JP2014017426A - Photoelectric conversion device and manufacturing method of the same - Google Patents

Photoelectric conversion device and manufacturing method of the same Download PDF

Info

Publication number
JP2014017426A
JP2014017426A JP2012155110A JP2012155110A JP2014017426A JP 2014017426 A JP2014017426 A JP 2014017426A JP 2012155110 A JP2012155110 A JP 2012155110A JP 2012155110 A JP2012155110 A JP 2012155110A JP 2014017426 A JP2014017426 A JP 2014017426A
Authority
JP
Japan
Prior art keywords
precursor
light absorption
photoelectric conversion
absorption layer
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012155110A
Other languages
Japanese (ja)
Inventor
Kazuhiro Fukushima
和宏 福島
Toshie Mori
俊江 森
Takashi Minemoto
高志 峯元
Akira Ishino
亮 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROMATIC KK
Ritsumeikan Trust
Original Assignee
PROMATIC KK
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PROMATIC KK, Ritsumeikan Trust filed Critical PROMATIC KK
Priority to JP2012155110A priority Critical patent/JP2014017426A/en
Publication of JP2014017426A publication Critical patent/JP2014017426A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve a problem occurring when forming a light absorption layer of a compound thin film solar cell such as a chalcopyrite type and a kesterite type by sulfurizing or seleniding the light absorption layer from a precursor that a compression stress associated with volume expansion occurs in the precursor and sometimes peeling from an underlayer occurs thereby to manufacture the light absorption layer having a good film quality while inhibiting peeling.SOLUTION: A photoelectric conversion device manufacturing method comprises a process of forming a precursor including two and more kinds of metal elements and oxygen within a range of 25 atom%-60 atom%, and subsequently forming a light absorption layer by performing a sulfuration treatment on the precursor.

Description

本発明は、化合物光電変換装置、特に薄膜型化合物光電変換装置に関するものである。   The present invention relates to a compound photoelectric conversion device, and more particularly to a thin film type compound photoelectric conversion device.

化合物光電変換装置において、CuInS2(CIS)、Cu(In,Ga)Se2(CIGS)、Cu2ZnSnS4(CZTS)などの化合物光吸収層は、一旦合金プリカーサ薄膜を作成した後にセレン化や硫化処理を行う二段階法あるいは三段階法と呼ばれる方法が採用されている(特許文献1)。   In compound photoelectric conversion devices, compound light absorption layers such as CuInS2 (CIS), Cu (In, Ga) Se2 (CIGS), Cu2ZnSnS4 (CZTS), etc. are once subjected to selenization and sulfidation treatment after forming an alloy precursor thin film. A method called a step method or a three-step method is employed (Patent Document 1).

しかし、合金プリカーサ薄膜がセレン化あるいは硫化される際には50原子%程度のセレンあるいは硫黄原子が取り込まれるため、合金プリカーサ薄膜は体積膨張する。この体積膨張は膜厚方向だけでなく面内方向にも膨張するため、出来上がった光吸収層には圧縮応力が掛かる。   However, when the alloy precursor thin film is selenized or sulfided, about 50 atomic% of selenium or sulfur atoms are taken in, so the alloy precursor thin film expands in volume. Since this volume expansion expands not only in the film thickness direction but also in the in-plane direction, the completed light absorption layer is subjected to compressive stress.

圧縮応力が光吸収層と金属電極等の下地層との密着力程度に大きくなると、界面での剥離が起こり、素子特性や生産性に大きな悪影響を及ぼす問題があった。   When the compressive stress is increased to the degree of adhesion between the light absorption layer and the base layer such as a metal electrode, peeling at the interface occurs, which has a problem of adversely affecting device characteristics and productivity.

この改善策として、セレン化あるいは硫化処理の温度や時間を適正化する方法がある。しかしながら、この方法では光吸収層の圧縮応力を抑制するために、セレン化や硫化反応および結晶化などが十分に最適化できない。   As an improvement measure, there is a method of optimizing the temperature and time of selenization or sulfidation treatment. However, this method cannot sufficiently optimize selenization, sulfurization reaction, crystallization, and the like in order to suppress the compressive stress of the light absorption layer.

特開2012−59847号公報JP 2012-59847 A

解決しようとする問題点は、光吸収層をプリカーサから硫化またはセレン化してカルコパイライト系化合物薄膜太陽電池の光吸収層を作成する際に、プリカーサが体積膨張に伴って圧縮応力を生じ、場合によっては下地層から剥離を生じることであり、剥離を抑制しつつ良好な膜質の光吸収層を作成することが課題である。   The problem to be solved is that when the light absorbing layer is sulfided or selenized from the precursor to produce the light absorbing layer of the chalcopyrite compound thin film solar cell, the precursor generates compressive stress along with the volume expansion. Is to cause peeling from the underlayer, and it is a problem to create a light-absorbing layer having good film quality while suppressing peeling.

