JP2015194134A - Triple gear pump and fluid supply device - Google Patents

Triple gear pump and fluid supply device Download PDF

Info

Publication number
JP2015194134A
JP2015194134A JP2014072590A JP2014072590A JP2015194134A JP 2015194134 A JP2015194134 A JP 2015194134A JP 2014072590 A JP2014072590 A JP 2014072590A JP 2014072590 A JP2014072590 A JP 2014072590A JP 2015194134 A JP2015194134 A JP 2015194134A
Authority
JP
Japan
Prior art keywords
gear pump
pressure
gear
receiving surface
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014072590A
Other languages
Japanese (ja)
Other versions
JP6265008B2 (en
Inventor
健治 高宮
Kenji Takamiya
健治 高宮
精鋭 増田
Akitoshi Masuda
精鋭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014072590A priority Critical patent/JP6265008B2/en
Publication of JP2015194134A publication Critical patent/JP2015194134A/en
Application granted granted Critical
Publication of JP6265008B2 publication Critical patent/JP6265008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To apply an appropriate pressing force in an opposite direction to a floating bearing of a triple gear pump even if a floating force generated in the floating bearing of the triple gear pump changes with a change in a connection state of first and second gear pumps.SOLUTION: In a connection state in which a first gear pump 11 and a second gear pump 13 are connected in parallel, a low-pressure receiving surface 15d and a switched-pressure receiving surface 15e of a floating bearing 15a serve as a receiving surface for receiving a non-boosted fuel pressure (low pressure) and only a high-pressure receiving surface 15c serves as a boosted-fuel-pressure (high-pressure) receiving surface. In a connection state in which the first gear pump 11 and the second gear pump 13 are connected in series, only the low-pressure receiving surface 15d serves as the low-pressure receiving surface and the high-pressure receiving surface 15c and the switched-pressure receiving surface 15e serve as the high-pressure receiving surface. In this way, area rates of the low-pressure receiving surface and the high-pressure receiving surface are changed depending on the connection state of the first gear pump 11 and the second gear pump 13, and a pressing force Fp in an opposite direction is changed depending on a change in a floating force Ff generated in the floating bearing 15a of a drive gear 5.

Description

本発明は、1つの駆動ギアに2つの従動ギアを噛合させ、各従動ギアと駆動ギアとの組で流体昇圧用のギアポンプをそれぞれ構成した3連ギアポンプと、これを用いた流体供給装置とに関する。   The present invention relates to a triple gear pump in which two driven gears are meshed with one drive gear, and a gear pump for boosting fluid is constituted by a set of each driven gear and drive gear, and a fluid supply device using the triple gear pump .

ギアポンプは、航空機の燃料等のように低粘性の流体を昇圧させる際に多用される。ギアポンプによる流体の昇圧は、駆動ギアと従動ギアとハウジングとで形成される空間において行われる。ギアポンプによる昇圧された流体の吐出量は、漏れのない理想的な状態では駆動ギアの回転数に比例する。   Gear pumps are frequently used when boosting a low-viscosity fluid such as aircraft fuel. The pressure increase of the fluid by the gear pump is performed in a space formed by the drive gear, the driven gear, and the housing. The discharge amount of the fluid boosted by the gear pump is proportional to the rotational speed of the drive gear in an ideal state where there is no leakage.

特に、航空機のエンジンに燃料を供給するギアポンプは、エンジンから伝達される回転力で回転駆動されるエンジン補機としてのギアボックスを動力源としている。このため、ギアポンプにより供給される燃料は、エンジンの回転数に比例することになる。   In particular, a gear pump that supplies fuel to an aircraft engine uses a gear box as an engine accessory that is driven to rotate by a rotational force transmitted from the engine as a power source. For this reason, the fuel supplied by the gear pump is proportional to the engine speed.

一方、航空機のエンジンによる燃料消費量は、離陸時に対して高空における巡航時に大きく減少する。そこで、エンジンの巡航時にエンジンの回転数に比例した過剰な燃料が供給されるのを防ぐために、本出願人は、1つの駆動ギアに2つの従動ギアを噛合させて各従動ギアと駆動ギアとの組でギアポンプをそれぞれ構成した3連ギアポンプを過去に提案した。   On the other hand, the amount of fuel consumed by an aircraft engine is greatly reduced when cruising in the high sky compared to takeoff. Therefore, in order to prevent excessive fuel from being supplied in proportion to the rotational speed of the engine during cruise of the engine, the present applicant meshes two driven gears with one drive gear, and each driven gear and the drive gear. In the past, we proposed a triple gear pump that each comprised a gear pump.

