被覆した金属被覆樹脂粒子が開発されている。こうした金属被覆樹脂粒子は製造コストや重量を低減する特長がある。金属被覆樹脂粒子として、樹脂粒子にニッケルを無電解めっきし、その上面に金を被覆した導電性無電解めっき粉体が開示されている(例えば、特許文献1参照)。この導電性無電解めっき粉体は、基材である樹脂粒子にめっき層であるNi又はNi−Au被膜が強固に密着して高い導電性能性を付与するとされている。その一方、樹脂粒子に、錫で触媒化処理(前処理)を行い、次いで銀の無電解めっきを施し密着性を高めた導電性粒子が開示されている(例えば、特許文献2参照)。   Conductive adhesives are being studied as alternative materials for lead solder. The conductive adhesive is a mixture of resin and metal conductive particles, and representative examples include a conductive film and a conductive paste. The conductive film and the conductive paste are excellent in workability such as stress absorption, low-temperature mounting, fine pitch conduction, insulation and no use of flux, and have been used for connecting electrodes of liquid crystal displays, touch panel substrates, keyboards and the like. In order to make it easier to use such conductive films and conductive pastes, metal-coated resin particles in which resin particles are coated with metal have been developed as conductive particles. Such metal-coated resin particles have the advantage of reducing manufacturing costs and weight. As the metal-coated resin particles, there is disclosed a conductive electroless plating powder in which nickel is electrolessly plated on resin particles and gold is coated on the upper surface (see, for example, Patent Document 1). This conductive electroless plating powder is said to provide high conductive performance by Ni or Ni-Au coating as a plating layer being firmly adhered to resin particles as a substrate. On the other hand, conductive particles are disclosed in which the resin particles are subjected to a catalyst treatment (pretreatment) with tin, and then subjected to silver electroless plating to improve adhesion (see, for example, Patent Document 2).

特開平08−311655号公報(請求項1、段落[0015]、[0016])JP 08-31655 A (Claim 1, paragraphs [0015] and [0016]) 国際公開第2012/023566号(段落[0010]、[0020])International Publication No. 2012/023566 (paragraphs [0010], [0020])

特許文献1の方法では、樹脂粒子にNi−Au複層被膜を形成する場合、樹脂粒子にニッケルの無電解めっきをした後で金の無電解めっきをすることで樹脂粒子と金との密着性を向上させている。しかしこの方法ではニッケルめっき、金めっきをそれぞれしなければならずめっき処理が煩雑である上、材料、基材、時間を要していた。一方、特許文献2の方法では、錫で前処理をして球状樹脂の表面に錫吸着層を設けた後、銀の無電解めっきを施して銀の被覆の密着性を高めているけれども、その密着性が十分でなかった。例えば導電性ペーストを作製するために、ペーストに高いせん断力をかけると、銀めっきが剥がれて導電性の低下を招くおそれがあった。また、異方性接着剤の場合は剥がれためっき片が異物となり、本来絶縁されるべき隙間に入り込み誤動作を起こすおそれがあった。   In the method of Patent Document 1, when a Ni—Au multilayer coating is formed on resin particles, the adhesion between the resin particles and gold is achieved by electroless plating of gold after nickel electroless plating on the resin particles. Has improved. However, in this method, nickel plating and gold plating must be performed, and the plating process is complicated, and materials, base materials, and time are required. On the other hand, in the method of Patent Document 2, after pre-treating with tin and providing a tin adsorption layer on the surface of the spherical resin, the electroless plating of silver is performed to improve the adhesion of the silver coating. Adhesion was not sufficient. For example, when a high shearing force is applied to the paste to produce a conductive paste, the silver plating may be peeled off, leading to a decrease in conductivity. In the case of an anisotropic adhesive, the peeled-off plating piece becomes a foreign substance, which may enter a gap that should be insulated and cause a malfunction.

本発明の目的は、球状樹脂粒子と銀の被覆の密着性をより高めて導電性を向上した銀被覆球状樹脂粒子及びその製造方法並びに銀被覆球状樹脂粒子を用いた導電性組成物を提供することにある。   An object of the present invention is to provide a silver-coated spherical resin particle having improved adhesion by further improving the adhesion between the spherical resin particle and the silver coating, a method for producing the same, and a conductive composition using the silver-coated spherical resin particle. There is.

本発明者は、球状樹脂粒子の表面を粗面化し、錫吸着層を形成した後で、銀の無電解めっきを行うと、小径の銀の結晶粒子(以下、単に粒子という。)が粗面化した球状樹脂粒子表面の凹みに入り込んで1層目の被覆が形成され、続いて更に成長した大径の粒子が1層目の被覆の上に積層されて2層目の被覆が形成され、こうした銀被覆に特徴のある銀被覆球状樹脂粒子を作製できることを見出し本発明を完成した。   When the present inventors roughen the surface of the spherical resin particles and form a tin adsorption layer, and then perform electroless plating of silver, the silver crystal particles of small diameter (hereinafter simply referred to as particles) are roughened. A first layer coating is formed by entering into the dents on the surface of the spherical resin particles, and then the further grown large-diameter particles are laminated on the first layer coating to form the second layer coating, The present invention was completed by finding that silver-coated spherical resin particles characteristic of such silver coating can be produced.

図1に基づいて従来例と比較して、本発明の密着性をより高めたメカニズムについて説明する。図1(b)は、従来の銀被覆球状樹脂粒子200を模式的に示した図である。球状樹脂粒子201の表面はなめらかであり、その表面には凹みを生じない。無電解めっきによって最初に小径の銀の粒子が球状樹脂粒子201の表面に成長する。続いて小径の銀の粒子からなる1層目の銀の層202の上面に無電解めっきで大径の銀の粒子が成長して2層目の銀の層203が形成される。   Based on FIG. 1, the mechanism that further improves the adhesion of the present invention compared to the conventional example will be described. FIG. 1B is a diagram schematically showing conventional silver-coated spherical resin particles 200. The surface of the spherical resin particle 201 is smooth, and no dent is generated on the surface. First, small-diameter silver particles grow on the surface of the spherical resin particles 201 by electroless plating. Subsequently, large-diameter silver particles grow on the upper surface of the first silver layer 202 made of small-diameter silver particles by electroless plating to form a second silver layer 203.

図1(a)は、本発明の銀被覆球状樹脂粒子100を模式的に示した図である。本発明では、球状樹脂粒子の表面を粗面化して凹みを作り、銀を無電解めっきすることで、銀の無電解めっきの初期に結晶する小径の銀の粒子が凹みに入り込んで成長し1層目の銀の層102が形成される。この銀の層102の上面には、球状樹脂粒子の粗面化した表面の凹みより若干浅い凹みが形成される。続いてこの凹みに相応したサイズの銀の粒子が積層される。その後、無電解めっきを続けることで、凹みは平坦化され、凹みのサイズより大きな大径の銀の粒子が積層され、2層目の銀の層103が形成される。上記従来の1層目の銀の層202は球状樹脂粒子201のなめらかな表面に形成されるのに対して、本発明の1層目の銀の層102は球状樹脂粒子101の粗面化された表面に形成される凹みに入り込むため、より密着性に優れ、更に大径の粒子からなる2層目の銀の層103によって隠蔽性が高まり、導電性が向上する。   Fig.1 (a) is the figure which showed typically the silver covering spherical resin particle 100 of this invention. In the present invention, the surface of the spherical resin particles is roughened to form a dent, and silver is electrolessly plated, so that small-diameter silver particles that crystallize in the initial stage of silver electroless plating enter the dent and grow. A first silver layer 102 is formed. On the upper surface of the silver layer 102, a dent slightly shallower than the dent on the roughened surface of the spherical resin particles is formed. Subsequently, silver particles of a size corresponding to the dent are laminated. Then, by continuing electroless plating, the dent is flattened, and silver particles having a larger diameter than the size of the dent are stacked, and a second silver layer 103 is formed. Whereas the conventional first silver layer 202 is formed on the smooth surface of the spherical resin particles 201, the first silver layer 102 of the present invention is formed by roughening the spherical resin particles 101. Therefore, the concealability is enhanced by the second silver layer 103 made of large-diameter particles, and the conductivity is improved.

本発明の第1の観点は、アクリル系、フェノール系、又は、スチレン系の球状樹脂粒子と、この球状樹脂粒子表面に形成された銀粒子の集合体からなる銀被覆層とを備え、銀被覆層に含まれる銀の量が銀被覆球状樹脂粒子100質量部に対して2〜80質量部である銀被覆球状樹脂粒子において、球状樹脂粒子は粗面化された表面を備え、銀被覆層のうち球状樹脂粒子の表面に接する銀被覆層を構成する銀粒子が球状樹脂粒子の粗面化された表面に入り込んでいることを特徴とする。   A first aspect of the present invention includes an acrylic, phenolic, or styrene spherical resin particle, and a silver coating layer made of an aggregate of silver particles formed on the surface of the spherical resin particle. In the silver-coated spherical resin particles in which the amount of silver contained in the layer is 2 to 80 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles, the spherical resin particles have a roughened surface, Among them, the silver particles constituting the silver coating layer in contact with the surface of the spherical resin particles are characterized by entering the roughened surface of the spherical resin particles.

本発明の第2の観点は、第1の観点に基づく発明であって、球状樹脂粒子の粗面化された表面に入り込む銀粒子の平均粒子径は10〜50nmの範囲にあり、球状樹脂粒子の粗面化された表面に入り込まない銀粒子の平均粒子径は100〜1000nmの範囲にある銀被覆球状樹脂粒子である。   A second aspect of the present invention is an invention based on the first aspect, wherein the average particle diameter of the silver particles entering the roughened surface of the spherical resin particles is in the range of 10 to 50 nm, and the spherical resin particles The average particle diameter of the silver particles that do not enter the roughened surface is silver-coated spherical resin particles in the range of 100 to 1000 nm.

