JP2015198126A - Compound thin film solar cell, and method of manufacturing compound thin film solar cell - Google Patents

Compound thin film solar cell, and method of manufacturing compound thin film solar cell Download PDF

Info

Publication number
JP2015198126A
JP2015198126A JP2014074195A JP2014074195A JP2015198126A JP 2015198126 A JP2015198126 A JP 2015198126A JP 2014074195 A JP2014074195 A JP 2014074195A JP 2014074195 A JP2014074195 A JP 2014074195A JP 2015198126 A JP2015198126 A JP 2015198126A
Authority
JP
Japan
Prior art keywords
coordinates
coordinate
ratio
solar cell
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014074195A
Other languages
Japanese (ja)
Other versions
JP2015198126A5 (en
Inventor
毅聞 張
Yiwen Zhang
毅聞 張
明 殷
Akira In
明 殷
山田 明
Akira Yamada
山田  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Toppan Inc
Original Assignee
Tokyo Institute of Technology NUC
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Toppan Printing Co Ltd filed Critical Tokyo Institute of Technology NUC
Priority to JP2014074195A priority Critical patent/JP2015198126A/en
Priority to TW104110383A priority patent/TW201601332A/en
Priority to PCT/JP2015/060159 priority patent/WO2015152257A1/en
Publication of JP2015198126A publication Critical patent/JP2015198126A/en
Publication of JP2015198126A5 publication Critical patent/JP2015198126A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Wood Science & Technology (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound thin film solar cell including a light absorption layer formed of a coating film of an ink containing fine particles, and capable of enhancing the photoelectric conversion efficiency, and to provide a method of manufacturing the same.SOLUTION: In a Cartesian coordinate system where the Cu/(Zn+Sn) ratio (atomic ratio) is x-axis, the Zn/Sn ratio (atomic ratio) is y-axis, the coordinate (x, y) indicating the Cu/(Zn+Sn) ratio and the Zn/Sn ratio of a light absorption layer included in a compound thin film solar cell is located on 7 straight lines connecting the coordinate A(0.71, 0.82), coordinate B(0.90, 0.82), coordinate C(0.94, 0.87), coordinate D(0.89, 1.00), coordinate E(0.84, 1.07), coordinate F(0.75, 1.08), coordinate G(0.71, 1.05) in the order of the coordinate A, coordinate B, coordinate C, coordinate D, coordinate E, coordinate F, and coordinate G, or in a region surrounded by 7 straight lines.

Description

本発明は、CZTS系の化合物半導体層を備える化合物薄膜太陽電池、および、その製造方法に関する。   The present invention relates to a compound thin-film solar cell including a CZTS-based compound semiconductor layer and a method for manufacturing the same.

CZTS系化合物薄膜太陽電池は、CZTS系(CuZnSnS、CuZnSnSe、CuZnSn(S,Se)等)の化合物半導体層を光吸収層として備えている。こうした化合物薄膜太陽電池において、光吸収層の組成比は、光電変換効率に影響を与える因子の一つである。例えば、特許文献1には、光吸収層において、Cu/(Zn+Sn)比が0.78〜0.90であり、かつ、Zn/Sn比が1.18〜1.32であると、高い光電変換効率が得られることが開示されている。 The CZTS-based compound thin film solar cell includes a CZTS-based compound semiconductor layer (Cu 2 ZnSnS 4 , Cu 2 ZnSnSe 4 , Cu 2 ZnSn (S, Se) 4, etc.) as a light absorption layer. In such a compound thin film solar cell, the composition ratio of the light absorption layer is one of the factors affecting the photoelectric conversion efficiency. For example, Patent Document 1 discloses that in a light absorption layer, a Cu / (Zn + Sn) ratio is 0.78 to 0.90 and a Zn / Sn ratio is 1.18 to 1.32. It is disclosed that conversion efficiency can be obtained.

特開2010−215497号公報JP 2010-215497 A

しかしながら、特許文献1に開示されている組成比の範囲は、スパッタリングによって成膜された光吸収層を対象として行われた試験の結果から求められた範囲である。そのため、スパッタリングとは異なる方法によって成膜された光吸収層に、上記組成比を適用したとしても、必ずしも高い光電変換効率が得られるとは限らない。   However, the range of the composition ratio disclosed in Patent Document 1 is a range obtained from the result of a test performed on a light absorption layer formed by sputtering. Therefore, even when the above composition ratio is applied to a light absorption layer formed by a method different from sputtering, high photoelectric conversion efficiency is not always obtained.

例えば、微粒子を含むインクの塗膜から光吸収層を形成する方法は、スパッタリングと比較して、安価に光吸収層を形成することができる方法であるため、こうした方法によって形成された光吸収層を備える化合物薄膜太陽電池にて、光電変換効率を高めることが求められている。   For example, a method for forming a light absorption layer from a coating film of ink containing fine particles is a method that can form a light absorption layer at a lower cost than sputtering, and thus a light absorption layer formed by such a method. In a compound thin film solar cell including the above, it is required to increase the photoelectric conversion efficiency.

本発明は、微粒子を含むインクの塗膜から形成された光吸収層を備える化合物薄膜太陽電池において、光電変換効率を高めることのできる化合物薄膜太陽電池、および、化合物薄膜太陽電池の製造方法を提供することを目的とする。   The present invention provides a compound thin film solar cell capable of increasing the photoelectric conversion efficiency and a method for producing the compound thin film solar cell in a compound thin film solar cell including a light absorption layer formed from a coating film of ink containing fine particles. The purpose is to do.

上記課題を解決する化合物薄膜太陽電池は、化合物からなる微粒子を含むインクの塗工を経て形成された光吸収層を備え、前記光吸収層が前記微粒子に由来する元素としてS、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む化合物薄膜太陽電池であって、Cu/(Zn+Sn)比(原子比)をx軸、Zn/Sn比(原子比)をy軸とする直交座標系において、前記光吸収層の前記Cu/(Zn+Sn)比と前記Zn/Sn比とを示す座標(x、y)は、座標A(0.71、0.82)、座標B(0.90、0.82)、座標C(0.94、0.87)、座標D(0.89、1.00)、座標E(0.84、1.07)、座標F(0.75、1.08)、座標G(0.71、1.05)の各座標を座標A、座標B、座標C、座標D、座標E、座標F、座標G,座標Aの順に結ぶ7つの直線の上、または、前記7つの直線で囲まれた領域の内部に位置する。
上記構成によれば、化合物薄膜太陽電池における光電変換効率が高められる。
A compound thin-film solar cell that solves the above-described problem includes a light absorption layer formed through application of ink containing fine particles of a compound, and the light absorption layer is composed of S and Se as elements derived from the fine particles. A compound thin film solar cell including at least one element and three elements of Cu, Zn, and Sn, wherein the Cu / (Zn + Sn) ratio (atomic ratio) is x-axis and the Zn / Sn ratio (atomic ratio) In the orthogonal coordinate system with y as the y-axis, the coordinates (x, y) indicating the Cu / (Zn + Sn) ratio and the Zn / Sn ratio of the light absorption layer are coordinates A (0.71, 0.82). , Coordinates B (0.90, 0.82), coordinates C (0.94, 0.87), coordinates D (0.89, 1.00), coordinates E (0.84, 1.07), coordinates F (0.75, 1.08) and coordinates G (0.71, 1.05) A, coordinates B, coordinates C, the coordinates D, coordinates E, coordinates F, the coordinates G, on the seven straight lines connecting sequentially the coordinates A, or, located inside the region surrounded by the seven straight lines.
According to the said structure, the photoelectric conversion efficiency in a compound thin film solar cell is improved.

上記化合物薄膜太陽電池において、前記光吸収層は、表面電極と裏面電極との間に位置し、前記光吸収層の中で、前記表面電極に近い部分の前記Zn/Sn比は、前記裏面電極に近い部分の前記Zn/Sn比よりも低いことが好ましい。
上記構成によれば、化合物薄膜太陽電池における光電変換効率がさらに高められる。
上記化合物薄膜太陽電池において、前記光吸収層は、炭素を含むことが好ましい。
上記構成によれば、有機バインダが含まれたインクを塗工に使用できる。
In the compound thin film solar cell, the light absorption layer is located between the front electrode and the back electrode, and the Zn / Sn ratio of the portion near the front electrode in the light absorption layer is the back electrode. It is preferable that it is lower than the said Zn / Sn ratio of the part close | similar to.
According to the said structure, the photoelectric conversion efficiency in a compound thin film solar cell is further improved.
In the compound thin film solar cell, the light absorption layer preferably contains carbon.
According to the said structure, the ink containing the organic binder can be used for coating.