この3連ギアポンプでは、離陸時に2つのギアポンプを並列接続することで、各ギアポンプがそれぞれ吐出する燃料を合計してエンジンに供給することができる。また、巡航時に2つのギアポンプを直列接続することで、エンジンに対する燃料の供給量をギアポンプ1つ分の吐出量に減らすことができる。   In this triple gear pump, two gear pumps are connected in parallel at takeoff, so that the fuel discharged from each gear pump can be summed and supplied to the engine. Further, by connecting two gear pumps in series during cruising, the amount of fuel supplied to the engine can be reduced to the discharge amount of one gear pump.

ところで、ギアポンプの駆動ギアや従動ギアの側面には、それらの歯の先端側から回り込む流体の圧力によって、軸受が駆動ギアや従動ギアから回転中心軸方向に浮き上がる向きの浮動力が発生する。この浮動力は、流体の漏れ流れを許容する隙間を駆動ギアや従動ギアの側面と軸受面との間に生じさせ、流体の吐出量を設計値から狂わせる原因となる。   By the way, on the side surfaces of the drive gear and the driven gear of the gear pump, a floating force is generated in such a direction that the bearings are lifted from the drive gear and the driven gear in the direction of the rotation center axis by the pressure of the fluid that circulates from the tip side of the teeth. This floating force creates a gap allowing the fluid leakage flow between the side surface of the drive gear or the driven gear and the bearing surface, and causes the fluid discharge amount to deviate from the design value.

そこで、上述した3連ギアポンプにおいても、各ギアの軸受のうち回転中心軸方向における一端側の軸受を、回転中心軸方向に移動可能な浮動軸受とし、浮動軸受の回転中心軸方向における端面に流体圧を加えて、浮動軸受が各ギアを、回転中心軸方向における他端側の固定の軸受側に押し付けるようにしている。   Therefore, also in the above-described triple gear pump, a bearing on one end side in the rotation center axis direction among the bearings of each gear is a floating bearing that can move in the rotation center axis direction, and a fluid is provided on the end surface in the rotation center axis direction of the floating bearing. Pressure is applied so that the floating bearing presses each gear against the fixed bearing side on the other end side in the direction of the rotation center axis.

詳しくは、各ギアの浮動軸受にそれぞれ2つの受圧面を設け、3連ギアポンプの入口の流体圧(昇圧前の低圧)及び出口の流体圧(昇圧後の高圧)を各受圧面にそれぞれ加えている。そして、各浮動軸受において、軸受に発生する浮動力に合わせて各受圧面の受圧面積を調整することで、軸受するギアを浮動軸受により固定軸受側に押し付ける力(押し付け力)を適正化している。   Specifically, two pressure receiving surfaces are provided on the floating bearings of each gear, and the fluid pressure at the inlet of the triple gear pump (low pressure before pressure increase) and the fluid pressure at the outlet (high pressure after pressure increase) are respectively applied to each pressure receiving surface. Yes. In each floating bearing, by adjusting the pressure receiving area of each pressure receiving surface according to the floating force generated in the bearing, the force for pressing the bearing gear against the fixed bearing side by the floating bearing (pressing force) is optimized. .

なお、3連ギアポンプにおいては、特に第2ポンプ側の従動ギアの側面に発生する浮動力が、第1及び第2ギアポンプを並列接続する場合と直列接続する場合とで大きく異なる。   In the triple gear pump, in particular, the floating force generated on the side surface of the driven gear on the second pump side is greatly different between the case where the first and second gear pumps are connected in parallel and the case where they are connected in series.

