JP2015196888A - Estimation method of powder rate of blast furnace raw material, and operation method of blast furnace - Google Patents

Estimation method of powder rate of blast furnace raw material, and operation method of blast furnace Download PDF

Info

Publication number
JP2015196888A
JP2015196888A JP2014076231A JP2014076231A JP2015196888A JP 2015196888 A JP2015196888 A JP 2015196888A JP 2014076231 A JP2014076231 A JP 2014076231A JP 2014076231 A JP2014076231 A JP 2014076231A JP 2015196888 A JP2015196888 A JP 2015196888A
Authority
JP
Japan
Prior art keywords
raw material
blast furnace
powder rate
powder
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014076231A
Other languages
Japanese (ja)
Other versions
JP6331598B2 (en
Inventor
琢哉 夏井
Takuya Natsui
琢哉 夏井
中野 薫
Kaoru Nakano
薫 中野
公平 砂原
Kohei Sunahara
公平 砂原
直也 上田
Naoya Ueda
直也 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014076231A priority Critical patent/JP6331598B2/en
Publication of JP2015196888A publication Critical patent/JP2015196888A/en
Application granted granted Critical
Publication of JP6331598B2 publication Critical patent/JP6331598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of the powder rate of a blast furnace raw material, through more accurate perceiving of the powder rate of the raw material to be fed into a blast furnace.SOLUTION: The estimation method of the powder rate of a raw material 3 to be fed into a blast furnace 10 from a furnace top bunker 5 includes: obtaining at least any one of a first tilt angle, i.e. the slope angle of the piled raw material 3 fed in the furnace top bunker 5, and a second tilt angle, i.e. the slope angle of the raw material tilted upward to the sidewall of the furnace top bunker 5 from the position above an outlet 6, which is formed during discharge of the fed raw material 3 from the outlet 6 of the furnace top bunker 5; and estimating the powder rate of the raw material with the tilt angle obtained, based on the predetermined relationship between the tilt angle of a raw material and the powder rate, i.e. the relationship between the obtained tilt angle selected from the first tilt angle and the second tilt angle and the powder rate, and the obtained tilt angle.

Description

本発明はベルレス高炉において、炉頂バンカーにおける原料の堆積状態から装入原料の粉率を推定する方法および推定された粉率に基づく操業アクションを行う高炉の操業方法に関する。   The present invention relates to a method of estimating a powder rate of a charged raw material from a deposition state of a raw material in a furnace top bunker and a method of operating a blast furnace performing an operation action based on the estimated powder rate in a bell-less blast furnace.

高炉操業においては、高炉炉頂部から鉄源である焼結鉱や還元剤であるコークスなどを装入して炉内に層状に堆積させる。焼結鉱やコークスなどは、高炉上部に配置される炉頂バンカーから高炉に装入される。   In blast furnace operation, sintered ore that is an iron source, coke that is a reducing agent, and the like are charged from the top of the blast furnace and deposited in layers in the furnace. Sinter or coke is charged into the blast furnace from the top bunker located at the top of the blast furnace.

高炉においては、装入原料に含まれる粒径の小さい粉体が炉内通気性に大きな影響を及ぼす。そのため装入原料中の粉体の割合を管理することは非常に重要である。たとえば、焼結工場では、工場から搬出される際の焼結鉱の粉率を管理するために、最終篩の網目を調整して粉率を制御している。また、高炉への装入直前にも篩の網目を調整して粉率を管理している。また、特許文献1は高炉における休風時に炉内にプローブを差し込んで炉内の堆積物をサンプリングし、粉率を測定することを開示する。   In the blast furnace, the powder having a small particle size contained in the charging raw material has a great influence on the air permeability in the furnace. Therefore, it is very important to manage the ratio of the powder in the charged raw material. For example, in the sintering factory, in order to manage the powder rate of the sintered ore when being carried out from the factory, the powder rate is controlled by adjusting the mesh of the final sieve. In addition, the powder rate is controlled by adjusting the mesh of the sieve just before charging into the blast furnace. Further, Patent Document 1 discloses that a probe is inserted into the furnace when the blast furnace is resting, the deposits in the furnace are sampled, and the powder ratio is measured.

特開平7−278623号公報JP 7-278623 A

しかし、上述のように焼結工場での篩目を調整するだけでは、その後の高炉までの輸送過程での粉化を反映しないため、高炉に装入される時点での粉率を十分に精度よく管理することはできなかった。また、特許文献1の方法では高炉の休風時にしか粉率を測定することができないため、粉率測定の頻度を上げることができない。そのため、粉率の管理としては精度が十分でなかった。   However, just adjusting the sieve mesh at the sintering plant as described above does not reflect pulverization during the subsequent transportation to the blast furnace, so the powder rate at the time of charging into the blast furnace is sufficiently accurate. I couldn't manage well. Moreover, since the powder rate can be measured only when the blast furnace is closed with the method of Patent Document 1, the frequency of the powder rate measurement cannot be increased. Therefore, the accuracy was not sufficient for the management of the powder rate.

そこで本発明は、高炉に装入される時点での原料の粉率をより精度よく把握し粉率を管理する高炉原料の粉率管理方法および粉率管理方法によって推定された粉率に基づくより安定した高炉の操業方法を提供することを目的とする。   Therefore, the present invention is based on the powder rate management method of the blast furnace raw material and the powder rate estimated by the powder rate management method for more accurately grasping the powder rate of the raw material at the time of charging into the blast furnace and managing the powder rate. The purpose is to provide a stable blast furnace operation method.

本発明は上記課題を解決するためになされたものであり、その発明の要旨とするところは以下のとおりである。   The present invention has been made to solve the above problems, and the gist of the invention is as follows.

(1) 炉頂バンカーから高炉に装入される原料の粉率と傾斜角との相関関係を予め定めておき、
前記炉頂バンカー内の原料の傾斜角を求め、
前記相関関係と前記求めた傾斜角とから高炉に装入される原料の粉率を推定する高炉原料の粉率推定方法であって、
前記傾斜角が、原料の装入が完了した時点の原料の斜面の角度(第1の傾斜角)、および/または、装入された原料の前記炉頂バンカーの排出口からの排出を開始してからある遷移期間を経た後に安定して形成される、前記排出口の上方の位置から前記炉頂バンカーの側壁側に向かって上方に傾斜する原料の斜面の角度(第2の傾斜角)である高炉原料の粉率推定方法。(1)によれば、上記目的を達成することができる。
(1) Predetermining the correlation between the powder rate of raw materials charged into the blast furnace from the top bunker and the inclination angle,
Obtain the angle of inclination of the raw material in the furnace top bunker,
A method for estimating a powder rate of a blast furnace raw material that estimates a powder rate of a raw material charged into a blast furnace from the correlation and the obtained inclination angle,
The inclination angle is the angle of the slope of the raw material (first inclination angle) when the charging of the raw material is completed, and / or the discharge of the charged raw material from the outlet of the furnace top bunker is started. The angle of the slope of the raw material (second inclination angle), which is stably formed after a certain transition period, and is inclined upward from the position above the discharge port toward the side wall of the furnace top bunker A method for estimating the powder rate of a blast furnace raw material. According to (1), the above object can be achieved.