本発明に係る光電変換装置の製造方法では、二種類以上の金属元素と、25原子%〜60原子%の範囲の酸素とを含むプリカーサを作成した後、前記プリカーサを硫化処理することで光吸収層を作成する工程を有する。プリカーサに酸素原子を添加しておくと、硫化処理の際に酸素の脱離と硫化がほぼ同時に進行することにより、膜の体積膨張を抑制しつつ硫化を促進することができるのでよい。酸素添加量は25原子%以上とすると、体積膨張抑制効果を十分得やすいのでよい。ただし、酸素添加濃度を60原子%以上とすると、硫化の際に酸素が残存するので好ましくない。また、酸素原子はプリカーサ膜内部に均一に分散していてもよいし、厚み方向に濃度分布があってもよい。ただし、面内で極端に濃度分布があると硫化処理時の体積膨張による圧縮応力を十分緩和できないので好ましくない。   In the method for manufacturing a photoelectric conversion device according to the present invention, after a precursor containing two or more kinds of metal elements and oxygen in a range of 25 atomic% to 60 atomic% is formed, the precursor is subjected to sulfurization treatment to absorb light. Creating a layer. If oxygen atoms are added to the precursor, the desorption of oxygen and sulfidation proceed almost simultaneously during the sulfidation treatment, so that sulfidation can be promoted while suppressing volume expansion of the film. If the amount of oxygen added is 25 atomic% or more, the volume expansion suppressing effect may be sufficiently obtained. However, if the oxygen addition concentration is 60 atomic% or more, oxygen remains undesirably during sulfidation. Further, oxygen atoms may be uniformly dispersed inside the precursor film, or may have a concentration distribution in the thickness direction. However, an extremely in-plane concentration distribution is not preferable because the compressive stress due to volume expansion during the sulfiding treatment cannot be sufficiently relaxed.

本発明に係る光電変換装置の製造方法では、硫化処理前のプリカーサが非晶質である。プリカーサが非晶質であると、その後行程の硫化処理において、硫化反応および硫化物の結晶成長を妨げるものが少ないのでよい。なお、プリカーサが非晶質であることはθー2θ法によるX線回折法などで回折ピークが現れないことで確認できる。また、ピークが現れたとしてもその半値幅が5゜以上あるものは非晶質と見なすものとする。   In the method for manufacturing a photoelectric conversion device according to the present invention, the precursor before the sulfiding treatment is amorphous. If the precursor is amorphous, it is sufficient that there are few things that prevent the sulfidation reaction and the crystal growth of the sulfide in the subsequent sulfidation treatment. In addition, it can be confirmed that the precursor is amorphous by a diffraction peak not appearing by an X-ray diffraction method by the θ-2θ method. In addition, even if a peak appears, one having a half width of 5 ° or more is regarded as amorphous.

本発明に係る光電変換装置の製造方法では、プリカーサが、銅、銀、鉄のうちの少なくとも一種類と、亜鉛、アルミニウム、インジウムのうちの少なくとも一種類の金属元素を含む。具体的には、銅−亜鉛−錫、銅−インジウム、銅−アルミニウム、銀−亜鉛−錫、銀−インジウム、銀−アルミニウム、鉄−亜鉛−錫、鉄−インジウム、鉄−アルミニウムなどの組み合わせが挙げられるが、セレン化または硫化処理によりカルコパイライト型およびケステライト型の化合物を形成するものであればこの限りではない。   In the method for manufacturing a photoelectric conversion device according to the present invention, the precursor includes at least one of copper, silver, and iron and at least one metal element of zinc, aluminum, and indium. Specifically, combinations of copper-zinc-tin, copper-indium, copper-aluminum, silver-zinc-tin, silver-indium, silver-aluminum, iron-zinc-tin, iron-indium, iron-aluminum, etc. Examples thereof include, but are not limited to, those capable of forming chalcopyrite-type and kesterite-type compounds by selenization or sulfuration treatment.

