JP2015197307A - Corrosion detection sensor and evaluation method of corrosive environment of steel material in concrete - Google Patents

Corrosion detection sensor and evaluation method of corrosive environment of steel material in concrete Download PDF

Info

Publication number
JP2015197307A
JP2015197307A JP2014073624A JP2014073624A JP2015197307A JP 2015197307 A JP2015197307 A JP 2015197307A JP 2014073624 A JP2014073624 A JP 2014073624A JP 2014073624 A JP2014073624 A JP 2014073624A JP 2015197307 A JP2015197307 A JP 2015197307A
Authority
JP
Japan
Prior art keywords
corrosion
concrete
corrosion detection
detection sensor
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014073624A
Other languages
Japanese (ja)
Other versions
JP6289216B2 (en
Inventor
達三 佐藤
Tatsuzo Sato
達三 佐藤
玲 江里口
Rei Eriguchi
玲 江里口
早野 博幸
Hiroyuki Hayano
博幸 早野
祐輔 石井
Yusuke Ishii
祐輔 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2014073624A priority Critical patent/JP6289216B2/en
Publication of JP2015197307A publication Critical patent/JP2015197307A/en
Application granted granted Critical
Publication of JP6289216B2 publication Critical patent/JP6289216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensor and the like allowing a corrosive environment of a steel material in concrete to be easily evaluated with high accuracy.SOLUTION: A corrosion detection sensor for detecting a corrosion progression state of a steel material in concrete is provided that is comprised of (C) a blocking material, and two or more sets of (A) corrosion detection members and (B) coating members. One surface of the corrosion detection member installed in the blocking material is covered with the coating member and the other surface of the coating member not covering the corrosion detection member is exposed. A water-cement ratio of at least one set of the coating members is different from water-cement ratios of the other sets of the coating members. (A) the corrosion detection member is formed from a thin steel sheet. (B) the coating member is comprised of a cement composition hardened body. (C) the blocking material blocks intrusion of corrosion factors.

Description

本発明は、コンクリート中の鋼材が腐食する環境を評価するためのセンサと、該センサを用いたコンクリート中の鋼材の腐食環境の評価方法に関する。
以下、コンクリートとは、コンクリートのほか、モルタルを含む概念である。
The present invention relates to a sensor for evaluating an environment in which a steel material in concrete corrodes, and a method for evaluating a corrosive environment of the steel material in concrete using the sensor.
Hereinafter, concrete is a concept including mortar in addition to concrete.

コンクリート中の鉄筋やPC鋼材等の鋼材は、本来、アルカリ性雰囲気下では不動態被膜に覆われて腐食し難くなっている。しかし、コンクリート中に二酸化炭素が浸透してコンクリートが中性化したり、塩化物イオン(以下「塩分」という。)や硫酸イオン等の腐食因子が浸透して鋼材に接すると、鋼材表面の不動態被膜が破壊されて鋼材は腐食し易くなる。これらのイオンの中でも、塩分はコンクリートへの浸透が早く、鉄筋を腐食させる危険性が高い。
したがって、海洋環境や海岸線近くの鉄筋コンクリート構造物や、冬季に融雪材を散布する地域などの鉄筋コンクリート構造物は、コンクリートの表層部から塩分が浸透して、長期的にはコンクリート中の鋼材の腐食が懸念される。コンクリート中の鋼材が腐食した場合、鉄筋コンクリート構造物の耐久性等の性能が損なわれ、重大な欠陥を生じるおそれがあるため、鉄筋コンクリート構造物では、表面から鋼材までの位置(かぶり)や、コンクリートの品質(水/セメント比)を規定して鋼材を保護している。
一方で、鉄筋コンクリート構造物の立地は多様であり、塩分に加えて、温度や日射、風雨などの環境条件が、コンクリートへの塩分浸透に影響するため、予め想定していた以上に塩分浸透が進むことがあり、鉄筋コンクリート構造物ごとにコンクリート中の鋼材の腐食時期を予測することは一般に難しい。
Steel materials such as rebars and PC steel materials in concrete are inherently covered with a passive film in an alkaline atmosphere and hardly corrode. However, if carbon dioxide permeates into the concrete and the concrete becomes neutral, or if corrosion factors such as chloride ions (hereinafter referred to as “salt content”) or sulfate ions penetrate and contact the steel, the surface of the steel will passivate. The coating is destroyed and the steel material is easily corroded. Among these ions, salt penetrates concrete quickly and has a high risk of corroding the reinforcing bars.
Therefore, reinforced concrete structures near the marine environment and coastline, and reinforced concrete structures such as areas where snow melting material is sprayed in the winter season, salt will permeate from the surface layer of the concrete, and in the long term corrosion of the steel in the concrete will occur. Concerned. If the steel in the concrete is corroded, performance such as durability of the reinforced concrete structure may be impaired, and serious defects may occur. Therefore, in the reinforced concrete structure, the position from the surface to the steel (cover), the concrete Quality (water / cement ratio) is defined to protect steel.
On the other hand, the location of reinforced concrete structures is diverse, and in addition to salt, environmental conditions such as temperature, solar radiation, and wind and rain affect the salt infiltration into concrete, so salt infiltration proceeds more than expected. In some cases, it is generally difficult to predict the corrosion time of steel in concrete for each reinforced concrete structure.

そこで、特許文献1には、建造からt年経過時点の調査により得られたコンクリート構造物の深さ方向の塩分の見かけの拡散係数Dと、該拡散係数Dの経年変化を考慮して計算して得られた鉄筋のかぶり位置での塩分濃度Cと、温度Tとから、外部塩害を受ける鉄筋コンクリート構造物の鉄筋の腐食速度を推定する方法が提案されている。また、特許文献2には、コンクリート構造物中の鋼材と同種材質からなる細線を該コンクリート構造物中に埋設し、腐食による前記細線が切断する時を測定する、コンクリート中の鋼材の腐食状況の予測方法が提案されている。しかし、前記方法は事前調査を要するため、その簡易さや推定(予測)精度は未だ十分とは云えない。 Therefore, Patent Document 1 considers the apparent diffusion coefficient D t of the salinity in the depth direction of the concrete structure obtained by the survey at the time when t years have passed since the construction, and the secular change of the diffusion coefficient D t. A method has been proposed for estimating the corrosion rate of reinforcing steel in a reinforced concrete structure subject to external salt damage from the salinity concentration C at the cover position of the reinforcing steel bar obtained by calculation and the temperature T. Patent Document 2 describes the corrosion status of steel in concrete, in which a fine wire made of the same material as the steel in a concrete structure is embedded in the concrete structure and the time when the fine wire is cut by corrosion is measured. A prediction method has been proposed. However, since the method requires prior investigation, its simplicity and estimation (prediction) accuracy are still not sufficient.

特開2008−082749号公報JP 2008-082449 A 特開平11−153568号公報Japanese Patent Laid-Open No. 11-153568

したがって、本発明は、コンクリート中の鋼材の腐食環境を簡易かつ精度よく評価するためのセンサと、その評価方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a sensor for easily and accurately evaluating a corrosive environment of a steel material in concrete and an evaluation method thereof.

本発明者らは、前記目的にかなうセンサ等を検討したところ、下記のセンサと評価方法は、前記目的を達成できることを見い出し、下記[1]〜[7]の発明を完成させた。
[1]コンクリート中の鋼材の腐食進行状況を検出する腐食検知センサであって、該センサは下記(C)遮断材と、
2組以上の下記(A)腐食検知部材および(B)被覆部材とから構成され、遮断材内に設置された腐食検知部材の一面は被覆部材により被覆され、該被覆部材の腐食検知部材を被覆していない他の一面は露出し、少なくとも1組の被覆部材の水/セメント比が他の組の被覆部材の水/セメント比と異なる、腐食検知センサ。
(A)鉄薄膜により形成された腐食検知部材
(B)セメント組成物硬化体からなる被覆部材
(C)腐食因子の侵入を遮断する遮断材
[2]前記腐食検知センサはコンクリート中に埋設して使用し、前記被覆部材の露出面から、コンクリート中の鋼材の腐食因子が浸透し、該腐食因子によって前記腐食検知部材の電気的特性が変化して腐食進行状況を検出する、前記[1]に記載の腐食検知センサ。
[3]前記被覆部材が下記(a)〜(d)の配合および形状を有する、前記[1]または[2]に記載の腐食検知センサ。
(a)水/セメント比(質量比×100):20〜150%
(b)水/粉体比(質量比×100):15〜120%
(c)空気量:5〜35%
(d)被覆部材の厚み:1〜20mm
[4]前記腐食検知部材が、腐食に起因した腐食反応による電気抵抗の変化、電位の変化、または電流密度の変化により腐食を検知する部材により形成されている、前記[1]〜[3]のいずれかに記載の腐食検知センサ。
[5](コンクリートの表面から、埋設された腐食検知センサの被覆部材の露出面までの距離(以下「埋設深さ」という。))/(前記被覆部材の厚み)の比が5以上になるように、コンクリート中に設置して使用する、前記[1]〜[4]のいずれかに記載の腐食検知センサ。
The inventors of the present invention have examined a sensor or the like that meets the above object, and found that the following sensor and the evaluation method can achieve the above object, and have completed the following inventions [1] to [7].
[1] A corrosion detection sensor for detecting the progress of corrosion of a steel material in concrete, the sensor comprising:
It is composed of two or more sets of (A) corrosion detection member and (B) coating member. One surface of the corrosion detection member installed in the shielding material is covered with the coating member, and the corrosion detection member of the coating member is covered. A corrosion detection sensor in which the other surface that is not exposed is exposed and the water / cement ratio of at least one set of covering members is different from the water / cement ratio of the other set of covering members.
(A) Corrosion detection member formed of iron thin film (B) Cover member made of hardened cement composition (C) Barrier material that blocks intrusion of corrosion factors [2] The corrosion detection sensor is embedded in concrete In the above [1], the corrosion factor of the steel material in the concrete penetrates from the exposed surface of the covering member, and the electrical characteristics of the corrosion detecting member are changed by the corrosion factor to detect the progress of corrosion. The described corrosion detection sensor.
[3] The corrosion detection sensor according to [1] or [2], wherein the covering member has the following composition (a) to (d) and shape.
(A) Water / cement ratio (mass ratio × 100): 20 to 150%
(B) Water / powder ratio (mass ratio × 100): 15 to 120%
(C) Air volume: 5 to 35%
(D) Thickness of the covering member: 1 to 20 mm
[4] The [1] to [3], wherein the corrosion detection member is formed of a member that detects corrosion by a change in electrical resistance, a change in potential, or a change in current density due to a corrosion reaction caused by corrosion. The corrosion detection sensor according to any one of the above.
[5] The ratio of the distance from the concrete surface to the exposed surface of the covering member of the embedded corrosion detection sensor (hereinafter referred to as “embedding depth”) / (the thickness of the covering member) is 5 or more. Thus, the corrosion detection sensor according to any one of [1] to [4], which is used by being installed in concrete.