上記課題を解決する化合物薄膜太陽電池の製造方法は、化合物からなる微粒子を含むインクの塗工によって塗膜を成膜する工程と、前記塗膜を熱処理して光吸収層を形成する工程と、を含む化合物薄膜太陽電池の製造方法であって、前記インクにおいて前記微粒子に由来する元素は、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含み、Cu/(Zn+Sn)比(原子比)をx軸、Zn/Sn比(原子比)をy軸とする直交座標系において、前記光吸収層の前記Cu/(Zn+Sn)比と前記Zn/Sn比とを示す座標(x、y)は、座標A(0.71、0.82)、座標B(0.90、0.82)、座標C(0.94、0.87)、座標D(0.89、1.00)、座標E(0.84、1.07)、座標F(0.75、1.08)、座標G(0.71、1.05)の各座標を座標A、座標B、座標C、座標D、座標E、座標F、座標G,座標Aの順に結ぶ7つの直線の上、または、前記7つの直線で囲まれた領域の内部に位置する。
上記製造方法によれば、光電変換効率の高められた化合物薄膜太陽電池を製造することができる。
上記化合物薄膜太陽電池の製造方法において、前記微粒子は、非晶質の粒子であることが好ましい。
上記製造方法によれば、形成される光吸収層の緻密性が向上する。
A method of manufacturing a compound thin film solar cell that solves the above problems includes a step of forming a coating film by applying an ink containing fine particles of a compound, a step of heat-treating the coating film to form a light absorption layer, The element derived from the fine particles in the ink includes at least one element of S and Se, and three elements of Cu, Zn, and Sn. , Cu / (Zn + Sn) ratio (atomic ratio) is x-axis and Zn / Sn ratio (atomic ratio) is y-axis, the Cu / (Zn + Sn) ratio and Zn / Sn The coordinates (x, y) indicating the ratio are coordinates A (0.71, 0.82), coordinates B (0.90, 0.82), coordinates C (0.94, 0.87), coordinates D (0.89, 1.00), coordinate E (0.84, 1.07) , Coordinates F (0.75, 1.08) and coordinates G (0.71, 1.05) are coordinate A, coordinate B, coordinate C, coordinate D, coordinate E, coordinate F, coordinate G, coordinate It is located on the seven straight lines connecting in the order of A or inside the region surrounded by the seven straight lines.
According to the said manufacturing method, the compound thin film solar cell with improved photoelectric conversion efficiency can be manufactured.
In the method for manufacturing a compound thin film solar cell, the fine particles are preferably amorphous particles.
According to the manufacturing method, the denseness of the formed light absorption layer is improved.

上記化合物薄膜太陽電池の製造方法において、前記微粒子の平均粒径は、1nm以上200nm以下であることが好ましい。
上記製造方法によれば、平均粒径が200nm以下であると、光吸収層を形成する際の熱処理工程において、膜に隙間が形成されることが抑えられる。一方、平均粒径が1nm以上であると、微粒子が凝集しにくくなるため、光吸収層形成用インクの調製が容易となる。
上記化合物薄膜太陽電池の製造方法において、前記インクは、チオール有機物を含むことが好ましい。
上記製造方法によれば、チオール有機物がバインダとして機能し、インクの塗工時における膜のレベリング性が向上する。
In the method for producing the compound thin film solar cell, the average particle diameter of the fine particles is preferably 1 nm or more and 200 nm or less.
According to the above manufacturing method, when the average particle size is 200 nm or less, formation of a gap in the film is suppressed in the heat treatment step when forming the light absorption layer. On the other hand, when the average particle diameter is 1 nm or more, the fine particles are less likely to aggregate, and thus the light-absorbing layer forming ink can be easily prepared.
In the method for manufacturing a compound thin film solar cell, the ink preferably contains a thiol organic substance.
According to the above production method, the thiol organic substance functions as a binder, and the leveling property of the film at the time of ink application is improved.

本発明によれば、微粒子を含むインクの塗膜から形成された光吸収層を備える化合物薄膜太陽電池において、光電変換効率を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, a photoelectric conversion efficiency can be improved in a compound thin film solar cell provided with the light absorption layer formed from the coating film of the ink containing microparticles | fine-particles.

本発明の化合物薄膜太陽電池を具体化した一実施形態について、化合物薄膜太陽電池の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of a compound thin film solar cell about one Embodiment which actualized the compound thin film solar cell of this invention. 光吸収層の組成と光電変換効率についての試験結果を示す図である。It is a figure which shows the test result about a composition and photoelectric conversion efficiency of a light absorption layer.

図1を参照して、化合物薄膜太陽電池、および、その製造方法の一実施形態について説明する。   With reference to FIG. 1, one Embodiment of a compound thin film solar cell and its manufacturing method is described.

[化合物薄膜太陽電池の構成]
図1に示されるように、化合物薄膜太陽電池は、基板10を備え、基板10の上には、裏面電極11、光吸収層12、バッファ層13、半絶縁層14、窓層15、および、表面電極16がこの順に位置している。
基板10としては、例えば、ガラス板、金属板、または、プラスチック等の樹脂フィルムが用いられる。
[Configuration of Compound Thin Film Solar Cell]
As shown in FIG. 1, the compound thin-film solar cell includes a substrate 10 on which a back electrode 11, a light absorption layer 12, a buffer layer 13, a semi-insulating layer 14, a window layer 15, and The surface electrode 16 is located in this order.
For example, a glass plate, a metal plate, or a resin film such as plastic is used as the substrate 10.

裏面電極11を形成する材料としては、例えば、Mo、Ni、Cu、Ti、Fe、Al、チタニア、ステンレス等の金属が用いられる。あるいは、裏面電極11として、カーボンやグラフェン等のカーボン系電極、または、ITOやZnO等の透明導電膜が用いられてもよい。   As a material for forming the back electrode 11, for example, a metal such as Mo, Ni, Cu, Ti, Fe, Al, titania, and stainless steel is used. Alternatively, a carbon-based electrode such as carbon or graphene, or a transparent conductive film such as ITO or ZnO may be used as the back electrode 11.

光吸収層12は、p型化合物半導体であって、CZTS系の化合物半導体から構成される。CZTS系の化合物半導体は、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む、いわゆるI−(II−IV)−VI族の化合物半導体である。 The light absorption layer 12 is a p-type compound semiconductor and is made of a CZTS-based compound semiconductor. The CZTS-based compound semiconductor is a so-called I 2- (II-IV) -VI 4 group 4 compound semiconductor containing at least one element of S and Se and three elements of Cu, Zn, and Sn. It is.

Cu/(Zn+Sn)比をx軸、Zn/Sn比をy軸とする二次元の直交座標系において、光吸収層12におけるCu/(Zn+Sn)比と光吸収層12におけるZn/Sn比とを示す座標(x,y)は、以下の範囲である。すなわち、組成比について光吸収層12の示す座標(x,y)は、下記座標A、座標B、座標C、座標D、座標E、座標F、座標G、座標Aをこの順に結ぶ7つの直線上、または、7つの直線によって囲まれた領域の内部に位置する。なお、7つの直線は、座標Aと座標Bとを結ぶ直線と、座標Bと座標Cとを結ぶ直線と、座標Cと座標Dとを結ぶ直線と、座標Dと座標Eとを結ぶ直線と、座標Eと座標Fとを結ぶ直線と、座標Fと座標Gとを結ぶ直線と、座標Gと座標Aとを結ぶ直線とから構成される。
・座標A(0.71、0.82)
・座標B(0.90、0.82)
・座標C(0.94、0.87)
・座標D(0.89、1.00)
・座標E(0.84、1.07)
・座標F(0.75、1.08)
・座標G(0.71、1.05)
In a two-dimensional orthogonal coordinate system in which the Cu / (Zn + Sn) ratio is the x axis and the Zn / Sn ratio is the y axis, the Cu / (Zn + Sn) ratio in the light absorption layer 12 and the Zn / Sn ratio in the light absorption layer 12 are The coordinates (x, y) shown are in the following range. That is, the coordinates (x, y) indicated by the light absorption layer 12 with respect to the composition ratio are seven straight lines connecting the following coordinates A, coordinates B, coordinates C, coordinates D, coordinates E, coordinates F, coordinates G, and coordinates A in this order. Located above or inside the region surrounded by seven straight lines. The seven straight lines are a straight line connecting coordinates A and B, a straight line connecting coordinates B and C, a straight line connecting coordinates C and D, and a straight line connecting coordinates D and E. , A straight line connecting coordinates E and F, a straight line connecting coordinates F and G, and a straight line connecting coordinates G and A.
・ Coordinate A (0.71, 0.82)
・ Coordinate B (0.90, 0.82)
・ Coordinate C (0.94, 0.87)
-Coordinate D (0.89, 1.00)
・ Coordinate E (0.84, 1.07)
・ Coordinate F (0.75, 1.08)
・ Coordinate G (0.71, 1.05)