本発明に係る光電変換装置の製造方法では、プリカーサが酸素を反応性ガスとして用いる反応性スパッタリング法で作成される。ターゲットとしては、所望の組成比で調合された多元系の合金または焼結金属を用いてもよいし、各元素を個別のスパッタ源に仕込んでスパッタ電力比等の制御により所望の組成比の膜に調整してもよい。酸素はスパッタ電力、ターゲットのサイズ、スパッタ圧力などを考慮して所望の膜組成が得られるように導入量を調節しながら導入するのが好ましい。また、酸素導入量が多い場合にはターゲット表面が酸化することによりアーキングが生じたり、放電が停止したりする場合があるので、パルス印加や高周波スパッタなど電力投入方法は適宜選択するとよい。   In the method for manufacturing a photoelectric conversion device according to the present invention, the precursor is formed by a reactive sputtering method using oxygen as a reactive gas. As a target, a multi-component alloy or sintered metal prepared at a desired composition ratio may be used, or a film having a desired composition ratio is prepared by charging each element into an individual sputtering source and controlling the sputtering power ratio or the like. You may adjust it. It is preferable to introduce oxygen while adjusting the introduction amount so that a desired film composition can be obtained in consideration of sputtering power, target size, sputtering pressure, and the like. In addition, when the amount of oxygen introduced is large, arcing may occur due to oxidation of the target surface, or the discharge may be stopped. Therefore, a power application method such as pulse application or high-frequency sputtering may be appropriately selected.

本発明に係る光電変換装置の製造方法では、プリカーサを硫黄元素が存在する雰囲気で350℃以上かつ30分以上加熱して硫化処理する。硫黄元素が存在する雰囲気としては、石英管内に硫黄粉末を置いて加熱してもよいし、硫化水素や二硫化炭素などを適宜導入してもよい。加熱温度は350℃以上とするとプリカーサからの酸素の脱離と硫化が共に起きるのでよい。また、加熱時間も350℃以上において30分以上とするとカルコパイライト構造およびケステライト構造等の結晶性を確保し易いのでよい。また、550℃以上とすると結晶子サイズを大きくし易いのでよい。ただし、600℃以上とすると基材として使用できるガラスの種類が限定されるので好ましくない。   In the method for producing a photoelectric conversion device according to the present invention, the precursor is heated to 350 ° C. for 30 minutes or more in an atmosphere in which sulfur element exists, and is subjected to sulfurization treatment. As an atmosphere in which sulfur element exists, sulfur powder may be placed in a quartz tube and heated, or hydrogen sulfide, carbon disulfide, or the like may be appropriately introduced. When the heating temperature is set to 350 ° C. or higher, both oxygen desorption and sulfurization from the precursor may occur. Further, if the heating time is set to 30 minutes or longer at 350 ° C. or higher, it is easy to ensure crystallinity such as chalcopyrite structure and kesterite structure. Further, if it is 550 ° C. or higher, the crystallite size can be easily increased. However, if the temperature is 600 ° C. or higher, the type of glass that can be used as the base material is limited.

本発明に係る光電変換装置は、上記いずれかに記載の工程により作成される光吸収層を有する。なお、本発明に係る光電変換装置は、光吸収層を透明導電膜を有する下地層上に作成するスーパーストレート構造としてもよいし、金属電極を有する下地層上に作成するサブストレート構造のいずれでも良い。   The photoelectric conversion device according to the present invention has a light absorption layer formed by any of the processes described above. The photoelectric conversion device according to the present invention may have a superstrate structure in which the light absorption layer is formed on the base layer having the transparent conductive film, or any of the substrate structures formed on the base layer having the metal electrode. good.

本発明の光電変換装置の製造方法は、プリカーサに酸素原子を添加しておくと、硫化処理の際に酸素の脱離と硫化がほぼ同時に進行することにより、膜の体積膨張を抑制しつつ硫化を促進することができる。   In the method for manufacturing a photoelectric conversion device according to the present invention, when oxygen atoms are added to the precursor, oxygen desorption and sulfidation proceed at almost the same time during sulfidation, thereby suppressing the volume expansion of the film. Can be promoted.

プリカーサの組成比を示した説明図である。(実施例1)It is explanatory drawing which showed the composition ratio of the precursor. Example 1 プリカーサの金属元素の比率を示した説明図である。(実施例1)It is explanatory drawing which showed the ratio of the metal element of a precursor. Example 1 プリカーサの結晶構造を示した説明図である。(実施例1)It is explanatory drawing which showed the crystal structure of the precursor. Example 1 光吸収層の結晶構造を示した説明図である。(実施例2)It is explanatory drawing which showed the crystal structure of the light absorption layer. (Example 2) 光吸収層の組成比を示した説明図である。(実施例2)It is explanatory drawing which showed the composition ratio of the light absorption layer. (Example 2) 光吸収層の金属元素の比率を示した説明図である。(実施例2)It is explanatory drawing which showed the ratio of the metal element of a light absorption layer. (Example 2) 光吸収層の表面写真を示した説明図である。(実施例2)It is explanatory drawing which showed the surface photograph of the light absorption layer. (Example 2) 光吸収層の断面写真を示した説明図である。(実施例2)It is explanatory drawing which showed the cross-sectional photograph of the light absorption layer. (Example 2) 光吸収層の表面写真を示した説明図である。(実施例2)It is explanatory drawing which showed the surface photograph of the light absorption layer. (Example 2) 光吸収層の断面写真を示した説明図である。(実施例2)It is explanatory drawing which showed the cross-sectional photograph of the light absorption layer. (Example 2) 光吸収層の表面写真を示した説明図である。(実施例2)It is explanatory drawing which showed the surface photograph of the light absorption layer. (Example 2)