[6]前記腐食検知センサをコンクリート中に埋設し、
該腐食検知センサにより腐食発生時間を測定し、
該腐食発生時間を変数として含む腐食関係式に基づき腐食評価パラメータを求め、
該腐食評価パラメータを用いてコンクリート中の鋼材の腐食環境を評価する、
コンクリート中の鋼材の腐食環境の評価方法。
[7]前記腐食関係式が下記(1)式および下記(2)式であり、前記腐食評価パラメータが下記(1)式中の見掛けの拡散係数およびコンクリートの表面塩分量である、前記[6]に記載のコンクリート中の鋼材の腐食環境の評価方法。
CL=C×{1−erf[0.1×Scd/(2×(D×t)0.5)]}+C ・・・(1)
CL=a×(W/C)+b ・・・(2)
ただし、(1)式中、CCLはコンクリート中の鋼材の腐食発生塩分量(kg/m)を表し、Cはコンクリートの表面塩分量(kg/m)を表し、Scdは埋設深さ(mm)を表し、Dは見掛けの拡散係数(cm/年)を表し、tは腐食発生に至るまでの時間(年)を表し、Cは初期塩分量を表す。なお、前記(1)式は誤差関数である。また、(2)式中、CCLはコンクリート中の鋼材の腐食発生塩分量(kg/m)を表し、W/Cは水/セメント比を表し、aおよびbは下記のセメントの種類ごとに定める材料係数を表す。
[6] The corrosion detection sensor is embedded in concrete,
The corrosion detection time is measured by the corrosion detection sensor,
Obtain corrosion evaluation parameters based on the corrosion relational expression including the corrosion occurrence time as a variable,
Evaluating the corrosive environment of steel in concrete using the corrosion evaluation parameters,
A method for evaluating the corrosive environment of steel in concrete.
[7] The above-mentioned corrosion relational expressions are the following formulas (1) and (2), and the corrosion evaluation parameters are the apparent diffusion coefficient and the surface salinity of concrete in the following formula (1). ] The evaluation method of the corrosive environment of the steel materials in concrete as described in the above.
C CL = C 0 × {1-erf [0.1 × S cd / (2 × (D d × t) 0.5 )]} + C i (1)
C CL = a × (W / C) + b (2)
However, in (1), C CL represents corroded salinity of steel in concrete (kg / m 3), C 0 represents the surface salinity of concrete (kg / m 3), S cd is buried Depth is expressed in mm, D d is an apparent diffusion coefficient (cm 2 / year), t is a time (year) until corrosion occurs, and C i is an initial salinity. The equation (1) is an error function. Further, (2) wherein, C CL represents corroded salinity of steel in concrete (kg / m 3), W / C represents the water / cement ratio, for each type of a and b below Cement Represents the material coefficient specified in.

本発明の腐食検知センサと、これを用いたコンクリート中の鋼材の腐食環境の評価方法によれば、コンクリート中の鋼材の腐食環境を、簡易かつ精度よく評価することができる。   According to the corrosion detection sensor of the present invention and the method for evaluating the corrosive environment of steel in concrete using the same, the corrosive environment of steel in concrete can be evaluated easily and accurately.

腐食検知部材の一例を示す図である。It is a figure which shows an example of a corrosion detection member. 本発明の腐食検知部材の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the corrosion detection member of this invention. 無線通信モジュールを備えた腐食検知センサのブロック図の一例を示す図である。It is a figure which shows an example of the block diagram of the corrosion detection sensor provided with the wireless communication module. (a)は2種類の水/セメント比のセメント組成物硬化体で成形された被覆部材を有する腐食検知センサ(一例)のB−B’断面図であり、(b)は該センサのA−A’断面図である。(A) is BB 'sectional drawing of a corrosion detection sensor (an example) which has the coating | coated member shape | molded with the cement composition hardened | cured material of two types of water / cement ratio, (b) is A- of this sensor. It is A 'sectional drawing. コンクリート中の腐食検知センサの設置例および位置関係を示す図である。It is a figure which shows the example of installation of the corrosion detection sensor in concrete, and positional relationship. ブロック状の腐食検知センサ(一例)の斜視図である。It is a perspective view of a block-shaped corrosion detection sensor (an example). 円板状の腐食検知センサ(一例)の斜視図である。It is a perspective view of a disk-shaped corrosion detection sensor (an example). 3種類の水/セメント比のセメント組成物硬化体で成形された被覆部材を有する腐食検知センサ(一例)の斜視図である。It is a perspective view of the corrosion detection sensor (an example) which has a covering member shape | molded with the cement composition hardened | cured material of three types of water / cement ratio. 本発明の腐食検知センサを用いた評価方法によって求めた、コンクリート中の塩分量の計算結果を示す図である。It is a figure which shows the calculation result of the salt content in concrete calculated | required with the evaluation method using the corrosion detection sensor of this invention.

1.腐食検知センサ
本発明で用いる腐食検知センサは、前記[1]に記載の通り、(A)腐食検知部材、(B)被覆部材、および(C)遮断材を必須の構成部材として含むセンサである。また、該センサの強度の補強、小型化、および誤差因子の排除等のため、必要に応じて(D)外装材を任意の部材として含む。
以下、本発明について、前記(A)〜(D)の構成部材の順に、図を用いて詳細に説明する。
1. The corrosion detection sensor used in the present invention is a sensor including (A) a corrosion detection member, (B) a covering member, and (C) a blocking material as essential constituent members as described in [1] above. . Further, in order to reinforce the strength of the sensor, reduce the size, eliminate an error factor, and the like, (D) an exterior material is included as an optional member as necessary.
Hereinafter, the present invention will be described in detail in the order of the components (A) to (D) with reference to the drawings.

(A)腐食検知部材
腐食検知部材10は、図1に示すように、導体パターン部11を含み、該導体パターン部11は、腐食検知部材10の中に形成された鉄薄膜であり、該導体パターン部11の端部には測定用端子11aが設けられている。導体パターン部11は、塩分による金属の腐食反応に起因して、電気抵抗の変化、電位の変化、および電流密度の変化等の電気的特性が変化する。そして、該鉄薄膜は、電気的特性の変化に優れることから鉄を圧延して得られる箔材である。
また、該鉄薄膜の厚みは、好ましくは0.1〜100μmである。該厚みが0.1μm未満では均一な厚みに成形することが難しく、100μmを超えると電気的特性の変化に対する感度が低下する傾向にある。また、導体パターン部11の形状は、好ましくは塩分との接触確率が高くて腐食反応が進みやすい形状であり、例えば、図1に示すような、つづら折りの形状が挙げられる。また、導体パターン部の面積は、少なくとも面積を構成する一辺の長さが、腐食検知センサ100の埋設対象であるコンクリートに使用されている最大骨材寸法よりも大きいことが好ましい。該面積の最長の長辺の長さが最大骨材寸法よりも小さいと、腐食検知センサ100の直上に偶発的に配された骨材の影響を腐食検知センサ100が受けて、検知精度が低下する可能性がある。
(A) Corrosion detection member As shown in FIG. 1, the corrosion detection member 10 includes a conductor pattern portion 11, and the conductor pattern portion 11 is an iron thin film formed in the corrosion detection member 10. A measurement terminal 11 a is provided at the end of the pattern portion 11. The conductive pattern portion 11 changes in electrical characteristics such as a change in electrical resistance, a change in potential, and a change in current density due to the corrosion reaction of the metal due to salt. And since this iron thin film is excellent in the change of an electrical property, it is a foil material obtained by rolling iron.
The thickness of the iron thin film is preferably 0.1 to 100 μm. If the thickness is less than 0.1 μm, it is difficult to form a uniform thickness, and if it exceeds 100 μm, the sensitivity to changes in electrical characteristics tends to decrease. Further, the shape of the conductor pattern portion 11 is preferably a shape that has a high probability of contact with salinity and is likely to cause a corrosion reaction, and includes, for example, a zigzag shape as shown in FIG. Moreover, it is preferable that the area of the conductor pattern part has at least the length of one side constituting the area larger than the maximum aggregate size used for the concrete to be embedded in the corrosion detection sensor 100. If the length of the longest long side of the area is smaller than the maximum aggregate size, the corrosion detection sensor 100 is affected by the aggregate accidentally arranged immediately above the corrosion detection sensor 100, and the detection accuracy is lowered. there's a possibility that.

次に、電気的特性の変化により、導体パターン部11が腐食を検知するメカニズムを説明する。
金属の陽極部と陰極部が明確に区別できるように電池が形成されてなるものをマクロセルといい、両極間を流れる電流を腐食電流(マクロセル電流)という。そして、腐食反応により鉄薄膜がイオン化する反応(アノード反応)と、鉄薄膜の表面で酸素が還元される反応(カソード反応)が同時に進行し、アノード部は卑な電位、カソード部は貴な電位となって電位差が生じて、アノード部からカソード部に腐食電流が流れ、鉄薄膜の腐食が進む。
この原理を利用して、導体パターン部11の端部に、金等の貴金属で形成された薄膜部13(カソード部)を設けることにより、導体パターン部11の腐食が進行して腐食をより早く把握できる。
Next, a mechanism by which the conductor pattern portion 11 detects corrosion due to a change in electrical characteristics will be described.
A cell in which a battery is formed so that a metal anode part and a cathode part can be clearly distinguished is called a macro cell, and a current flowing between both electrodes is called a corrosion current (macro cell current). Then, a reaction in which the iron thin film is ionized by the corrosion reaction (anode reaction) and a reaction in which oxygen is reduced on the surface of the iron thin film (cathode reaction) proceed simultaneously, with the anode portion having a base potential and the cathode portion having a noble potential. As a result, a potential difference is generated, a corrosion current flows from the anode portion to the cathode portion, and the corrosion of the iron thin film proceeds.
Utilizing this principle, by providing a thin film portion 13 (cathode portion) formed of a noble metal such as gold at the end of the conductor pattern portion 11, the corrosion of the conductor pattern portion 11 proceeds and the corrosion is accelerated. I can grasp.

さらに、前記電気的特性(電気抵抗、電位の変化、および電流密度)の変化について以下に説明する。
(i)電気抵抗の変化
導体パターン部11の腐食に伴い鉄の断面積は減少し、これにより電気抵抗が増加するから、該電気抵抗の変化により腐食を検知できる。
(ii)電位の変化
導体パターン部11が腐食すると、鉄がイオン化する際に腐食発生箇所(アノード)の電子が未腐食箇所(カソード)に移動して電位差が生じる。これを駆動力として継続的に腐食電流が生じ腐食が進行するから、例えば電極を用いて金属間の電位差を計測すれば、腐食現象の発生前と発生後の電位の変化から腐食の発生を知ることができる。
(iii)電流密度の変化
腐食は腐食回路の生成により生起する現象であるから、腐食電流に伴って生ずる腐食部位の電流密度の変化を計測することにより、腐食現象を捉えることができる。
Further, changes in the electrical characteristics (electric resistance, potential change, and current density) will be described below.
(I) Change in electrical resistance Since the cross-sectional area of iron decreases with the corrosion of the conductor pattern portion 11 and the electrical resistance increases thereby, the corrosion can be detected by the change in the electrical resistance.
(Ii) Potential change When the conductor pattern part 11 corrodes, when iron ionizes, the electron of a corrosion generation | occurrence | production location (anode) moves to an uncorroded location (cathode), and a potential difference arises. Corrosion current is continuously generated with this as a driving force, and corrosion progresses. For example, if the potential difference between metals is measured using electrodes, the occurrence of corrosion is known from the change in potential before and after the occurrence of the corrosion phenomenon. be able to.
(Iii) Change in current density Since corrosion is a phenomenon caused by the generation of a corrosion circuit, the corrosion phenomenon can be grasped by measuring the change in current density at the corrosion site caused by the corrosion current.