(2)上記(1)の高炉原料の粉率推定方法において、前記炉頂バンカーの横断面における前記排出口の上方の位置から前記側壁までの範囲における複数の位置において、前記炉頂バンカーに装入された原料の表面の高さである表面レベルを測定し、測定される原料の表面レベルの差に基づき原料の傾斜角を求めることを特徴とする高炉原料の粉率推定方法。(2)によれば、原料の傾斜角を連続して求めてより精度よく粉率を特定することができる。   (2) In the method for estimating the powder rate of the blast furnace raw material of (1) above, the furnace top bunker is mounted at a plurality of positions in the range from the position above the discharge port to the side wall in the cross section of the furnace top bunker. A method for estimating a powder rate of a blast furnace raw material, comprising measuring a surface level, which is a height of a surface of the raw material, and obtaining an inclination angle of the raw material based on a difference in the measured surface level of the raw material. According to (2), it is possible to continuously determine the inclination angle of the raw material and specify the powder rate with higher accuracy.

(3)上記(2)の高炉原料の粉率推定方法において、原料の斜面の3か所以上の位置で前記表面レベルを測定し、2組以上の位置の表面レベルの差に基づき測定対象の斜面の傾斜角をそれぞれ求め、求めた複数の傾斜角に基づき原料の傾斜角を決定することを特徴とする高炉原料の粉率推定方法。(3)によれば、より正確に原料の粉率を特定することができる。   (3) In the method for estimating the powder rate of the blast furnace raw material of (2) above, the surface level is measured at three or more positions on the slope of the raw material, and the measurement target is measured based on the difference in surface level at two or more positions. A method for estimating a powder rate of a blast furnace raw material, wherein the inclination angle of the slope is determined, and the inclination angle of the raw material is determined based on the determined multiple inclination angles. According to (3), the powder rate of the raw material can be specified more accurately.

(4)上記(1)から(3)のいずれかの高炉原料の粉率推定方法によって高炉に装入される原料の粉率を推定し、
推定された粉率が基準値を超えた場合に、粉率増加によって生じる前記高炉の通気性の悪化を補償する操業アクションおよび前記炉頂バンカーに装入する原料の粉率を低下させる操業アクションの少なくともいずれかを行うことを特徴とする高炉の操業方法。(4)によれば、1回の原料装入毎に粉率を推定して、その粉率に基づく操業アクションを行うことができ、より安定した高炉の操業が可能になる。
(4) Estimating the powder rate of the raw material charged into the blast furnace by the powder rate estimation method of any of the above (1) to (3),
When the estimated powder ratio exceeds a reference value, an operation action that compensates for the deterioration in air permeability of the blast furnace caused by an increase in the powder ratio and an operation action that decreases the powder ratio of the raw material charged in the furnace top bunker A method for operating a blast furnace, characterized by performing at least one of the above. According to (4), the powder rate can be estimated every time the raw material is charged, and an operation action based on the powder rate can be performed, so that a more stable operation of the blast furnace becomes possible.

(5)上記(4)の高炉の操業方法において、前記通気性の悪化を補償する操業アクションが、コークス比の増加操作と、高炉における装入物分布の変更操作と、のうち少なくともいずれかであることを特徴とする高炉の操業方法。(5)によれば、装入原料の粉率が増加した場合でも通気性の悪化を適切に補償することができる。   (5) In the method for operating a blast furnace according to (4) above, the operation action for compensating for the deterioration in air permeability is at least one of an operation for increasing the coke ratio and an operation for changing the distribution of charges in the blast furnace. A method of operating a blast furnace characterized by being. According to (5), even when the powder rate of the charged raw material is increased, it is possible to appropriately compensate for the deterioration in air permeability.

(6)上記(4)の高炉の操業方法において、前記原料の粉率を低下させる操業アクションが、原料の前記炉頂バンカーへの供給経路において前記炉頂バンカーよりも上流工程に配置される篩の振動数を増加させる操作と、前記篩を異なる開口サイズの篩に変更する操作と、原料の強度を増加させるために原料の生産条件を変更する操作と、のうち少なくともいずれかであることを特徴とする高炉の操業方法。(6)によれば、粉率が増加した場合に原料の粉率を低下させて、高炉の生産性の低下を効果的に抑制することができる。   (6) In the method for operating a blast furnace according to (4) above, the operation action for reducing the powder rate of the raw material is arranged in a process upstream of the furnace top bunker in the supply path of the raw material to the furnace top bunker. At least one of an operation for increasing the frequency of the above, an operation for changing the sieve to a sieve having a different opening size, and an operation for changing the production conditions of the raw material in order to increase the strength of the raw material. A featured blast furnace operation method. According to (6), when the powder rate increases, the powder rate of the raw material can be reduced, and the decrease in productivity of the blast furnace can be effectively suppressed.

本発明によれば、高炉に装入される原料の粉率をより精度よく把握し粉率を管理する高炉原料の粉率管理方法および当該粉率管理方法によって推定された粉率に基づくより安定した高炉の操業方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the powder rate management method of the blast furnace raw material which grasps | ascertains the powder rate of the raw material charged into a blast furnace more accurately and manages a powder rate, and more stable based on the powder rate estimated by the said powder rate management method It is possible to provide a method for operating a blast furnace.

並列バンカー式ベルレス装入装置の構成を示す模式図である。It is a schematic diagram which shows the structure of a parallel bunker type bell-less charging device. 炉頂バンカー内の原料装入後と原料排出中における原料表面の形状を示す模式図である。It is a schematic diagram which shows the shape of the raw material surface after raw material charging in a furnace top bunker and during discharge of raw materials. 原料の堆積角と不動領域の傾斜角の測定例を示す模式図である。It is a schematic diagram which shows the example of a measurement of the deposition angle of a raw material, and the inclination angle of a fixed area | region. 原料の傾斜角と粉率の関係を示すグラフである。It is a graph which shows the relationship between the inclination-angle of a raw material, and a powder rate. 実施形態における炉頂バンカー内の原料のレベル測定のためのレベル計の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the level meter for the level measurement of the raw material in the furnace top bunker in embodiment. 炉頂バンカー内の原料装入後と原料排出中における原料表面のレベルの変化を示す模式図である。It is a schematic diagram which shows the change of the level of the raw material surface after raw material introduction in a furnace top bunker and during raw material discharge | emission.

以下、図面を参照しながら、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1を参照して、本実施形態に係る高炉の原料装入装置の構成および装入方法について説明する。図1の原料装入装置は、高炉10の炉頂部から焼結鉱やペレットや塊鉱石などの鉄鉱石と、還元剤であるコークスとを交互に高炉に装入して炉内に層状に堆積させる装入装置である。図1の原料装入装置は炉頂バンカー5が並列に配置される並列バンカー式ベルレス装入装置である。   With reference to FIG. 1, a configuration and a charging method of a blast furnace raw material charging apparatus according to this embodiment will be described. The raw material charging apparatus shown in FIG. 1 is configured such that iron ore such as sintered ore, pellets and lump ore and coke as a reducing agent are alternately charged into the blast furnace from the top of the blast furnace 10 and accumulated in layers in the furnace. It is a charging device. The raw material charging apparatus in FIG. 1 is a parallel bunker type bellless charging apparatus in which the top bunker 5 is arranged in parallel.