本発明の第3の観点は、アクリル系、フェノール系、又は、スチレン系の球状樹脂粒子を25〜45℃に保温された錫化合物の水溶液に添加する添加工程と、錫化合物の水溶液に対して還元剤を用いて無電解めっきを行う工程と、前記錫の無電解めっきの後で銀の無電解めっきを行う工程とを含む銀被覆球状樹脂粒子の製造方法において、添加工程の前に球状樹脂粒子の粒子表面を粗面化する粗面化処理工程を有する銀被覆球状樹脂粒子の製造方法である。   According to a third aspect of the present invention, an addition step of adding acrylic, phenolic, or styrene-based spherical resin particles to an aqueous tin compound solution kept at 25 to 45 ° C., and an aqueous tin compound solution In a method for producing silver-coated spherical resin particles comprising a step of performing electroless plating using a reducing agent, and a step of performing electroless plating of silver after the electroless plating of tin, a spherical resin is added before the adding step. It is a manufacturing method of the silver covering spherical resin particle which has the roughening process process which roughens the particle | grain surface of particle | grains.

本発明の第4の観点は、第3の観点に基づく発明であって粗面化処理が球状樹脂粒子をプラズマ処理、オゾン処理又は80〜200℃の温度での熱処理である銀被覆球状樹脂粒子の製造方法である。   A fourth aspect of the present invention is the silver-coated spherical resin particle according to the third aspect, wherein the roughening treatment is a plasma treatment, ozone treatment or heat treatment at a temperature of 80 to 200 ° C. of the spherical resin particles. It is a manufacturing method.

本発明の第5の観点は、第1又は第2の観点に基づく銀被覆球状樹脂粒子或いは第3又は第4の観点に基づく方法で製造された銀被覆球状樹脂粒子とバインダーとを混合することにより異方性導電性ペーストを製造する方法である。   According to a fifth aspect of the present invention, a silver-coated spherical resin particle based on the first or second aspect or a silver-coated spherical resin particle produced by a method based on the third or fourth aspect and a binder are mixed. This is a method for producing an anisotropic conductive paste.

本発明の第6の観点は、第1又は第2の観点に基づく銀被覆球状樹脂粒子或いは第3又は第4の観点に基づく方法で製造された銀被覆球状樹脂粒子とバインダーとを混合することにより異方性導電性フィルム接着剤を製造する方法である。   According to a sixth aspect of the present invention, the silver-coated spherical resin particles based on the first or second viewpoint or the silver-coated spherical resin particles produced by the method based on the third or fourth aspect and a binder are mixed. To produce an anisotropic conductive film adhesive.

本発明の第7の観点は、第1又は第2の観点に基づく銀被覆球状樹脂粒子或いは第3又は第4の観点に基づく方法で製造された銀被覆球状樹脂粒子とバインダーとを混合することにより等方性導電性ペーストを製造する方法である。   According to a seventh aspect of the present invention, the silver-coated spherical resin particles based on the first or second aspect or the silver-coated spherical resin particles produced by the method based on the third or fourth aspect and a binder are mixed. Is a method for producing an isotropic conductive paste.

本発明の第8の観点は、第1又は第2の観点に基づく銀被覆球状樹脂粒子或いは第3又は第4の観点に基づく方法で製造された銀被覆球状樹脂粒子とバインダーとを混合することにより等方性導電性フィルム接着剤を製造する方法である。   According to an eighth aspect of the present invention, the silver-coated spherical resin particles based on the first or second aspect or the silver-coated spherical resin particles produced by the method based on the third or fourth aspect and a binder are mixed. Is a method for producing an isotropic conductive film adhesive.

本発明の第1の観点の銀被覆球状樹脂粒子では、球状樹脂粒子が粗面化された表面を備え、銀被覆層のうち球状樹脂粒子の表面に接する銀被覆層を構成する銀粒子が球状樹脂粒子の粗面化された表面に入り込んでいるため、銀被覆層の密着性、隠蔽性がより高まり、導電性が向上する。また、銀被覆層の厚さを薄くできるので、製造コストを下げることができる。   In the silver-coated spherical resin particles according to the first aspect of the present invention, the spherical resin particles have a roughened surface, and the silver particles constituting the silver coating layer in contact with the surface of the spherical resin particles in the silver coating layer are spherical. Since it has penetrated into the roughened surface of the resin particles, the adhesion and concealment of the silver coating layer are further increased, and the conductivity is improved. Moreover, since the thickness of the silver coating layer can be reduced, the manufacturing cost can be reduced.

本発明の第2の観点の銀被覆球状樹脂粒子では、球状樹脂粒子の粗面化された表面に入り込む銀粒子の平均粒子径は10〜50nmの範囲にあり、球状樹脂粒子の粗面化された表面に入り込まない銀粒子の平均粒子径は100〜1000nmの範囲にある。これにより、1層目の銀の層は粗面化により形成された球状樹脂粒子表面の凹みに入り込むため、銀被覆層の密着性がより高まり、2層目の銀の層は表面の隠蔽性に優れることから導電性が向上する。   In the silver-coated spherical resin particles of the second aspect of the present invention, the average particle diameter of the silver particles entering the roughened surface of the spherical resin particles is in the range of 10 to 50 nm, and the spherical resin particles are roughened. The average particle diameter of the silver particles that do not enter the surface is in the range of 100 to 1000 nm. As a result, the first silver layer enters into the dents on the surface of the spherical resin particles formed by roughening, so that the adhesion of the silver coating layer is further increased, and the second silver layer has a surface hiding property. Therefore, the conductivity is improved.

本発明の第3の観点の銀被覆球状樹脂粒子の製造方法では、アクリル系、フェノール系、又は、スチレン系の球状樹脂粒子を25〜45℃に保温された錫化合物の水溶液に添加する添加工程の前に、球状樹脂粒子の粒子表面を粗面化する粗面化処理工程を有するので、銀被覆球状樹脂粒子の製造方法により、銀被覆層の密着性がより高まり、導電性が向上した銀被覆球状樹脂粒子を得ることができる。   In the method for producing silver-coated spherical resin particles according to the third aspect of the present invention, an addition step of adding acrylic, phenolic, or styrene-based spherical resin particles to an aqueous solution of a tin compound kept at 25 to 45 ° C. Since the surface of the spherical resin particles has a roughening treatment step before the step, the silver-coated spherical resin particles can be produced by a method for producing silver-coated spherical resin particles. Coated spherical resin particles can be obtained.

本発明の第4の観点では粗面化処理が球状樹脂粒子をプラズマ処理、オゾン処理又は80〜200℃の温度での熱処理である銀被覆球状樹脂粒子の製造方法によって球状樹脂粒子の表面を確実に粗面化でき、銀被覆層の密着性がより高まり、導電性が向上した銀被覆球状樹脂粒子を得ることができる。   In the fourth aspect of the present invention, the surface of the spherical resin particles is reliably secured by the method for producing silver-coated spherical resin particles in which the roughening treatment is plasma treatment, ozone treatment or heat treatment at a temperature of 80 to 200 ° C. It is possible to obtain silver-coated spherical resin particles that can be roughened, have higher adhesion of the silver coating layer, and have improved conductivity.

本発明の第5の観点に基づく方法で製造された異方性導電性ペーストは導電性に優れる。   The anisotropic conductive paste produced by the method according to the fifth aspect of the present invention is excellent in conductivity.

本発明の第6の観点に基づく方法で製造された異方性導電性フィルム接着剤は導電性に優れる。   The anisotropic conductive film adhesive manufactured by the method based on the 6th viewpoint of this invention is excellent in electroconductivity.

本発明の第7の観点に基づく方法で製造された等方性導電性ペーストは導電性に優れる。   The isotropic conductive paste produced by the method according to the seventh aspect of the present invention is excellent in conductivity.

本発明の第8の観点に基づく方法で製造された等方性導電性フィルム接着剤は導電性に優れる。   The isotropic conductive film adhesive produced by the method according to the eighth aspect of the present invention is excellent in conductivity.

図1(a)は本発明の球状樹脂粒子の表面に形成された銀被覆層を、図1(b)は従来の球状樹脂粒子の表面に形成された銀被覆層をそれぞれ模式的に示す図である。FIG. 1A schematically shows a silver coating layer formed on the surface of the spherical resin particle of the present invention, and FIG. 1B schematically shows a silver coating layer formed on the surface of the conventional spherical resin particle. It is. 図2(a)はスケール50nmで、図2(b)はスケール20nmで実施例の球状樹脂粒子の表面に形成された銀被覆層をそれぞれ示す銀被覆球状樹脂粒子の断面の透過型電子顕微鏡写真図である。FIG. 2A is a transmission electron micrograph of a cross section of silver-coated spherical resin particles each showing a silver coating layer formed on the surface of the spherical resin particles of the example at a scale of 50 nm and FIG. 2B is a scale of 20 nm. FIG. 図3(a)はスケール50nmで、図3(b)はスケール20nmで比較例の球状樹脂粒子の表面に形成された銀被覆層をそれぞれ示す銀被覆球状樹脂粒子の断面の透過型電子顕微鏡写真図である。FIG. 3A is a transmission electron micrograph of a cross section of silver-coated spherical resin particles each showing a silver coating layer formed on the surface of a spherical resin particle of a comparative example at a scale of 50 nm and FIG. 3B is a scale of 20 nm. FIG.

次に本発明を実施するための形態を説明する。   Next, the form for implementing this invention is demonstrated.