腐食検知部材10は、図1に示すとおり、前記導体パターン部11、測定用端子11a、下地材12、薄膜部13を含む。このうち、下地材12は、導体パターン部11を腐食検知部材10中に保持する機能を有する。
該下地材12は、電気的な絶縁性が高く、セメント組成物硬化体に含まれるアルカリ成分と反応せず、かつ耐候性や耐水性が高い材料であれば特に制限されず、例えば、ガラスエポキシ等のガラスコンポジット材料、フェノール樹脂、ポリイミド、ポリエチレン、ポリプロピレン、塩化ビニル樹脂、フッ素樹脂、またはPETなどのポリカーボネート等が挙げられる。
また、薄膜部13は、金等の貴金属で形成されたカソード部であり、薄膜部13により、導体パターン部11の腐食が促進されるため、腐食をより早く把握できる。
As shown in FIG. 1, the corrosion detection member 10 includes the conductor pattern portion 11, the measurement terminal 11 a, the base material 12, and the thin film portion 13. Among these, the base material 12 has a function of holding the conductor pattern portion 11 in the corrosion detection member 10.
The base material 12 is not particularly limited as long as it is a material having high electrical insulation, does not react with an alkali component contained in the cement composition cured body, and has high weather resistance and water resistance. And a glass composite material such as phenol resin, polyimide, polyethylene, polypropylene, vinyl chloride resin, fluororesin, or polycarbonate such as PET.
Moreover, since the thin film part 13 is a cathode part formed with noble metals, such as gold | metal | money, and the corrosion of the conductor pattern part 11 is accelerated | stimulated by the thin film part 13, corrosion can be grasped | ascertained earlier.

前記腐食検知部材10の製造方法は、下記(i)〜(v)に記載のとおりである。また、該製造方法のフローチャートを図2に示す。
(i)下地材12と、後に導体パターン部11を構成する鉄薄膜とを一体化させて、鉄薄膜シートを作製する。該一体化する方法として、例えば、下地材12に接着剤を塗布し、ローラ等を用いて鉄薄膜と下地材12とを張り合わせる。
(ii)作製した鉄薄膜シートの鉄薄膜上に、導体パターン部11と回路の形状のレジスト膜を、スクリーン印刷やフォト印刷等によって形成する。また、レジスト膜を印刷した後に、腐食検知部材10を抜き型によって個々に切断して分離するためのガイドも共に印刷する。
(iii)レジスト膜が形成された鉄薄膜シートは、エッチング槽にてエッチングする。これにより、レジスト膜が施されていない露出した鉄薄膜は、エッチング液(例えば、塩化第二鉄溶液)に溶解する。エッチングの終了後は、鉄薄膜シートをエッチング槽から取り出して付着液を洗浄する。
(vi)レジスト膜を溶剤等によって除去して、導体パターン部11および回路の外形を形成する。
(v)鉄薄膜シートを分割してマスキングを剥離し、導体パターン部11を形成した後、抜き型を用いて保護処理を施したセンサを個々に切断して分離し、コード103を取り付ける。
そして、完成した腐食検知部材10は、腐食を検知する装置に直接接続して、導体パターン部の腐食反応に伴う電気的特性の変化を計測するか、または、図3に示すように、計測回路を有する無線装置に接続して無線で計測してもよい。
The manufacturing method of the corrosion detecting member 10 is as described in the following (i) to (v). A flowchart of the manufacturing method is shown in FIG.
(I) The base material 12 and the iron thin film which later comprises the conductor pattern part 11 are integrated, and an iron thin film sheet is produced. As the integration method, for example, an adhesive is applied to the base material 12, and the iron thin film and the base material 12 are bonded together using a roller or the like.
(Ii) On the iron thin film of the produced iron thin film sheet, a conductor pattern portion 11 and a resist film having a circuit shape are formed by screen printing or photo printing. In addition, after the resist film is printed, a guide for individually cutting and separating the corrosion detecting member 10 with a punching die is printed together.
(Iii) The iron thin film sheet on which the resist film is formed is etched in an etching tank. As a result, the exposed iron thin film not provided with the resist film is dissolved in the etching solution (for example, ferric chloride solution). After completion of the etching, the iron thin film sheet is taken out from the etching tank and the adhering liquid is washed.
(Vi) The resist film is removed with a solvent or the like to form the conductor pattern portion 11 and the outer shape of the circuit.
(V) The iron thin film sheet is divided, the masking is peeled off, and the conductor pattern portion 11 is formed. Then, the sensors subjected to the protection treatment using the punching die are individually cut and separated, and the cord 103 is attached.
Then, the completed corrosion detection member 10 is directly connected to an apparatus for detecting corrosion, and measures a change in electrical characteristics associated with the corrosion reaction of the conductor pattern portion or, as shown in FIG. You may connect to the radio | wireless apparatus which has and measure by radio | wireless.

(B)被覆部材
該被覆部材101は、図4に示すように、前記腐食検知部材10を被覆するセメント組成物硬化体である。被覆部材101は、2種類以上の水/セメント比のセメント組成物硬化体からなり、各被覆部材101の間は遮断材102により遮断されている。該被覆部材101の一面は露出面であり、該露出面が埋設対象のコンクリートの面と平行になるように腐食検知センサ100が埋設され、この露出面からコンクリート中の腐食因子が浸透する。また、該露出面および腐食検知部材10を被覆する面以外、被覆部材101は遮断材102に覆われて、コンクリート中からの腐食因子の浸透を防いでいる。
外部から浸入した腐食因子がコンクリート中を浸透し、腐食検知センサ100に到達した後、前記被覆部材101に浸透して、導体パターン部に達し、該導体パターン部を形成する鉄が腐食して前記電気的特性が変化する。
(B) Coating member The coating member 101 is a hardened cement composition that covers the corrosion detection member 10 as shown in FIG. The covering member 101 is made of a hardened cement composition having two or more water / cement ratios, and the covering member 101 is blocked by a blocking material 102. One surface of the covering member 101 is an exposed surface, and the corrosion detection sensor 100 is embedded so that the exposed surface is parallel to the surface of the concrete to be embedded, and a corrosion factor in the concrete permeates from the exposed surface. Besides the exposed surface and the surface that covers the corrosion detecting member 10, the covering member 101 is covered with a blocking material 102 to prevent the penetration of the corrosion factor from the concrete.
After the corrosion factor that has entered from the outside penetrates into the concrete and reaches the corrosion detection sensor 100, it penetrates into the covering member 101, reaches the conductor pattern portion, and the iron forming the conductor pattern portion corrodes and Electrical characteristics change.

前記被覆部材101はセメント組成物硬化体であり、該硬化体は、具体的には、モルタルまたはセメントセメントペースト硬化体である。また、前記セメント組成物とは、セメント単独、またはセメントのほかに高炉スラグ、フライアッシュ、石炭灰、石灰石粉末、シリカフューム、細骨材等からなる群より選ばれる1種以上を含む組成物をいう。
前記セメントは、評価の精度の観点から、好ましくは、センサを埋設する対象となるコンクリート中のセメントと同一である。該セメントは特に限定されず、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、高炉セメント、フライアッシュセメント、石炭灰含有セメント、シリカセメント、白色セメント、およびエコセメント等から選ばれる1種以上が挙げられる。
また、前記セメント組成物の混練水は、腐食環境評価に悪影響を与えないものであれば用いることができ、例えば、上水道水や再生水等である。
The said covering member 101 is a cement composition hardened | cured material, and this hardened | cured material is a mortar or cement cement paste hardened | cured material specifically ,. The cement composition refers to a composition containing at least one selected from the group consisting of cement alone or in addition to cement, blast furnace slag, fly ash, coal ash, limestone powder, silica fume, fine aggregate, and the like. .
From the viewpoint of evaluation accuracy, the cement is preferably the same as the cement in the concrete in which the sensor is embedded. The cement is not particularly limited, and ordinary Portland cement, early strength Portland cement, super early strength Portland cement, medium heat Portland cement, low heat Portland cement, sulfate resistant Portland cement, blast furnace cement, fly ash cement, coal ash-containing cement, One or more types selected from silica cement, white cement, eco-cement and the like can be mentioned.
The kneading water for the cement composition can be used as long as it does not adversely affect the evaluation of the corrosive environment, and is, for example, tap water or reclaimed water.

前記被覆部材101の水/セメント比は、好ましくは20〜150%である。該比が20%未満ではセメント組成物の練り混ぜが困難になり被覆部材101を均質に成形することが難しくなる場合がある。また、該比が150%を超えると材料分離が生じるおそれがあるほか、塩分の浸透が不均一になって評価精度が低下するおそれがある。
また、前記水/粉体比は、好ましくは15%〜120%である。該比が15%未満ではセメント組成物の練り混ぜが困難になり、被覆部材101を成形することが難しくなる場合があり、120%を超えると被覆部材101の成形の際に材料分離が生じるおそれがある。
The water / cement ratio of the covering member 101 is preferably 20 to 150%. When the ratio is less than 20%, it is difficult to knead the cement composition, and it may be difficult to form the covering member 101 uniformly. In addition, if the ratio exceeds 150%, material separation may occur, and salt penetration may be uneven and evaluation accuracy may be reduced.
The water / powder ratio is preferably 15% to 120%. When the ratio is less than 15%, it is difficult to mix the cement composition, and it may be difficult to form the covering member 101. When the ratio exceeds 120%, material separation may occur when the covering member 101 is formed. There is.

また、前記被覆部材101は、2種類以上の水/セメント比を有するセメント組成物硬化体である。そして、2種類以上の水/セメント比のうちの1種は、腐食検知センサ100の埋設対象であるコンクリートの水/セメント比と同一であることが好ましい。
コンクリートおよび被覆部材101の水/セメント比が同一であれば、前記コンクリート中の鋼材の腐食が始まる腐食因子の濃度が同一となるため、前記鋼材の腐食環境を評価する上で評価の誤差を小さくできる。そして、この水/セメント比と相違する他の種類の水/セメント比は、好ましくは前記水/セメント比よりも5〜30%程度高く設定する。水/セメント比が高くなれば、鋼材の腐食が発生する塩分量が少なくなるため、腐食し易くなり腐食を検知する時間を短縮できる。
したがって、例えば、2種類の水/セメント比の被覆部材101を有する腐食検知センサ100は、水/セメント比が高い被覆部材101で被覆された腐食検知部材10がもう一方の腐食検知部材10よりも早い段階で反応し、対象のコンクリートと同一の水/セメント比を用いた被覆部材101で構成した腐食検知部材10が遅れて反応した時点で、鋼材の腐食環境を遅滞なく評価することが可能となる。例えば、対象のコンクリートの水セメント/比が50%である場合、センサの被覆部材101を構成する2種類のセメント組成物硬化体の水/セメント比は、50%および60%にするとよい。
なお、前記水セメント/比は2種類以上であればよく、水準数は特に限定されない。例えば、図8に示すように、異なる3種類の水/セメント比を有する被覆部材101の下に腐食検知部材10を有する腐食検知センサ100を用いれば、データ数が増え、予測精度が向上する。
The covering member 101 is a hardened cement composition having two or more water / cement ratios. One of the two or more water / cement ratios is preferably the same as the water / cement ratio of the concrete to be embedded in the corrosion detection sensor 100.
If the water / cement ratio of the concrete and the covering member 101 is the same, the concentration of the corrosion factor at which the corrosion of the steel in the concrete begins to be the same, so that the evaluation error is reduced in evaluating the corrosion environment of the steel. it can. The other water / cement ratio different from the water / cement ratio is preferably set higher by about 5 to 30% than the water / cement ratio. If the water / cement ratio is high, the amount of salt that causes corrosion of the steel material is reduced, so that the corrosion becomes easy and the time for detecting the corrosion can be shortened.
Therefore, for example, in the corrosion detection sensor 100 having the two kinds of water / cement ratio coating members 101, the corrosion detection member 10 covered with the coating member 101 having a high water / cement ratio is more than the other corrosion detection member 10. It is possible to evaluate the corrosive environment of the steel material without delay when the corrosion detecting member 10 constituted by the covering member 101 using the same water / cement ratio as the target concrete reacts with a delay after reacting at an early stage. Become. For example, when the water cement / ratio of the target concrete is 50%, the water / cement ratios of the two types of hardened cement composition constituting the covering member 101 of the sensor may be 50% and 60%.
The water cement / ratio may be two or more, and the number of levels is not particularly limited. For example, as shown in FIG. 8, if the corrosion detection sensor 100 having the corrosion detection member 10 under the covering member 101 having three different types of water / cement ratios is used, the number of data is increased and the prediction accuracy is improved.