図1の原料装入装置は、原料槽1と、装入ベルトコンベア2と、切替シュート4と、炉頂バンカー5と、排出口6と、流量調整弁7と、集合ホッパー8と、旋回シュート9と、レベル計12と、レベル測定制御部20などを備える。   The raw material charging apparatus shown in FIG. 1 includes a raw material tank 1, a charging belt conveyor 2, a switching chute 4, a furnace top bunker 5, a discharge port 6, a flow rate adjusting valve 7, a collecting hopper 8, and a turning chute. 9, a level meter 12, a level measurement control unit 20, and the like.

原料槽1は、高炉に装入する原料を原料の種類や粒度に応じてそれぞれ貯蔵する。原料装入装置を用いて高炉10内に原料3を装入する場合には、各原料3を所定重量ずつ装入ベルトコンベア2上に切り出して、切替シュート4を介して炉頂バンカー5に供給する。供給された原料3は、炉頂バンカー5に一旦貯留される。貯留された原料3は、炉頂バンカー5の排出口6から流量調整弁7を通って集合ホッパー8に排出され、旋回シュート9によって炉内に装入される。流量調整弁7の開度を調整することで、炉頂バンカー5の排出口6からの原料の排出流量が調整される。旋回シュート9は供給された原料3を高炉10の炉内の所望の位置に装入する。並列バンカー式ベルレス装入装置の場合、並列する複数のバンカーを用いて、焼結鉱などの鉱石とコークスを交互に炉内に装入する。   The raw material tank 1 stores the raw material charged into the blast furnace according to the type and particle size of the raw material. When the raw material 3 is charged into the blast furnace 10 using the raw material charging device, each raw material 3 is cut out on the charging belt conveyor 2 by a predetermined weight and supplied to the furnace top bunker 5 through the switching chute 4. To do. The supplied raw material 3 is temporarily stored in the furnace top bunker 5. The stored raw material 3 is discharged from the discharge port 6 of the furnace top bunker 5 through the flow rate adjusting valve 7 to the collecting hopper 8 and charged into the furnace by the turning chute 9. By adjusting the opening degree of the flow rate adjusting valve 7, the discharge flow rate of the raw material from the discharge port 6 of the furnace top bunker 5 is adjusted. The turning chute 9 charges the supplied raw material 3 into a desired position in the furnace of the blast furnace 10. In the case of a parallel bunker type bellless charging device, ore such as sintered ore and coke are alternately charged into the furnace using a plurality of parallel bunker.

本実施形態の原料装入装置は、炉頂バンカー5内に装入された原料が形成する斜面の傾斜角測定手段として、レベル計12とレベル測定制御部20を備える。レベル計12は、炉頂バンカー5内に装入された原料の、炉頂バンカー内における表面のレベル(高さ)を測定する。レベル測定制御部20は、レベル計12を制御して原料の表面レベルの測定処理を実行させる。なお、後述の粉率推定処理は、レベル測定制御部20が行ってもよいし、別途設けられる他の処理部が粉率推定部として算出処理を行ってもよい。また、図1においてレベル計12を右側の炉頂バンカー5にのみ示しているが、他の炉頂バンカー5にも同様にレベル計12を配置して、装入される原料の表面レベル測定処理を行ってよい。   The raw material charging apparatus according to the present embodiment includes a level meter 12 and a level measurement control unit 20 as an inclination angle measuring unit of a slope formed by the raw material charged into the furnace top bunker 5. The level meter 12 measures the level (height) of the surface of the raw material charged in the furnace top bunker 5 in the furnace top bunker. The level measurement control unit 20 controls the level meter 12 to execute the surface level measurement process of the raw material. It should be noted that the powder rate estimation process described later may be performed by the level measurement control unit 20, or another processing unit provided separately may perform the calculation process as the powder rate estimation unit. Further, in FIG. 1, the level meter 12 is shown only in the right furnace top bunker 5, but the level meter 12 is similarly arranged in the other furnace top bunker 5 to measure the surface level of the raw material to be charged. May be done.

ここで「粉率」とは、高炉に装入する原料全体の重量に対する粉体の重量の割合である。本実施形態では、1回の装入で炉頂ホッパー5に供給された原料における粉体の割合である。粉体は、所定の基準粒径よりも粒径が小さい原料である。基準粒径は原料の種類や配合等によって異なり、またその他の操業条件によっても変わるため適宜設定される。たとえば焼結鉱等の鉄鉱石であれば、粒径が5mm未満、あるいは3mm未満の粒子を粉体としてよい。またコークスであれば、粒径が35mm未満のものを粉体としてよい。   Here, the “powder ratio” is the ratio of the weight of the powder to the total weight of the raw material charged in the blast furnace. In this embodiment, it is the ratio of the powder in the raw material supplied to the furnace top hopper 5 by one charge. The powder is a raw material having a particle size smaller than a predetermined reference particle size. The reference particle size varies depending on the type and composition of the raw material, and also varies depending on other operating conditions, so that it is set appropriately. For example, in the case of iron ore such as sintered ore, particles having a particle size of less than 5 mm or less than 3 mm may be used as powder. For coke, powder having a particle size of less than 35 mm may be used.

レベル計12は原料の表面レベルを連続的に測定できる装置であれば特に限定されないが、たとえば非接触式のレーザー距離計や、マイクロ波距離計などをレベル計12として用いることができる。本実施形態のレベル計12は、複数箇所で原料の表面レベルを測定して、炉頂バンカー5内の原料の表面形状の経時変化を検出するために用いられる。より具体的には、表面レベルを測定して炉頂バンカー5内の原料の斜面の傾斜角を把握するための手段である。   The level meter 12 is not particularly limited as long as the surface level of the raw material can be continuously measured. For example, a non-contact laser distance meter, a microwave distance meter, or the like can be used as the level meter 12. The level meter 12 of this embodiment is used for measuring the surface level of the raw material at a plurality of locations and detecting a change in the surface shape of the raw material in the furnace top bunker 5 with time. More specifically, it is a means for measuring the surface level and grasping the inclination angle of the slope of the raw material in the furnace top bunker 5.

レベル計12は少なくとも炉頂バンカー5内の原料の表面レベルを複数箇所で測定することができればよいが、原料槽1から1回の切り出しで切り出された原料を炉頂バンカー5に装入した場合に頂部となる位置の表面レベルと、頂部以外の1か所以上の位置の表面レベルを測定することが好ましい。   The level meter 12 only needs to be able to measure at least the surface level of the raw material in the furnace top bunker 5 at a plurality of locations, but when the raw material cut out from the raw material tank 1 in one cut is charged into the furnace top bunker 5 It is preferable to measure the surface level at the position of the top and the surface level at one or more positions other than the top.

原料装入後の頂部の位置は、たとえば図1のような偏心型の炉頂バンカー5に対して切替シュート4から原料が装入される場合、炉頂バンカー5の横断面の中心よりも内側の側壁寄りの位置になる。原料装入後の表面形状がこのような形状となる場合には、原料頂部付近の位置と、頂部付近の位置よりも炉頂バンカー5の横断面の径方向外側の1か所または複数箇所における原料の表面レベルを測定することが好ましい。たとえば、原料頂部付近の第1の位置と、第1の位置よりも炉頂バンカー5の径方向外側の第2の位置と、第2の位置よりもさらに径方向外側の第3の位置の計3か所の位置の表面レベルをレベル計12によって測定する。第1から第3の位置は、たとえば第1の位置からバンカー内壁(バンカーの側壁の内面)の位置までを等分する位置とすることができる。   When the raw material is charged from the switching chute 4 with respect to the eccentric type furnace top bunker 5 as shown in FIG. 1, for example, the position of the top after the raw material charging is inside the center of the cross section of the furnace top bunker 5. It becomes the position near the side wall. When the surface shape after charging the raw material is such a shape, at a position near the top of the raw material and at one or a plurality of positions outside the radial direction of the cross section of the furnace top bunker 5 from the position near the top. It is preferable to measure the surface level of the raw material. For example, a total of a first position near the top of the raw material, a second position radially outside the furnace top bunker 5 with respect to the first position, and a third position further radially outward with respect to the second position. The surface level at three positions is measured by the level meter 12. The first to third positions can be, for example, positions that equally divide from the first position to the position of the bunker inner wall (the inner surface of the side wall of the bunker).