なお、上記のCu/(Zn+Sn)比、および、Zn/Sn比は、ともに原子比である。組成比について光吸収層12の示す座標(x,y)が上記の範囲内であれば、化合物薄膜太陽電池の光電変換効率が高められる。   The Cu / (Zn + Sn) ratio and the Zn / Sn ratio are both atomic ratios. If the coordinates (x, y) indicated by the light absorption layer 12 in the composition ratio are within the above range, the photoelectric conversion efficiency of the compound thin-film solar cell is increased.

光吸収層12において、表面電極16に近い部分のZn/Sn比は、裏面電極11に近い部分のZn/Sn比よりも低いことが好ましい。こうした構成によれば、光電変換効率がさらに高められる。光吸収層12の厚さは、0.3μm以上10μm以下であることが好ましく、例えば、2μmであることが好ましい。   In the light absorption layer 12, the Zn / Sn ratio in the portion close to the front electrode 16 is preferably lower than the Zn / Sn ratio in the portion close to the back electrode 11. According to such a configuration, the photoelectric conversion efficiency is further increased. The thickness of the light absorption layer 12 is preferably 0.3 μm or more and 10 μm or less, and preferably 2 μm, for example.

バッファ層13は、n型化合物半導体であって、バッファ層13としては、例えば、CdS、Zn(S,O,OH)、ZnS、ZnSe、または、In等が用いられる。半絶縁層14は、i型化合物半導体であって、半絶縁層14としては、例えば、ZnO等の金属酸化物が用いられる。窓層15は、n型化合物半導体であって、窓層15としては、例えば、Al、Ga、または、B等が添加されたZnOやITOが用いられる。 The buffer layer 13 is an n-type compound semiconductor. As the buffer layer 13, for example, CdS, Zn (S, O, OH), ZnS, ZnSe, In 2 S 3 or the like is used. The semi-insulating layer 14 is an i-type compound semiconductor. As the semi-insulating layer 14, for example, a metal oxide such as ZnO is used. The window layer 15 is an n-type compound semiconductor. As the window layer 15, for example, ZnO or ITO to which Al, Ga, B, or the like is added is used.

表面電極16は、窓層15の上面の一部に積層されている。表面電極16の材料としては、例えば、Al、Ag等の金属が用いられる。あるいは、表面電極16として、カーボンやグラフェン等のカーボン系電極、または、ITOやZnO等の透明導電膜が用いられてもよい。   The surface electrode 16 is laminated on a part of the upper surface of the window layer 15. As a material of the surface electrode 16, for example, a metal such as Al or Ag is used. Alternatively, as the surface electrode 16, a carbon-based electrode such as carbon or graphene, or a transparent conductive film such as ITO or ZnO may be used.

なお、バッファ層13、半絶縁層14、および、窓層15の少なくとも1つが省略されてもよく、また、化合物薄膜太陽電池は、上記各層以外の他の層を有していてもよい。例えば、窓層15の上に、反射防止膜が積層されていてもよい。反射防止膜は光の反射を抑える機能を有するため、反射防止膜を設けることによって、光吸収層12はより多くの光を吸収することができる。反射防止膜は、例えば、MgFを用いて100nm程度の厚さに形成される。
また例えば、裏面電極11と光吸収層12との間に、光電変換効率を高めるための組成を有する中間層が設けられていてもよい。
Note that at least one of the buffer layer 13, the semi-insulating layer 14, and the window layer 15 may be omitted, and the compound thin-film solar cell may have other layers other than the above-described layers. For example, an antireflection film may be laminated on the window layer 15. Since the antireflection film has a function of suppressing light reflection, the light absorption layer 12 can absorb more light by providing the antireflection film. The antireflection film is formed to a thickness of about 100 nm using, for example, MgF 2 .
Further, for example, an intermediate layer having a composition for increasing the photoelectric conversion efficiency may be provided between the back electrode 11 and the light absorption layer 12.

[化合物薄膜太陽電池の製造方法]
化合物薄膜太陽電池は、基板10の上に、裏面電極11、光吸収層12、バッファ層13、半絶縁層14、窓層15、表面電極16が、この順に積層されることによって形成される。
裏面電極11は、基板10の上面に、例えば、スパッタリング、蒸着法、CVD法等を用いて形成される。
光吸収層12は、光吸収層12の構成元素から構成される微粒子を含む光吸収層形成用インクを用いて形成される。
[Method for producing compound thin-film solar cell]
The compound thin film solar cell is formed by laminating a back electrode 11, a light absorption layer 12, a buffer layer 13, a semi-insulating layer 14, a window layer 15, and a surface electrode 16 in this order on a substrate 10.
The back electrode 11 is formed on the upper surface of the substrate 10 by using, for example, sputtering, vapor deposition, CVD, or the like.
The light absorption layer 12 is formed using a light absorption layer forming ink containing fine particles composed of the constituent elements of the light absorption layer 12.

微粒子は、ナノサイズの粒子であって、金属塩または金属錯体を含む溶液と、カルコゲニド塩を含む溶液との反応によって生成される。微粒子は、例えば、Cu2−xZn1+ySnSSe4−Z(0≦x≦1、0≦y≦1、0≦z≦4)の組成式で表される化合物からなる粒子である。また、光吸収層形成用インクは、微粒子として、上記化合物に加えて、Cu2−xSe2−y(0≦x≦1、0≦y≦2)、Zn2−xSe2−y(0≦x≦1、0≦y≦2)、Sn2−xSe2−y(0≦x≦1、0≦y≦2)の組成式で表される化合物からなる群から選択される少なくとも1種以上の化合物の粒子を含んでいてもよい。あるいは、光吸収層形成用インクは、微粒子として、Cu2−xZn1+ySnSSe4−Z(0≦x≦1、0≦y≦1、0≦z≦4)の組成式で表される化合物の粒子に代えて、上記群に含まれる3種類の化合物の粒子を含んでいてもよい。 The fine particles are nano-sized particles, and are generated by a reaction between a solution containing a metal salt or a metal complex and a solution containing a chalcogenide salt. The fine particles are, for example, particles made of a compound represented by a composition formula of Cu 2−x Zn 1 + y SnS z Se 4−Z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 4). In addition to the above-mentioned compounds, the ink for forming a light absorption layer includes Cu 2−x S y Se 2−y (0 ≦ x ≦ 1, 0 ≦ y ≦ 2), Zn 2−x S y Se as fine particles. 2-y (0 ≦ x ≦ 1, 0 ≦ y ≦ 2), Sn 2-x S y Se 2-y (0 ≦ x ≦ 1, 0 ≦ y ≦ 2) It may contain particles of at least one compound selected from the group. Alternatively, the light absorption layer forming ink is represented by a composition formula of Cu 2−x Zn 1 + y SnS z Se 4−Z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 4) as fine particles. Instead of the compound particles, three kinds of compound particles included in the group may be included.