また、前記被覆部材101に含まれる空気量は、好ましくは5〜35%である。空気量が5%未満では前記被覆部材101を構成するセメント組成物硬化体が密実となり、腐食因子の浸透が緩やかになるおそれがあり、また腐食環境の評価における誤差が大きくなるおそれがある。空気量が35%を超えると、前記被覆部材101を構成するセメント組成物硬化体の空隙が過多になり組織が不均一となるため、腐食の発生にばらつきが生じやすくなる。前記空気量は空気量調整剤を用いて調整できる。
なお、前記空気量を有するセメント組成物の流動性を15打のフロー値(JIS R 5201−1997)で表わせば105〜250mmである。
The amount of air contained in the covering member 101 is preferably 5 to 35%. If the amount of air is less than 5%, the cured cement composition constituting the covering member 101 becomes dense, and there is a possibility that the penetration of the corrosion factor may be slow, and there is a possibility that an error in the evaluation of the corrosive environment becomes large. When the amount of air exceeds 35%, the cement composition hardened body constituting the covering member 101 has excessive voids and the structure becomes non-uniform, so that the occurrence of corrosion tends to vary. The air amount can be adjusted using an air amount adjusting agent.
In addition, if the fluidity | liquidity of the cement composition which has the said air quantity is represented by the flow value (JISR5201-1997) of 15 strokes, it will be 105-250 mm.

前記被覆部材101の厚みは、好ましくは1〜20mmである。該値が1mm未満では成形が難しく、また、ひび割れ等の欠陥が生じ易く、20mmを超えると腐食因子の浸透が遅延して評価に要する期間が長くなる。
また、前記被覆部材101の厚みは、被覆部材101の厚み/埋設深さの比が0.2以下となるように選定する(図5参照)。前記厚みの比が0.2を超えると、埋設対象のコンクリートの塩分の浸透性に、被覆部材101の影響が誤差要因として加わるので好ましくない。これを換言すれば、本発明の腐食検知センサ100は、埋設深さ/被覆部材101の厚みの比が5以上になるように、コンクリート中に埋設して使用する。
The thickness of the covering member 101 is preferably 1 to 20 mm. If the value is less than 1 mm, molding is difficult, and defects such as cracks are likely to occur, and if it exceeds 20 mm, the penetration of the corrosion factor is delayed and the period required for evaluation becomes longer.
The thickness of the covering member 101 is selected so that the ratio of the thickness / embedding depth of the covering member 101 is 0.2 or less (see FIG. 5). If the thickness ratio exceeds 0.2, the influence of the covering member 101 is added as an error factor to the salt permeability of the concrete to be buried, which is not preferable. In other words, the corrosion detection sensor 100 of the present invention is used by being embedded in concrete so that the ratio of the embedded depth / the thickness of the covering member 101 is 5 or more.

前記被覆部材101の面積は、直下に配した前記腐食検知部材10を完全に覆うことができる面積であって、かつ、1辺の長さは、埋設対象のコンクリートに使用される砂や砂利などの骨材の最大直径よりも大きくする。例えば、前記骨材の最大直径(最大骨材寸法)が20mmの場合、1辺の長さが20mmを超える正方形、長方形、または直径が20mmを超える円形、または長径が20mmを超える楕円形等の形状を選択する。これは、前記腐食検知センサ100の被覆部材101の露出面が、センサの埋設対象のコンクリートに使用される骨材よりも小さい場合に、前記コンクリートに含まれる最大の骨材によって、偶然に前記露出面の全面が覆われて、コンクリート表面からの腐食因子の浸透経路を遮断する事態を回避するためである。   The area of the covering member 101 is an area that can completely cover the corrosion detecting member 10 disposed immediately below, and the length of one side is sand or gravel used for concrete to be embedded Be larger than the maximum diameter of the aggregate. For example, when the maximum diameter (maximum aggregate dimension) of the aggregate is 20 mm, a square having a side length of more than 20 mm, a rectangle, a circle having a diameter of more than 20 mm, or an ellipse having a major axis of more than 20 mm, etc. Select a shape. This is because, when the exposed surface of the covering member 101 of the corrosion detection sensor 100 is smaller than the aggregate used for the concrete to be embedded in the sensor, the exposure is accidentally caused by the largest aggregate contained in the concrete. This is to avoid a situation where the entire surface is covered and the penetration path of the corrosion factor from the concrete surface is blocked.

前記被覆部材101を形成するセメント組成物硬化体がモルタルの場合、用いる細骨材は、川砂、陸砂、珪砂、および軽量骨材等からなる群より選ばれる1種以上が挙げられる。また、該細骨材は天然骨材のほか再生骨材も使用できる。
細骨材の粒度によりセンサの厚みの下限が制限されるためと、骨材の偏在を防止するため、前記細骨材の最大粒径は、好ましくは1mm以下である。
また、前記細骨材の配合量は、好ましくは細骨材/粉体比(質量比)で3以下である。該値が3を超えると、粉体ペーストの量が少ないため、成形性が低下して粗大な空隙が生じる場合がある。また、前記細骨材の単位容積率は、好ましくは60体積%以下である。
When the hardened cement composition forming the covering member 101 is mortar, examples of the fine aggregate to be used include one or more selected from the group consisting of river sand, land sand, silica sand, lightweight aggregate, and the like. The fine aggregate may be natural aggregate or recycled aggregate.
The maximum particle size of the fine aggregate is preferably 1 mm or less because the lower limit of the thickness of the sensor is limited by the particle size of the fine aggregate and the uneven distribution of the aggregate is prevented.
The blending amount of the fine aggregate is preferably 3 or less as a fine aggregate / powder ratio (mass ratio). When the value exceeds 3, since the amount of the powder paste is small, the moldability may be reduced and coarse voids may be generated. The unit volume ratio of the fine aggregate is preferably 60% by volume or less.

さらに、前記硬化体は硬化体の密実性等を調整するため、混和材を含んでもよい。該混和材は、好ましくは石灰石微粉末や珪石粉等の、潜在水硬性やポゾラン活性を有しない鉱物質微粉末である。該混和材の粉末度は、ブレーン比表面積で、好ましくは2500〜10000cm/g、より好ましくは3000〜8000cm/gである。該値が2500cm/g未満では、保水性や材料分離抵抗性が低下して腐食検知センサ100の品質変動が生じる場合があり、10000cm/gを超えると粘性が増して成形が困難になる場合がある。また、前記混和材の置換率は、好ましくは10〜85質量%である。なお、前記置換率とは、混和材とセメントの質量の合計を100とした場合の混和材の含有率(質量%)である。 Further, the cured body may include an admixture in order to adjust the solidity of the cured body. The admixture is preferably a fine mineral powder not having latent hydraulic properties or pozzolanic activity, such as fine limestone powder or silica powder. Fineness of該混sum material is a Blaine specific surface area, preferably 2500~10000cm 2 / g, more preferably 3000~8000cm 2 / g. If the value is less than 2500 cm 2 / g, the water retention and material separation resistance may decrease, and the quality of the corrosion detection sensor 100 may vary. If the value exceeds 10,000 cm 2 / g, the viscosity increases and molding becomes difficult. There is a case. The substitution rate of the admixture is preferably 10 to 85% by mass. In addition, the said substitution rate is content rate (mass%) of an admixture when the sum total of the mass of an admixture and cement is set to 100. As shown in FIG.

また、前記被覆部材101を形成するセメント組成物硬化体は、乾燥収縮によるひび割れを防止するため、ビニロン繊維、ポリエチレン繊維、およびポリプロピレン繊維等の有機繊維や、鋼繊維およびガラス繊維等の無機繊維や、収縮低減剤および保湿剤等を含んでもよい。該繊維の添加量は、好ましくはセメント組成物中の粉体量に対し質量比で0.02以下である。
また、セメント組成物の流動性を高めるため、減水剤、AE減水剤、および高性能AE減水剤等の減水剤を添加してもよい。該減水剤の添加率は、好ましくはセメント組成物中の粉体量に対し質量比で0.05以下である。
Moreover, in order to prevent cracks due to drying shrinkage, the cured cement composition forming the covering member 101 is made of organic fibers such as vinylon fibers, polyethylene fibers, and polypropylene fibers, inorganic fibers such as steel fibers and glass fibers, Further, it may contain a shrinkage reducing agent, a humectant and the like. The amount of the fiber added is preferably 0.02 or less by mass ratio with respect to the amount of powder in the cement composition.
Moreover, in order to improve the fluidity | liquidity of a cement composition, you may add water reducing agents, such as a water reducing agent, AE water reducing agent, and a high performance AE water reducing agent. The addition rate of the water reducing agent is preferably 0.05 or less in terms of mass ratio with respect to the amount of powder in the cement composition.

前記被覆部材101は、型枠への流し込み成形、押出成形、プレス成型、振動加圧成形等により製造できる。例えば、腐食検知部材10を、アクリル製や高強度モルタル製の型枠(外装材102)の底面側に設置し、露出面側に前記セメント組成物を打設する。そして、成形後に成形体は、湿潤養生、水中養生、蒸気養生、およびオートクレーブ養生等を行ってもよい。   The covering member 101 can be manufactured by casting molding into a mold, extrusion molding, press molding, vibration pressure molding or the like. For example, the corrosion detection member 10 is installed on the bottom side of an acrylic or high-strength mortar mold (exterior material 102), and the cement composition is placed on the exposed surface side. And after shaping | molding, a molded object may perform wet curing, underwater curing, steam curing, autoclave curing, etc.

前記構成において、腐食検知部材10は、水/セメント比が異なる被覆部材101ごとに、前記被覆部材101の直下に個別に配してもよいし、腐食検知部材を電気的に連結して、前記被覆部材101の箇所ごとに電気的特性が変化するような回路構成としてもよい。例えば、腐食検知部材1個と固定抵抗1個を直列に組み、これをひとつのユニットとして、被覆部材101ごとにユニットを配して並列に連結し、前記固定抵抗をそれぞれ異なる抵抗を有する固定抵抗を選択して回路で構成すれば、それぞれの被覆部材101の直下に配された個別の腐食検知部材10の電気的特性の変化を、1つの計測回路で計測することができる。腐食検知部材10の計測回路は、腐食検知部材10の電気的特性の変化を検出できれば、前記回路構成に限定されることはない。   In the above-described configuration, the corrosion detecting member 10 may be individually disposed immediately below the covering member 101 for each covering member 101 having a different water / cement ratio, or by electrically connecting the corrosion detecting member, It is good also as a circuit structure that an electrical characteristic changes for every location of the covering member 101. FIG. For example, one corrosion detection member and one fixed resistor are assembled in series, and this is combined into one unit for each covering member 101 and connected in parallel, and the fixed resistors have different resistances. If the circuit is selected and configured by a circuit, a change in the electrical characteristics of the individual corrosion detection members 10 arranged immediately below the respective covering members 101 can be measured by one measurement circuit. The measurement circuit of the corrosion detection member 10 is not limited to the circuit configuration as long as the change in the electrical characteristics of the corrosion detection member 10 can be detected.