そして本実施形態のレベル計12は、(1)原料装入後(排出開始前)の原料が崩れずに安定して堆積している状態における各地点の表面レベルの測定、および、(2)炉頂バンカー5から高炉10に原料を排出している間における各地点の表面レベルの連続的な測定、の少なくともいずれかを行う。そして図2に示すように、(1)の測定によって把握される複数地点の表面レベルから、堆積した原料の傾斜角(堆積角)θ1を求めることができる(図2(a))。この安定して堆積している状態の傾斜角は、原料の安息角と同等である。また(2)の測定によれば原料を排出口6から原料を排出している際における複数タイミングでの原料の斜面の傾斜角θ2を求めることができる(図2(b))。   And the level meter 12 of this embodiment is (1) Measurement of the surface level of each point in the state which the raw material after material introduction (before discharge start) has accumulated stably without collapsing, and (2) At least one of the continuous measurement of the surface level at each point while discharging the raw material from the furnace top bunker 5 to the blast furnace 10 is performed. Then, as shown in FIG. 2, the inclination angle (deposition angle) θ1 of the deposited material can be obtained from the surface levels at a plurality of points grasped by the measurement of (1) (FIG. 2 (a)). The inclination angle in the state where it is stably deposited is equivalent to the repose angle of the raw material. Further, according to the measurement of (2), the inclination angle θ2 of the slope of the raw material at a plurality of timings when the raw material is discharged from the discharge port 6 can be obtained (FIG. 2B).

炉頂バンカー5内におけるこのような原料の傾斜角と原料の粉率との間には相関関係がある。本実施形態の原料装入装置はあらかじめ求めたこの相関関係に基づき、表面レベルの測定値から測定した原料の粉率を求める(推定する)ことができる。なお詳しくは後述するが、本実施形態では原料排出を開始するとある遷移期間を経過した後、原料の傾斜角がほぼ一定に維持された表面形状のまま、全体の表面レベルが低下していく時間(期間)がある。そのため、その一定の表面形状における原料の傾斜角θ2を原料排出中の傾斜角として粉率の算出(推定)に用いる。   There is a correlation between the inclination angle of the raw material in the furnace top bunker 5 and the powder ratio of the raw material. The raw material charging apparatus of the present embodiment can obtain (estimate) the raw material powder rate measured from the surface level measurement value based on the correlation obtained in advance. As will be described in detail later, in this embodiment, after a certain transition period has elapsed after starting material discharge, the time during which the overall surface level decreases while maintaining the surface shape in which the inclination angle of the material is maintained substantially constant (Period). Therefore, the inclination angle θ2 of the raw material at the constant surface shape is used for the calculation (estimation) of the powder rate as the inclination angle during discharge of the raw material.

ここでまず、原料の傾斜角と粉率との関係について説明する。図3は原料の傾斜角と粉率との関係を求めるための測定装置の一例を示す模式図である。図3の測定装置は、炉頂バンカーと同様に装入された原料を下方から排出する機能を有する直方体状のスライス模型で、断面(側面)から原料の堆積形状を透過して観察できる装置である。図3に示すように、スライス模型では、右上から原料を装入し、左下の排出口から原料を排出する。   First, the relationship between the inclination angle of the raw material and the powder rate will be described. FIG. 3 is a schematic diagram showing an example of a measuring apparatus for obtaining the relationship between the inclination angle of the raw material and the powder rate. The measuring device in FIG. 3 is a rectangular parallelepiped slice model that has the function of discharging the charged raw material from below in the same manner as the furnace top bunker. is there. As shown in FIG. 3, in the slice model, the raw material is charged from the upper right, and the raw material is discharged from the lower left outlet.

原料装入後の排出前の時点での原料の傾斜角(つまり、原料の安息角)αは、原料をスライス模型に装入して原料が崩れずに堆積した状態で測定される原料の斜面の角度である。また、スライス模型下部の排出口から原料を一定の流速で排出するとともにスライス模型上部から排出量と同量の原料を供給することで、原料の傾斜角が一定となる状態を作る。そしてその一定となった傾斜角を原料排出中の傾斜角βとする。   The inclination angle of the raw material (that is, the angle of repose of the raw material) α at the time before discharging after the raw material charging is measured with the raw material being loaded into the slice model and deposited without breaking down. Is the angle. In addition, the raw material is discharged from the discharge port at the lower part of the slice model at a constant flow rate, and the same amount of the raw material is supplied from the upper part of the slice model, thereby creating a state in which the inclination angle of the raw material is constant. Then, the constant inclination angle is defined as an inclination angle β during the material discharge.

それぞれの傾斜角は、堆積した原料の表面が形成する斜面をスライス模型の断面(側面)を通して直接観察して測定し、傾斜角αとβを求めた。また測定に用いる試料としては、1mm以上5mm以下のコークスを含む試料において1mm以下の粉コークスの重量比率を変えて、様々な粉率のコークス試料を作成して測定に用いた。   Each inclination angle was measured by directly observing the slope formed by the surface of the deposited raw material through the cross section (side surface) of the slice model, and obtaining the inclination angles α and β. Moreover, as a sample used for the measurement, coke samples having various powder ratios were prepared and used for measurement by changing the weight ratio of the powder coke of 1 mm or less in a sample containing coke of 1 mm or more and 5 mm or less.

図4は、粉率が異なる様々なコークス試料について、図3の測定装置によって求めた粉率と傾斜角α、βとの関係を示すグラフである。図4(a)は各試料の傾斜角αと粉率との関係を示す。図4(b)は各試料の傾斜角βと粉率との関係を示す。   FIG. 4 is a graph showing the relationship between the powder ratio and the inclination angles α and β obtained by the measuring apparatus of FIG. 3 for various coke samples having different powder ratios. FIG. 4A shows the relationship between the inclination angle α and the powder rate of each sample. FIG. 4B shows the relationship between the inclination angle β and the powder rate of each sample.

傾斜角αは、図4(a)に示すように試料の粉率の増加に伴って減少する傾向にある。また傾斜角βは図4(b)に示すように試料の粉率の増加に伴って増加する傾向にある。このように、粉率と原料の傾斜角との間には原料の装入後の傾斜角(安息角)および排出中に原料の表面形状が一定となっている状態における傾斜角のいずれについても所定の相関関係があることがわかる。そのため、あらかじめ実際の操業に用いられる炉頂バンカー5において、粉率と傾斜角との関係を求めておけば、実際の操業時の炉頂バンカー5内の原料の傾斜角からその原料の粉率を特定(推定)可能である。   As shown in FIG. 4A, the inclination angle α tends to decrease as the powder rate of the sample increases. Further, as shown in FIG. 4B, the inclination angle β tends to increase as the powder rate of the sample increases. Thus, between the powder rate and the inclination angle of the raw material, both the inclination angle (rest angle) after charging the raw material and the inclination angle in a state where the surface shape of the raw material is constant during discharge It can be seen that there is a predetermined correlation. Therefore, if the relationship between the powder rate and the inclination angle is obtained in advance in the furnace bunker 5 used for actual operation, the raw material powder rate is determined from the inclination angle of the raw material in the furnace bunker 5 during actual operation. Can be specified (estimated).