即ち、第2ギアポンプの入口は、並列接続時には第1ギアポンプの入口に接続され、直列接続時には第1ギアポンプの出口に接続される。そして、第1ギアポンプの入口の流体圧は昇圧前の低圧となり、出口の流体圧は昇圧後の高圧となる。このため、第2ギアポンプの入口の流体圧は、並列接続時には昇圧前の低圧となり、直列接続時には昇圧後の高圧となる。   That is, the inlet of the second gear pump is connected to the inlet of the first gear pump when connected in parallel, and is connected to the outlet of the first gear pump when connected in series. The fluid pressure at the inlet of the first gear pump becomes a low pressure before the pressure increase, and the fluid pressure at the outlet becomes a high pressure after the pressure increase. For this reason, the fluid pressure at the inlet of the second gear pump is a low pressure before boosting when connected in parallel, and a high pressure after boosting when connected in series.

このように並列接続時と直列接続時とで異なる第2ギアポンプの入口の流体圧が、第2ポンプ側の従動ギアの浮動軸受の浮動力を決定する要素の一つとして駆動ギアの浮動軸受の側面に加わる。よって、第2ポンプ側の従動ギアの浮動軸受の浮動力は、先に述べたように、第2ギアポンプの入口の流体圧と同じく並列接続時と直列接続時とで大きく異なるようになる。   As described above, the fluid pressure at the inlet of the second gear pump, which is different between when connected in parallel and when connected in series, is one of the factors that determine the floating force of the floating bearing of the driven gear on the second pump side. Join the side. Therefore, as described above, the floating force of the floating bearing of the driven gear on the second pump side is greatly different between the parallel connection and the series connection as well as the fluid pressure at the inlet of the second gear pump.

そこで、上述した3連ギアポンプでは、第2ポンプ側の従動ギアの浮動軸受に設けた受圧面の1つに、並列接続時及び直列接続時を通じて高圧となる3連ギアポンプの出口の流体圧に代えて、並列接続時には低圧で直列接続時には高圧となる第2ギアポンプの入口側の流体圧を加えている。   Therefore, in the triple gear pump described above, one of the pressure receiving surfaces provided on the floating bearing of the driven gear on the second pump side is replaced with the fluid pressure at the outlet of the triple gear pump that becomes high pressure in parallel connection and series connection. Thus, the fluid pressure on the inlet side of the second gear pump, which is low when connected in parallel and high when connected in series, is applied.

これにより、第1及び第2ギアポンプの接続状態を並列接続と直列接続との相互間で切り替えた際に、第2ポンプ側の従動ギアの浮動軸受の側面に加わる浮動力の変化に合わせて、浮動軸受が第2ポンプ側の従動ギアを固定軸受側に押し付ける力を変化させている(例えば、特許文献1)。   Thereby, when the connection state of the first and second gear pumps is switched between the parallel connection and the series connection, according to the change of the floating force applied to the side surface of the floating bearing of the driven gear on the second pump side, The force with which the floating bearing presses the driven gear on the second pump side against the fixed bearing side is changed (for example, Patent Document 1).

特開2003−328958号公報JP 2003-328958 A

近年、航空機のエンジンにおいて求められる燃料供給圧が上昇する傾向にあり、これに伴い、3連ギアポンプの各ギアの浮動軸受の側面に加わる浮動力も大きくなることが予想される。その場合は、各ギアの浮動軸受に設けた昇圧後の流体の圧力を受ける受圧面の割合を増やすことになる。これにより、浮動軸受の押し付け力を増やして、増大した浮動軸受の浮動力に対抗することができる。   In recent years, the fuel supply pressure required in aircraft engines has been increasing, and accordingly, it is expected that the floating force applied to the side of the floating bearing of each gear of the triple gear pump will also increase. In that case, the ratio of the pressure receiving surface that receives the pressure of the fluid after pressure increase provided in the floating bearing of each gear is increased. Thereby, the pressing force of the floating bearing can be increased to counter the increased floating force of the floating bearing.

特に、駆動ギアにおいては、浮動軸受の浮動力が最も大きくなる第1及び第2ギアポンプの直列接続時における浮動力の大きさが、燃料供給圧の上昇に伴ってより一層高圧となる。このため、駆動ギアの浮動軸受では、第1及び第2ギアポンプの直列接続時における浮動軸受の浮動力を基準に、昇圧後の流体の圧力を受ける受圧面の割合を増やすことが考えられる。   In particular, in the drive gear, the magnitude of the floating force when the first and second gear pumps are connected in series, at which the floating force of the floating bearing is maximized, becomes higher as the fuel supply pressure increases. For this reason, in the floating bearing of the drive gear, it is conceivable to increase the ratio of the pressure receiving surface that receives the pressure of the fluid after the pressure increase based on the floating force of the floating bearing when the first and second gear pumps are connected in series.