以下、図面を参照しつつ、本発明を実施するため形態の一例を説明するが、本発明はこの限りではない。本発明の光電変換装置の製造方法はプリカーサ薄膜を作成する工程とそれを硫化する工程とに大別できる。   Hereinafter, an example of an embodiment for carrying out the present invention will be described with reference to the drawings, but the present invention is not limited to this. The method for producing a photoelectric conversion device of the present invention can be broadly divided into a step of forming a precursor thin film and a step of sulfiding it.

先ずガラス基板に金属電極層としてモリブデン膜をスパッタリング法で作成した。基板には20mm角、厚さ1mmのソーダライムガラス(松波硝子工業(株)製)を用いた。モリブデンターゲットは、φ150mm、厚み5mm、純度99.95%のもの(フルウチ化学(株)製)を用いた。スパッタ装置内に洗浄したガラス基板とモリブデンターゲットを装填し、チャンバー内部を4×10-4Pa以下まで排気した後、純度99.999%以上のアルゴンガスを導入し1.0Paとなるように調整した。次にスパッタカソードに13.56MHzの高周波電力410Wを投入し、マッチングボックスのインピーダンスを調整して反射電力を0Wとした。この状態で、基板とターゲット間のシャッターを閉めたまま30分間プレスパッタを行った。次にシャッターを開けて基板表面にモリブデンを14分30秒成膜した後、チャンバー内を大気圧に戻してモリブデン付基板を取り出した。なお、基板は故意に加熱しなかった。成膜したモリブデン膜の膜厚は断面SEMで観測したところ0.8μmであった。 First, a molybdenum film was formed as a metal electrode layer on a glass substrate by a sputtering method. A 20 mm square and 1 mm thick soda lime glass (manufactured by Matsunami Glass Industry Co., Ltd.) was used for the substrate. A molybdenum target having a diameter of 150 mm, a thickness of 5 mm, and a purity of 99.95% (manufactured by Furuuchi Chemical Co., Ltd.) was used. The sputter apparatus was loaded with a cleaned glass substrate and a molybdenum target, and the inside of the chamber was evacuated to 4 × 10 −4 Pa or lower, and then argon gas with a purity of 99.999% or higher was introduced and adjusted to 1.0 Pa. Next, high frequency power 410W of 13.56 MHz was input to the sputter cathode, and the impedance of the matching box was adjusted to set the reflected power to 0 W. In this state, pre-sputtering was performed for 30 minutes with the shutter between the substrate and the target closed. Next, the shutter was opened and a film of molybdenum was formed on the substrate surface for 14 minutes and 30 seconds. Then, the inside of the chamber was returned to atmospheric pressure, and the substrate with molybdenum was taken out. The substrate was not intentionally heated. The film thickness of the formed molybdenum film was 0.8 μm as observed by cross-sectional SEM.