前記傾斜角と粉率との相関関係は、縮小した模型のバンカーを用いても決定できるが、実際に使用予定の炉頂バンカーで求める方が、精度良い相関関係が得られる点で好ましい。   Although the correlation between the inclination angle and the powder ratio can be determined using a reduced model bunker, it is preferable to obtain the correlation with a furnace top bunker that is actually planned in terms of obtaining a highly accurate correlation.

次に、実際に図1に示す方式の原料装入装置の炉頂バンカー5に原料を装入し、レベル計12によって原料の表面レベルの測定を行った結果について説明する。表面レベルの測定は、5370mの容積の高炉に用いられる炉頂バンカーの5.6分の1縮尺の炉頂バンカー5を用いて行った。レベル計12は、一例として図5に示すように原料3を炉頂バンカー5に装入した場合に頂部となる位置であり、かつ、排出口6の上方の位置の表面レベルを測定するレベル計Aと、レベル計Aよりも炉頂バンカー5の横断面の径方向外方の位置の表面レベルを測定するレベル計Bと、レベル計Bよりもさらに外方の位置の表面レベルを測定するレベル計Cとを用いた。なお、測定位置は、上述のようにレベル計Aの測定位置と炉頂バンカー5の内壁までを等分した位置であるが、必ずしも等分した位置である必要はなく、複数地点で表面レベルが測定できればよい。 Next, the results of actually charging the raw material into the furnace top bunker 5 of the raw material charging apparatus of the system shown in FIG. 1 and measuring the surface level of the raw material with the level meter 12 will be described. The surface level was measured using a top bunker 5 having a 1 / 5.6 scale of a top bunker used for a blast furnace having a capacity of 5370 m 3 . As an example, the level meter 12 is a level meter that measures the surface level at the top position when the raw material 3 is charged into the furnace top bunker 5 as shown in FIG. A, a level meter B for measuring the surface level at the radially outer position of the cross section of the furnace top bunker 5 relative to the level meter A, and a level for measuring the surface level at a position further outward than the level meter B A total of C was used. The measurement position is a position obtained by equally dividing the measurement position of the level meter A and the inner wall of the furnace top bunker 5 as described above. However, the measurement position does not necessarily have to be equally divided, and the surface level is at a plurality of points. It only needs to be able to measure.

装入する原料には焼結鉱を用いた。以下の表1に示すように、同じ焼結鉱の原料について、流量調整弁7の開度を変えてそれぞれレベルの変化を測定した。すなわち、サンプル1−1と1−2では共通の原料について排出中の弁開度を変えてレベルの変化を測定した。原料はいずれも粒径が2mm以上10mm以下の焼結鉱が混ざったものであり、サンプル1と2で5mm未満の粉体の割合(粉率)が異なる。   Sinter was used as the raw material to be charged. As shown in Table 1 below, for the same sintered ore raw material, the change in level was measured by changing the opening degree of the flow control valve 7. That is, in Samples 1-1 and 1-2, a change in level was measured by changing a valve opening degree during discharge for a common raw material. The raw materials are all mixed with sintered ore having a particle size of 2 mm or more and 10 mm or less, and the ratio (powder ratio) of powders less than 5 mm is different between samples 1 and 2.

Figure 2015196888
Figure 2015196888

図6に測定結果のグラフを示す。図6のグラフは、炉頂バンカー5における径方向のレベル測定位置と原料の表面レベルとの関係を示す。図6において、レベル計Aによる測定値を白丸(○)で示し、レベル計Bによる測定値を黒丸(●)で示し、レベル計Cによる測定値を四角(□)で示す。   FIG. 6 shows a graph of measurement results. The graph of FIG. 6 shows the relationship between the radial level measurement position in the furnace top bunker 5 and the surface level of the raw material. In FIG. 6, the measured value by the level meter A is indicated by a white circle (◯), the measured value by the level meter B is indicated by a black circle (●), and the measured value by the level meter C is indicated by a square (□).

図6に示すように、A〜Cのレベル計12によって各位置の原料の表面レベルを測定することで、斜面の傾斜角など表面形状を把握できることがわかる。そして図6において、サンプル1−1と1−2では、グラフにも示すように原料装入後の排出前の0秒の時点での傾斜角θ1はほぼ同じであった。また、原料排出開始後は、排出口6の上方のレベル計Aで測定される領域はマスフローとなるラットホール領域となるため、レベル計BやCで測定される領域よりも先にレベルが低下していくことがわかる。排出開始からある程度時間が経過すると(つまり遷移期間経過後)、図2(b)で示すような、排出口6の上方の位置からバンカー内壁に向かって上方に傾斜する傾斜面を形成し、傾斜角θ2を維持しながら表面レベル全体が低下していることがわかる。   As shown in FIG. 6, it is understood that the surface shape such as the slope angle of the slope can be grasped by measuring the surface level of the raw material at each position with the level meters 12 of AC. In FIG. 6, samples 1-1 and 1-2 have substantially the same inclination angle θ1 at the time of 0 seconds before the discharge after the raw material charging as shown in the graph. In addition, after starting the material discharge, the area measured by the level meter A above the discharge port 6 becomes a rathole region that becomes a mass flow, so the level is lowered before the region measured by the level meters B and C. I can see that When a certain amount of time has elapsed from the start of discharge (that is, after the transition period has elapsed), an inclined surface inclined upward from the position above the discharge port 6 toward the inner wall of the bunker as shown in FIG. It can be seen that the entire surface level is lowered while maintaining the angle θ2.

また、排出中にある期間一定となる傾斜角θ2はほぼ同じであった。具体的にはサンプル1−1の30秒経過時から50秒経過時頃までの傾斜角と1−2の30秒前後における傾斜角とがほぼ同じ傾斜角となった。同じ原料同士であれば、流量調整弁7の開度が変化しても表面形状の変化のしかたの違いは小さく、ほぼ同じ傾斜角をとる。ただし、より正確に粉率を算出(推定)するためには、弁開度ごとに粉率と傾斜角との関係をあらかじめ求めておき、粉率推定の際には弁開度についても対応するデータに基づいて粉率を推定することが好ましい。   In addition, the inclination angle θ2 that is constant for a certain period during discharge was substantially the same. Specifically, the inclination angle from the time when 30 seconds passed in Sample 1-1 to the time around 50 seconds passed and the inclination angle around 30 seconds in 1-2 became substantially the same. If the same raw material is used, even if the opening degree of the flow rate adjusting valve 7 is changed, the difference in the surface shape change is small and almost the same inclination angle is taken. However, in order to calculate (estimate) the powder rate more accurately, the relationship between the powder rate and the inclination angle is obtained in advance for each valve opening, and the valve opening is also supported when estimating the powder rate. It is preferable to estimate the powder rate based on the data.