また、駆動ギアにおいては、第2ギアポンプの入口の流体圧として昇圧後の高圧が側面に加わる直列接続時に浮動軸受の浮動力が最も大きくなる。このため、駆動ギアの浮動軸受では、第1及び第2ギアポンプの直列接続時における浮動軸受の浮動力を基準に、昇圧後の流体の圧力を受ける受圧面の割合を増やすことが考えられる。   Further, in the drive gear, the floating force of the floating bearing is maximized when the high pressure after the pressure increase is applied to the side surface as the fluid pressure at the inlet of the second gear pump. For this reason, in the floating bearing of the drive gear, it is conceivable to increase the ratio of the pressure receiving surface that receives the pressure of the fluid after the pressure increase based on the floating force of the floating bearing when the first and second gear pumps are connected in series.

しかし、そのようにすると、第2ギアポンプの入口の流体圧として昇圧前の低圧が駆動ギアの浮動軸受の側面に加わる第1及び第2ギアポンプの並列接続時には、そのときの浮動軸受の浮動力の低さからして、昇圧後の流体の圧力を受ける受圧面の割合が過剰となる可能性がある。つまり、第1及び第2ギアポンプの並列接続時に浮動軸受の各受圧面に加わる流体圧によって浮動軸受が駆動ギアに加える押し付け力が、駆動ギアの浮動軸受の浮動力に対して過剰となる可能性がある。   However, by doing so, when the first and second gear pumps are connected in parallel, where the low pressure before the pressure increase is applied to the side surface of the floating bearing of the drive gear as the fluid pressure at the inlet of the second gear pump, the floating force of the floating bearing at that time is reduced. In view of the low level, the ratio of the pressure receiving surface that receives the pressure of the fluid after the pressure increase may become excessive. That is, the pressing force that the floating bearing applies to the drive gear due to the fluid pressure applied to each pressure receiving surface of the floating bearing when the first and second gear pumps are connected in parallel may be excessive with respect to the floating force of the floating bearing of the drive gear. There is.

浮動軸受による駆動ギアの押し付け力が過剰になることは、第1及び第2ギアポンプの並列接続時に駆動ギアをスムーズに回転させる上で、好ましいことではない。   An excessive pressing force of the drive gear by the floating bearing is not preferable for smoothly rotating the drive gear when the first and second gear pumps are connected in parallel.

本発明は前記事情に鑑みなされたもので、本発明の目的は、3連ギアポンプの浮動軸受に発生する浮動力が第1及び第2ギアポンプの接続状態の切り替えによって変化しても、逆方向の押し付け力を浮動軸受に適切な大きさで加えることができる3連ギアポンプと、これを用いた流体供給装置とを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to reverse the direction even if the floating force generated in the floating bearing of the triple gear pump is changed by switching the connection state of the first and second gear pumps. An object of the present invention is to provide a triple gear pump capable of applying a pressing force to a floating bearing with an appropriate size, and a fluid supply device using the triple gear pump.