まず、本実施形態の銀被覆球状樹脂粒子について説明する。本実施形態の銀被覆球状樹脂粒子は、球状樹脂粒子と、球状樹脂粒子には粗面化された表面と、粗面化された表面に入り込む銀粒子で被覆された内層の銀被覆層と、外層の銀被覆層と、内層と外層の銀被覆層を具備する。銀被覆球状樹脂粒子100質量部に対して銀は2〜80質量部含まれる。銀粒子は、内層と外層の間に中間層が存在することもある。この場合、内層、中間層、外層の平均粒子径はそれぞれ10〜50nm、50〜100nm、100〜1000nmである。なお、製造過程の錫吸着処理で球状樹脂粒子の表面に錫を吸着させる。吸着した錫の層は無電解めっきをする初期の段階で錫と銀の置換反応が起き置換反応終了後、還元剤による無電解めっき反応により銀が被覆される。従って、ほとんど全ての錫は銀と置換され銀被覆球状樹脂粒子には残らない。   First, the silver-coated spherical resin particles of this embodiment will be described. The silver-coated spherical resin particles of the present embodiment include spherical resin particles, a surface roughened to the spherical resin particles, and an inner silver coating layer coated with silver particles that enter the roughened surface; An outer silver coating layer and inner and outer silver coating layers are provided. Silver is contained in an amount of 2 to 80 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles. The silver particles may have an intermediate layer between the inner layer and the outer layer. In this case, the average particle diameters of the inner layer, the intermediate layer, and the outer layer are 10 to 50 nm, 50 to 100 nm, and 100 to 1000 nm, respectively. In addition, tin is adsorbed on the surface of the spherical resin particles by a tin adsorption process in the manufacturing process. The adsorbed tin layer undergoes a substitution reaction of tin and silver in the initial stage of electroless plating, and after completion of the substitution reaction, silver is coated by an electroless plating reaction with a reducing agent. Therefore, almost all of the tin is replaced with silver and does not remain in the silver-coated spherical resin particles.

球状樹脂粒子は球形に近いほど好ましいが、楕円形の粒子や粒子の表面に粗面化の凹みより大きな若干の凹凸があってもかまわない。ただし鋭利な突起がある場合には、めっきした場合にめっき被覆の密着性の低下、樹脂であるバインダーと混合した場合にバインダー内での分散性の低下によって銀被覆球状樹脂粒子を等方性導電ペースト、異方性導電ペーストとして用いるときの導電性付与、絶縁性の再現を損ねる原因となるため好ましくない。球状樹脂粒子の長径と短径の比は、1〜1.5の範囲が好ましく、1〜1.3の範囲がより好ましく、1〜1.1の範囲が更に好ましい。   The spherical resin particles are preferably closer to a spherical shape, but may have some irregularities larger than the roughened dents on the surface of the elliptical particles or particles. However, if there are sharp protrusions, the silver-coated spherical resin particles are made isotropically conductive by reducing the adhesion of the plating coating when plated, and by reducing the dispersibility in the binder when mixed with a binder that is a resin. This is not preferable because it causes a loss of conductivity and insulation when used as a paste or anisotropic conductive paste. The ratio of the major axis to the minor axis of the spherical resin particles is preferably in the range of 1 to 1.5, more preferably in the range of 1 to 1.3, and still more preferably in the range of 1 to 1.1.

銀被覆球状樹脂粒子が異方性導電性フィルム接着剤や異方性導電性ペースト等で使用される際に要求される特性である、球状樹脂粒子に加重による負荷を与えたときの球状樹脂粒子の潰れ方及び加重を除荷したときの回復率の観点から球状樹脂粒子の樹脂はアクリル系、フェノール系又はスチレン系からなることが好ましい。アクリル系の樹脂としてメタクリル酸メチル樹脂(PMMA樹脂)、変性アクリル樹脂等、フェノール系の樹脂としてフェノール樹脂、フェノール・ホルムアルデヒド樹脂、フェノール・フルフラール樹脂等、スチレン系の樹脂としてポリスチレン樹脂、スチレン・アクリロニトリル共重合体、ABS樹脂等が挙げられる。   Spherical resin particles that are required when silver-coated spherical resin particles are used in anisotropic conductive film adhesives, anisotropic conductive pastes, etc., when spherical resin particles are subjected to a load due to load The resin of the spherical resin particles is preferably made of acrylic, phenolic, or styrene from the viewpoint of the recovery rate when the crushing and the load are unloaded. Acrylic resin such as methyl methacrylate resin (PMMA resin), modified acrylic resin, phenolic resin as phenol resin, phenol / formaldehyde resin, phenol / furfural resin, styrene resin as polystyrene resin, styrene / acrylonitrile Examples thereof include polymers and ABS resins.

球状樹脂粒子の平均粒径は、0.5〜40μmの範囲内であることが望ましい。また、球状樹脂粒子の粒径の変動係数は、6.0%以下であり、粒径が揃っていることが好ましい。球状樹脂粒子の平均粒径が0.5μmより小さいと球状樹脂粒子の表面積が大きくなり、導電性粒子として必要な導電性を得るための銀を多くする必要がある。球状樹脂粒子の平均粒径が40μmより大きいと銀被覆球状樹脂粒子を微細パターンに適用することが困難になる。また、粒径が揃っていないと導電性粒子として用いるときの導電性付与の再現性を損ねる原因になり得る。このため、銀被覆球状樹脂粒子の粒径の変動係数が6.0%以下であり、粒径が揃っていることがより好ましい。   The average particle size of the spherical resin particles is desirably in the range of 0.5 to 40 μm. Moreover, the variation coefficient of the particle diameter of the spherical resin particles is 6.0% or less, and it is preferable that the particle diameters are uniform. When the average particle diameter of the spherical resin particles is smaller than 0.5 μm, the surface area of the spherical resin particles becomes large, and it is necessary to increase silver for obtaining the necessary conductivity as the conductive particles. When the average particle diameter of the spherical resin particles is larger than 40 μm, it is difficult to apply the silver-coated spherical resin particles to the fine pattern. Further, if the particle diameters are not uniform, reproducibility of conductivity imparting when used as conductive particles may be impaired. For this reason, the variation coefficient of the particle diameter of the silver-coated spherical resin particles is 6.0% or less, and it is more preferable that the particle diameters are uniform.

前述した錫吸着処理で球状樹脂粒子の表面には錫の2価のイオンが吸着する。錫の2価のイオンが4価のイオンとなって溶解し2価の電子を放出する。そして、銀のイオンが電子を受け取り金属として球状樹脂粒子の錫が吸着していた部分に析出する。その後、すべての錫の2価のイオンが4価のイオンとなって水溶液中に溶解すると錫と銀の置換反応は終了し、還元剤によって触媒が酸化され電子が放出し溶液中の銀イオンがその電子を受け取り銀が析出する。上記の置換反応と還元反応によって、銀被覆層が形成される。   By the tin adsorption treatment described above, divalent ions of tin are adsorbed on the surface of the spherical resin particles. The divalent ions of tin are dissolved as tetravalent ions and emit divalent electrons. Then, silver ions receive electrons and deposit on the portion where the tin of the spherical resin particles was adsorbed as a metal. Thereafter, when all divalent ions of tin are converted to tetravalent ions and dissolved in the aqueous solution, the substitution reaction of tin and silver is completed, the catalyst is oxidized by the reducing agent, electrons are released, and the silver ions in the solution are The electrons are received and silver is deposited. A silver coating layer is formed by the above substitution reaction and reduction reaction.

銀粒子の平均粒子径は透過型電子顕微鏡にて断面形状を観察し、複数のサンプルの球状樹脂粒子の表面2000nmの範囲で、球状樹脂粒子の表面から銀被覆層の表面までの間の銀粒子の粒子径を目視で測定した。サンプル毎に粒子径が変化する層間で粒子径の平均値を算出した。   The average particle diameter of the silver particles was observed with a transmission electron microscope and the cross-sectional shape was observed. The surface of the spherical resin particles of a plurality of samples was in the range of 2000 nm. The particle diameter of was measured visually. The average value of the particle diameter was calculated between the layers in which the particle diameter changed for each sample.

銀の被覆量(含有量)は樹脂の平均粒径と必要な導電性により決まる。銀被覆球状樹脂粒子100質量部に対して、銀の含有量が2質量部より少ないと導電性粒子として銀被覆球状樹脂粒子が分散したときに、銀同士の接点が取り難く十分な導電性を付与できない。一方、銀の含有量が80質量部より大きいと比重が大きくなりコストも高くなるとともに導電性が飽和してしまう。この銀の含有量は好ましくは28〜70質量部、より好ましくは28〜60質量部である。   The coating amount (content) of silver is determined by the average particle size of the resin and the required conductivity. When the silver content is less than 2 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles, when the silver-coated spherical resin particles are dispersed as the conductive particles, it is difficult to obtain a contact point between the silver particles. Cannot be granted. On the other hand, if the silver content is greater than 80 parts by mass, the specific gravity increases, the cost increases, and the conductivity is saturated. The silver content is preferably 28 to 70 parts by mass, more preferably 28 to 60 parts by mass.

本実施形態の銀被覆球状樹脂粒子の導電性は粉体体積抵抗率が1×10-2Ω・cm以下あることが好ましく3×10-3Ω・cm以下であることがより好ましい。粉体体積抵抗率が1×10-2Ω・cmよりも高いと材料の電圧降下による損失が大きくなるため導電性材料としては不適である。粉体体積抵抗率は、試料粉末である銀被覆球状樹脂粒子を圧力容器に入れて9.8MPaで圧縮した圧粉体の抵抗値を抵抗率計で測定する。 As for the conductivity of the silver-coated spherical resin particles of this embodiment, the powder volume resistivity is preferably 1 × 10 −2 Ω · cm or less, and more preferably 3 × 10 −3 Ω · cm or less. If the powder volume resistivity is higher than 1 × 10 −2 Ω · cm, the loss due to the voltage drop of the material increases, which is not suitable as a conductive material. The powder volume resistivity is obtained by measuring the resistance value of a green compact obtained by putting silver-coated spherical resin particles, which are sample powder, into a pressure vessel and compressing at 9.8 MPa with a resistivity meter.