(C)遮断材
本発明の腐食検知センサ100は、コンクリートの表面から前記センサの被覆部材101の露出面までの距離と、コンクリート中に埋設した時点から導体パターン部の電気的特性の変化が生じるまでに要した時間とに基づき、腐食環境を評価するものである。したがって、腐食因子が侵入する被覆部材101の露出面および腐食因子が到達する腐食検知部材10の面を除く他の面からの腐食因子の浸透を防止する必要があり、このため被覆部材101の露出面および腐食検知部材10の面を除く他の面は、図4に示すように、遮断材102(外装材102も遮断効果を有する場合、遮断材102になり得る。)で遮断されている。また、隣接して配置された水/セメント比の異なる被覆部材101の境界も、腐食因子の移動を防止するため遮断材102で遮断する。したがって、該遮断材102は、腐食因子の侵入を防止できるものであれば、特に限定されず、例えば、モルタル等のセメント組成物硬化体、セラミックス、樹脂成形品、フィルム、シート、塗膜、および板等から選ばれる1種以上が挙げられる。これらの遮断材102は、粘着剤や接着剤等を介して腐食検知部材10や被覆部材101に適用できる。よって、遮断材102は、被覆部材101に比べ、腐食因子が浸透しないか、著しく低いものである。
(C) Barrier Material In the corrosion detection sensor 100 of the present invention, the distance from the surface of the concrete to the exposed surface of the covering member 101 of the sensor and the change in the electrical characteristics of the conductor pattern portion from the point of embedding in the concrete occur. The corrosive environment is evaluated based on the time required for the process. Therefore, it is necessary to prevent penetration of the corrosion factor from other surfaces except the exposed surface of the coating member 101 into which the corrosion factor enters and the surface of the corrosion detection member 10 to which the corrosion factor reaches. As shown in FIG. 4, the surfaces other than the surface and the surface of the corrosion detection member 10 are blocked by a blocking material 102 (if the exterior material 102 also has a blocking effect, it can be the blocking material 102). Further, the boundary between the covering members 101 having different water / cement ratios arranged adjacent to each other is also blocked by the blocking material 102 in order to prevent the movement of the corrosion factors. Accordingly, the blocking material 102 is not particularly limited as long as it can prevent the invasion of corrosion factors. For example, the cement composition cured body such as mortar, ceramics, resin molded product, film, sheet, coating film, and 1 or more types chosen from a board etc. are mentioned. These blocking materials 102 can be applied to the corrosion detection member 10 and the covering member 101 via an adhesive, an adhesive, or the like. Therefore, the blocking material 102 does not penetrate the corrosion factor or is significantly lower than the covering member 101.

(D)外装材
該外装材102は、腐食検知センサ100の強度の補強、小型化、および誤差因子の回避等のため、必要に応じて用いられる任意の構成部材であり、被覆部材101と熱膨張係数等の物理的性質が類似する、セメント組成物硬化体、セラミックスの焼成品や成形品が好適である。なお、前記外装材102が遮断材102としての機能を有する場合、外装材102も遮断材102に含めるものとする。
(D) Exterior Material The exterior material 102 is an arbitrary component used as necessary for reinforcing the strength of the corrosion detection sensor 100, reducing the size, avoiding an error factor, and the like. Cement composition hardened bodies, ceramic fired products and molded products having similar physical properties such as expansion coefficients are preferred. When the exterior material 102 has a function as the shielding material 102, the exterior material 102 is also included in the shielding material 102.

2.コンクリート中の鋼材の腐食環境の評価方法
次に、本発明のコンクリート中の鋼材の腐食環境の評価方法(以下「腐食環境評価方法」という。)について説明する。
(1)腐食環境評価方法の概要
一般に、コンクリート中の鋼材の腐食環境は、セメントの種類や配合などの材料要因と、コンクリートの周辺の環境条件により影響を受ける。したがって、腐食環境はコンクリート毎に異なるから、本発明の腐食環境評価方法は、腐食検知センサ100をコンクリート中に埋設して、実際にコンクリート中の腐食環境を把握する方法を採用する。
すなわち、本発明の腐食環境評価方法は、前記腐食検知センサ100をコンクリート中に埋設して、該腐食検知センサ100により腐食発生時間を測定し、該腐食発生時間を変数として含む腐食関係式に基づき腐食を評価するためのパラメータ(以下「腐食評価パラメータ」という。)を求め、該パラメータを用いてコンクリート中の鋼材の腐食環境を評価する方法である。
2. Next, a method for evaluating the corrosive environment of steel in concrete according to the present invention (hereinafter referred to as “corrosive environment evaluating method”) will be described.
(1) Outline of Corrosion Environment Evaluation Method In general, the corrosion environment of steel in concrete is affected by material factors such as the type and composition of cement and the environmental conditions around the concrete. Therefore, since the corrosive environment varies from concrete to concrete, the corrosive environment evaluation method of the present invention employs a method in which the corrosion detection sensor 100 is embedded in the concrete to actually grasp the corrosive environment in the concrete.
That is, the corrosion environment evaluation method of the present invention is based on a corrosion relational expression in which the corrosion detection sensor 100 is embedded in concrete, the corrosion occurrence time is measured by the corrosion detection sensor 100, and the corrosion occurrence time is included as a variable. In this method, a parameter for evaluating corrosion (hereinafter referred to as “corrosion evaluation parameter”) is obtained and the corrosive environment of the steel material in the concrete is evaluated using the parameter.

(2)腐食関係式
前記腐食関係式は、具体的には、物質の拡散現象を表すFickの第2拡散方程式である下記(1)式と、コンクリート中の鋼材の腐食発生塩分量およびセメント組成物硬化体の水/セメント比との関係を表す下記(2)式である。
CL=C×{1−erf[0.1×Scd/(2×(D×t)0.5)]}+C ・・・(1)
CL=a×(W/C)+b ・・・(2)
ただし、(1)式中、CCLはコンクリート中の鋼材の腐食発生塩分量(kg/m)を表し、Cはコンクリートの表面塩分量(kg/m)を表し、Scdは埋設深さ(mm)を表し、Dは見掛けの拡散係数(cm/年)を表し、tは腐食発生に至るまでの時間(年)を表し、Cは初期塩分量を表す。なお、前記(1)式は誤差関数である。また、(2)式中、CCLはコンクリート中の鋼材の腐食発生塩分量(kg/m)を表し、W/Cは水/セメント比を表し、aおよびbはセメントの種類ごとに定まる材料係数を表す。
(2) Corrosion relational expression Specifically, the corrosion relational expression includes the following formula (1) which is Fick's second diffusion equation representing the diffusion phenomenon of the substance, the amount of corrosion generated salt of steel in concrete, and the cement composition. It is the following formula (2) representing the relationship between the water / cement ratio of the cured product.
C CL = C 0 × {1-erf [0.1 × S cd / (2 × (D d × t) 0.5 )]} + C i (1)
C CL = a × (W / C) + b (2)
However, in (1), C CL represents corroded salinity of steel in concrete (kg / m 3), C 0 represents the surface salinity of concrete (kg / m 3), S cd is buried Depth is expressed in mm, D d is an apparent diffusion coefficient (cm 2 / year), t is a time (year) until corrosion occurs, and C i is an initial salinity. The equation (1) is an error function. Further, in (2), C CL represents corroded salinity of steel in concrete (kg / m 3), W / C represents the water / cement ratio, a and b are determined for each type of cement Represents material coefficient.

(3)腐食評価パラメータ
前記腐食評価パラメータは、下記(1)式中のコンクリートの見掛けの拡散係数およびコンクリートの表面塩分量である。該拡散係数は、コンクリートを構成するセメントの種類、コンクリート中の単位セメント量、コンクリートの水/セメント比等の材料特性の影響を受けるが、特に水/セメント比の影響が大きい。また、コンクリートの表面塩分量は、コンクリート構造物が建設された地域の環境の影響を強く受ける。従来、コンクリート構造物が建設される環境は千差万別なため、前記表面塩分量を予見することは困難で、現実にはボーリングにより構造物から採取したコンクリート試験体を化学分析すること以外に、前記表面塩分量を知る手段はなかった。ところが、本発明の腐食検知センサ100を用いた評価方法によれば、(1)式に基づき見掛けの拡散係数とコンクリートの表面塩分量を同時に求めることができる。
(3) Corrosion evaluation parameter The corrosion evaluation parameters are the apparent diffusion coefficient of concrete and the surface salt content of concrete in the following formula (1). The diffusion coefficient is affected by material characteristics such as the type of cement constituting the concrete, the amount of unit cement in the concrete, and the water / cement ratio of the concrete, but the influence of the water / cement ratio is particularly large. In addition, the surface salinity of concrete is strongly influenced by the environment of the area where the concrete structure is constructed. Conventionally, the environment in which a concrete structure is constructed is quite different, so it is difficult to predict the surface salinity, and in reality, other than chemical analysis of concrete specimens taken from the structure by boring. There was no means to know the surface salinity. However, according to the evaluation method using the corrosion detection sensor 100 of the present invention, the apparent diffusion coefficient and the surface salinity of the concrete can be obtained simultaneously based on the equation (1).

(4)腐食評価パラメータの算出方法
次に、腐食評価パラメータの算出方法について説明する。
被覆部材101の水/セメント比やセメントの種類が異なれば、その下にある導体パターン部を形成する鉄に腐食が発生する塩分量(腐食発生塩分量)は異なるが、被覆部材101中のセメントを同一にすれば、水/セメント比だけが腐食発生塩分量に関係する。(2)式はかかる考えに基づき導出された式であり、鉄の腐食発生塩分量と水/セメント比との間の線形関係を表している。(2)式における材料係数aおよびbは、実験によって予め求めてもよいし、土木学会コンクリート標準示方書(2012年制定コンクリート標準示方書設計編:標準、149頁p)に記載されている係数を使用してもよい。
2種類以上の異なる水/セメント比を有する、2箇所以上の被覆部材101の下にある腐食検知部材の腐食発生塩分量は前記のとおり異なることと、コンクリートの表面からの腐食因子の浸透は拡散によって深さ方向に一様に浸透するため、腐食検知センサ100を設置した深さ位置の塩分量が2つの異なる腐食発生塩分量に達するまでに、時間差が生じることとなる。
したがって、例えば、2種類の異なる水/セメント比を有する、2箇所の被覆部材101を含む腐食検知センサ100を用いれば、前記2つの腐食発生塩分量ごとに、(1)式において、2組の腐食発生にいたるまでの時間(t)と埋設深さ(Scd)が求まる。そして、該2組の時間と深さの値に基づき、(1)式を用いてコンクリートの表面塩分量とコンクリートの見掛けの拡散係数を算出できる。
なお、(1)の左辺の値はコンクリート中の鋼材の腐食発生塩分量であり、コンクリートの水/セメント比から(2)式により求まる。
(4) Method for calculating corrosion evaluation parameter Next, a method for calculating the corrosion evaluation parameter will be described.
If the water / cement ratio or the kind of cement of the covering member 101 is different, the amount of salt (corrosion generated salt amount) that causes corrosion in the iron forming the conductor pattern portion under it is different, but the cement in the covering member 101 is different. Are the same, only the water / cement ratio is related to the amount of corrosion generated salinity. Formula (2) is a formula derived based on this idea, and represents a linear relationship between the amount of iron corrosion generated salinity and the water / cement ratio. The material coefficients a and b in the formula (2) may be obtained in advance by experiments, or the coefficients described in the Japan Society of Civil Engineers Concrete Standard Specification (Design Standard Specification for Concrete Established in 2012: Standard, p. 149 p). May be used.
Corrosion-generating salinity of corrosion detection members under two or more coating members 101 having two or more different water / cement ratios is different as described above, and penetration of corrosion factors from the concrete surface is diffused. Therefore, there is a time difference until the salt content at the depth position where the corrosion detection sensor 100 is installed reaches two different corrosion-generated salt concentrations.
Therefore, for example, if the corrosion detection sensor 100 including the two covering members 101 having two different water / cement ratios is used, two sets of the two corrosion-generated salinities in the equation (1) The time (t) until the occurrence of corrosion and the embedding depth (S cd ) are obtained. Based on the two sets of time and depth values, the surface salinity of the concrete and the apparent diffusion coefficient of the concrete can be calculated using equation (1).
Note that the value on the left side of (1) is the amount of salt generated by corrosion of the steel in the concrete, and is obtained from the water / cement ratio of the concrete by the formula (2).