上述した目的を達成するために、請求項1に記載した本発明の3連ギアポンプは、
並列と直列とに接続状態を切替可能な第1ギアポンプ及び第2ギアポンプを有する3連ギアポンプであって、
前記第1ギアポンプ及び前記第2ギアポンプに共通の1つの駆動ギアと、
前記第1ギアポンプ及び前記第2ギアポンプにそれぞれ対応し前記駆動ギアに個別に噛合された2つの従動ギアと、
前記駆動ギア及び前記各従動ギアの回転軸の一端をそれぞれ軸受し、前記第1ギアポンプ及び前記第2ギアポンプによる昇圧前の圧力と昇圧後の圧力とをそれぞれの受圧面で受けることによって前記各ギア側にそれぞれ押し付けられる、各回転軸の中心軸方向に移動可能な浮動軸受と、
前記駆動ギア及び前記各従動ギアの回転軸の他端をそれぞれ軸受する、各回転軸の中心軸方向に移動不能な固定軸受とを備え、
前記駆動ギアの前記浮動軸受には、追加の受圧面が設けられており、
前記追加の受圧面には、前記第1ギアポンプと前記第2ギアポンプとが前記流体をそれぞれ昇圧する前記第1ギアポンプ及び前記第2ギアポンプの並列接続状態において、前記第1ギアポンプ又は前記第2ギアポンプによる昇圧前の流体圧が加えられると共に、前記第1ギアポンプで昇圧した流体が前記第2ギアポンプを同一圧のまま通過する前記第1ギアポンプ及び前記第2ギアポンプの直列接続状態において、前記第1ギアポンプによる昇圧後の流体圧が加えられる、
ことを特徴とする。
In order to achieve the above-mentioned object, a triple gear pump according to the present invention described in claim 1 is provided.
A triple gear pump having a first gear pump and a second gear pump capable of switching connection states in parallel and in series,
One drive gear common to the first gear pump and the second gear pump;
Two driven gears respectively corresponding to the first gear pump and the second gear pump and individually meshed with the drive gear;
Each of the gears is supported by bearing one end of the rotation shaft of each of the drive gear and each driven gear, and receiving the pressure before and after the pressure increase by the first gear pump and the second gear pump at the respective pressure receiving surfaces. Floating bearings that are respectively pressed to the side and are movable in the direction of the central axis of each rotary shaft;
A fixed bearing that is non-movable in the direction of the central axis of each rotary shaft, bearing the other end of the rotary shaft of each of the drive gear and each driven gear;
The floating bearing of the drive gear is provided with an additional pressure receiving surface,
The additional pressure receiving surface is provided by the first gear pump or the second gear pump in a state in which the first gear pump and the second gear pump are connected in parallel by the first gear pump and the second gear pump, respectively. In the serial connection state of the first gear pump and the second gear pump, the fluid pressure before the pressure increase is applied and the fluid pressure increased by the first gear pump passes through the second gear pump with the same pressure. The fluid pressure after pressurization is applied,
It is characterized by that.

2つの従動ギアが、各従動ギアの共通の噛合相手である1つの駆動ギアとの対で、第1ギアポンプと第2ギアポンプをそれぞれ構成する3連ギアポンプは、第1ギアポンプと第2ギアポンプとが流体をそれぞれ昇圧する並列接続状態と、第1ギアポンプで昇圧した流体が第2ギアポンプを同一圧のまま通過する直列接続状態とに、接続状態を切り替えることができる。   A triple gear pump, in which the two driven gears constitute a first gear pump and a second gear pump, respectively, with a pair of driving gears that are common mating counterparts of each driven gear, the first gear pump and the second gear pump are The connection state can be switched between a parallel connection state in which the pressure of each fluid is increased and a series connection state in which the fluid whose pressure is increased by the first gear pump passes through the second gear pump with the same pressure.

そして、第1ギアポンプと第2ギアポンプとの接続状態を並列と直列との間で切り替えると、第2ギアポンプの入口の接続相手が第1ギアポンプの入口と出口との間で切り替わる。   And if the connection state of a 1st gear pump and a 2nd gear pump is switched between parallel and series, the connection partner of the inlet of a 2nd gear pump will switch between the inlet and outlet of a 1st gear pump.

ここで、第1ギアポンプの入口の流体圧は昇圧前の低圧となり、第1ギアポンプの出口の流体圧は昇圧後の高圧となる。このため、第2ギアポンプの入口の流体圧は、第1ギアポンプと第2ギアポンプの並列接続状態では昇圧前の低圧となり、第1ギアポンプと第2ギアポンプの直列接続状態では昇圧後の高圧となる。   Here, the fluid pressure at the inlet of the first gear pump is a low pressure before pressure increase, and the fluid pressure at the outlet of the first gear pump is a high pressure after pressure increase. For this reason, the fluid pressure at the inlet of the second gear pump is a low pressure before pressure increase in the parallel connection state of the first gear pump and the second gear pump, and a high pressure after pressure increase in the serial connection state of the first gear pump and the second gear pump.