次に、別のスパッタ装置に先ほどのモリブデン付ガラス基板と銅、亜鉛、錫を2:1:1の原子数比で調合したφ51mm、厚み5mm、純度99.9%以上のプリカーサ用合金ターゲット((株)高純度化学研究所製)を装填した。次にチャンバー内部を1×10-4Pa以下まで排気した後、純度99.999%以上の酸素を0SCCM、0.3SCCM、0.5SCCM、0.6SCCMのいずれかの条件で導入し、その後純度99.999%以上のアルゴンガスを導入して圧力を0.6Paに調整した。なお、このときの酸素分圧は、0%、5%、17%、20%である。次に、スパッタカソードに13.56MHzの高周波電力を80W投入し、反射電力が0Wになるようにマッチングボックスのインピーダンスを調整した。この状態で基板とターゲット間にあるシャッターを閉めたまま20分間プレスパッタを行った後、シャッターを開けて40分間プリカーサ膜を成膜した。なお、基板は故意に加熱しなかった。成膜したプリカーサ膜の膜厚は断面SEMで観測したところ上記のいずれの条件においても約1μm程度であった。 Next, in another sputtering device, a precursor alloy target with a diameter of 51 mm, a thickness of 5 mm, and a purity of 99.9% or more, prepared by mixing the glass substrate with molybdenum and copper, zinc, and tin in a 2: 1: 1 atomic ratio ((Co., Ltd. ) High purity chemical laboratory). Next, after evacuating the inside of the chamber to 1 × 10 −4 Pa or less, oxygen with a purity of 99.999% or more is introduced under any of 0 SCCM, 0.3SCCM, 0.5SCCM, or 0.6SCCM, and then argon with a purity of 99.999% or more is introduced. Gas was introduced and the pressure was adjusted to 0.6 Pa. The oxygen partial pressure at this time is 0%, 5%, 17%, and 20%. Next, 80 W of high frequency power of 13.56 MHz was input to the sputter cathode, and the impedance of the matching box was adjusted so that the reflected power was 0 W. In this state, pre-sputtering was performed for 20 minutes with the shutter between the substrate and target closed, and then the shutter was opened to form a precursor film for 40 minutes. The substrate was not intentionally heated. The thickness of the deposited precursor film was observed by a cross-sectional SEM, and was about 1 μm under any of the above conditions.

次に、作成したプリカーサ膜の組成比をエネルギー分散型X線分光器(EDS)を用いて評価した結果を図1に示す。なお、電子の加速電圧は20kVとした。このように、酸素を故意に添加していない場合でも8原子%の酸素がプリカーサ膜から検出されているが、これは、成膜時にスパッタチャンバー内の残留ガスが取り込まれたか、または成膜後大気中で表面に吸着したものと考えられる。一方、酸素分圧をスパッタ雰囲気に5%、17%、20%導入した場合には、それぞれ37原子%、46原子%、54原子%、の酸素原子が導入されていることが判る。   Next, FIG. 1 shows the result of evaluating the composition ratio of the prepared precursor film using an energy dispersive X-ray spectrometer (EDS). The electron acceleration voltage was 20 kV. As described above, even when oxygen is not intentionally added, 8 atomic% of oxygen is detected from the precursor film. This is because the residual gas in the sputtering chamber is taken in at the time of film formation or after film formation. It is thought that it was adsorbed on the surface in the atmosphere. On the other hand, when oxygen partial pressures of 5%, 17%, and 20% are introduced into the sputtering atmosphere, it can be seen that 37 atom%, 46 atom%, and 54 atom% of oxygen atoms are introduced, respectively.

図2に、図1に示した各金属の元素比を示す。このように、酸素添加量を増やすと共にCu/Sn比とCu/(Zn+Sn)比は微増し、Zn/Metal比とZn/Sn比は微減した。なお、MetalはCu、Zn、Snの原子濃度の和である。酸素添加による各金属元素比の変化は各金属元素のアルゴンと酸素それぞれに対するスパッタ率の違いに起因すると考えられる。   FIG. 2 shows the element ratio of each metal shown in FIG. As described above, the Cu / Sn ratio and the Cu / (Zn + Sn) ratio slightly increased and the Zn / Metal ratio and the Zn / Sn ratio slightly decreased with increasing oxygen addition amount. Metal is the sum of atomic concentrations of Cu, Zn, and Sn. The change in the ratio of each metal element due to the addition of oxygen is considered to be caused by the difference in the sputtering rate of each metal element with respect to argon and oxygen.

次に、各条件でモリブデン膜上に成膜したプリカーサ膜の結晶構造をθー2θ法によるX線回折法により調べた結果を図3に示す。なお、X線管のターゲット材質は銅で、出力は45kV、40mAである。また、X線(K-α1)の波長は0.154060nmである。また、2θが41゜付近と73゜付近に見られるピークはモリブデンに起因するものである。このように、酸素を故意に添加していない場合にはプリカーサ構成金属元素起因のピークが複数見られるのに対し、酸素をスパッタ雰囲気に5%以上導入し、プリカーサ膜中に37原子%以上酸素原子が添加された場合には、いずれもプレカーサ膜起因のピークは見られず、非晶質であることが判る。すなわち、酸素原子がプリカーサ膜中に効果的に導入されていることが判る。   Next, FIG. 3 shows the results of examining the crystal structure of the precursor film formed on the molybdenum film under each condition by the X-ray diffraction method by the θ-2θ method. The target material of the X-ray tube is copper, and the output is 45 kV and 40 mA. The wavelength of the X-ray (K-α1) is 0.154060 nm. In addition, the peaks observed when 2θ is around 41 ° and around 73 ° are attributed to molybdenum. In this way, when oxygen is not intentionally added, multiple peaks due to the precursor constituent metal elements are seen, whereas oxygen is introduced into the sputtering atmosphere by 5% or more, and oxygen of 37 atomic% or more is introduced into the precursor film. In the case where atoms are added, no peak due to the precursor film is observed, and it can be seen that the film is amorphous. That is, it can be seen that oxygen atoms are effectively introduced into the precursor film.