以上より、レベル計12を用いて複数箇所の表面レベルを測定することで、炉頂バンカーに装入された原料の傾斜角θ1や傾斜角θ2を求めることができる。そして、あらかじめ算出される粉率と傾斜角θ1の相関関係や粉率と傾斜角θ2との相関関係に基づき、炉頂バンカー5に装入された原料の粉率を特定(推定)することが可能である。本実施形態の粉率推定方法によれば、原料の炉頂バンカー5への装入毎に粉率を把握でき、より精度よく確実に原料の粉率の管理が可能となる。なお、本実施形態では炉頂バンカー5の5.6分の1縮尺の模型を用いて測定を行ったが、傾斜角θ1やθ2と粉率との相関関係は、このような縮小した模型を用いて求めてもよいし、実際の操業に用いる炉頂バンカー5を用いて求めてもよい。粉率の推定を行う実際の炉頂バンカー5で相関関係を求めた方がより正確な相関関係が求められるのでより好ましい。   As described above, by measuring the surface level at a plurality of locations using the level meter 12, the inclination angle θ1 and the inclination angle θ2 of the raw material charged in the furnace top bunker can be obtained. And, based on the correlation between the powder ratio and the inclination angle θ1 calculated in advance and the correlation between the powder ratio and the inclination angle θ2, the powder ratio of the raw material charged in the furnace top bunker 5 can be specified (estimated). Is possible. According to the powder rate estimation method of the present embodiment, the powder rate can be grasped every time the raw material is charged into the furnace top bunker 5, and the raw material powder rate can be managed more accurately and reliably. In the present embodiment, the measurement was performed using a 1 / 5.6 scale model of the furnace top bunker 5, but the correlation between the inclination angles θ1 and θ2 and the powder rate is the same as that of the reduced model. You may obtain | require using, and you may obtain | require using the furnace top bunker 5 used for an actual operation. It is more preferable to obtain the correlation with an actual furnace top bunker 5 for estimating the powder ratio because a more accurate correlation is obtained.

なお、本実施形態では原料が焼結鉱である場合についての測定例を示したが、他の種類の鉄鉱石や、還元剤であるコークスなどの他の原料についても同様にして傾斜角を算出し、算出した傾斜角からその原料の粉率を推定することができる。   In this embodiment, the measurement example is shown in the case where the raw material is sintered ore, but the inclination angle is calculated in the same manner for other raw materials such as other types of iron ore and coke as a reducing agent. And the powder rate of the raw material can be estimated from the calculated inclination angle.

なお、原料の傾斜角は、たとえば上述の図5に示すように3か所の位置のレベルを測定する場合であれば、それらの測定値の組み合わせにより(1)レベル計AとBの測定値により求められる角度、(2)レベル計AとCの測定値により求められる角度、(3)レベル計BとCの測定値により求められる角度、の3パターンで算出可能となる。測定箇所がさらに増えれば、一つの原料表面について傾斜角を算出できる算出パターンも増える。このように傾斜角θ1やθ2として、複数のパターンで算出する場合には、それぞれの算出パターンについて傾斜角と粉率との関係をあらかじめ求めておいてもよい。粉率の算出(推定)の際にも同様に、1回の原料排出の際にそれぞれの算出パターンで傾斜角を算出し、各算出パターンでの傾斜角について予め求めたデータに基づき複数の粉率を算出することができる。そして、その複数の粉率の値に基づき最終的に粉率を決定すればよい。複数の算出パターンによる傾斜角から粉率を算出(推定)すれば、より精度よく粉率を特定することができる。   In addition, the inclination angle of the raw material is, for example, in the case of measuring the level at three positions as shown in FIG. It is possible to calculate with three patterns: (2) an angle obtained from the measured values of the level meters A and C, and (3) an angle obtained from the measured values of the level meters B and C. As the number of measurement points further increases, the number of calculation patterns capable of calculating the inclination angle for one raw material surface also increases. As described above, when the inclination angles θ1 and θ2 are calculated using a plurality of patterns, the relationship between the inclination angle and the powder ratio may be obtained in advance for each calculation pattern. Similarly, when calculating (estimating) the powder rate, an inclination angle is calculated with each calculation pattern at the time of discharging the raw material once, and a plurality of powders are calculated based on data obtained in advance for the inclination angle with each calculation pattern. The rate can be calculated. And what is necessary is just to finally determine a powder rate based on the value of the some powder rate. If the powder rate is calculated (estimated) from the inclination angles based on a plurality of calculation patterns, the powder rate can be specified more accurately.

また、予め求めておく粉率と傾斜角との相関関係のデータは、たとえば図4に示すような粉率と傾斜角の関係を示すデータ(傾斜角と粉率とが対応づけられたデータ)で構成されるデータベースを不図示の記憶手段等に格納しておけばよい。そしてレベル測定制御部20あるいは他の処理部が当該データベースを利用して、測定された傾斜角の値から粉率を算出すればよい。   Moreover, the data of the correlation between the powder rate and the tilt angle obtained in advance are, for example, data indicating the relationship between the powder rate and the tilt angle as shown in FIG. 4 (data in which the tilt angle and the powder rate are associated with each other). It is sufficient to store a database constituted by a storage means (not shown) or the like. Then, the level measurement control unit 20 or other processing unit may use the database to calculate the powder rate from the measured inclination angle value.

また、粉率の算出(推定)に用いる粉率と傾斜角θ1やθ2との関係は、粉率ごとに傾斜角θ1やθ2のデータを複数求めて、それらのデータの平均値を用いてもよい。また、図4において破線で示すように測定した値から近似式を求めて、その近似式を上記相関関係として粉率の算出に用いてもよい。   Further, the relationship between the powder rate used for calculation (estimation) of the powder rate and the inclination angles θ1 and θ2 can be obtained by obtaining a plurality of data of the inclination angles θ1 and θ2 for each powder rate and using the average value of the data. Good. Moreover, an approximate expression may be calculated | required from the value measured as shown with a broken line in FIG. 4, and the approximate expression may be used for calculation of a powder rate as the said correlation.

以上に説明した方法によって算出(推定)された粉率に基づき行うアクションについて説明する。炉頂バンカー5に装入された原料について算出(推定)された粉率が、基準とする粉率を上回った場合には、高炉内の通気性が悪化する。その場合、高炉内の通気悪化を補償する操業アクションや、装入する原料中の粉率を低下させる操業アクションをとることができる。なお、上記基準とする粉率は、原料の粉率と高炉における通気性との関係から適宜設定される。   An action to be performed based on the powder rate calculated (estimated) by the method described above will be described. When the powder ratio calculated (estimated) for the raw material charged in the furnace top bunker 5 exceeds the standard powder ratio, the air permeability in the blast furnace deteriorates. In that case, the operation action which compensates the ventilation deterioration in a blast furnace and the operation action which reduces the powder rate in the raw material to charge can be taken. In addition, the powder ratio used as the said reference | standard is suitably set from the relationship between the powder ratio of a raw material, and the air permeability in a blast furnace.

通気悪化を補償する操業アクションとしては、コークス比を増やしたり、高炉における装入物分布を調整したりする操作などが挙げられる。コークス比とは、溶銑1トンを製造するのに必要なコークス量である。装入物分布とは、高炉の炉頂部において交互に積層される鉄鉱石等の鉱石層とコークス層との所定の炉半径の各位置における層厚比の分布である。   Examples of the operation action that compensates for deterioration in ventilation include an operation of increasing the coke ratio and adjusting the distribution of charges in the blast furnace. The coke ratio is the amount of coke necessary to produce 1 ton of hot metal. The charge distribution is a distribution of the layer thickness ratio at each position of a predetermined furnace radius between an ore layer such as iron ore and a coke layer that are alternately stacked at the top of the blast furnace.