したがって、請求項1に記載した本発明の3連ギアポンプによれば、第2ギアポンプの入口の流体圧を受ける駆動ギアの浮動軸受の追加の受圧面が、第1ギアポンプと第2ギアポンプの並列接続状態では、流体の昇圧前の圧力(低圧)の受圧面となる。一方、第1ギアポンプと第2ギアポンプの直列接続状態では、追加の受圧面が、流体の昇圧後の圧力(高圧)の受圧面となる。   Therefore, according to the triple gear pump of the present invention described in claim 1, the additional pressure receiving surface of the floating bearing of the drive gear that receives the fluid pressure at the inlet of the second gear pump is connected in parallel between the first gear pump and the second gear pump. In the state, it becomes a pressure receiving surface for the pressure (low pressure) before the fluid pressure is increased. On the other hand, in the serial connection state of the first gear pump and the second gear pump, the additional pressure receiving surface is a pressure receiving surface for the pressure after increasing the pressure of the fluid (high pressure).

即ち、第1ギアポンプと第2ギアポンプの並列接続状態では、元々存在する流体の昇圧前の圧力(低圧)の受圧面と追加の受圧面とが、昇圧前の低圧の流体圧の受圧面となり、元々存在する流体の昇圧後の圧力(高圧)の受圧面だけが、昇圧後の高圧の流体圧の受圧面となる。   That is, in the parallel connection state of the first gear pump and the second gear pump, the pressure receiving surface of the pressure (low pressure) before the pressure increase and the additional pressure receiving surface of the existing fluid are the pressure receiving surfaces of the low pressure fluid pressure before the pressure increase, Only the pressure receiving surface of the pressure (high pressure) after the pressure increase of the fluid that originally exists becomes the pressure receiving surface of the high pressure fluid pressure after the pressure increase.

一方、第1ギアポンプと第2ギアポンプの直列接続状態では、元々存在する流体の昇圧前の圧力(低圧)の受圧面だけが、昇圧前の低圧の流体圧の受圧面となり、元々存在する流体の昇圧後の圧力(高圧)の受圧面と追加の受圧面とが、昇圧後の高圧の流体圧の受圧面となる。   On the other hand, in the serial connection state of the first gear pump and the second gear pump, only the pressure receiving surface for the pressure (low pressure) before the pressure increase of the existing fluid becomes the pressure receiving surface for the low pressure fluid pressure before the pressure increase. The pressure receiving surface of the pressure (high pressure) after the pressure increase and the additional pressure receiving surface become the pressure receiving surface of the high pressure fluid pressure after the pressure increase.

このように、第1ギアポンプと第2ギアポンプの並列接続状態と直列接続状態とで、昇圧前の低圧の流体圧の受圧面と昇圧後の高圧の流体圧の受圧面との面積の割合が変わる。よって、駆動ギアの浮動軸受に加わる固定軸受からの浮動力が第1及び第2ギアポンプの接続状態の切り替えによって変化しても、逆方向の押し付け力を浮動軸受に適切な大きさで加えることができる。   Thus, the ratio of the area of the pressure receiving surface of the low-pressure fluid pressure before pressurization and the pressure receiving surface of the high-pressure fluid pressure after pressurization changes between the parallel connection state and the series connection state of the first gear pump and the second gear pump. . Therefore, even if the floating force from the fixed bearing applied to the floating bearing of the drive gear changes due to the switching of the connection state of the first and second gear pumps, the reverse pressing force can be applied to the floating bearing with an appropriate magnitude. it can.

また、請求項2に記載した本発明の流体供給装置は、
ギアポンプにより昇圧した流体を外部に供給する装置であって、
請求項1記載の3連ギアポンプと、
前記3連ギアポンプの第1ギアポンプと第2ギアポンプとの接続状態を並列接続状態と直列接続状態とに切り替える切替部と、
を備えることを特徴とする。
The fluid supply device of the present invention described in claim 2
A device for supplying fluid pressurized by a gear pump to the outside,
A triple gear pump according to claim 1;
A switching unit that switches a connection state between the first gear pump and the second gear pump of the triple gear pump between a parallel connection state and a series connection state;
It is characterized by providing.

請求項2に記載した本発明の流体供給装置によれば、請求項1に記載した本発明の3連ギアポンプと同様の作用効果を得ることができる。   According to the fluid supply device of the present invention described in claim 2, the same effect as the triple gear pump of the present invention described in claim 1 can be obtained.