次に、実施例1の各条件で作成したプリカーサを下記条件で硫化し、光吸収層を作成した。先ず、プリカーサ膜付基板と硫黄粉45mgを石英管内に配置したものを卓上型ランプ加熱装置(アルバック理工(株)製MILA-5000)にセットし、石英管内部を10Pa以下まで排気し、その後純度99.999%以上のアルゴンガスを流しながら530℃/分で昇温し、550℃で30分間保持した後、10℃/分で降温した。   Next, the precursor prepared under each condition of Example 1 was sulfided under the following conditions to prepare a light absorption layer. First, a substrate with a precursor film and 45 mg of sulfur powder placed in a quartz tube is set in a table lamp heating device (MILA-5000 manufactured by ULVAC-RIKO Co., Ltd.), and the inside of the quartz tube is evacuated to 10 Pa or less. While flowing 99.999% or more of argon gas, the temperature was increased at 530 ° C./min, held at 550 ° C. for 30 minutes, and then decreased at 10 ° C./min.

図4に、実施例1で作成した各プリカーサ膜を硫化処理した光吸収層の結晶構造をθー2θ法によるX線回折法により調べた結果を示す。なお、X線管のターゲット材質は銅で、出力は45kV、40mAである。また、X線(K-α1)の波長は0.154060nmである。また、2θが41゜付近と73゜付近に見られるピークはモリブデンに起因するものである。このように、いずれの膜からもCu2ZnSnS4の(112)面、(200)面、(220/240)面、(116/312)面、(400)面、(332)面からの回折ピークが見られ、プリカーサ成膜時の酸素添加による影響は見られない。 FIG. 4 shows the results of examining the crystal structure of the light absorption layer obtained by sulfiding each precursor film prepared in Example 1 by the X-ray diffraction method using the θ-2θ method. The target material of the X-ray tube is copper, and the output is 45 kV and 40 mA. The wavelength of the X-ray (K-α1) is 0.154060 nm. In addition, the peaks observed when 2θ is around 41 ° and around 73 ° are attributed to molybdenum. Thus, diffraction from the (112) plane, (200) plane, (220/240) plane, (116/312) plane, (400) plane, (332) plane of Cu 2 ZnSnS 4 from any film A peak is seen, and the influence of oxygen addition at the time of precursor film formation is not seen.

次に、作成した光吸収層膜の組成比をエネルギー分散型X線分光器(EDS)を用いて評価した結果を図5に示す。なお、電子の加速電圧は20kVとした。このように、プリカーサ成膜時の酸素添加によらず、光吸収層から検出された酸素原子濃度はいずれも3原子%以下であることが判る。すなわち、プリカーサ中の酸素原子の殆どが硫化処理時に脱離していることが判る。また、プリカーサ中の酸素原子濃度によらず、硫化処理により得られた光吸収層の組成比はいずれも大差が無いことが判る。 Next, the result of having evaluated the composition ratio of the produced light absorption layer film | membrane using the energy dispersive X-ray spectrometer (EDS) is shown in FIG. The electron acceleration voltage was 20 kV. Thus, it can be seen that the oxygen atom concentration detected from the light absorption layer is 3 atomic% or less regardless of the addition of oxygen during the precursor film formation. That is, it can be seen that most of the oxygen atoms in the precursor are desorbed during the sulfiding treatment. In addition, it can be seen that the composition ratio of the light absorption layer obtained by the sulfiding treatment is not greatly different regardless of the oxygen atom concentration in the precursor.

次に、図5に示した光吸収層中の酸素以外の元素比を図6に示す。このように、プリカーサ膜中の酸素添加量は光吸収層の組成比には殆ど影響を及ぼしていないことが判る。   Next, the ratio of elements other than oxygen in the light absorption layer shown in FIG. 5 is shown in FIG. Thus, it can be seen that the amount of oxygen added in the precursor film hardly affects the composition ratio of the light absorption layer.