また、原料の粉率を低下させる操業アクションとしては、原料槽1に設けられる篩など、炉頂バンカー5よりも原料の供給経路において上流工程に設けられる篩の振動数を増加して粉体をより振り落とすようにしたり、篩のサイズを変更したり、焼結工場やコークスの生産工程において、焼結鉱やコークスの強度を上げて粉体を発生しにくくしたりする操作などが挙げられる。   In addition, as an operation action for reducing the powder rate of the raw material, the frequency of the sieve provided in the upstream process in the raw material supply path, such as the sieve provided in the raw material tank 1, is increased by increasing the frequency of the powder. For example, operations such as shaking off, changing the size of the sieve, and increasing the strength of the sintered ore and coke to make it difficult to generate powder in the sintering factory and the coke production process.

以上のように、高炉に装入される原料の粉率を算出(推定)して適切な操業アクションをとることで、炉内の通気性悪化による高炉の生産性の低下や、高炉の極度の冷え込みなどの重篤なトラブルが発生することを事前に防ぐことができる。特に、本実施形態によれば、炉頂バンカー5から原料を装入する場合に、1回の装入毎に原料の粉率を把握することができるので、高炉の状況が変化する前に適切な操業アクションをとることができる。   As described above, by calculating (estimating) the powder rate of the raw material charged into the blast furnace and taking appropriate operation actions, the productivity of the blast furnace is reduced due to the deterioration of the air permeability in the furnace, The occurrence of serious troubles such as chilling can be prevented in advance. In particular, according to the present embodiment, when the raw material is charged from the furnace top bunker 5, it is possible to grasp the powder rate of the raw material for each charging, so that it is appropriate before the situation of the blast furnace changes. Can take various operational actions.

1 原料槽
2 装入ベルトコンベア
3 原料
4 切替シュート
5 炉頂バンカー
6 排出口
7 流量調整弁
8 集合ホッパー
9 旋回シュート
10 高炉
12 レベル計
20 レベル測定制御部

DESCRIPTION OF SYMBOLS 1 Raw material tank 2 Loading belt conveyor 3 Raw material 4 Switching chute 5 Furnace top bunker 6 Outlet 7 Flow control valve 8 Collecting hopper 9 Turning chute 10 Blast furnace 12 Level meter 20 Level measurement control part

Claims (6)

炉頂バンカーから高炉に装入される原料の粉率と傾斜角との相関関係を予め定めておき、
前記炉頂バンカー内の原料の傾斜角を求め、
前記相関関係と前記求めた傾斜角とから高炉に装入される原料の粉率を推定する高炉原料の粉率推定方法であって、
前記傾斜角が、原料の装入が完了した時点の原料の斜面の角度(第1の傾斜角)、および/または、装入された原料の前記炉頂バンカーの排出口からの排出を開始してからある遷移期間を経た後に安定して形成される、前記排出口の上方の位置から前記炉頂バンカーの側壁側に向かって上方に傾斜する原料の斜面の角度(第2の傾斜角)である高炉原料の粉率推定方法。
Predetermining the correlation between the powder rate of raw materials charged from the furnace top bunker and the inclination angle,
Obtain the angle of inclination of the raw material in the furnace top bunker,
A method for estimating a powder rate of a blast furnace raw material that estimates a powder rate of a raw material charged into a blast furnace from the correlation and the obtained inclination angle,
The inclination angle is the angle of the slope of the raw material (first inclination angle) when the charging of the raw material is completed, and / or the discharge of the charged raw material from the outlet of the furnace top bunker is started. The angle of the slope of the raw material (second inclination angle), which is stably formed after a certain transition period, and is inclined upward from the position above the discharge port toward the side wall of the furnace top bunker A method for estimating the powder rate of a blast furnace raw material.
前記炉頂バンカーの横断面における前記排出口の上方の位置から前記側壁までの範囲における複数の位置において、前記炉頂バンカーに装入された原料の表面の高さである表面レベルを測定し、
測定される原料の表面レベルの差に基づき原料の傾斜角を求めることを特徴とする請求項1に記載の高炉原料の粉率推定方法。
In a plurality of positions in the range from the position above the outlet to the side wall in the cross section of the furnace top bunker, measure the surface level that is the height of the surface of the raw material charged in the furnace top bunker,
The method for estimating the powder rate of a blast furnace raw material according to claim 1, wherein the inclination angle of the raw material is obtained based on a difference in the surface level of the raw material to be measured.
原料の斜面の3か所以上の位置で前記表面レベルを測定し、
2組以上の位置の表面レベルの差に基づき測定対象の斜面の傾斜角をそれぞれ求め、
求めた複数の傾斜角に基づき原料の傾斜角を決定することを特徴とする請求項2に記載の高炉原料の粉率推定方法。
Measure the surface level at three or more positions on the slope of the raw material,
Obtain the inclination angle of the slope of the measurement object based on the difference in surface level between two or more positions,
The method for estimating the powder rate of a blast furnace raw material according to claim 2, wherein the inclination angle of the raw material is determined based on the obtained plurality of inclination angles.
請求項1から3のいずれかに記載の高炉原料の粉率推定方法によって高炉に装入される原料の粉率を推定し、
推定された粉率が基準値を超えた場合に、粉率増加によって生じる前記高炉の通気性の悪化を補償する操業アクションおよび前記炉頂バンカーに装入する原料の粉率を低下させる操業アクションの少なくともいずれかを行うことを特徴とする高炉の操業方法。
Estimating the powder rate of the raw material charged into the blast furnace by the method for estimating the powder rate of the blast furnace raw material according to any one of claims 1 to 3,
When the estimated powder ratio exceeds a reference value, an operation action that compensates for the deterioration in air permeability of the blast furnace caused by an increase in the powder ratio and an operation action that decreases the powder ratio of the raw material charged in the furnace top bunker A method for operating a blast furnace, characterized by performing at least one of the above.
前記通気性の悪化を補償する操業アクションが、コークス比の増加操作と、高炉における装入物分布の変更操作と、のうち少なくともいずれかであることを特徴とする請求項4に記載の高炉の操業方法。   5. The blast furnace according to claim 4, wherein the operation action that compensates for the deterioration in air permeability is at least one of an operation of increasing a coke ratio and an operation of changing a charge distribution in the blast furnace. Operation method. 前記原料の粉率を低下させる操業アクションが、原料の前記炉頂バンカーへの供給経路において前記炉頂バンカーよりも上流工程に配置される篩の振動数を増加させる操作と、前記篩を異なる開口サイズの篩に変更する操作と、原料の強度を増加させるために原料の生産条件を変更する操作と、のうち少なくともいずれかであることを特徴とする請求項4に記載の高炉の操業方法。   The operation action for reducing the raw material powder rate is different from the operation for increasing the frequency of the sieve arranged in the upstream process with respect to the furnace top bunker in the supply path of the raw material to the furnace top bunker. The method of operating a blast furnace according to claim 4, wherein the operation method is at least one of an operation of changing to a size sieve and an operation of changing production conditions of the raw material in order to increase the strength of the raw material.
JP2014076231A 2014-04-02 2014-04-02 Blast furnace raw material powder rate estimation method and blast furnace operation method Active JP6331598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076231A JP6331598B2 (en) 2014-04-02 2014-04-02 Blast furnace raw material powder rate estimation method and blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076231A JP6331598B2 (en) 2014-04-02 2014-04-02 Blast furnace raw material powder rate estimation method and blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2015196888A true JP2015196888A (en) 2015-11-09
JP6331598B2 JP6331598B2 (en) 2018-05-30