光吸収層形成用インクの組成比について、光吸収層形成用インクの示す上記座標(x,y)は、光吸収層形成用インクに含まれる全微粒子に由来する座標(x、y)である。そして、組成比について光吸収層形成用インクの示す上記座標(x,y)は、以下の範囲である。すなわち、光吸収層形成用インクの示す上記座標(x,y)は、下記座標A、座標B、座標C、座標D、座標E、座標F、座標G、座標Aをこの順に結ぶ7つの直線上、または、7つの直線によって囲まれた領域の内部に位置する。なお、7つの直線は、座標Aと座標Bとを結ぶ直線と、座標Bと座標Cとを結ぶ直線と、座標Cと座標Dとを結ぶ直線と、座標Dと座標Eとを結ぶ直線と、座標Eと座標Fとを結ぶ直線と、座標Fと座標Gとを結ぶ直線と、座標Gと座標Aを結ぶ直線とから構成される。
・座標A(0.71、0.82)
・座標B(0.90、0.82)
・座標C(0.94、0.87)
・座標D(0.89、1.00)
・座標E(0.84、1.07)
・座標F(0.75、1.08)
・座標G(0.71、1.05)
Regarding the composition ratio of the light absorbing layer forming ink, the coordinates (x, y) indicated by the light absorbing layer forming ink are coordinates (x, y) derived from all the fine particles contained in the light absorbing layer forming ink. . And the said coordinates (x, y) which the ink for light absorption layer formation shows about a composition ratio is the following ranges. That is, the coordinates (x, y) indicated by the light absorbing layer forming ink are the seven straight lines connecting the following coordinates A, coordinates B, coordinates C, coordinates D, coordinates E, coordinates F, coordinates G, and coordinates A in this order. Located above or inside the region surrounded by seven straight lines. The seven straight lines are a straight line connecting coordinates A and B, a straight line connecting coordinates B and C, a straight line connecting coordinates C and D, and a straight line connecting coordinates D and E. , A straight line connecting coordinates E and F, a straight line connecting coordinates F and G, and a straight line connecting coordinates G and A.
・ Coordinate A (0.71, 0.82)
・ Coordinate B (0.90, 0.82)
・ Coordinate C (0.94, 0.87)
-Coordinate D (0.89, 1.00)
・ Coordinate E (0.84, 1.07)
・ Coordinate F (0.75, 1.08)
・ Coordinate G (0.71, 1.05)

組成比について光吸収層形成用インクの示す座標(x,y)が上記の範囲内であれば、光電変換効率を高めることのできる光吸収層12を形成することができる。なお、光吸収層形成用インクでは、光吸収層形成用インクに含まれる微粒子の各々の組成比についての座標(x,y)が上記範囲に含まれてもよいし、光吸収層形成用インクに含まれる微粒子の中に上記範囲外の座標(x,y)を示す微粒子が含まれてもよい。   If the coordinates (x, y) indicated by the light absorbing layer forming ink in the composition ratio are within the above range, the light absorbing layer 12 capable of increasing the photoelectric conversion efficiency can be formed. In the light absorbing layer forming ink, the coordinates (x, y) for the composition ratio of each of the fine particles contained in the light absorbing layer forming ink may be included in the above range, or the light absorbing layer forming ink. May include fine particles having coordinates (x, y) outside the above range.

微粒子としては、非晶質の粒子を用いることが好ましい。結晶性の粒子は、エネルギー的に安定な状態にあるため、各分子が一定の位置に固定されやすいが、非晶質の粒子は、熱処理によって各組成成分が拡散しやすいため、光吸収層12の緻密性が向上する。   As the fine particles, it is preferable to use amorphous particles. Crystalline particles are stable in terms of energy, and thus each molecule is easily fixed at a certain position. However, in amorphous particles, each composition component is easily diffused by heat treatment. Improves the density.

微粒子の平均粒径は、1nm以上200nm以下であることが好ましい。平均粒径が200nm以下であると、光吸収層12を形成する際の熱処理工程において、膜に隙間が形成されることが抑えられる。そのため、光吸収層12における表面粗さの増加や、光電変換効率の低下が抑えられる。一方、微粒子の平均粒径が1nm以上であると、微粒子が凝集しにくくなるため、光吸収層形成用インクの調製が容易となる。なお、微粒子の平均粒径は、光吸収層形成用インクの硬化物に対するSEM(走査型電子顕微鏡)を用いた観察から得られるものであって、1μm四方の領域を有する5個の観測領域の各々にて測定した各微粒子における最短径の平均値である。   The average particle diameter of the fine particles is preferably 1 nm or more and 200 nm or less. When the average particle size is 200 nm or less, formation of a gap in the film is suppressed in the heat treatment step when forming the light absorption layer 12. Therefore, an increase in surface roughness in the light absorption layer 12 and a decrease in photoelectric conversion efficiency can be suppressed. On the other hand, when the average particle size of the fine particles is 1 nm or more, the fine particles are less likely to aggregate, and thus the light-absorbing layer forming ink can be easily prepared. The average particle diameter of the fine particles is obtained from observation using a scanning electron microscope (SEM) for the cured product of the light absorbing layer forming ink, and is obtained by measuring five observation regions each having a 1 μm square region. It is the average value of the shortest diameter in each fine particle measured in each.

光吸収層形成用インクにて微粒子を分散させる溶媒は、有機溶媒であれば、特に制限されない。有機溶媒は、例えば、アルコール、エーテル、エステル、脂肪族炭化水素、脂環族炭化水素、または、芳香族炭化水素等から選択することができる。有機溶媒としては、メタノール、エタノール、ブタノール等の炭素数10未満のアルコール、ジエチールエーテル、ペンタン、ヘキサン、シクロヘキサン、および、トルエンが好ましく、メタノール、ピリジン、トルエン、および、ヘキサンが特に好ましい。   The solvent for dispersing the fine particles in the light absorbing layer forming ink is not particularly limited as long as it is an organic solvent. The organic solvent can be selected from, for example, alcohols, ethers, esters, aliphatic hydrocarbons, alicyclic hydrocarbons, or aromatic hydrocarbons. As the organic solvent, alcohols having less than 10 carbon atoms such as methanol, ethanol, and butanol, diethyl ether, pentane, hexane, cyclohexane, and toluene are preferable, and methanol, pyridine, toluene, and hexane are particularly preferable.

光吸収層形成用インクは、塗工時のレベリング性を高めるために、バインダを含むことが好ましい。バインダの含有量は、光吸収層形成用インクが含む微粒子の5質量%以上70質量%以下であることが好ましく、20質量%以上60質量%以下であることがさらに好ましい。バインダの含有量が5質量%以上であることによって、熱処理後の薄膜に空洞が形成されることが抑えられる。バインダの含有量が70質量%以下であることによって、熱処理後の薄膜の表面粗さが大きくなることが抑えられる。   The light absorbing layer forming ink preferably contains a binder in order to improve leveling properties during coating. The content of the binder is preferably 5% by mass or more and 70% by mass or less, and more preferably 20% by mass or more and 60% by mass or less of the fine particles contained in the light absorbing layer forming ink. When the binder content is 5% by mass or more, formation of cavities in the thin film after heat treatment is suppressed. When the binder content is 70% by mass or less, the surface roughness of the thin film after heat treatment is suppressed from increasing.

バインダとしては、チオール有機物、セレノール有機物、または、炭素数10以上のアルコール類等を用いることができる。また、バインダとして、Se粒子、S粒子、Se化合物、あるいは、S化合物等が用いられてもよい。さらには、バインダとして、硫化ナトリウム、セレン化ナトリウム、セレン化カリウム、セレン酸ナトリウム、あるいは、チオ硫酸塩等が用いられてもよい。これらの物質の中で、バインダとしては、チオール有機物を用いることが好ましく、チオ尿素を用いることがさらに好ましい。バインダとして有機化合物が用いられた場合、光吸収層形成用インクから形成された光吸収層12には、光吸収層12の全体に対して0.3原子%〜0.5原子%程度の微量の炭素が残留する。   As the binder, a thiol organic substance, a selenol organic substance, an alcohol having 10 or more carbon atoms, or the like can be used. Further, Se particles, S particles, Se compounds, S compounds, or the like may be used as the binder. Furthermore, sodium sulfide, sodium selenide, potassium selenide, sodium selenate, thiosulfate, or the like may be used as the binder. Among these substances, it is preferable to use a thiol organic substance as the binder, and it is more preferable to use thiourea. When an organic compound is used as the binder, the light absorption layer 12 formed from the light absorption layer forming ink has a trace amount of about 0.3 atomic% to 0.5 atomic% with respect to the entire light absorption layer 12. Of carbon remains.