逆に、前記表面塩分量とコンクリートの見掛けの拡散係数が求まれば、コンクリート構造物の鉄筋の深さ位置は設計図から知ることができるので、コンクリート構造物中の鉄筋の腐食発生時間(t)のみが未知数となり、(1)式をtについて解けば、コンクリート構造物中の鉄筋の腐食発生時間を予測できる。
ただし、本発明の腐食環境評価方法では、腐食因子が被覆部材101を浸透(通過)する時間は短いことが必要になるが、段落0020および段落0021に記載のとおり、空気量を大きく設定しているため腐食因子の浸透性が高く、また、被覆部材101の厚みが1〜20mmと薄く、また、腐食検知センサ100の被覆部材101の厚みと、腐食検知センサ100の埋設深さの比が0.2以下であるため、コンクリート構造物と比べ、短時間で腐食因子が被覆部材101を浸透する設計になっている。
また、コンクリート構造物内の腐食因子の浸透量は、(1)式からわかるように、深さ方向に対して塩分量が急激に減少する。したがって、異なる深さにセンサを複数個設置して、(1)式を用いて腐食発生時間を算出すると、数十年単位の時間差が生じて誤差が大きくなる可能性が高い。これに対し、本発明の複数の水/セメント比を有する腐食検知センサ100は、同一の深さ位置に設置して複数個所の腐食発生塩分量を求めることができるため、誤差が少なく、また、評価にかかる時間を短縮できる。
On the contrary, if the surface salinity and the apparent diffusion coefficient of the concrete are obtained, the depth position of the reinforcing bar of the concrete structure can be known from the design drawing. Therefore, the corrosion occurrence time of the reinforcing bar in the concrete structure (t ) Becomes an unknown, and if the equation (1) is solved for t, the corrosion occurrence time of the reinforcing bars in the concrete structure can be predicted.
However, in the corrosive environment evaluation method of the present invention, it is necessary that the time for the corrosion factor to penetrate (pass) through the covering member 101 is short. However, as described in paragraphs 0020 and 0021, the air amount is set large. Therefore, the permeability of the corrosion factor is high, the thickness of the covering member 101 is as thin as 1 to 20 mm, and the ratio of the thickness of the covering member 101 of the corrosion detection sensor 100 to the embedding depth of the corrosion detection sensor 100 is 0. .2 or less, the corrosion factor penetrates the covering member 101 in a short time compared to a concrete structure.
In addition, as can be seen from the equation (1), the amount of penetration of the corrosion factor in the concrete structure is drastically reduced in the depth direction. Therefore, if a plurality of sensors are installed at different depths and the corrosion occurrence time is calculated using the equation (1), there is a high possibility that a time difference of several decades will occur and the error will increase. On the other hand, since the corrosion detection sensor 100 having a plurality of water / cement ratios of the present invention can be installed at the same depth position and can determine the amount of salinity occurring at a plurality of locations, there are few errors, Evaluation time can be shortened.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)セメント:普通ポルトランドセメント(太平洋セメント社製)
(2)細骨材:呼び寸法が850μmのJIS標準ふるいを全通した珪砂(細目砂)
(3)混和材:石灰石微粉末、ブレーン比表面積6000cm/g
(4)水:上水道水
(5)AE減水剤:ポゾリスNo.70(登録商標、BASFジャパン社製)
(6)空気量調整剤:マイクロエア303A(登録商標、BASFジャパン社製)
(7)腐食検知部材:鉄製
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Materials used (1) Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement)
(2) Fine aggregate: Silica sand (fine sand) that has passed through a JIS standard sieve with a nominal size of 850 μm
(3) Admixture: fine limestone powder, Blaine specific surface area of 6000 cm 2 / g
(4) Water: tap water (5) AE water reducing agent: Pozzolith no. 70 (registered trademark, manufactured by BASF Japan)
(6) Air amount adjusting agent: Microair 303A (registered trademark, manufactured by BASF Japan)
(7) Corrosion detection member: Iron

2.試験方法
(1)腐食検知センサとコンクリート試験体の作製
水/セメント比が30%、細骨材容積率が40%のモルタルを用いて、縦90mm、横50mm、厚さ15mmの外寸法の腐食検知センサ100の外装材102を作製した。次に、該外装材102の縦90mm、横50mmの平面部に、深さ2mm、大きさが縦55mm、横25mmの凹部を作製し、この凹部の中央部分に幅5mm、長さ25mm、厚さ2mmの遮断材102を縦に設置して凹部を2箇所に分割した。
さらに、該2箇所の凹部に、縦25mm、横20mm、厚さ0.02mmの腐食検知部材10を設置し、ケーブルを接続した。
次に、表1に示す配合条件および配合に従い、異なる水/セメント比のモルタルを混練し、該モルタルをそれぞれ前記2箇所の凹部に打設して表面を成形した後、該モルタルを20℃で7日間密封養生した。なお、前記モルタルは、表1に示す空気量およびフロー値になるように、それぞれ前記AE減水剤と前記空気量調整剤を用いて調整した。
そして、図4に示すように、被覆部材101の露出面の1面を残し、他の5面をモルタルの外装材102(遮断材102)で覆って、水/セメント比が2種類のモルタルの被覆部材101と、それぞれ直下に腐食検知部材10を配してなる腐食検知センサ100を作製した。
2. Test method (1) Preparation of corrosion detection sensor and concrete test specimen Using a mortar with a water / cement ratio of 30% and a fine aggregate volume ratio of 40%, the outer dimensions of corrosion are 90mm in length, 50mm in width, and 15mm in thickness. The exterior material 102 of the detection sensor 100 was produced. Next, a recess having a depth of 2 mm, a size of 55 mm, and a width of 25 mm is formed in a flat portion of 90 mm in length and 50 mm in width of the exterior material 102, and a width of 5 mm, a length of 25 mm, and a thickness is formed in the central portion of the recess. A blocking member 102 having a thickness of 2 mm was installed vertically to divide the recess into two locations.
Furthermore, the corrosion detection member 10 having a length of 25 mm, a width of 20 mm, and a thickness of 0.02 mm was installed in the two recesses, and a cable was connected thereto.
Next, according to the blending conditions and blending shown in Table 1, mortars having different water / cement ratios were kneaded, and the mortars were respectively placed in the two recesses to form the surface. Sealed and cured for 7 days. In addition, the said mortar was adjusted using the said AE water reducing agent and the said air amount adjusting agent so that it might become the air amount and flow value which are shown in Table 1, respectively.
Then, as shown in FIG. 4, one of the exposed surfaces of the covering member 101 is left and the other five surfaces are covered with a mortar exterior material 102 (blocking material 102). A corrosion detection sensor 100 was produced, in which the coating member 101 and the corrosion detection member 10 were arranged directly below each other.

Figure 2015197307
Figure 2015197307

そして、角柱コンクリートの表面から20mmの位置になるように、前記センサを100mm×100mm×200mmの型枠内に設置した後、該型枠内に水/セメント比が50%、最大粗骨材寸法が20mmのコンクリートを充填した。
また、参考例として、コンクリート構造物を模して、前記型枠内の表面から深さ35mmの位置に、長さ120mmの鉄筋(SD295A、D10)を設置し、前記コンクリートと同一のコンクリートを充填した。なお、鉄筋の自然電位を計測して鉄筋の腐食の有無を判定できるように、鉄筋にはリード線を接続した。
各5体ずつ作製した前記コンクリートは、材齢26日まで密封養生した後、浸透面以外の5面を樹脂で被覆して試験体を作製した。
Then, after the sensor is installed in a 100 mm × 100 mm × 200 mm mold so as to be 20 mm from the surface of the prismatic concrete, the water / cement ratio is 50% in the mold, and the maximum coarse aggregate size Was filled with 20 mm of concrete.
Also, as a reference example, a rebar (SD295A, D10) with a length of 120 mm is installed at a position 35 mm deep from the surface inside the formwork, imitating a concrete structure, and filled with the same concrete as the concrete did. In addition, the lead wire was connected to the reinforcing bar so that the presence or absence of corrosion of the reinforcing bar could be determined by measuring the natural potential of the reinforcing bar.
Each of the five concrete pieces prepared above was sealed and cured until the age of 26 days, and then five specimens other than the permeation face were coated with a resin to prepare a test specimen.

(2)腐食促進試験
材齢28日から、該試験体は、60℃、10質量%の塩化ナトリウム水溶液中に72時間浸漬し、さらに、60℃、湿度60%で72時間乾燥させた。この浸漬と乾燥を1サイクルとして繰り返して腐食促進養生を行った。
そして、前記の1サイクルが経過した毎に、腐食検知部材10の電気抵抗は高精度テスターを用いて、また、鉄筋の自然電位は照合電極(鉛電極)を用いて高精度テスターで計測した。
(2) Corrosion promotion test From the age of 28 days, the specimen was immersed in an aqueous solution of sodium chloride at 60 ° C. and 10% by mass for 72 hours, and further dried at 60 ° C. and 60% humidity for 72 hours. This immersion and drying was repeated as one cycle to perform corrosion promotion curing.
Then, each time one cycle was passed, the electrical resistance of the corrosion detecting member 10 was measured with a high precision tester, and the natural potential of the reinforcing bar was measured with a high precision tester using a reference electrode (lead electrode).

該試験の結果、水/セメント比60%で形成した被覆部材101の腐食検知部材10は、4サイクル経過後に4つの抵抗値が増大し、5サイクル経過後に残りの1つの抵抗値が増大して反応が認められ、5つの腐食検知センサ100の反応が認められたサイクル数の平均値は4.2サイクルであった。また、水/セメント比が50%の被覆部材101で覆われた腐食検知部材10では、4サイクル経過後に1つの抵抗値が増大し、5サイクル経過後に残りの4つの抵抗値が増大して反応が認められ、5つの腐食検知センサ100の反応が認められたサイクルの平均値は4.8サイクルであった。   As a result of the test, the corrosion detection member 10 of the covering member 101 formed at a water / cement ratio of 60% increases four resistance values after the elapse of 4 cycles, and increases the remaining one resistance value after the elapse of 5 cycles. Reactions were observed, and the average number of cycles in which the reactions of the five corrosion detection sensors 100 were recognized was 4.2 cycles. Further, in the corrosion detecting member 10 covered with the covering member 101 having a water / cement ratio of 50%, one resistance value increases after four cycles, and the remaining four resistance values increase after five cycles. The average value of the cycles in which the reactions of the five corrosion detection sensors 100 were recognized was 4.8 cycles.