次いで、銀被覆球状樹脂粒子(導電性粒子、フィラー)とバインダー(接着剤)を混合した導電性接着剤について説明する。導電性接着剤には、等方性導電性接着剤(ICA:Isotropic Conductive Adhesive)と異方性導電性接着剤(ACA:Anisotropic Conductive Adhesive)がある。また、バインダーの形態によってペースト(Paste)状、フィルム(Film)状、インク(Ink)状にしたものがある。等方性導電性接着剤は、バインダー硬化時にバインダーが収縮することで、フィラーがお互いに接触し又接続したい導電物とフィラーが接触して導電性が得られる。等方性導電性接着剤にてシートを形成することも可能である。異方性導電性接着剤は、バインダー中にフィラーが分散していて接続したい導電物同士の間に異方性導電性接着剤をはさんで加圧することで、接続したい導電物の間のフィラーと接続したい導電物が接触し導電性が得られる。一方、加圧されていない部分は絶縁物のバインダーを介してフィラー同士が分散して接触しないので導電性は得られない。   Next, a conductive adhesive in which silver-coated spherical resin particles (conductive particles, filler) and a binder (adhesive) are mixed will be described. There exist isotropic conductive adhesive (ICA: Isotropic Conductive Adhesive) and anisotropic conductive adhesive (ACA: Anisotropic Conductive Adhesive) in conductive adhesive. Also, there are pastes, films, and inks depending on the form of the binder. In the isotropic conductive adhesive, the binder contracts when the binder is cured, so that the filler comes into contact with each other and the conductive material to be connected and the filler come into contact with each other to obtain conductivity. It is also possible to form a sheet with an isotropic conductive adhesive. An anisotropic conductive adhesive is a filler between conductive materials to be connected by pressurizing the anisotropic conductive adhesive between the conductive materials to be connected with filler dispersed in the binder. Conductive material desired to be connected to contact with each other to obtain conductivity. On the other hand, the non-pressurized portion is incapable of obtaining conductivity because the fillers are dispersed through the insulating binder and do not contact each other.

上記異方性導電性ペースト接着剤、異方性導電性フィルム接着剤は、本実施形態の銀被覆球状樹脂粒子とバインダーを混合してバインダー100質量部に対して銀被覆球状樹脂粒子を0.5〜5質量部含有して作製する。また、上記等方性導電性ペースト接着剤、等方性導電性フィルム接着剤は、本実施形態の銀被覆球状樹脂粒子とバインダーを混合してバインダー100質量部に対して銀被覆球状樹脂粒子を150〜250質量部含有して作製する。   The anisotropic conductive paste adhesive and the anisotropic conductive film adhesive are prepared by mixing the silver-coated spherical resin particles and the binder of the present embodiment with 0.1 part by weight of silver-coated spherical resin particles with respect to 100 parts by mass of the binder. It is prepared by containing 5 to 5 parts by mass. The isotropic conductive paste adhesive and the isotropic conductive film adhesive are prepared by mixing the silver-coated spherical resin particles and the binder of this embodiment with the silver-coated spherical resin particles for 100 parts by mass of the binder. It is prepared by containing 150 to 250 parts by mass.

上記バインダーとしてエポキシ樹脂系のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂に熱硬化性の硬化剤としてアミン系のジシアンジアミド、イソミダール類を添加して使用する。その他、インク、ペースト用に使用されるバインダーとして、スチレン−ブタジエンブロック共重合体、アクリレート樹脂、エチレン−酢酸ビニル樹脂等の熱可塑性樹脂、グリシジル基を有するモノマーやオリゴマーとイソシアネートなどの硬化剤を含有する樹脂組成物などの硬化性樹脂組成物が挙げられる。フィルム用に使用されるバインダーは上記エポキシ樹脂系のフェノキシ樹脂などの熱硬化性樹脂を主成分として含む樹脂組成物が挙げられる。   An epoxy resin-based bisphenol A type epoxy resin or bisphenol F type epoxy resin is added to the binder as an amine-based dicyandiamide or isoidal as a thermosetting curing agent. Other binders used for inks and pastes include styrene-butadiene block copolymers, thermoplastic resins such as acrylate resins and ethylene-vinyl acetate resins, glycidyl group-containing monomers and oligomers, and curing agents such as isocyanates. And a curable resin composition such as a resin composition. Examples of the binder used for the film include a resin composition containing a thermosetting resin such as the epoxy resin-based phenoxy resin as a main component.

次に、銀被覆球状樹脂粒子の製造方法について説明する。球状樹脂粒子の表面を粗面化し次いでその表面に錫を吸着処理する。次いで無電解銀めっきを行い銀被覆球状樹脂粒子を作製する。   Next, a method for producing silver-coated spherical resin particles will be described. The surface of the spherical resin particles is roughened and then tin is adsorbed on the surface. Next, electroless silver plating is performed to produce silver-coated spherical resin particles.

最初に、球状樹脂粒子に粗面化処理をする。球状樹脂粒子として、アクリル、フェノール、スチレンの球状樹脂粒子を使用する。その他、例えば、スチレン、シリコーン、ウレタン、エポキシ、テフロン(商標)、メラミン等の球状樹脂粒子を使用することも可能である。   First, the spherical resin particles are roughened. As the spherical resin particles, acrylic, phenol and styrene spherical resin particles are used. In addition, for example, spherical resin particles such as styrene, silicone, urethane, epoxy, Teflon (trademark), and melamine can be used.

上記の球状樹脂粒子に、表面を粗面化する処理として酸素の雰囲気でのプラズマ処理、オゾン処理、温度を80〜200℃の雰囲気で加熱処理を行う。この処理によって球状樹脂粒子の表面は酸化されると考えられる。その他、加湿処理や真空中での熱処理、加圧、加湿条件下での熱処理、酸化剤による湿式処理などにより表面を粗面化する。酸化剤としては過酸化水素水、塩酸、硝酸、硫酸、リン酸、クロム酸などが挙げられる。また、酸化剤による湿式処理は、プラズマ処理、オゾン処理、加熱処理、加湿処理に組み合わせてもよい。なお、酸化による処理のみならず、物理的な処理によって、例えば、真空の雰囲気、あるいは大気雰囲気でのプラズマ処理、ボールミルなどによる粉砕処理など処理の如何に関わらず球状樹脂粒子の表面を粗面化する処理であればよい。上記粗面化処理によって粗面化された面に次の錫吸着処理で錫を入り込ませる。次いで銀の無電解めっきを行って錫と銀を置換することにより最終的に高いせん断力をかけても剥がれのない銀の被覆層をめっきすることができる。これにより、本発明の銀被覆球状樹脂粒子を例えば異方性導電性接着剤に用いた場合、異方導電の短絡を回避でき、信頼性が向上する。   The spherical resin particles are subjected to plasma treatment in an oxygen atmosphere, ozone treatment, and heat treatment in an atmosphere having a temperature of 80 to 200 ° C. as a treatment for roughening the surface. It is considered that the surface of the spherical resin particles is oxidized by this treatment. In addition, the surface is roughened by humidification, heat treatment in vacuum, pressurization, heat treatment under humidification conditions, wet treatment with an oxidizing agent, or the like. Examples of the oxidizing agent include hydrogen peroxide, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and chromic acid. In addition, wet treatment with an oxidizing agent may be combined with plasma treatment, ozone treatment, heat treatment, and humidification treatment. In addition, the surface of the spherical resin particles is roughened not only by treatment by oxidation, but by physical treatment, for example, plasma treatment in a vacuum atmosphere or air atmosphere, grinding treatment by a ball mill, etc. As long as it is a process to do. Tin is introduced into the surface roughened by the roughening treatment by the next tin adsorption treatment. Next, by performing electroless plating of silver to replace tin and silver, a silver coating layer that does not peel off can be plated even when a high shear force is finally applied. Thereby, when the silver covering spherical resin particle of this invention is used for an anisotropic conductive adhesive, for example, the short circuit of anisotropic conductivity can be avoided and reliability improves.

次いで、錫吸着処理を行う。錫吸着処理は、錫化合物の水溶液に球状樹脂粒子を添加し、撹拌する。そして、球状樹脂粒子を濾別して水洗する。撹拌時間は、以下の錫化合物の水溶液の温度及び錫化合物の含有量によって適宜決定されるが、好ましくは、0.5〜24時間である。錫化合物の水溶液の温度は25〜45℃の範囲で行う。好ましくは25〜40℃、最も好ましく27〜40℃である。錫化合物の水溶液の温度が45℃より高い場合に、錫化合物が酸化するため水溶液が不安定となり球状樹脂粒子に錫化合物が十分に付着しない。この錫吸着処理を25〜45℃の水溶液で実施することによって銀を還元剤だけで無電解めっきする方法では密着性の悪かったアクリル系樹脂、フェノール系樹脂、スチレン系樹脂等の樹脂の微粒子に対しても次に説明する無電解めっき処理に初期に十分に吸着した錫と銀が置換されるため、置換した銀が密着して樹脂の表面に密着することができる。   Next, tin adsorption treatment is performed. In the tin adsorption treatment, spherical resin particles are added to an aqueous solution of a tin compound and stirred. Then, the spherical resin particles are separated by filtration and washed with water. Although stirring time is suitably determined by the temperature of the following aqueous solution of a tin compound and the content of the tin compound, it is preferably 0.5 to 24 hours. The temperature of the tin compound aqueous solution is in the range of 25 to 45 ° C. Preferably it is 25-40 degreeC, Most preferably, it is 27-40 degreeC. When the temperature of the aqueous solution of the tin compound is higher than 45 ° C., the tin compound is oxidized, so that the aqueous solution becomes unstable and the tin compound does not sufficiently adhere to the spherical resin particles. By carrying out this tin adsorption treatment with an aqueous solution at 25 to 45 ° C., silver is electrolessly plated with a reducing agent alone, and fine particles of resin such as acrylic resin, phenol resin, styrene resin, etc., which have poor adhesion. In contrast, tin and silver that are sufficiently adsorbed in the initial stage in the electroless plating process described below are substituted, so that the substituted silver can be brought into close contact with the surface of the resin.