光吸収層12の形成工程では、まず、光吸収層形成用インクが、裏面電極11の上面に塗工されて、微粒子を含む膜が形成される。そして、塗工された膜が乾燥されることによって、膜に含まれる溶媒が除去され、光吸収層12の前駆体である塗膜が形成される。塗膜が熱処理されることによって、微粒子同士の焼結と結晶化とが進行して、光吸収層12が形成される。光吸収層12は、微粒子に由来する元素として、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む。   In the step of forming the light absorption layer 12, first, the light absorption layer forming ink is applied to the upper surface of the back electrode 11 to form a film containing fine particles. And the solvent contained in a film | membrane is removed by drying the coated film | membrane, and the coating film which is a precursor of the light absorption layer 12 is formed. By the heat treatment of the coating film, the sintering and crystallization of the fine particles proceed, and the light absorption layer 12 is formed. The light absorption layer 12 includes at least one element of S and Se and three elements of Cu, Zn, and Sn as elements derived from the fine particles.

光吸収層形成用インクの塗工方法としては、例えば、ドクターブレード法、スピンコーティング法、スリットコーティング法、または、スプレー法等の塗布法や、グラビア印刷法、スクリーン印刷法、反転オフセット印刷法、または、凸版印刷法等の印刷法が挙げられる。   Examples of the coating method of the light absorbing layer forming ink include a doctor blade method, a spin coating method, a slit coating method, a coating method such as a spray method, a gravure printing method, a screen printing method, a reverse offset printing method, Or printing methods, such as a relief printing method, are mentioned.

熱処理は、例えば、加熱炉によるアニール処理や、ラピッドサーマルアニール(RTA)によって行われる。熱処理の雰囲気は、HSガス、HSeガス、窒素ガス、Arガス、Se蒸気、S蒸気、水素ガス、および、水素と不活性ガスの混合ガスから構成される群から選択される少なくとも1つを含むことが好ましい。熱処理の温度は250℃以上が好ましい。基板10としてガラスが用いられる場合には、熱処理の温度は、ガラスが耐え得る温度、具体的には、650℃以下が好ましく、600℃以下がより好ましい。 The heat treatment is performed, for example, by annealing with a heating furnace or rapid thermal annealing (RTA). The atmosphere of the heat treatment is at least selected from the group consisting of H 2 S gas, H 2 Se gas, nitrogen gas, Ar gas, Se vapor, S vapor, hydrogen gas, and a mixed gas of hydrogen and an inert gas. Preferably one is included. The heat treatment temperature is preferably 250 ° C. or higher. When glass is used as the substrate 10, the temperature of the heat treatment is a temperature that the glass can withstand, specifically, 650 ° C. or less is preferable, and 600 ° C. or less is more preferable.

なお、上記の熱処理は、ナトリウム等のアルカリ金属の共存下で行われることが好ましい。例えば、裏面電極11の上面に、アルカリ金属を含む層が形成され、アルカリ金属を含む層の上に光吸収層形成用インクが塗工されて、熱処理が行われる。具体的には、例えば、NaNbO化合物、KNbO化合物、あるいは、LiNbO化合物が、スパッタリングによって裏面電極11の上面に堆積されることにより、アルカリ金属を含む層を作ることができる。また、アルカリ金属を含む層は、NaS、NaSe、NaCl、あるいは、NaF等の化合物が、蒸着や塗布によって裏面電極11の上面に堆積されることにより、形成することもできる。 The heat treatment is preferably performed in the presence of an alkali metal such as sodium. For example, a layer containing an alkali metal is formed on the upper surface of the back electrode 11, and a light absorbing layer forming ink is applied on the layer containing the alkali metal, and heat treatment is performed. Specifically, for example, a layer containing an alkali metal can be formed by depositing a NaNbO 3 compound, a KNbO 3 compound, or a LiNbO 3 compound on the upper surface of the back electrode 11 by sputtering. The layer containing an alkali metal can also be formed by depositing a compound such as Na 2 S, Na 2 Se, NaCl, or NaF on the upper surface of the back electrode 11 by vapor deposition or coating.

光吸収層形成用インクから形成された光吸収層12には、塩酸等の酸による処理が施されることが好ましい。これによって、光吸収層12の上面付近のZn原子が溶け出すため、光吸収層12の中で表面電極16に近い部分のZn/Sn比を、裏面電極11に近い部分のZn/Sn比よりも積極的に低くすることができる。なお、酸としては、公知の無機酸や有機酸を用いることができる。
バッファ層13は、光吸収層12の上面に、例えば、CBD法、MOCVD法、または、ALD法等を用いて形成される。
The light absorption layer 12 formed from the light absorption layer forming ink is preferably subjected to treatment with an acid such as hydrochloric acid. As a result, Zn atoms in the vicinity of the upper surface of the light absorption layer 12 are dissolved, so that the Zn / Sn ratio in the portion near the front electrode 16 in the light absorption layer 12 is higher than the Zn / Sn ratio in the portion near the back electrode 11. Can also be actively lowered. In addition, as an acid, a well-known inorganic acid and organic acid can be used.
The buffer layer 13 is formed on the upper surface of the light absorption layer 12 by using, for example, the CBD method, the MOCVD method, the ALD method, or the like.

半絶縁層14は、バッファ層13の上面に、例えば、MOCVD法やスパッタリングを用いて形成され、窓層15は、半絶縁層14の上面に、例えば、MOCVD法やスパッタリングを用いて形成される。
表面電極16は、窓層15の上面の一部に、例えば、スパッタリング、蒸着法、CVD法等を用いて形成される。
The semi-insulating layer 14 is formed on the upper surface of the buffer layer 13 using, for example, MOCVD or sputtering, and the window layer 15 is formed on the upper surface of the semi-insulating layer 14 using, for example, MOCVD or sputtering. .
The surface electrode 16 is formed on a part of the upper surface of the window layer 15 by using, for example, sputtering, vapor deposition, CVD, or the like.

(実施例)
上述した化合物薄膜太陽電池、および、その製造方法について、具体的な実施例を用いて説明する。
<化合物薄膜太陽電池の作製>
(光吸収層形成用インクの調整)
CuI、ZnI、および、SnIをピリジンに溶解して、第1の溶液を調製した。また、NaSeをメタノールに溶解して、第2の溶液を調製した。この際、第1の溶液へのCuI、ZnI、SnIの各々の添加量を調整することによって、組成比について、光吸収層形成用インクの示す座標(x,y)、および、光吸収層の示す座標(x,y)を変更することができる。
(Example)
The compound thin film solar cell and the manufacturing method thereof will be described using specific examples.
<Production of compound thin film solar cell>
(Adjustment of light absorbing layer forming ink)
CuI, ZnI 2 and SnI 4 were dissolved in pyridine to prepare a first solution. In addition, a second solution was prepared by dissolving Na 2 Se in methanol. At this time, by adjusting the amount of each of CuI, ZnI 2 , and SnI 4 added to the first solution, the coordinates (x, y) indicated by the light-absorbing layer forming ink and the light absorption of the composition ratio are adjusted. The coordinates (x, y) indicated by the layer can be changed.

第1の溶液と第2の溶液とを混合し、この混合液を不活性ガス雰囲気下、0℃で反応させてCu−Zn−Sn−Se微粒子を製造した。こうして得られた微粒子の平均粒径をSEM(走査型電子顕微鏡)を用いて測定した結果、平均粒径は50nmであった。反応溶液を濾過してメタノールで洗浄した後、洗浄後のCu−Zn−Sn−Se微粒子とチオ尿素とを、微粒子とチオ尿素との質量比が3:2となるように混合し、この混合物にピリジンとメタノールとをさらに加えて、Cu−Zn−Sn−Se微粒子を含む光吸収層形成用インクを調整した。光吸収層形成用インクに含まれる固形分は2質量%である。
(裏面電極の形成)
基板としてソーダライムガラスを用い、スパッタリングによってMoから構成される裏面電極を形成した。
The first solution and the second solution were mixed, and this mixed solution was reacted at 0 ° C. in an inert gas atmosphere to produce Cu—Zn—Sn—Se fine particles. As a result of measuring the average particle diameter of the fine particles thus obtained using a SEM (scanning electron microscope), the average particle diameter was 50 nm. The reaction solution is filtered and washed with methanol, and then the washed Cu—Zn—Sn—Se fine particles and thiourea are mixed so that the mass ratio of the fine particles to thiourea is 3: 2, and this mixture is mixed. Further, pyridine and methanol were further added to prepare a light absorption layer forming ink containing Cu—Zn—Sn—Se fine particles. The solid content contained in the light absorbing layer forming ink is 2% by mass.
(Formation of back electrode)
Using soda lime glass as a substrate, a back electrode composed of Mo was formed by sputtering.