Family

ID=54546769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076231A Active JP6331598B2 (en) 2014-04-02 2014-04-02 Blast furnace raw material powder rate estimation method and blast furnace operation method

Country Status (1)

Country Link
JP (1) JP6331598B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189262A1 (en) * 2018-03-30 2019-10-03 Jfeスチール株式会社 Powder ratio measurement device, powder ratio measurement system, and blast furnace operation method
WO2020204165A1 (en) * 2019-04-05 2020-10-08 Jfeスチール株式会社 Powder rate measuring method and device
WO2021085221A1 (en) 2019-10-31 2021-05-06 Jfeスチール株式会社 Blast furnace operation method
WO2021187209A1 (en) * 2020-03-19 2021-09-23 日鉄エンジニアリング株式会社 Furnace charge measuring method, furnace charging method, furnace charge measuring device, and furnace charging device
RU2778816C1 (en) * 2019-04-05 2022-08-25 ДжФЕ СТИЛ КОРПОРЕЙШН Method and apparatus for measuring the fraction of fine particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205606A (en) * 1989-01-31 1990-08-15 Nippon Steel Corp Method for controlling blast furnace operation
JPH03180412A (en) * 1989-12-08 1991-08-06 Nkk Corp Method for predicting physical characteristic of charging material in blast furnace
JPH03180410A (en) * 1989-12-08 1991-08-06 Nkk Corp Method for controlling bulky and powdery charging materials in vertical type furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205606A (en) * 1989-01-31 1990-08-15 Nippon Steel Corp Method for controlling blast furnace operation
JPH03180412A (en) * 1989-12-08 1991-08-06 Nkk Corp Method for predicting physical characteristic of charging material in blast furnace
JPH03180410A (en) * 1989-12-08 1991-08-06 Nkk Corp Method for controlling bulky and powdery charging materials in vertical type furnace

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971547B (en) * 2018-03-30 2024-04-16 杰富意钢铁株式会社 Powder ratio measuring device, powder ratio measuring system, and method for operating blast furnace
JP7171578B2 (en) 2018-03-30 2022-11-15 Jfeスチール株式会社 Particle rate measuring device, Particle rate measuring system, Blast furnace operating method, and Particle rate measuring method
WO2019189262A1 (en) * 2018-03-30 2019-10-03 Jfeスチール株式会社 Powder ratio measurement device, powder ratio measurement system, and blast furnace operation method
CN111971547A (en) * 2018-03-30 2020-11-20 杰富意钢铁株式会社 Powder ratio measuring device, powder ratio measuring system, and blast furnace operation method
EP3757543A4 (en) * 2018-03-30 2021-04-28 JFE Steel Corporation Powder ratio measurement device, powder ratio measurement system, and blast furnace operation method
US11555781B2 (en) 2018-03-30 2023-01-17 Jfe Steel Corporation Fine ratio measuring device, fine ratio measuring system, and blast furnace operating method
JPWO2019189262A1 (en) * 2018-03-30 2020-04-30 Jfeスチール株式会社 Powder ratio measuring device, powder ratio measuring system, and blast furnace operating method
KR102614845B1 (en) * 2019-04-05 2023-12-15 제이에프이 스틸 가부시키가이샤 Fraction measurement method and device
CN113646446A (en) * 2019-04-05 2021-11-12 杰富意钢铁株式会社 Powder rate measuring method and device
KR20210134016A (en) * 2019-04-05 2021-11-08 제이에프이 스틸 가부시키가이샤 Method and apparatus for measuring fractions
JPWO2020204165A1 (en) * 2019-04-05 2021-04-30 Jfeスチール株式会社 Powder ratio measurement method and equipment
TWI747227B (en) * 2019-04-05 2021-11-21 日商杰富意鋼鐵股份有限公司 Powder rate measuring method and device
WO2020204165A1 (en) * 2019-04-05 2020-10-08 Jfeスチール株式会社 Powder rate measuring method and device
RU2778816C1 (en) * 2019-04-05 2022-08-25 ДжФЕ СТИЛ КОРПОРЕЙШН Method and apparatus for measuring the fraction of fine particles
KR20220066146A (en) 2019-10-31 2022-05-23 제이에프이 스틸 가부시키가이샤 How to operate a blast furnace
WO2021085221A1 (en) 2019-10-31 2021-05-06 Jfeスチール株式会社 Blast furnace operation method
JP2021147674A (en) * 2020-03-19 2021-09-27 日鉄エンジニアリング株式会社 Charged material measurement method, charging method, charged material measurement device and charging device
WO2021187209A1 (en) * 2020-03-19 2021-09-23 日鉄エンジニアリング株式会社 Furnace charge measuring method, furnace charging method, furnace charge measuring device, and furnace charging device
JP7440715B2 (en) 2020-03-19 2024-02-29 日本製鉄株式会社 Charge measuring method, charging method, charge measuring device and charging device

Also Published As

Publication number Publication date
JP6331598B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6331598B2 (en) Blast furnace raw material powder rate estimation method and blast furnace operation method
CN107614707B (en) To the device of blast furnace charging feedstock
JP5585729B2 (en) Raw material charging apparatus for blast furnace and raw material charging method using the same
CN101560599B (en) Thickness control method and control system of mixed material layer
JP6311482B2 (en) Estimation method of gas flow rate and reduction load of blast furnace block.
JP2020012132A (en) Quality control method of blast furnace coke
JP6361334B2 (en) Emission behavior estimation method and emission behavior estimation system for blast furnace top bunker
JP6943339B2 (en) Raw material charging method and blast furnace operation method for bellless blast furnace
JP6851669B1 (en) Cored wire manufacturing equipment and cored wire manufacturing method using this
JP2020094283A (en) Operation method of blast furnace
JP7073962B2 (en) How to charge the bellless blast furnace
JP2012072471A (en) Furnace top bunker, and charging method of raw material to blast furnace using the same
KR101412280B1 (en) Method for injection ability of coal to predict used it
JP2021113341A (en) Operation method of blast furnace
CN108955257B (en) Method, device and system for controlling main exhaust fan of sintering system
JP6645398B2 (en) How to measure the degree of mixing
JP6558519B1 (en) Raw material charging method for blast furnace
JP2014224293A (en) Method for charging raw material into bell-less blast furnace
JP6769507B2 (en) How to charge raw materials for blast furnace
JP6813927B1 (en) Cored wire manufacturing equipment and cored wire manufacturing method using this
JP6036175B2 (en) Coal charging method
KR102008373B1 (en) Prediction apparatus for strength and method thereof
JP7393636B2 (en) How to operate a blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
BR112020019880B1 (en) METHOD FOR LOADING RAW MATERIALS INTO BLAST FURNACE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R151 Written notification of patent or utility model registration

Ref document number: 6331598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350