錫吸着処理で使用する錫化合物として、塩化第一錫、フッ化第一錫、臭化第一錫、ヨウ化第一錫等が挙げられる。塩化第一錫を用いる場合、錫化合物の水溶液中の塩化第一錫の含有量は30〜100g/dmが好ましい。塩化第一錫の含有量が30g/dm以上であれば球状樹脂粒子の表面に均一な錫の被覆が形成できる。また塩化第一錫の含有量が100g/dm以下であると塩化第一錫中の不可避不純物の量を抑制しやすい。なお、塩化第一錫は飽和になるまで錫化合物の水溶液に含有することができる。 Examples of tin compounds used in the tin adsorption treatment include stannous chloride, stannous fluoride, stannous bromide, and stannous iodide. When stannous chloride is used, the content of stannous chloride in the aqueous solution of the tin compound is preferably 30 to 100 g / dm 3 . If the stannous chloride content is 30 g / dm 3 or more, a uniform tin coating can be formed on the surface of the spherical resin particles. Moreover, it is easy to suppress the amount of inevitable impurities in stannous chloride when the content of stannous chloride is 100 g / dm 3 or less. Note that stannous chloride can be contained in an aqueous solution of a tin compound until saturation.

錫化合物の水溶液は塩化第一錫を1gに対して塩酸が0.5〜2cm含有することが好ましい。塩酸の量が0.5cm以上であると塩化第一錫溶解性が向上するとともに錫の加水分解を抑制することができる。塩酸の量が2cm以下であると錫化合物の水溶液のpHが低くなりすぎないので錫を球状樹脂粒子に効率良く吸着させることができる。 The aqueous solution of the tin compound preferably contains 0.5 to 2 cm 3 of hydrochloric acid with respect to 1 g of stannous chloride. When the amount of hydrochloric acid is 0.5 cm 3 or more, the solubility of stannous chloride is improved and the hydrolysis of tin can be suppressed. When the amount of hydrochloric acid is 2 cm 3 or less, the pH of the tin compound aqueous solution does not become too low, so that tin can be efficiently adsorbed on the spherical resin particles.

次に、銀の無電解めっき処理をする。無電解めっき法として以下の3つの方法のいずれかの方法をも適用できる。
(1)錯化剤、還元剤を含む水溶液中に粗面化処理、錫吸着処理後の球状樹脂粒子を浸漬し銀塩水溶液を滴下する方法。
(2)銀塩、錯化剤を含む水溶液中に粗面化処理、錫吸着処理後の球状樹脂粒子を浸漬し還元剤水溶液を滴下する方法。
(3)銀塩、錯化剤、還元剤を含む水溶液中に粗面化処理、錫吸着処理後の球状樹脂粒子を浸漬し苛性アルカリ水溶液を滴下する方法。
Next, electroless plating of silver is performed. Any of the following three methods can be applied as the electroless plating method.
(1) A method in which spherical resin particles after roughening treatment and tin adsorption treatment are immersed in an aqueous solution containing a complexing agent and a reducing agent, and an aqueous silver salt solution is dropped.
(2) A method in which spherical resin particles after roughening treatment and tin adsorption treatment are immersed in an aqueous solution containing a silver salt and a complexing agent, and an aqueous reducing agent solution is dropped.
(3) A method in which spherical resin particles after the surface roughening treatment and tin adsorption treatment are immersed in an aqueous solution containing a silver salt, a complexing agent, and a reducing agent, and a caustic aqueous solution is dropped.

銀塩として硝酸銀、又は銀を硝酸に溶解したもの等を用いることができる。錯化剤としてアンモニア、エチレンジアミン四酢酸、エチレンジアミン四酢酸四ナトリウム、ニトロ三酢酸、トリエチレンテトラアンミン六酢酸等の塩類を用いることができる。還元剤としてホルマリン、ブドウ糖、ロッシェル塩(酒石酸ナトリウムカリウム)、ヒドラジン及びその誘導体などを用いることができる。特に、ホルマリンの水溶液であるホルムアルデヒドが好ましく、少なくともホルムアルデヒドを含む2種類以上の還元剤の混合物がより好ましく、更には、ホルムアルデヒドとブドウ糖を含む還元剤の混合物が最も好ましい。   Silver nitrate or silver dissolved in nitric acid can be used as the silver salt. As the complexing agent, salts such as ammonia, ethylenediaminetetraacetic acid, tetrasodium ethylenediaminetetraacetic acid, nitrotriacetic acid, triethylenetetraamminehexaacetic acid can be used. As the reducing agent, formalin, glucose, Rochelle salt (sodium potassium tartrate), hydrazine and its derivatives can be used. In particular, formaldehyde which is an aqueous solution of formalin is preferable, a mixture of two or more reducing agents including at least formaldehyde is more preferable, and a mixture of reducing agents including formaldehyde and glucose is most preferable.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Example 1>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、228gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、53gの水酸化ナトリウム、105cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、35gの硝酸銀、53cmの25%アンモニア水、175cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating, 228 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 53 g of sodium hydroxide, 105 cm 3 of formalin are dissolved in 2 dm 3 of water, and an aqueous solution containing the complexing agent and reducing agent is prepared. Produced. Further, 35 g of silver nitrate, 53 cm 3 of 25% aqueous ammonia, and 175 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径20μmのアクリル樹脂(PMMA架橋ビーズ)からなる球状樹脂粒子にオゾン発生器(型式オゾンスーパーエース、日本オゾン発生器株式会社製)によりガス濃度2vol%のオゾンガスにより30分間吹き込みオゾン処理を行った。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子41gを添加し30℃の温度で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して35質量部であった。   As a roughening treatment of the surface of the spherical resin particles, a spherical resin particle made of acrylic resin (PMMA cross-linked beads) having a particle diameter of 20 μm is applied to an ozone generator (model ozone super ace, manufactured by Nippon Ozone Generator Co., Ltd.) with a gas concentration of 2 vol%. The ozone treatment was performed by blowing with ozone gas for 30 minutes. After cooling, 41 g of spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment, and the mixture was stirred at a temperature of 30 ° C. for 1 hour. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The silver coating amount was 35 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<実施例2>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Example 2>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、228gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、53gの水酸化ナトリウム、105cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、35gの硝酸銀、53cmの25%アンモニア水、175cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating, 228 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 53 g of sodium hydroxide, 105 cm 3 of formalin are dissolved in 2 dm 3 of water, and an aqueous solution containing the complexing agent and reducing agent is prepared. Produced. Further, 35 g of silver nitrate, 53 cm 3 of 25% aqueous ammonia, and 175 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径15μmのアクリル樹脂(PMMA架橋ビーズ)からなる球状樹脂粒子にプラズマ発生器(型式YHS−G型、魁半導体株式会社製)の反応室に装填し反応室内の真空度を20Paとした。次いで、反応室内に酸素ガスを毎分15cmの一定量で送り込み、20Wの電力を印加し30分間プラズマを発生させた。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子41gを添加し35℃の温度で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して35質量部であった。 As a roughening treatment on the surface of the spherical resin particles, spherical resin particles made of acrylic resin (PMMA cross-linked beads) with a particle diameter of 15 μm are loaded into the reaction chamber of a plasma generator (model YHS-G type, manufactured by Sakai Semiconductor Co., Ltd.). The degree of vacuum in the reaction chamber was 20 Pa. Next, oxygen gas was fed into the reaction chamber at a constant rate of 15 cm 3 per minute, and 20 W of power was applied to generate plasma for 30 minutes. After cooling, 41 g of spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment, and the mixture was stirred at a temperature of 35 ° C. for 1 hour. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The silver coating amount was 35 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<実施例3>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Example 3>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、293gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、68gの水酸化ナトリウム、135cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、45gの硝酸銀、68cmの25%アンモニア水、225cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, 293 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 68 g of sodium hydroxide, 135 cm 3 of formalin are dissolved in 2 dm 3 of water, and an aqueous solution containing a complexing agent and a reducing agent is prepared. Produced. Further, 45 g of silver nitrate, 68 cm 3 of 25% ammonia water, and 225 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径10μmのアクリル樹脂(PMMA架橋ビーズ)からなる球状樹脂粒子にオゾン発生器(型式オゾンスーパーエース、日本オゾン発生器株式会社製)によりガス濃度2vol%でオゾンガスを30分間吹き込みオゾン処理を行った。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子を35g添加し30℃で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して45質量部であった。   As a roughening treatment of the surface of the spherical resin particles, a spherical resin particle made of acrylic resin (PMMA cross-linked beads) having a particle diameter of 10 μm is applied to an ozone generator (model ozone super ace, manufactured by Nippon Ozone Generator Co., Ltd.) with a gas concentration of 2 vol%. And ozone treatment was performed by blowing ozone gas for 30 minutes. After cooling, 35 g of the spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment and stirred at 30 ° C. for 1 hour. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The coating amount of silver was 45 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<実施例4>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Example 4>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、10.7gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、2.5gの水酸化ナトリウム、5cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、1.7gの硝酸銀、2cmの25%アンモニア水、10cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, 10.7 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 2.5 g of sodium hydroxide, 5 cm 3 of formalin are dissolved in 2 dm 3 of water, and a complexing agent and a reducing agent. An aqueous solution containing was prepared. Further, 1.7 g of silver nitrate, 2 cm 3 of 25% ammonia water, and 10 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径35μmのアクリル樹脂(架橋PMMAビーズ)からなる球状樹脂粒子にプラズマ発生器(ガラスベルジャー型)の反応室に装填し反応室内の真空度を20Paとした。次いで、反応室内に酸素ガスを毎分15cmの一定量で送り込み、10Wの電力を印加し30分間プラズマを発生させた。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子50gを添加し27℃で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して2質量部であった。 As a roughening treatment of the surface of the spherical resin particles, spherical resin particles made of acrylic resin (crosslinked PMMA beads) having a particle diameter of 35 μm are loaded into a reaction chamber of a plasma generator (glass bell jar type), and the degree of vacuum in the reaction chamber is 20 Pa did. Next, oxygen gas was fed into the reaction chamber at a fixed amount of 15 cm 3 per minute, and 10 W of power was applied to generate plasma for 30 minutes. After cooling, 50 g of spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment and stirred at 27 ° C. for 1 hour. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The silver coating amount was 2 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<実施例5>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Example 5>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、312gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、72gの水酸化ナトリウム、144cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、47gの硝酸銀、60cmの25%アンモニア水、240cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, an aqueous solution containing 312 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 72 g of sodium hydroxide, 144 cm 3 of formalin in 2 dm 3 of water and containing a complexing agent and a reducing agent is prepared. Produced. In addition, 47 g of silver nitrate, 60 cm 3 of 25% aqueous ammonia, and 240 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径5μmのアクリル樹脂(架橋PMMA樹脂)からなる球状樹脂粒子に熱風乾燥機(型式DX400、ヤマト化学株式会社製)に装填し80℃の大気雰囲気で2時間保持した。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子20gを添加し30℃で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して60質量部であった。   As a roughening treatment of the surface of the spherical resin particles, spherical resin particles made of acrylic resin (crosslinked PMMA resin) having a particle diameter of 5 μm are loaded into a hot air dryer (model DX400, manufactured by Yamato Chemical Co., Ltd.) in an air atmosphere at 80 ° C. Hold for 2 hours. After cooling, 20 g of the spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment and stirred at 30 ° C. for 1 hour. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The coating amount of silver was 60 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<実施例6>
錫吸着処理用として、塩化第一錫20g、35%塩酸20cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を25℃に保存した。
<Example 6>
For tin adsorption treatment, an aqueous solution in which 20 g of stannous chloride and 20 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 25 ° C.