(光吸収層の形成)
裏面電極の上面にスプレー法によって光吸収層形成用インクを塗布し、250℃のオーブンで溶媒を蒸発させた後に、熱処理として550℃で60分間セレン化処理を行った。これにより、膜厚が2μmのCZTS薄膜から構成される光吸収層が得られた。
(バッファ層の形成)
0.0015Mの硫酸カドミウム(CdSO)、0.0075Mのチオ尿素(NHCSNH)、および、1.5Mのアンモニア水(NHOH)を含有する混合液を67℃に加熱した。この混合液中に、上述の光吸収層が形成された構造体を浸漬することによって、光吸収層上に膜厚が100nmのCdSから構成されるバッファ層が形成された。
(Formation of light absorption layer)
A light absorbing layer forming ink was applied to the upper surface of the back electrode by spraying, the solvent was evaporated in an oven at 250 ° C., and then a selenization treatment was performed at 550 ° C. for 60 minutes as a heat treatment. Thereby, the light absorption layer comprised from the CZTS thin film with a film thickness of 2 micrometers was obtained.
(Formation of buffer layer)
A mixture containing 0.0015 M cadmium sulfate (CdSO 4 ), 0.0075 M thiourea (NH 2 CSNH 2 ), and 1.5 M aqueous ammonia (NH 4 OH) was heated to 67 ° C. A buffer layer made of CdS having a film thickness of 100 nm was formed on the light absorption layer by immersing the structure in which the above light absorption layer was formed in this mixed solution.

(半絶縁層の形成)
ジエチル亜鉛と水とを原料としたMOCVD法によって、膜厚が50nmのZnOから構成される半絶縁層をバッファ層の上に形成した。
(窓層の形成)
ジエチル亜鉛、水、および、ジボランを原料としたMOCVD法によって、膜厚が1μmのZnO:Bから構成される窓層を半絶縁層の上に形成した。
(表面電極の形成)
蒸着法を用いて、膜厚が0.3μmのAlから構成される表面電極を窓層の上に形成した。これによって、化合物薄膜太陽電池が得られた。
(Formation of semi-insulating layer)
A semi-insulating layer made of ZnO having a thickness of 50 nm was formed on the buffer layer by MOCVD using diethyl zinc and water as raw materials.
(Formation of window layer)
A window layer made of ZnO: B having a thickness of 1 μm was formed on the semi-insulating layer by MOCVD using diethyl zinc, water, and diborane as raw materials.
(Formation of surface electrode)
A surface electrode made of Al having a film thickness of 0.3 μm was formed on the window layer by vapor deposition. Thereby, a compound thin film solar cell was obtained.

上記の方法において、光吸収層形成用インクの調整の際、CuI、ZnI、SnIの各々の添加量を調整することによって、Cu/(Zn+Sn)比およびZn/Sn比が互いに異なる試験例1〜22の化合物薄膜太陽電池を得た。 In the above method, when adjusting the light absorbing layer forming ink, the Cu / (Zn + Sn) ratio and the Zn / Sn ratio are different from each other by adjusting the addition amounts of CuI, ZnI 2 , and SnI 4. 1-22 compound thin film solar cells were obtained.

<評価方法>
(光電変換効率)
各試験例の化合物薄膜太陽電池について、標準太陽光シミュレータ(光強度:100mW/cm、エアマス:1.5)による評価を行って、光電変換効率を算出した。
(組成比)
各試験例の化合物薄膜太陽電池について、Arイオンで光吸収層の断面を平らに研磨した後に、TEM−EDS(透過型電子顕微鏡用エネルギー分散型X線分析)による評価を行って、原子比でのCu/(Zn+Sn)比およびZn/Sn比を算出した。
<Evaluation method>
(Photoelectric conversion efficiency)
About the compound thin film solar cell of each test example, evaluation by a standard sunlight simulator (light intensity: 100 mW / cm < 2 >, air mass: 1.5) was performed, and the photoelectric conversion efficiency was computed.
(Composition ratio)
About the compound thin film solar cell of each test example, after polishing the cross section of the light absorption layer flatly with Ar ions, evaluation by TEM-EDS (energy dispersive X-ray analysis for transmission electron microscope) was performed, and the atomic ratio was measured. Cu / (Zn + Sn) ratio and Zn / Sn ratio were calculated.

<結果>
各試験例の化合物薄膜太陽電池について、組成比および光電変換効率の評価結果を表1および図2に示す。
<Result>
About the compound thin film solar cell of each test example, the evaluation result of a composition ratio and photoelectric conversion efficiency is shown in Table 1 and FIG.

Figure 2015198126
Figure 2015198126

表1および図2に示されるように、Cu/(Zn+Sn)比(原子比)をx軸、Zn/Sn比(原子比)をy軸とする二次元の直交座標系には、座標A〜座標Gによって囲まれる領域が形成される。座標A(0.71、0.82)は試験例10であり、座標B(0.90、0.82)は試験例22である。また、座標C(0.94、0.87)は試験例12であり、座標D(0.89、1.00)は、試験例19である。また、座標E(0.84、1.07)は試験例13であり、座標F(0.75、1.08)は試験例14である。また、座標G(0.71、1.05)は試験例15である。そして、光吸収層の示す座標(x、y)が、座標A〜座標Gを座標A→座標B→座標C→座標D→座標E→座標F→座標G→座標Aの順に結ぶ各直線の上、または、これらの直線で囲まれた領域の内部に位置する試験例では、いずれも4.0%以上の高い光電変換効率が得られた。   As shown in Table 1 and FIG. 2, a two-dimensional orthogonal coordinate system having a Cu / (Zn + Sn) ratio (atomic ratio) as the x-axis and a Zn / Sn ratio (atomic ratio) as the y-axis includes coordinates A to A region surrounded by the coordinates G is formed. The coordinate A (0.71, 0.82) is Test Example 10, and the coordinate B (0.90, 0.82) is Test Example 22. The coordinates C (0.94, 0.87) is Test Example 12, and the coordinates D (0.89, 1.00) is Test Example 19. Further, the coordinate E (0.84, 1.07) is Test Example 13, and the coordinate F (0.75, 1.08) is Test Example 14. Coordinate G (0.71, 1.05) is Test Example 15. The coordinates (x, y) indicated by the light absorption layer are the straight lines connecting the coordinates A to G in the order of coordinates A → coordinate B → coordinate C → coordinate D → coordinate E → coordinate F → coordinate G → coordinate A. In all the test examples located above or inside the region surrounded by these straight lines, a high photoelectric conversion efficiency of 4.0% or more was obtained.

なお、上述のように微粒子を含むインクの塗膜から形成された光吸収層に、特許文献1に開示されている組成比を適用した場合、光吸収層にZnSが大量に偏析し、光電変換効率は低かった。例えば、特許文献1に開示されている組成比の範囲に含まれる試験例2や、試験例2に近い組成比を有する試験例1や試験例3では、光電変換効率は極めて低い。試験例1〜22の評価結果によれば、特にZn/Sn比について、特許文献1に開示されている組成比よりも低い範囲にて、高い光電変換効率が得られることが認められた。特許文献1に記載のように、スパッタリングによって成膜された膜が熱処理されることによって形成される光吸収層と、上記実施形態のように、微粒子を含むインクの塗膜が熱処理されることによって形成される光吸収層とでは、熱処理時における結晶化の進行の態様が異なる。こうした結晶化の進行の違いは、光電変換効率に大きな影響を与える要因であると考えられるため、座標A〜座標Gによって囲まれる範囲とは、微粒子を含むインクを用いた製法に固有の範囲であって、結晶化の進行の差異に関する観点と、その製法による研究からはじめて導き出される範囲でもある。   In addition, when the composition ratio disclosed in Patent Document 1 is applied to the light absorption layer formed from the ink film containing fine particles as described above, a large amount of ZnS is segregated in the light absorption layer, and photoelectric conversion is performed. The efficiency was low. For example, in Test Example 2 included in the composition ratio range disclosed in Patent Document 1 and Test Example 1 and Test Example 3 having a composition ratio close to Test Example 2, the photoelectric conversion efficiency is extremely low. According to the evaluation results of Test Examples 1 to 22, it was confirmed that high photoelectric conversion efficiency was obtained in a range lower than the composition ratio disclosed in Patent Document 1, particularly regarding the Zn / Sn ratio. As described in Patent Document 1, a light absorption layer formed by heat-treating a film formed by sputtering, and a coating film of ink containing fine particles as in the above embodiment is heat-treated. The formed light absorption layer is different in the manner of crystallization during heat treatment. Since the difference in the progress of crystallization is considered to be a factor that greatly affects the photoelectric conversion efficiency, the range surrounded by the coordinates A to G is a range unique to a manufacturing method using ink containing fine particles. Therefore, it is also a range derived from the viewpoint of the difference in the progress of crystallization and the research by the manufacturing method.