次に、スパッタ成膜雰囲気に20%(プリカーサ膜中に54原子%)酸素を導入して成膜したプリカーサ膜を硫化した光吸収層の表面SEM写真を図7に示す。なお、SEM観測時の電子の加速電圧は5kVである。このように、膜表面は平坦であることが判る。   Next, FIG. 7 shows a surface SEM photograph of the light absorption layer obtained by sulfidizing the precursor film formed by introducing 20% oxygen (54 atomic% in the precursor film) into the sputtering film formation atmosphere. The electron acceleration voltage during SEM observation is 5 kV. Thus, it can be seen that the film surface is flat.

図8に図7と同一試料の断面拡大SEM写真を示す。写真最下部はモリブデン電極の一部である。その上に比較的大きく成長した結晶粒が成長しているのが判る。   FIG. 8 shows a cross-sectional enlarged SEM photograph of the same sample as FIG. The bottom of the photo is a part of the molybdenum electrode. It can be seen that relatively large crystal grains have grown on it.

図9に酸素を故意に添加せずに作成したプリカーサ膜を硫化して作成した光吸収層の表面SEM写真を示す。このように、表面には凹凸が見られ、一部の膜は剥離しているのが判る。   FIG. 9 shows a surface SEM photograph of a light absorption layer prepared by sulfiding a precursor film prepared without intentionally adding oxygen. Thus, the surface has irregularities, and it can be seen that a part of the film is peeled off.

図10に、図9と同一試料の断面拡大SEM写真を示す。このように、一部はモリブデン界面から剥離し、ドーム状に膨れてしまっているのが判る。これは、硫化時のプリカーサの体積膨張に伴う面内圧縮応力に起因している。一方、図8で同様のドーム状の剥離が見られなかったのは、予めプリカーサ膜中に添加された酸素が脱離することにより、硫化時に硫黄原子が膜中に取り込まれるスペースを確保しているためであり、本発明の有効性が確認できる結果である。   FIG. 10 shows a cross-sectional enlarged SEM photograph of the same sample as FIG. Thus, it can be seen that a part of the film peels off from the molybdenum interface and expands into a dome shape. This is due to the in-plane compressive stress accompanying the volume expansion of the precursor during sulfidation. On the other hand, the same dome-shaped exfoliation was not observed in FIG. 8 because the oxygen previously added to the precursor film was released, so that a space for sulfur atoms to be taken into the film during sulfidation was secured. This is because the effectiveness of the present invention can be confirmed.

図11に各種酸素添加条件で作成したプリカーサ膜を硫化処理して作成した光吸収層の表面SEM写真を示す。このように、酸素を故意に添加しなかった場合のみドーム状の剥離が見られる。   FIG. 11 shows surface SEM photographs of a light absorption layer prepared by sulfiding a precursor film prepared under various oxygen addition conditions. Thus, dome-shaped peeling is observed only when oxygen is not intentionally added.

硫化またはセレン化工程におけるプリカーサの体積膨張に起因する圧縮応力や剥離を抑制しつつ十分に結晶成長させることができるため、良好な光吸収層の作成が可能となり、高品位の化合物薄膜光電変換装置の製造が容易となる。   High-quality compound thin-film photoelectric conversion device that can produce a good light-absorbing layer because the crystal can be sufficiently grown while suppressing the compressive stress and exfoliation caused by the volume expansion of the precursor in the sulfidation or selenization process Is easy to manufacture.

Claims (6)

二種類以上の金属元素と、25原子%〜60原子%の範囲の酸素とを含むプリカーサを作成した後、前記プリカーサを硫化処理することで光吸収層を作成する工程を有することを特徴とする、光電変換装置の製造方法。   It has a step of forming a light absorption layer by forming a precursor containing two or more kinds of metal elements and oxygen in a range of 25 atomic% to 60 atomic%, and then sulfiding the precursor. The manufacturing method of a photoelectric conversion apparatus. 硫化処理前のプリカーサが非晶質であることを特徴とする、請求項1に記載の光電変換装置の製造方法。   The method for manufacturing a photoelectric conversion device according to claim 1, wherein the precursor before the sulfiding treatment is amorphous. プリカーサが、銅、銀、鉄のうちの少なくとも一種類と、亜鉛、アルミニウム、インジウムのうちの少なくとも一種類の金属元素を含むことを特徴とする、請求項1または2に記載の光電変換装置の製造方法。   3. The photoelectric conversion device according to claim 1, wherein the precursor includes at least one of copper, silver, and iron and at least one metal element of zinc, aluminum, and indium. Production method. プリカーサが酸素を反応性ガスとして用いる反応性スパッタリング法で作成されることを特徴とする、請求項1〜3のいずれかに記載の光電変換装置の製造方法。   The method for producing a photoelectric conversion device according to claim 1, wherein the precursor is formed by a reactive sputtering method using oxygen as a reactive gas. プリカーサを硫黄元素が存在する雰囲気で350℃以上かつ30分以上加熱して硫化処理することを特徴とする、請求項1〜4のいずれかに記載の光電変換装置の製造方法。   The method for producing a photoelectric conversion device according to any one of claims 1 to 4, wherein the precursor is subjected to sulfurization treatment by heating at 350 ° C or more for 30 minutes or more in an atmosphere containing sulfur element. 請求項1〜5のいずれかに記載の工程により作成される光吸収層を有することを特徴とする、光電変換装置。
It has a light absorption layer produced by the process in any one of Claims 1-5, The photoelectric conversion apparatus characterized by the above-mentioned.
JP2012155110A 2012-07-11 2012-07-11 Photoelectric conversion device and manufacturing method of the same Pending JP2014017426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155110A JP2014017426A (en) 2012-07-11 2012-07-11 Photoelectric conversion device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155110A JP2014017426A (en) 2012-07-11 2012-07-11 Photoelectric conversion device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2014017426A true JP2014017426A (en) 2014-01-30