無電解めっき処理用として、2dmの水に、416gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、96gの水酸化ナトリウム、192cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、63gの硝酸銀、80cmの25%アンモニア水、320cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, 416 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 96 g of sodium hydroxide, 192 cm 3 of formalin are dissolved in 2 dm 3 of water, and an aqueous solution containing the complexing agent and reducing agent is prepared. Produced. Further, 63 g of silver nitrate, 80 cm 3 of 25% ammonia water, and 320 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径1μmのアクリル樹脂(架橋PMMA樹脂)からなる球状樹脂粒子にプラズマ発生器(ガラスベルジャー型)の反応室に装填し反応室内の真空度を10Paとした。次いで、反応室内に酸素ガスを毎分15cmの一定量で送り込み、20Wの電力を印加し30分間プラズマを発生させた。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子10gを添加し40℃で2時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して80質量部であった。 As a roughening treatment of the surface of the spherical resin particles, spherical resin particles made of acrylic resin (crosslinked PMMA resin) having a particle diameter of 1 μm are loaded into a reaction chamber of a plasma generator (glass bell jar type), and the degree of vacuum in the reaction chamber is 10 Pa. did. Next, oxygen gas was fed into the reaction chamber at a constant rate of 15 cm 3 per minute, and 20 W of power was applied to generate plasma for 30 minutes. After cooling, 10 g of spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment and stirred at 40 ° C. for 2 hours. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The coating amount of silver was 80 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<実施例7>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Example 7>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、416gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、108gの水酸化ナトリウム、216cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、71gの硝酸銀、902cmの25%アンモニア水、360cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, 416 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 108 g of sodium hydroxide, and 216 cm 3 of formalin are dissolved in 2 dm 3 of water, and an aqueous solution containing the complexing agent and the reducing agent is prepared. Produced. Further, silver nitrate 71 g, 25% aqueous ammonia 902Cm 3, mixing water 360 cm 3 was prepared an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径10μmのスチレン樹脂(球状加工ポリスチレン樹脂)からなる球状樹脂粒子にオゾン発生器(型式オゾンスーパーエース、日本オゾン発生器株式会社製)によりガス濃度2vol%でオゾンガスを30分間吹き込みオゾン処理を行った。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子55g添加し35℃で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して45質量部であった。   As a roughening treatment for the surface of the spherical resin particles, a spherical resin particle made of styrene resin (spherical processed polystyrene resin) having a particle diameter of 10 μm is applied to an ozone generator (model ozone super ace, manufactured by Nippon Ozone Generator Co., Ltd.) with a gas concentration of 2 vol. The ozone treatment was performed by blowing ozone gas at 30% for 30 minutes. After cooling, 55 g of the spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment and stirred at 35 ° C. for 1 hour. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The coating amount of silver was 45 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<実施例8>
錫吸着処理用として、塩化第一錫20g、35%塩酸20cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を45℃に保存した。
<Example 8>
For tin adsorption treatment, an aqueous solution in which 20 g of stannous chloride and 20 cm 3 of 35% hydrochloric acid were diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 45 ° C.

無電解めっき処理用として、2dmの水に、325gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、75gの水酸化ナトリウム、150cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、50gの硝酸銀、75cmの25%アンモニア水、250cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, an aqueous solution containing 325 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 75 g of sodium hydroxide, 150 cm 3 of formalin in 2 dm 3 of water and containing a complexing agent and a reducing agent is prepared. Produced. Further, 50 g of silver nitrate, 75 cm 3 of 25% aqueous ammonia, and 250 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径10μmのフェノール樹脂(球状フェノール樹脂)からなる球状樹脂粒子にプラズマ発生器(型式YHS−G型、魁半導体株式会社製)の反応室に装填し反応室内の真空度を20Paとした。次いで、反応室内に酸素ガスを毎分15cmの一定量で送り込み、20Wの電力を印加し30分間プラズマを発生させた。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子を32g添加し27℃で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して50質量部であった。 As a roughening treatment of the surface of the spherical resin particles, spherical resin particles made of phenol resin (spherical phenol resin) having a particle diameter of 10 μm are loaded into a reaction chamber of a plasma generator (model YHS-G type, manufactured by Sakai Semiconductor Co., Ltd.). The degree of vacuum in the reaction chamber was 20 Pa. Next, oxygen gas was fed into the reaction chamber at a constant rate of 15 cm 3 per minute, and 20 W of power was applied to generate plasma for 30 minutes. After cooling, 32 g of the spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment and stirred at 27 ° C. for 1 hour. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The coating amount of silver was 50 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<実施例9>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Example 9>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、728gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、168gの水酸化ナトリウム、336cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、110gの硝酸銀、1402cmの25%アンモニア水、560cmの水を混合し硝酸銀を含む水溶液を作製した。 As for the electroless plating process, the water 2 dm 3, ethylenediaminetetraacetic acid tetrasodium 728 g (complexing agent), sodium hydroxide 168 g, was dissolved formalin 336Cm 3, an aqueous solution containing a complexing agent and a reducing agent Produced. Further, 110 g of silver nitrate, 1402 cm 3 of 25% aqueous ammonia, and 560 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径3μmのフェノール樹脂(球状フェノール樹脂)からなる球状樹脂粒子に熱風乾燥機(型式DX400、ヤマト化学株式会社製)に装填し200℃の大気雰囲気で2時間保持した。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子を30g添加し35℃で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して70質量部であった。   As a roughening treatment on the surface of the spherical resin particles, spherical resin particles made of phenol resin (spherical phenol resin) having a particle diameter of 3 μm are loaded into a hot air dryer (model DX400, manufactured by Yamato Chemical Co., Ltd.) in an atmospheric atmosphere of 200 ° C. Hold for 2 hours. After cooling, 30 g of the spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment and stirred at 35 ° C. for 1 hour. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The coating amount of silver was 70 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<実施例10>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Example 10>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、178gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、41gの水酸化ナトリウム、82cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、27gの硝酸銀、41cmの25%アンモニア水、137cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, an aqueous solution containing 178 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 41 g of sodium hydroxide and 82 cm 3 of formalin in 2 dm 3 of water and containing a complexing agent and a reducing agent is prepared. Produced. Further, 27 g of silver nitrate, 41 cm 3 of 25% aqueous ammonia, and 137 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理として粒子径20μmのアクリル樹脂(架橋PMMA樹脂)からなる球状樹脂粒子に熱風乾燥機(型式DX400、ヤマト化学株式会社製)に装填し80℃の大気雰囲気で2時間保持した。冷却後、錫吸着処理用の上記水溶液に粗面化処理後の球状樹脂粒子40gを添加し30℃で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して28質量部であった。   As a roughening treatment of the surface of the spherical resin particles, spherical resin particles made of acrylic resin (crosslinked PMMA resin) having a particle diameter of 20 μm are loaded into a hot air dryer (model DX400, manufactured by Yamato Chemical Co., Ltd.) in an air atmosphere at 80 ° C. Hold for 2 hours. After cooling, 40 g of spherical resin particles after the roughening treatment were added to the aqueous solution for tin adsorption treatment and stirred at 30 ° C. for 1 hour. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The silver coating amount was 28 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<比較例1>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Comparative Example 1>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、288gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、53gの水酸化ナトリウム、105cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、35gの硝酸銀、53cmの25%アンモニア水、175cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, 288 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 53 g of sodium hydroxide and 105 cm 3 of formalin are dissolved in 2 dm 3 of water, and an aqueous solution containing a complexing agent and a reducing agent is prepared. Produced. Further, 35 g of silver nitrate, 53 cm 3 of 25% aqueous ammonia, and 175 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理を行わず、粒子径20μmのアクリル樹脂(PMMA架橋ビーズ)からなる球状樹脂粒子を錫吸着処理用の上記水溶液に球状樹脂粒子41gを添加し30℃で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して35質量部であった。   Spherical resin particles made of acrylic resin (PMMA cross-linked beads) having a particle diameter of 20 μm were added to the above aqueous solution for tin adsorption treatment, and 41 g of spherical resin particles were added at 30 ° C. without roughening the surface of the spherical resin particles. Stir for hours. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The silver coating amount was 35 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<比較例2>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Comparative Example 2>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、288gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、53gの水酸化ナトリウム、105cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、35gの硝酸銀、53cmの25%アンモニア水、175cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, 288 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 53 g of sodium hydroxide and 105 cm 3 of formalin are dissolved in 2 dm 3 of water, and an aqueous solution containing a complexing agent and a reducing agent is prepared. Produced. Further, 35 g of silver nitrate, 53 cm 3 of 25% aqueous ammonia, and 175 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理を行わず、粒子径15μmのアクリル樹脂(PMMA架橋ビーズ)からなる球状樹脂粒子を錫吸着処理用の上記水溶液に球状樹脂粒子41gを添加し1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して45質量部であった。   Spherical resin particles made of acrylic resin (PMMA cross-linked beads) having a particle diameter of 15 μm were added to the aqueous solution for tin adsorption treatment, and 41 g of spherical resin particles were added and stirred for 1 hour without performing the roughening treatment on the surface of the spherical resin particles . Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The coating amount of silver was 45 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<比較例3>
錫吸着処理用として、塩化第一錫15g、35%塩酸15cmを容量1dmのメスフラスコを用いて水で1dmに稀釈(メスアップ)した水溶液を27℃に保存した。
<Comparative Example 3>
For tin adsorption treatment, an aqueous solution in which 15 g of stannous chloride and 15 cm 3 of 35% hydrochloric acid was diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask was stored at 27 ° C.