以上、実施例を用いて説明したように、上記実施形態によれば、以下に列挙する効果を得ることができる。
(1)光吸収層12のCu/(Zn+Sn)比とZn/Sn比とが、座標A〜座標Gによって囲まれる範囲であると、化合物薄膜太陽電池における光電変換効率が高められる。
As described above, according to the embodiment, the effects listed below can be obtained as described with reference to the examples.
(1) When the Cu / (Zn + Sn) ratio and the Zn / Sn ratio of the light absorption layer 12 are in a range surrounded by the coordinates A to G, the photoelectric conversion efficiency in the compound thin film solar cell is increased.

(2)光吸収層12の中で、表面電極16に近い部分のZn/Sn比が、裏面電極11に近い部分のZn/Sn比よりも低いと、化合物薄膜太陽電池における光電変換効率がさらに高められる。
(3)光吸収層12が炭素を含むと、有機バインダが含まれた光吸収層形成用インクを塗工に使用できる。
(2) In the light absorption layer 12, when the Zn / Sn ratio near the front electrode 16 is lower than the Zn / Sn ratio near the back electrode 11, the photoelectric conversion efficiency in the compound thin film solar cell is further increased. Enhanced.
(3) When the light absorption layer 12 contains carbon, the light absorption layer forming ink containing the organic binder can be used for coating.

(4)光吸収層形成用インク中の微粒子成分におけるCu/(Zn+Sn)比とZn/Sn比とが、座標A〜座標Gによって囲まれる範囲であると、光電変換効率の高められる組成を有する光吸収層12を形成することができる。
(5)光吸収層形成用インクに含まれる微粒子が、非晶質の粒子であると、形成される光吸収層12の緻密性が向上する。
(4) When the Cu / (Zn + Sn) ratio and the Zn / Sn ratio in the fine particle component in the light-absorbing layer forming ink are in a range surrounded by the coordinates A to G, the composition has an enhanced photoelectric conversion efficiency. The light absorption layer 12 can be formed.
(5) If the fine particles contained in the light absorbing layer forming ink are amorphous particles, the denseness of the formed light absorbing layer 12 is improved.

(6)光吸収層形成用インクに含まれる微粒子の平均粒径が200nm以下であると、光吸収層12を形成する際の熱処理工程において、膜に隙間が形成されることが抑えられる。一方、平均粒径が1nm以上であると、微粒子が凝集しにくくなるため、光吸収層形成用インクの調製が容易となる。
(7)光吸収層形成用インクがチオール有機物を含むと、チオール有機物がバインダとして機能し、インクの塗工時における膜のレベリング性が向上する。
(6) When the average particle size of the fine particles contained in the light absorbing layer forming ink is 200 nm or less, formation of a gap in the film is suppressed in the heat treatment step when forming the light absorbing layer 12. On the other hand, when the average particle diameter is 1 nm or more, the fine particles are less likely to aggregate, and thus the light-absorbing layer forming ink can be easily prepared.
(7) When the light absorption layer forming ink contains a thiol organic substance, the thiol organic substance functions as a binder, and the leveling property of the film at the time of applying the ink is improved.

10…基板、11…裏面電極、12…光吸収層、13…バッファ層、14…半絶縁層、15…窓層、16…表面電極。   DESCRIPTION OF SYMBOLS 10 ... Board | substrate, 11 ... Back electrode, 12 ... Light absorption layer, 13 ... Buffer layer, 14 ... Semi-insulating layer, 15 ... Window layer, 16 ... Surface electrode.

Claims (7)

化合物からなる微粒子を含むインクの塗工を経て形成された光吸収層を備え、前記光吸収層が前記微粒子に由来する元素としてS、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む化合物薄膜太陽電池であって、
Cu/(Zn+Sn)比(原子比)をx軸、Zn/Sn比(原子比)をy軸とする直交座標系において、前記光吸収層の前記Cu/(Zn+Sn)比と前記Zn/Sn比とを示す座標(x、y)は、座標A(0.71、0.82)、座標B(0.90、0.82)、座標C(0.94、0.87)、座標D(0.89、1.00)、座標E(0.84、1.07)、座標F(0.75、1.08)、座標G(0.71、1.05)の各座標を座標A、座標B、座標C、座標D、座標E、座標F、座標G,座標Aの順に結ぶ7つの直線の上、または、前記7つの直線で囲まれた領域の内部に位置する
ことを特徴とする化合物薄膜太陽電池。
A light-absorbing layer formed by applying an ink containing fine particles of a compound, wherein the light-absorbing layer is S as an element derived from the fine particles, and at least one element of Se, Cu, Zn, and , A compound thin film solar cell containing three elements of Sn,
In an orthogonal coordinate system in which the Cu / (Zn + Sn) ratio (atomic ratio) is the x axis and the Zn / Sn ratio (atomic ratio) is the y axis, the Cu / (Zn + Sn) ratio and the Zn / Sn ratio of the light absorption layer The coordinates (x, y) indicating the coordinates are coordinates A (0.71, 0.82), coordinates B (0.90, 0.82), coordinates C (0.94, 0.87), coordinates D ( 0.89, 1.00), coordinate E (0.84, 1.07), coordinate F (0.75, 1.08), coordinate G (0.71, 1.05) , Coordinates B, coordinates C, coordinates D, coordinates E, coordinates F, coordinates G, coordinates A on the seven straight lines connecting in this order, or inside the area surrounded by the seven straight lines. Compound thin film solar cell.
前記光吸収層は、表面電極と裏面電極との間に位置し、
前記光吸収層の中で、前記表面電極に近い部分の前記Zn/Sn比は、前記裏面電極に近い部分の前記Zn/Sn比よりも低い
請求項1に記載の化合物薄膜太陽電池。
The light absorption layer is located between the front electrode and the back electrode,
The compound thin film solar cell according to claim 1, wherein the Zn / Sn ratio in a portion near the front electrode in the light absorption layer is lower than the Zn / Sn ratio in a portion close to the back electrode.
前記光吸収層は、炭素を含む
請求項1または2に記載の化合物薄膜太陽電池。
The compound thin-film solar cell according to claim 1, wherein the light absorption layer includes carbon.
化合物からなる微粒子を含むインクの塗工によって塗膜を成膜する工程と、
前記塗膜を熱処理して光吸収層を形成する工程と、
を含む化合物薄膜太陽電池の製造方法であって、
前記インクにおいて前記微粒子に由来する元素は、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含み、
Cu/(Zn+Sn)比(原子比)をx軸、Zn/Sn比(原子比)をy軸とする直交座標系において、前記光吸収層の前記Cu/(Zn+Sn)比と前記Zn/Sn比とを示す座標(x、y)は、座標A(0.71、0.82)、座標B(0.90、0.82)、座標C(0.94、0.87)、座標D(0.89、1.00)、座標E(0.84、1.07)、座標F(0.75、1.08)、座標G(0.71、1.05)の各座標を座標A、座標B、座標C、座標D、座標E、座標F、座標G,座標Aの順に結ぶ7つの直線の上、または、前記7つの直線で囲まれた領域の内部に位置する
ことを特徴とする化合物薄膜太陽電池の製造方法。
Forming a coating film by applying an ink containing fine particles of a compound;
Heat-treating the coating film to form a light absorption layer;
A method for producing a compound thin film solar cell comprising:
The element derived from the fine particles in the ink includes at least one element of S and Se, and three elements of Cu, Zn, and Sn,
In an orthogonal coordinate system in which the Cu / (Zn + Sn) ratio (atomic ratio) is the x axis and the Zn / Sn ratio (atomic ratio) is the y axis, the Cu / (Zn + Sn) ratio and the Zn / Sn ratio of the light absorption layer The coordinates (x, y) indicating the coordinates are coordinates A (0.71, 0.82), coordinates B (0.90, 0.82), coordinates C (0.94, 0.87), coordinates D ( 0.89, 1.00), coordinate E (0.84, 1.07), coordinate F (0.75, 1.08), coordinate G (0.71, 1.05) , Coordinates B, coordinates C, coordinates D, coordinates E, coordinates F, coordinates G, coordinates A on the seven straight lines connecting in this order, or inside the area surrounded by the seven straight lines. A method of manufacturing a compound thin film solar cell.
前記微粒子は、非晶質の粒子である
請求項4に記載の化合物薄膜太陽電池の製造方法。
The method for producing a compound thin-film solar cell according to claim 4, wherein the fine particles are amorphous particles.
前記微粒子の平均粒径は、1nm以上200nm以下である
請求項4または5に記載の化合物薄膜太陽電池の製造方法。
The method for producing a compound thin-film solar cell according to claim 4 or 5, wherein the average particle size of the fine particles is 1 nm or more and 200 nm or less.
前記インクは、チオール有機物を含む
請求項4〜6のいずれか一項に記載の化合物薄膜太陽電池の製造方法。
The said ink contains thiol organic substance. The manufacturing method of the compound thin film solar cell as described in any one of Claims 4-6.
JP2014074195A 2014-03-31 2014-03-31 Compound thin film solar cell, and method of manufacturing compound thin film solar cell Pending JP2015198126A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014074195A JP2015198126A (en) 2014-03-31 2014-03-31 Compound thin film solar cell, and method of manufacturing compound thin film solar cell
TW104110383A TW201601332A (en) 2014-03-31 2015-03-31 Compound thin film solar cell, method for manufacturing same, and light-absorbing layer
PCT/JP2015/060159 WO2015152257A1 (en) 2014-03-31 2015-03-31 Compound thin film solar cell, method for manufacturing same, and light-absorbing layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014074195A JP2015198126A (en) 2014-03-31 2014-03-31 Compound thin film solar cell, and method of manufacturing compound thin film solar cell