Family

ID=50111850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155110A Pending JP2014017426A (en) 2012-07-11 2012-07-11 Photoelectric conversion device and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2014017426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152257A1 (en) * 2014-03-31 2015-10-08 凸版印刷株式会社 Compound thin film solar cell, method for manufacturing same, and light-absorbing layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152257A1 (en) * 2014-03-31 2015-10-08 凸版印刷株式会社 Compound thin film solar cell, method for manufacturing same, and light-absorbing layer
JP2015198126A (en) * 2014-03-31 2015-11-09 凸版印刷株式会社 Compound thin film solar cell, and method of manufacturing compound thin film solar cell

Similar Documents

Publication Publication Date Title
Vanalakar et al. Effect of post-annealing atmosphere on the grain-size and surface morphological properties of pulsed laser deposited CZTS thin films
Tao et al. 7.1% efficient co-electroplated Cu 2 ZnSnS 4 thin film solar cells with sputtered CdS buffer layers
TWI583811B (en) A Cu-Ga sputtering target, a method for manufacturing the target, a light absorbing layer, and a solar cell using the light absorbing layer
Romeo et al. Low substrate temperature CdTe solar cells: A review
TWI496907B (en) A sputtering target, a compound semiconductor thin film, a solar cell having a compound semiconductor thin film, and a method for producing a compound semiconductor thin film
TWI498433B (en) Method for manufacturing cu-ga alloy sputtering target and cu-ga alloy sputtering target
JP6248118B2 (en) Molybdenum substrate for CIGS photovoltaic devices
Feng et al. Searching for a fabrication route of efficient Cu 2 ZnSnS 4 solar cells by post-sulfuration of co-sputtered Sn-enriched precursors
TW201313936A (en) Method for forming a layer of semiconductor material on a substrate and hybrid film deposition apparatus
KR20180034274A (en) CZTS-based thin film solar cell comprising silver and method the same
Pawar et al. Fabrication of Cu2ZnSn (SxSe1− x) 4 thin film solar cell by single step sulfo-selenization of stacked metallic precursors
WO2013129468A1 (en) Method for forming czts semiconductor thin film, and photoelectric conversion element
Liu et al. Effect of stacking type in precursors on composition, morphology and electrical properties of the CIGS films
Wang et al. CuIn (S, Se) 2 thin films prepared by selenization and sulfurization of sputtered Cu–In precursors
Cheng et al. Optimization of post-selenization process of Co-sputtered CuIn and CuGa precursor for 11.19% efficiency Cu (In, Ga) Se 2 solar cells
JP2014017426A (en) Photoelectric conversion device and manufacturing method of the same
Tuan et al. Fabrication of Cu (In, Ga)(S, Se) 2 Solar Cells by Solution Method
WO2014140897A2 (en) Pv device with graded grain size and s:se ratio
KR20130007188A (en) Production method of cigs thin film
CN109148267B (en) Preparation method of silver-doped copper-zinc-tin-sulfur film
JP2015220457A (en) Method for forming chalcogenide layers
Huynh et al. Cu-In-Ga metal precursors sputter deposited from a single ternary target for Cu (lnGa)(SeS) 2 film formation
Yan et al. Effects of different sulfurization conditions on the characterization of CuIn (SxSe1− x) 2 thin films
KR101410671B1 (en) Fabrication method of CIS thin films and its application to CIS thin film solar cells
TWI515317B (en) I-III-VI compound of the I-III precursor film