無電解めっき処理用として、2dmの水に、293gのエチレンジアミン四酢酸四ナトリウム(錯化剤)、68gの水酸化ナトリウム、135cmのホルマリンを溶解し、錯化剤及び還元剤を含む水溶液を作製した。また、45gの硝酸銀、68cmの25%アンモニア水、225cmの水を混合し硝酸銀を含む水溶液を作製した。 For electroless plating treatment, 293 g of ethylenediaminetetraacetic acid tetrasodium (complexing agent), 68 g of sodium hydroxide, 135 cm 3 of formalin are dissolved in 2 dm 3 of water, and an aqueous solution containing a complexing agent and a reducing agent is prepared. Produced. Further, 45 g of silver nitrate, 68 cm 3 of 25% ammonia water, and 225 cm 3 of water were mixed to prepare an aqueous solution containing silver nitrate.

球状樹脂粒子の表面の粗面化処理を行わず、粒子径10μmのアクリル樹脂(PMMA架橋ビーズ)からなる球状樹脂粒子を錫吸着処理用の上記水溶液に球状樹脂粒子35gを添加し30℃で1時間撹拌した。その後、球状樹脂粒子を濾別して水洗した。次いで、錯化剤及び還元剤を含む上記水溶液中に、錫吸着処理を行った球状樹脂粒子を浸漬させ水溶液を撹拌しながら硝酸銀を含む上記水溶液を滴下し球状樹脂粒子に銀を被覆して銀被覆球状樹脂粒子を得た。この銀の被覆量は銀被覆球状樹脂粒子100質量部に対して45質量部であった。   Spherical resin particles made of acrylic resin (PMMA cross-linked beads) having a particle diameter of 10 μm were added to the above aqueous solution for tin adsorption treatment and 35 g of spherical resin particles were added at 30 ° C. without roughening the surface of the spherical resin particles. Stir for hours. Thereafter, the spherical resin particles were separated by filtration and washed with water. Next, the spherical resin particles subjected to tin adsorption treatment are immersed in the aqueous solution containing the complexing agent and the reducing agent, and the aqueous solution containing silver nitrate is dropped while stirring the aqueous solution, and the spherical resin particles are coated with silver to form silver. Coated spherical resin particles were obtained. The coating amount of silver was 45 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles.

<比較試験及び結果、評価>
〔被覆した銀の粒子径の測定〕
実施例1〜10、比較例1〜3の銀被覆球状樹脂粒子の断面の写真を透過型電子顕微鏡(型式JEM−2−1−F、日本電子株式会社製)により撮影し、球状樹脂粒子の表面に形成された銀被覆層の球状樹脂粒子の樹脂側と外側の銀の粒子径を目視により観察、測定した。図2に実施例1、図3に比較例1の銀被覆球状樹脂粒子の断面の写真を示す。図2の左下が樹脂(球状樹脂粒子)で、右上が銀被覆層である。図2(a)、(b)より、実施例1では、樹脂の粗面化された表面全体に10〜50nmの銀の粒子が入り込んでいる様子が観察された。また、図2(a)より、樹脂側から150nm近辺まで、10〜50nmの銀の粒子、150〜300nm近辺では50〜100nmの銀の粒子、100nm以上では、100〜400nmの銀の粒子がそれぞれ観察され、図2(a)に示す以外に外側では最大1000nmの銀の粒子が観測された。図3(a)、(b)より、比較例1では、樹脂の表面には10nm程度の銀の粒子が少し入り込んでいる様子が観察された。また、図2(b)より、樹脂の表面には50nm前後の銀の粒子が散見されその上方に400nm前後の銀の粒子がそれぞれ観察され、図2(b)に示す以外に外側では最大1000nmの銀の粒子が観測された。表1に実施例1〜10及び比較例1〜3の樹脂側と外側の銀の平均粒子径の測定結果(粒子20個の平均値)を示す。銀の平均粒子径は実施例1〜10では樹脂側が10〜50nm、外側が100〜1000nm、比較例1〜3では樹脂側が200〜300nm、外側が800〜1000nmであった。
<Comparison test and results, evaluation>
[Measurement of particle diameter of coated silver]
Photographs of cross sections of the silver-coated spherical resin particles of Examples 1 to 10 and Comparative Examples 1 to 3 were taken with a transmission electron microscope (model JEM-2-1-F, manufactured by JEOL Ltd.), The diameters of silver particles on the resin side and outside of the spherical resin particles of the silver coating layer formed on the surface were visually observed and measured. FIG. 2 shows a photograph of a cross section of the silver-coated spherical resin particles of Example 1 and FIG. The lower left of FIG. 2 is resin (spherical resin particles), and the upper right is a silver coating layer. 2A and 2B, in Example 1, it was observed that silver particles of 10 to 50 nm entered the entire roughened surface of the resin. Further, from FIG. 2 (a), 10-50 nm silver particles from the resin side to around 150 nm, 50-100 nm silver particles around 150-300 nm, and 100-400 nm silver particles above 100 nm, respectively. Observed, silver particles with a maximum of 1000 nm were observed outside, as shown in FIG. 2 (a). 3A and 3B, in Comparative Example 1, it was observed that silver particles of about 10 nm entered the surface of the resin a little. Further, from FIG. 2 (b), silver particles of about 50 nm are scattered on the surface of the resin, and silver particles of about 400 nm are observed above them, and the maximum is 1000 nm outside, as shown in FIG. 2 (b). Of silver particles were observed. Table 1 shows the measurement results (average value of 20 particles) of the average particle diameter of the resin side and outer silver of Examples 1 to 10 and Comparative Examples 1 to 3. In Examples 1 to 10, the average particle size of silver was 10 to 50 nm on the resin side and 100 to 1000 nm on the outside. In Comparative Examples 1 to 3, the resin side was 200 to 300 nm and the outside was 800 to 1000 nm.

〔圧粉体積抵抗値の測定〕
銀被覆球状樹脂粒子2.5gを直径25mmの型に入れて加圧時の粉体体積抵抗率を抵抗率計(型式MCP−T610、三菱化学株式会社製)を用いて測定した。実施例3では3.5×10-4Ω・cm、比較例3では7.5×10-3Ω・cmであった。
[Measurement of powder volume resistance]
2.5 g of silver-coated spherical resin particles were placed in a 25 mm diameter mold, and the powder volume resistivity at the time of pressurization was measured using a resistivity meter (model MCP-T610, manufactured by Mitsubishi Chemical Corporation). In Example 3, it was 3.5 × 10 −4 Ω · cm, and in Comparative Example 3, it was 7.5 × 10 −3 Ω · cm.

〔密着性の測定〕
作製した銀被覆球状樹脂粒子をエポキシ樹脂、アミン系硬化剤とともに容器に入れ、遊星混合機(型名AR100、株式会社シンキー製)によって30分間混合した。その後、3本ロールで練り込みを行った。練られたペーストを走査型電子顕微鏡(型式SU−1500、株式会社日立ハイテクノロジーズ製)で観察し、銀被覆球状樹脂粒子に銀のめっき膜が密着しているかを目視確認した。銀めっき膜が銀被覆球状樹脂粒子の表面を90%以上被覆している場合を「良好」とし、90%未満被覆している場合を「不良」とした。実施例1〜10では、すべて90%以上被覆しており、良好であった。一方、比較例1〜3では、80%以下の被覆であり、不良であった。上記ペーストをPET(Polyethylene Terephthalate)フィルム上にアプリケータを使用して成膜し、80℃で1時間乾燥し、膜厚100μmの膜を得た。得られた体積抵抗率は、実施例1〜10のペーストによる膜では5.0×10-4Ω・cmであったのに対して、比較例1〜3のペーストによる膜では1.8×10-2Ω・cmであった。これらの体積抵抗率の結果と実施例1〜10では、めっき膜が剥がれていないことから、比較例1〜3と比べて導電性が向上していることが分かった。
[Measurement of adhesion]
The produced silver-coated spherical resin particles were put in a container together with an epoxy resin and an amine-based curing agent, and mixed for 30 minutes by a planetary mixer (model name AR100, manufactured by Shinky Corporation). Thereafter, kneading was performed with three rolls. The kneaded paste was observed with a scanning electron microscope (model SU-1500, manufactured by Hitachi High-Technologies Corporation), and it was visually confirmed whether or not the silver plating film was in close contact with the silver-coated spherical resin particles. The case where the silver plating film covered 90% or more of the surface of the silver-coated spherical resin particles was determined as “good”, and the case where it was coated less than 90% was determined as “bad”. In Examples 1 to 10, all the coatings were 90% or more, which was good. On the other hand, in Comparative Examples 1 to 3, the coverage was 80% or less, which was poor. The paste was formed on a PET (Polyethylene Terephthalate) film using an applicator and dried at 80 ° C. for 1 hour to obtain a film having a thickness of 100 μm. The obtained volume resistivity was 5.0 × 10 −4 Ω · cm in the films made of the pastes of Examples 1 to 10, whereas 1.8 × in the film made of the pastes of Comparative Examples 1 to 3. 10 −2 Ω · cm. In these results of volume resistivity and Examples 1 to 10, since the plating film was not peeled off, it was found that the conductivity was improved as compared with Comparative Examples 1 to 3.