Publications (2)

Publication Number Publication Date
JP2015198126A true JP2015198126A (en) 2015-11-09
JP2015198126A5 JP2015198126A5 (en) 2016-06-02

Family

ID=54240576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014074195A Pending JP2015198126A (en) 2014-03-31 2014-03-31 Compound thin film solar cell, and method of manufacturing compound thin film solar cell

Country Status (3)

Country Link
JP (1) JP2015198126A (en)
TW (1) TW201601332A (en)
WO (1) WO2015152257A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115108581B (en) * 2022-07-05 2024-03-15 许昌学院 Chemical method for preparing copper zinc tin sulfide nanocrystalline at normal temperature

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095608A1 (en) * 2009-02-20 2010-08-26 株式会社豊田中央研究所 Sulfide and photoelectric element
WO2012066116A1 (en) * 2010-11-18 2012-05-24 Université Du Luxembourg Method of production of semiconductor thin films
JP2013070031A (en) * 2011-09-23 2013-04-18 Delsolar Co Ltd Photovoltaic device including czts absorber layer and method of manufacturing the same
WO2013180137A1 (en) * 2012-05-30 2013-12-05 凸版印刷株式会社 Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
JP2013544938A (en) * 2010-11-22 2013-12-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Semiconductor ink, film, coated substrate and manufacturing method
JP2014017426A (en) * 2012-07-11 2014-01-30 Promatic Kk Photoelectric conversion device and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095608A1 (en) * 2009-02-20 2010-08-26 株式会社豊田中央研究所 Sulfide and photoelectric element
WO2012066116A1 (en) * 2010-11-18 2012-05-24 Université Du Luxembourg Method of production of semiconductor thin films
JP2013544938A (en) * 2010-11-22 2013-12-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Semiconductor ink, film, coated substrate and manufacturing method
JP2013070031A (en) * 2011-09-23 2013-04-18 Delsolar Co Ltd Photovoltaic device including czts absorber layer and method of manufacturing the same
WO2013180137A1 (en) * 2012-05-30 2013-12-05 凸版印刷株式会社 Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
JP2014017426A (en) * 2012-07-11 2014-01-30 Promatic Kk Photoelectric conversion device and manufacturing method of the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A.FAIRBROTHER: ""Development of a Selective Chemical Etch To Improve the Conversion Efficiency of Zn-Rich Cu2ZnSn4S", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. Vol.134, No.19 (2012), JPN6016043137, pages 8018 - 8021, ISSN: 0003437793 *
G.BRAMMERTZ: ""Electrical characterization of Cu2ZnSnS4 solar cells from selenization of sputtered metal layers"", THIN SOLID FILMS, vol. Vol.535 (2013), JPN6016026497, pages 348 - 352, ISSN: 0003357612 *
Q.GUO: ""Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals"", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. Vol.132, No.49 (2010), JPN6016026492, pages 17384 - 17386, ISSN: 0003357609 *
Y.YANG: ""Cu2ZnSnS4 films deposited by a co-electrodeposition-annealing route"", MATERIALS LETTERS, vol. Vol.77 (2012), JPN6016026494, pages 13 - 16, ISSN: 0003357610 *
大貫雅俊: "「ゾルゲル・硫化法によるCu2ZnSnS4薄膜太陽電池の作製と評価」", 電子情報通信学会技術研究報, vol. Vol.107, No.325 (2007), JPN6016026496, pages 79 - 82, ISSN: 0003357611 *

Also Published As

Publication number Publication date
TW201601332A (en) 2016-01-01
WO2015152257A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
Maeda et al. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization
Han et al. Hydrazine processed Cu 2 SnS 3 thin film and their application for photovoltaic devices
Jo et al. 8% Efficiency Cu2ZnSn (S, Se) 4 (CZTSSe) thin film solar cells on flexible and lightweight molybdenum foil substrates
TWI445778B (en) Ink for manufacturing compound semiconductor film, compound semiconductor film made from the ink, solar cell provided with compound semiconductor film and manufacturing method of solar cell
Gao et al. Influence of the deposition parameters on the properties of orthorhombic SnS films by chemical bath deposition
Ge et al. The interfacial reaction at ITO back contact in kesterite CZTSSe bifacial solar cells
Cao et al. One-step deposition of Cu2ZnSnS4 thin films for solar cells
Wang et al. Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell
JP5967837B2 (en) Method for producing ink for forming compound semiconductor thin film
Gedi et al. Influence of deposition temperature on the efficiency of SnS solar cells
Offiah et al. Influence of cadmium precursor concentrations on the structural, optical and electrochemical impedance properties of CdZnS thin films
TWI536588B (en) Compound semiconductor thin-film solar cell and method for producing thereof
TWI500170B (en) Method for manufacturing light absorber layer of bismuth-doped ib-iiia-via compound and photovoltaic device including the same
Sampath et al. Enhancement of photoelectric properties of Cu2ZnSnS4 thin films by electronic excitations induced by swift heavy ions
Aabel et al. Preparation and characterization of CZTS thin films by vacuum-assisted spray pyrolysis and fabrication of Cd-free heterojunction solar cells
Yussuf et al. Novel heterojunction superstrate Cu2ZnInS4− x (CZIS) thin film kesterite solar cell with vertical arrays of hexagonal ZnO nanorods window layer
TWI570949B (en) Method of manufacturing compound semiconductor thin film and solar cell having the compound semiconductor thin film
WO2015152257A1 (en) Compound thin film solar cell, method for manufacturing same, and light-absorbing layer
Cheng et al. Fabrication of CZTSSe absorbers by optimized selenization of one-step co-electrodeposited CZTS precursors
JP5782672B2 (en) COMPOUND SEMICONDUCTOR THIN FILM INK
Barreau et al. Low-temperature preparation of MoS2 thin films on glass substrate with NaF additive
Abdel-Galil et al. Synthesis and optical characterization of n-ZnO and p-Cu2ZnSnS4 nanocrystalline thin films for low cost solar cells
JP2015070219A (en) Compound thin-film solar cell and method of manufacturing compound thin-film solar cell
JP2017069454A (en) Ink for light absorption layer formation, compound film solar battery, and manufacturing method for compound film solar battery
JP2017183549A (en) Light absorption layer, compound thin film solar cell, manufacturing method of light absorption layer, and manufacturing method of compound thin film solar cell

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160408

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509