また、表面から35mmの位置に鉄筋を埋設した参考例の試験体では、14サイクル経過後に1本の鉄筋の自然電位が−350mV以下に低下し、15サイクル経過後に2本の鉄筋の自然電位が−350mV以下に低下し、16サイクル経過後に残りの2本の鉄筋の自然電位が−350mV以下に低下した。鉄筋腐食の判断基準として、鉄筋の自然電位が−350mVよりも低下すると、90%以上の確率で腐食が生じていると判定できるから、参考例の試験体中の鉄筋は14サイクル経過後に1本、15サイクル経過後に2本、16サイクル経過後に2本が腐食したと予想される。   Moreover, in the specimen of the reference example in which the reinforcing bar is embedded at a position 35 mm from the surface, the natural potential of one reinforcing bar decreases to −350 mV or less after 14 cycles, and the natural potential of the two reinforcing bars decreases after 15 cycles. It decreased to −350 mV or less, and the natural potential of the remaining two reinforcing bars decreased to −350 mV or less after 16 cycles. As a criterion for reinforcing bar corrosion, if the natural potential of the reinforcing bar drops below -350 mV, it can be determined that corrosion has occurred with a probability of 90% or more. Therefore, one reinforcing bar in the specimen of the reference example is one after 14 cycles. It is expected that two after 15 cycles and 2 after 16 cycles corroded.

(3)腐食評価パラメータの算出
前記腐食検知センサ100内の被覆部材101は、普通ポルトランドセメントを用いて作製したので、2012年制定 コンクリート標準示方書[設計編:標準]の149頁に記載の材料係数と前記(2)式を用いて、下記(3)式を導出した。そして、下記(3)式に、水/セメント比が50%の60%の値として、それぞれ0.5と0.6とを変数のW/Cに代入し、水/セメント比毎に鋼材腐食発生塩分量(Clim、単位はkg/m)を求めると、それぞれ1.9と1.6が得られた。そして、該値は、前記(1)式中のClmax(すなわち、Clim=Clmax)として用いた。
lim=−3.0(W/C)+3.4 ・・・(3)
(3) Calculation of corrosion evaluation parameters
Since the covering member 101 in the corrosion detection sensor 100 is manufactured using ordinary Portland cement, the material coefficient and the equation (2) described on page 149 of the concrete standard specification [design: standard] established in 2012 are obtained. The following equation (3) was derived by using this method. Then, in the following equation (3), the water / cement ratio is 50% and the value of 60% is substituted for 0.5 and 0.6 for the variable W / C, respectively, and the steel corrosion occurs for each water / cement ratio. When the amount of generated salt (C lim , the unit is kg / m 3 ) was obtained, 1.9 and 1.6 were obtained, respectively. The value was used as Cl max (that is, C lim = Cl max ) in the formula (1).
C lim = −3.0 (W / C) +3.4 (3)

ここでは促進試験を用いたのでサイクル数を時間とみなして、(1)式における腐食発生時間tとすると、水/セメント比が60%のモルタル(被覆部材101)を内蔵したセンサを用いた場合、前記(1)式にClmax=1.6、Scd=20、t=4.2、およびC=0.3を代入して、被覆部材101の露出面の塩分量(C)と前記促進試験における見掛けの拡散係数(Ddt)を変数(未知数)とする下記(4)式を得た。また、水/セメント比が50%のモルタルを内蔵したセンサを用いた場合、前記(1)式にClmax=1.9、Scd=20、t=4.8、およびC=0.3を代入して、前記塩分量(C)と前記拡散係数(Ddt)を変数とする下記(5)式を得た。
1.6=C×{1−erf[0.1×20/(2×(Ddt×4.2)0.5)]}+0.3 ・・・(4)
1.9=C×{1−erf[0.1×20/(2×(Ddt×4.8)0.5)]}+0.3 ・・・(5)
そして、(4)式と(5)式の2元連立方程式から、コンクリートの表面塩分量としてC=11kg/m、前記促進試験における見掛けの拡散係数Ddt=0.195cm/サイクルが求まった。この2つの腐食評価パラメータに基づきコンクリート中の鋼材の腐食環境を評価することができた。例えば、前記コンクリートの表面塩分量と、拡散係数を用いて、コンクリート表面から35mmの深さの塩分量を算出した。図9に、前記深さ位置の計算結果(曲線)と水/セメント比が50%の鋼材腐食発生塩分量1.9kg/mを記したグラフを示す。
Here, since the accelerated test was used, the number of cycles was regarded as time, and when the corrosion occurrence time t in the equation (1) was used, a sensor incorporating a mortar (coating member 101) having a water / cement ratio of 60% was used. Substituting Cl max = 1.6, S cd = 20, t = 4.2, and C i = 0.3 into the equation (1), the amount of salt on the exposed surface of the covering member 101 (C 0 ) And the following equation (4) using the apparent diffusion coefficient (D dt ) in the accelerated test as a variable (unknown number). Further, when a sensor containing a mortar with a water / cement ratio of 50% is used, Cl max = 1.9, S cd = 20, t = 4.8, and C i = 0. By substituting 3, the following equation (5) was obtained with the salt content (C 0 ) and the diffusion coefficient (D dt ) as variables.
1.6 = C 0 × {1-erf [0.1 × 20 / (2 × (D dt × 4.2) 0.5 )]} + 0.3 (4)
1.9 = C 0 × {1-erf [0.1 × 20 / (2 × (D dt × 4.8) 0.5 )]} + 0.3 (5)
Then, from the binary simultaneous equations of the equations (4) and (5), C 0 = 11 kg / m 3 as the surface salinity of the concrete, and the apparent diffusion coefficient D dt = 0.195 cm 2 / cycle in the acceleration test I wanted. Based on these two corrosion evaluation parameters, the corrosive environment of the steel material in the concrete could be evaluated. For example, the amount of salt at a depth of 35 mm from the concrete surface was calculated using the surface salinity of the concrete and the diffusion coefficient. FIG. 9 shows a graph showing the calculation result (curve) of the depth position and the steel material corrosion-generated salt content of 1.9 kg / m 3 with a water / cement ratio of 50%.

腐食発生塩分量は、前記計算によれば、促進試験のサイクル数が15サイクル経過した時点で1.9kg/mとなった。一方、参考例の試験体による試験結果では、コンクリート表面からの深さが35mmの位置に設置した鉄筋の腐食時期は、計算結果とおおむね一致した。したがって、前記実験結果と評価方法によれば、コンクリート構造物中の鉄筋の腐食時期を予測したり、鋼材の腐食環境の深さ方向の進展について、計算によって求めることができる。 According to the above calculation, the amount of corrosion generated salt was 1.9 kg / m 3 when 15 cycles of the accelerated test passed. On the other hand, in the test results using the test specimen of the reference example, the corrosion time of the reinforcing bars installed at a position where the depth from the concrete surface was 35 mm was almost the same as the calculation results. Therefore, according to the experimental result and the evaluation method, it is possible to predict the corrosion time of the reinforcing bars in the concrete structure or to calculate the progress in the depth direction of the corrosion environment of the steel material by calculation.

以上述べたように、2種類以上の異なる水/セメント比で構成された被覆部材101および腐食検知部材を有する腐食検知センサ100を用いと、見掛けの拡散係数および表面塩分量を求めることができる。また、本発明の腐食検知センサ100を用いた評価方法によれば、コンクリート構造物の立地環境だけでなく、腐食検知センサ100の設置位置ごとに、コンクリート構造物の鉄筋が腐食にいたるまでの時間を予測できる。このことから、構造物の補修時期の優先順位の決定や、塩分浸透抑制剤による処理など、計画的な予防保全策を図ることが可能となる。   As described above, the apparent diffusion coefficient and the surface salinity can be obtained by using the corrosion detection sensor 100 having the coating member 101 and the corrosion detection member constituted by two or more different water / cement ratios. Moreover, according to the evaluation method using the corrosion detection sensor 100 of the present invention, not only the location environment of the concrete structure but also the time until the reinforcing bars of the concrete structure reach corrosion for each installation position of the corrosion detection sensor 100. Can be predicted. This makes it possible to take planned preventive maintenance measures, such as determining the priority of repairing the structure and treating with a salt penetration inhibitor.

10 腐食検知部材
11 導体パターン部
11a 測定用端子
12 下地材
13 薄膜部
100 腐食検知センサ
101 被覆部材
102 外装材、遮断材
103 コード
DESCRIPTION OF SYMBOLS 10 Corrosion detection member 11 Conductive pattern part 11a Measurement terminal 12 Base material 13 Thin film part 100 Corrosion detection sensor 101 Cover member 102 Exterior material, blocking material 103 Code

Claims (7)