本発明の銀被覆球状樹脂粒子は、導電性接着剤の導電性粒子、詳しくは、インク状、ペースト状又はフィルム状の等方性接着剤の導電性粒子、或いはペースト状又はフィルム状の異方性接着剤の導電性粒子に利用できる。   The silver-coated spherical resin particles of the present invention are conductive particles of a conductive adhesive, more specifically, conductive particles of an isotropic adhesive in the form of an ink, paste or film, or anisotropic in the form of a paste or film. It can utilize for the electroconductive particle of a conductive adhesive.

100 銀被覆球状樹脂粒子
101 球状樹脂粒子
100 Silver-coated spherical resin particles 101 Spherical resin particles

Claims (8)

アクリル系、フェノール系、又は、スチレン系の球状樹脂粒子と、この球状樹脂粒子表面に形成された銀粒子の集合体からなる銀被覆層とを備え、
前記銀被覆層に含まれる銀の量が銀被覆球状樹脂粒子100質量部に対して2〜80質量部である銀被覆球状樹脂粒子において、
前記球状樹脂粒子は粗面化された表面を備え、
前記銀被覆層のうち前記球状樹脂粒子の表面に接する銀被覆層を構成する銀粒子が前記球状樹脂粒子の粗面化された表面に入り込んでいることを特徴とする銀被覆球状樹脂粒子。
Acrylic, phenolic, or styrene-based spherical resin particles, and a silver coating layer composed of an aggregate of silver particles formed on the surface of the spherical resin particles,
In the silver-coated spherical resin particles in which the amount of silver contained in the silver coating layer is 2 to 80 parts by mass with respect to 100 parts by mass of the silver-coated spherical resin particles,
The spherical resin particles have a roughened surface,
Silver coated spherical resin particles, wherein silver particles constituting the silver coated layer in contact with the surface of the spherical resin particles in the silver coated layer enter the roughened surface of the spherical resin particles.
前記球状樹脂粒子の表面に入り込む銀粒子の平均粒子径は10〜50nmの範囲にあり、
前記球状樹脂粒子の表面に入り込まない銀粒子の平均粒子径は100〜1000nmの範囲にある請求項1記載の銀被覆球状樹脂粒子。
The average particle diameter of the silver particles entering the surface of the spherical resin particles is in the range of 10 to 50 nm,
2. The silver-coated spherical resin particles according to claim 1, wherein an average particle diameter of silver particles not entering the surface of the spherical resin particles is in a range of 100 to 1000 nm.
アクリル系、フェノール系、又は、スチレン系の球状樹脂粒子を25〜45℃に保温された錫化合物の水溶液に添加する添加工程と、前記錫化合物の水溶液に対して還元剤を用いて無電解めっきを行う工程と、前記錫の無電解めっきの後で銀の無電解めっきを行う工程とを含む銀被覆球状樹脂粒子の製造方法において、
前記添加工程の前に前記球状樹脂粒子の粒子表面を粗面化する粗面化処理工程を有することを特徴とする銀被覆球状樹脂粒子の製造方法。
An addition step of adding acrylic, phenolic or styrene spherical resin particles to an aqueous solution of tin compound kept at 25 to 45 ° C., and electroless plating using a reducing agent for the aqueous solution of tin compound In the method for producing silver-coated spherical resin particles, including the step of performing silver electroless plating after the tin electroless plating,
A method for producing silver-coated spherical resin particles, comprising a roughening treatment step of roughening the particle surface of the spherical resin particles before the adding step.
前記粗面化処理が前記球状樹脂粒子をプラズマ処理、オゾン処理又は80〜200℃の温度での熱処理である請求項3記載の銀被覆球状樹脂粒子の製造方法。   The method for producing silver-coated spherical resin particles according to claim 3, wherein the roughening treatment is plasma treatment, ozone treatment or heat treatment at a temperature of 80 to 200 ° C for the spherical resin particles. 請求項1又は2記載の銀被覆球状樹脂粒子或いは請求項3又は4記載の方法で製造された銀被覆球状樹脂粒子とバインダーとを混合することにより異方性導電性ペーストを製造する方法。   A method for producing an anisotropic conductive paste by mixing silver-coated spherical resin particles according to claim 1 or 2 or silver-coated spherical resin particles produced by the method according to claim 3 or 4 and a binder. 請求項1又は2記載の銀被覆球状樹脂粒子或いは請求項3又は4記載の方法で製造された銀被覆球状樹脂粒子とバインダーとを混合することにより異方性導電性フィルム接着剤を製造する方法。   A method for producing an anisotropic conductive film adhesive by mixing silver-coated spherical resin particles according to claim 1 or 2 or silver-coated spherical resin particles produced by the method according to claim 3 or 4 and a binder. . 請求項1又は2記載の銀被覆球状樹脂粒子或いは請求項3又は4記載の方法で製造された銀被覆球状樹脂粒子とバインダーとを混合することにより等方性導電性ペーストを製造する方法。   A method for producing an isotropic conductive paste by mixing silver-coated spherical resin particles according to claim 1 or 2 or silver-coated spherical resin particles produced by the method according to claim 3 or 4 and a binder. 請求項1又は2記載の銀被覆球状樹脂粒子或いは請求項3又は4記載の方法で製造された銀被覆球状樹脂粒子とバインダーとを混合することにより等方性導電性フィルム接着剤を製造する方法。 A method for producing an isotropic conductive film adhesive by mixing silver-coated spherical resin particles according to claim 1 or 2 or silver-coated spherical resin particles produced by the method according to claim 3 or 4 and a binder. .
JP2014077428A 2014-04-04 2014-04-04 Silver-coated spherical resin particles and method for producing the same Active JP6386767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014077428A JP6386767B2 (en) 2014-04-04 2014-04-04 Silver-coated spherical resin particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014077428A JP6386767B2 (en) 2014-04-04 2014-04-04 Silver-coated spherical resin particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015199970A true JP2015199970A (en) 2015-11-12
JP6386767B2 JP6386767B2 (en) 2018-09-05

Family

ID=54551523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014077428A Active JP6386767B2 (en) 2014-04-04 2014-04-04 Silver-coated spherical resin particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP6386767B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147163A (en) * 2016-02-19 2017-08-24 三菱マテリアル株式会社 Conductive paste and conductive film formed using the same
JP2017179466A (en) * 2016-03-30 2017-10-05 三菱マテリアル電子化成株式会社 Silver-coated resin particle, its production, and conductive paste containing particle
JP2020056088A (en) * 2018-10-04 2020-04-09 三菱マテリアル電子化成株式会社 Silver coated resin particle and method for manufacturing the same
KR20210110906A (en) * 2020-03-02 2021-09-10 이기철 Method for coating silver on materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250364A (en) * 1985-08-30 1987-03-05 Pentel Kk Colored powder and production thereof
WO2012023566A1 (en) * 2010-08-20 2012-02-23 三菱マテリアル株式会社 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250364A (en) * 1985-08-30 1987-03-05 Pentel Kk Colored powder and production thereof
WO2012023566A1 (en) * 2010-08-20 2012-02-23 三菱マテリアル株式会社 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147163A (en) * 2016-02-19 2017-08-24 三菱マテリアル株式会社 Conductive paste and conductive film formed using the same
WO2017141473A1 (en) * 2016-02-19 2017-08-24 三菱マテリアル株式会社 Electrically conductive paste and electrically conductive film formed by using same
JP2017179466A (en) * 2016-03-30 2017-10-05 三菱マテリアル電子化成株式会社 Silver-coated resin particle, its production, and conductive paste containing particle
JP2020056088A (en) * 2018-10-04 2020-04-09 三菱マテリアル電子化成株式会社 Silver coated resin particle and method for manufacturing the same
JP7125319B2 (en) 2018-10-04 2022-08-24 三菱マテリアル電子化成株式会社 Silver-coated resin particles and method for producing the same
KR20210110906A (en) * 2020-03-02 2021-09-10 이기철 Method for coating silver on materials
KR102377548B1 (en) * 2020-03-02 2022-06-13 이기철 Method for coating silver on plastics

Also Published As

Publication number Publication date
JP6386767B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP5497183B2 (en) Silver-coated spherical resin, production method thereof, anisotropic conductive adhesive containing silver-coated spherical resin, anisotropic conductive film, and conductive spacer
JP6639823B2 (en) Silver-coated resin particles, method for producing the same, and conductive paste using the same
JP6386767B2 (en) Silver-coated spherical resin particles and method for producing the same
TW200537528A (en) Conductive particle and anisotropic conductive material
US10076032B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
JP6665514B2 (en) Method for producing silver-coated particles
CN104130719A (en) Graphene oxide conductive adhesive and preparation and using method of graphene oxide conductive adhesive
JP2006302716A (en) Conductive particle and anisotropic conductive material
WO2016039314A1 (en) Printed circuit board substrate, printed circuit board, and production method for printed circuit board substrate
WO2016114189A1 (en) Silver-coated resin particles, method for manufacturing same, and electroconductive paste using same
JPWO2019155924A1 (en) Silver coated resin particles
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP2016195048A (en) Silver-coated conductive particles and conductive material containing the same
JP6486280B2 (en) Silver-coated conductive particles, conductive paste, and conductive film
WO2016104391A1 (en) Substrate for printed wiring board, printed wiring board, and method for producing substrate for printed wiring board
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP2016219129A (en) Metal-coated electrically conductive particle and electrically conductive material containing the particle
JP6286852B2 (en) Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP2007305576A (en) Conductive paste, prepreg using same, metal foil lamination plate, and printed wiring board
JP7093639B2 (en) Silver coated resin particles
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP7049536B1 (en) Metal-coated resin particles and their manufacturing method, conductive paste containing metal-coated resin particles, and conductive film
JP2010080408A (en) Conductive particles, anisotropic conductive material, and connection structure
JP4714719B2 (en) Method for producing conductive fine particles
JP6546084B2 (en) Printed wiring board substrate and method of manufacturing printed wiring board substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180810

R150 Certificate of patent or registration of utility model

Ref document number: 6386767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250