コンクリート中の鋼材の腐食進行状況を検出する腐食検知センサであって、該センサは下記(C)遮断材と、
2組以上の下記(A)腐食検知部材および(B)被覆部材とから構成され、遮断材内に設置された腐食検知部材の一面は被覆部材により被覆され、該被覆部材の腐食検知部材を被覆していない他の一面は露出し、少なくとも1組の被覆部材の水/セメント比が他の組の被覆部材の水/セメント比と異なる、腐食検知センサ。
(A)鉄薄膜により形成された腐食検知部材
(B)セメント組成物硬化体からなる被覆部材
(C)腐食因子の侵入を遮断する遮断材
A corrosion detection sensor for detecting the progress of corrosion of steel in concrete, the sensor comprising the following (C) blocking material,
It is composed of two or more sets of (A) corrosion detection member and (B) coating member. One surface of the corrosion detection member installed in the shielding material is covered with the coating member, and the corrosion detection member of the coating member is covered. A corrosion detection sensor in which the other surface that is not exposed is exposed and the water / cement ratio of at least one set of covering members is different from the water / cement ratio of the other set of covering members.
(A) Corrosion detection member formed of an iron thin film (B) Covering member made of a hardened cement composition (C) Blocking material for blocking invasion of corrosion factors
前記腐食検知センサはコンクリート中に埋設して使用し、前記被覆部材の露出面から、コンクリート中の鋼材の腐食因子が浸透し、該腐食因子によって前記腐食検知部材の電気的特性が変化して腐食進行状況を検出する、請求項1に記載の腐食検知センサ。   The corrosion detection sensor is used by being embedded in concrete, and the corrosion factor of the steel material in the concrete penetrates from the exposed surface of the covering member, and the electrical characteristics of the corrosion detection member change due to the corrosion factor to cause corrosion. The corrosion detection sensor according to claim 1, which detects a progress state. 前記被覆部材が下記(a)〜(d)の配合および形状を有する、前記[1]または[2]に記載の腐食検知センサ。
(a)水/セメント比(質量比×100):20〜150%
(b)水/粉体比(質量比×100):15〜120%
(c)空気量:5〜35%
(d)被覆部材の厚み:1〜20mm
The corrosion detection sensor according to [1] or [2], wherein the covering member has the following composition (a) to (d).
(A) Water / cement ratio (mass ratio × 100): 20 to 150%
(B) Water / powder ratio (mass ratio × 100): 15 to 120%
(C) Air volume: 5 to 35%
(D) Thickness of the covering member: 1 to 20 mm
前記腐食検知部材が、腐食に起因した腐食反応による電気抵抗の変化、電位の変化、または電流密度の変化により腐食を検知する部材により形成されている、請求項1〜3のいずれか1項に記載の腐食検知センサ。   The said corrosion detection member is formed by the member which detects corrosion by the change of the electrical resistance by the corrosion reaction resulting from corrosion, the change of an electric potential, or the change of an electric current density. The described corrosion detection sensor. (コンクリートの表面から、埋設された腐食検知センサの被覆部材の露出面までの距離)/(前記被覆部材の厚み)の比が5以上になるように、コンクリート中に設置して使用する、請求項1〜4のいずれか1項に記載の腐食検知センサ。   (Distance from the surface of the concrete to the exposed surface of the covering member of the embedded corrosion detection sensor) / (thickness of the covering member) / installed in the concrete so that the ratio is 5 or more. Item 5. The corrosion detection sensor according to any one of items 1 to 4. 前記腐食検知センサをコンクリート中に埋設し、
該腐食検知センサにより腐食発生時間を測定し、
該腐食発生時間を変数として含む腐食関係式に基づき腐食評価パラメータを求め、
該腐食評価パラメータを用いてコンクリート中の鋼材の腐食環境を評価する、
コンクリート中の鋼材の腐食環境の評価方法。
The corrosion detection sensor is embedded in concrete,
The corrosion detection time is measured by the corrosion detection sensor,
Obtain corrosion evaluation parameters based on the corrosion relational expression including the corrosion occurrence time as a variable,
Evaluating the corrosive environment of steel in concrete using the corrosion evaluation parameters,
A method for evaluating the corrosive environment of steel in concrete.
前記腐食関係式が下記(1)式および下記(2)式であり、前記腐食評価パラメータが下記(1)式中の見掛けの拡散係数およびコンクリートの表面塩分量である、請求項6に記載のコンクリート中の鋼材の腐食環境の評価方法。
CL=C×{1−erf[0.1×Scd/(2×(D×t)0.5)]}+C ・・・(1)
CL=a×(W/C)+b ・・・(2)
ただし、(1)式中、CCLは鋼材の腐食発生塩分量(kg/m)を表し、Cはコンクリートの表面塩分量(kg/m)を表し、Scdはコンクリートの表面から、埋設された腐食検知センサの被覆部材の露出面までの距離(mm)を表し、Dは見掛けの拡散係数(cm/年)を表し、tは腐食発生に至るまでの時間(年)を表し、Cは初期塩分量を表す。なお、前記(1)式は誤差関数である。また、(2)式中、CCLは鋼材の腐食発生塩分量(kg/m)を表し、W/Cは水/セメント質量比(%)を表し、aおよびbは下記のセメントの種類ごとに定める材料係数を表す。
The said corrosion relational expression is following (1) Formula and following (2) Formula, The said corrosion evaluation parameter is the apparent diffusion coefficient in the following (1) Formula, and the surface salinity of concrete, It is Claim 6. A method for evaluating the corrosive environment of steel in concrete.
C CL = C 0 × {1-erf [0.1 × S cd / (2 × (D d × t) 0.5 )]} + C i (1)
C CL = a × (W / C) + b (2)
However, in the formula (1), CCL represents the corrosion-induced salt content (kg / m 3 ) of the steel material, C 0 represents the surface salt content (kg / m 3 ) of the concrete, and S cd represents the surface of the concrete. Represents the distance (mm) to the exposed surface of the covering member of the embedded corrosion detection sensor, D d represents the apparent diffusion coefficient (cm 2 / year), and t represents the time (year) until corrosion occurs. C i represents the initial salinity. The equation (1) is an error function. In the formula (2), CCL represents the corrosion-generated salt content (kg / m 3 ) of the steel material, W / C represents the water / cement mass ratio (%), and a and b are the following types of cement. It represents the material coefficient determined for each.
JP2014073624A 2014-03-31 2014-03-31 Corrosion detection sensor and evaluation method for corrosive environment of steel in concrete Active JP6289216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073624A JP6289216B2 (en) 2014-03-31 2014-03-31 Corrosion detection sensor and evaluation method for corrosive environment of steel in concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073624A JP6289216B2 (en) 2014-03-31 2014-03-31 Corrosion detection sensor and evaluation method for corrosive environment of steel in concrete

Publications (2)

Publication Number Publication Date
JP2015197307A true JP2015197307A (en) 2015-11-09
JP6289216B2 JP6289216B2 (en) 2018-03-07

Family

ID=54547104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073624A Active JP6289216B2 (en) 2014-03-31 2014-03-31 Corrosion detection sensor and evaluation method for corrosive environment of steel in concrete

Country Status (1)

Country Link
JP (1) JP6289216B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090421A (en) * 2015-11-17 2017-05-25 太平洋セメント株式会社 Corrosion sensor and method for manufacturing corrosion sensor
JP2017138285A (en) * 2016-02-05 2017-08-10 太平洋セメント株式会社 Corrosion sensor and corrosion detection method
KR101926979B1 (en) 2017-06-02 2018-12-11 성균관대학교산학협력단 APPARATUR FOR MORNITORING DEGRADATION OF STEEL EMBEDDED IN CONCRETE, system FOR MORNITORING DEGRADATION OF STEEL EMBEDDED IN CONCRETE and methoe FOR MORNITORING DEGRADATION OF STEEL EMBEDDED IN CONCRETE
JP2019045268A (en) * 2017-08-31 2019-03-22 太平洋セメント株式会社 Corrosion sensor
CN110411937A (en) * 2019-07-03 2019-11-05 北京科技大学 A kind of corrosion monitoring system monitoring corrosiveness of the environment and material corrosion rate
WO2020170829A1 (en) * 2019-02-20 2020-08-27 日本電信電話株式会社 Estimation method
JP2020201091A (en) * 2019-06-07 2020-12-17 Koa株式会社 Sulfurization detection sensor
CN115128128A (en) * 2022-03-31 2022-09-30 广东建科创新技术研究院有限公司 Embedded concrete reinforcement corrosion monitoring sensor, monitoring system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203824A (en) * 2009-03-02 2010-09-16 Jfe Engineering Corp Method and device for detecting rust of steel structure
WO2011043442A1 (en) * 2009-10-07 2011-04-14 太平洋セメント株式会社 Corrosion sensor
JP2012008152A (en) * 2011-10-14 2012-01-12 Shikoku Electric Power Co Inc Method for estimating corrosion and deterioration process of reinforced concrete structure
JP2012202731A (en) * 2011-03-24 2012-10-22 Taiheiyo Cement Corp Prediction method for diffusion state of chemical species in concrete and prediction method for corrosion occurrence period of steel material in concrete using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203824A (en) * 2009-03-02 2010-09-16 Jfe Engineering Corp Method and device for detecting rust of steel structure
WO2011043442A1 (en) * 2009-10-07 2011-04-14 太平洋セメント株式会社 Corrosion sensor
JP2012202731A (en) * 2011-03-24 2012-10-22 Taiheiyo Cement Corp Prediction method for diffusion state of chemical species in concrete and prediction method for corrosion occurrence period of steel material in concrete using the same
JP2012008152A (en) * 2011-10-14 2012-01-12 Shikoku Electric Power Co Inc Method for estimating corrosion and deterioration process of reinforced concrete structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090421A (en) * 2015-11-17 2017-05-25 太平洋セメント株式会社 Corrosion sensor and method for manufacturing corrosion sensor
JP2017138285A (en) * 2016-02-05 2017-08-10 太平洋セメント株式会社 Corrosion sensor and corrosion detection method
KR101926979B1 (en) 2017-06-02 2018-12-11 성균관대학교산학협력단 APPARATUR FOR MORNITORING DEGRADATION OF STEEL EMBEDDED IN CONCRETE, system FOR MORNITORING DEGRADATION OF STEEL EMBEDDED IN CONCRETE and methoe FOR MORNITORING DEGRADATION OF STEEL EMBEDDED IN CONCRETE
JP2019045268A (en) * 2017-08-31 2019-03-22 太平洋セメント株式会社 Corrosion sensor
WO2020170829A1 (en) * 2019-02-20 2020-08-27 日本電信電話株式会社 Estimation method
JP2020201091A (en) * 2019-06-07 2020-12-17 Koa株式会社 Sulfurization detection sensor
JP7283983B2 (en) 2019-06-07 2023-05-30 Koa株式会社 Sulfurization detection sensor
CN110411937A (en) * 2019-07-03 2019-11-05 北京科技大学 A kind of corrosion monitoring system monitoring corrosiveness of the environment and material corrosion rate
CN115128128A (en) * 2022-03-31 2022-09-30 广东建科创新技术研究院有限公司 Embedded concrete reinforcement corrosion monitoring sensor, monitoring system and method

Also Published As

Publication number Publication date
JP6289216B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
JP6289216B2 (en) Corrosion detection sensor and evaluation method for corrosive environment of steel in concrete
Du et al. Chloride ions migration and induced reinforcement corrosion in concrete with cracks: a comparative study of current acceleration and natural marine exposure
Zhang et al. Influence of steel–concrete interface defects owing to the top-bar effect on the chloride-induced corrosion of reinforcement
KR101713887B1 (en) Corrosion sensor
Osterminski et al. Long term behaviour of the resistivity of concrete
Nahali et al. Effect of Na3PO4 addition in mortar on steel reinforcement corrosion behavior in 3% NaCl solution
Marcotte et al. The influence of silica fume on the corrosion resistance of steel in high performance concrete exposed to simulated sea water
Safehian et al. Prediction of RC structure service life from field long term chloride diffusion
JP2012202731A (en) Prediction method for diffusion state of chemical species in concrete and prediction method for corrosion occurrence period of steel material in concrete using the same
Lau et al. Corrosion performance of concrete cylinder piles
JP2016028258A (en) Coating part of corrosion environment detection sensor for concrete structure
JP6202966B2 (en) Neutralization environment evaluation sensor for concrete, and neutralization environment evaluation method for concrete
Ariningsih et al. Diffusion of chloride from seawater into the concrete analysis: a literature review on implemented approaches
Kim et al. Cover-zone protective qualities under corrosive environments
Benito et al. Corrosion damage measurement on reinforced concrete by impressed voltage technique and gravimetric method
Abdulsada et al. Studying chloride ions and corrosion properties of reinforced concrete with a green inhibitor and plasticizers
Dasar et al. Recovery In Mix Potential And Polarization Resistance Of Steel Bar In Cement Hardened Matrix During Early Age Of 6 Months-Sea-Water Mixed Mortar And Cracked Concrete
Sandra et al. Corrosion current density of macrocell of horizontal steel bars in reinforced concrete column specimen
Sandra et al. Effects of bleeding on corrosion of horizontal steel bars in reinforced concrete column specimen
Fahim et al. Corrosion Resistance of Concrete Incorporating Supplementary Cementing Materials in a Marine Environment
Roxas et al. Macrocell corrosion assessment of steel in cold-jointed concrete mixed and cured in seawater
Hasan Service life prediction for different types of concrete using chloride diffusion coefficients
Miyazato et al. Proposal of corrosion rate analytical model of reinforced concrete with crack
Balakumaran Influence of Bridge Deck Concrete Parameters on the Reinforcing Steel Corrosion
Lliso-Ferrando et al. Significance of macrocell currents in reinforced concrete columns partially immersed in seawater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R150 Certificate of patent or registration of utility model

Ref document number: 6289216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250