さらに、請求項3に記載した本発明の流体供給装置は、請求項2に記載した本発明の流体供給装置において、前記第1ギアポンプ又は前記第2ギアポンプの出口を前記3連ギアポンプの駆動ギアの浮動軸受に設けた追加の受圧面に接続する圧力導入通路と、該圧力導入通路を前記第1ギアポンプの入口に接続する均圧通路と、該均圧通路の前記圧力導入通路に対する接続箇所を開閉する開閉弁とを備え、前記切替部による前記接続状態の切り替えの開始から終了までの過渡期間に、前記開閉弁の弁開度が全閉及び全開の間で連続的又は段階的に変化されることを特徴とする。   Furthermore, the fluid supply device of the present invention described in claim 3 is the fluid supply device of the present invention described in claim 2, wherein the outlet of the first gear pump or the second gear pump is connected to the drive gear of the triple gear pump. A pressure introduction passage connected to an additional pressure receiving surface provided in the floating bearing, a pressure equalization passage connecting the pressure introduction passage to the inlet of the first gear pump, and a connection point of the pressure equalization passage to the pressure introduction passage are opened and closed And a valve opening degree of the on-off valve is changed continuously or stepwise between fully closed and fully open during a transition period from the start to the end of switching of the connection state by the switching unit. It is characterized by that.

請求項3に記載した本発明の流体供給装置によれば、請求項2に記載した本発明の流体供給装置において、第1ギアポンプの出口の流体圧と第2ギアポンプの出口の流体圧とは、第1ギアポンプと第2ギアポンプとの接続状態が並列と直列のどちらであっても、昇圧後の高圧となる。したがって、圧力導入通路の流体圧は高圧となる。   According to the fluid supply device of the present invention described in claim 3, in the fluid supply device of the present invention described in claim 2, the fluid pressure at the outlet of the first gear pump and the fluid pressure at the outlet of the second gear pump are: Regardless of whether the first gear pump and the second gear pump are connected in parallel or in series, the high pressure after boosting is obtained. Therefore, the fluid pressure in the pressure introduction passage is high.

一方、第1ギアポンプの入口の流体圧は、第1ギアポンプと第2ギアポンプとの接続状態が並列と直列のどちらであっても、昇圧前の低圧となる。したがって、均圧通路の流体圧は低圧となる。   On the other hand, the fluid pressure at the inlet of the first gear pump is a low pressure before the pressure increase regardless of whether the connection state of the first gear pump and the second gear pump is in parallel or in series. Therefore, the fluid pressure in the pressure equalizing passage is low.

そして、切替部が第1ギアポンプと第2ギアポンプとの接続状態を並列と直列との間で切り替えると、その開始から終了までの過渡期間において、圧力導入通路に対する均圧通路の接続箇所の開閉弁の弁開度が、全閉と全開との間で連続的又は段階的に変化される。   And when a switching part switches the connection state of a 1st gear pump and a 2nd gear pump between parallel and series, in the transition period from the start to completion | finish, the on-off valve of the connection location of the equalization passage with respect to a pressure introduction passage The valve opening is continuously or stepwise changed between fully closed and fully open.

したがって、第1ギアポンプと第2ギアポンプとの接続状態を並列から直列に切り替えると、その開始から終了までの過渡期間において、圧力導入通路を経て駆動ギアの浮動軸受の追加の受圧面に導かれる流体圧が、低圧から高圧に連続的又は段階的に変化する。反対に、第1ギアポンプと第2ギアポンプとの接続状態を直列から並列に切り替えると、その開始から終了までの過渡期間において、圧力導入通路を経て駆動ギアの浮動軸受の追加の受圧面に導かれる流体圧が、高圧から低圧に連続的又は段階的に変化する。   Therefore, when the connection state of the first gear pump and the second gear pump is switched from parallel to serial, the fluid guided to the additional pressure receiving surface of the floating bearing of the drive gear through the pressure introduction passage during the transition period from the start to the end. The pressure changes continuously or stepwise from low pressure to high pressure. On the other hand, when the connection state of the first gear pump and the second gear pump is switched from serial to parallel, it is guided to the additional pressure receiving surface of the floating bearing of the drive gear through the pressure introduction passage in the transition period from the start to the end. The fluid pressure changes continuously or stepwise from high pressure to low pressure.

このため、第1ギアポンプと第2ギアポンプとの接続状態が切り替わる過渡期間中に、第2ギアポンプの入口の流体圧が昇圧前の低圧と昇圧後の高圧との相互間で増減するのに伴い、浮動軸受に発生する浮動力が変化しても、その変化に同期させて、浮動力と逆方向に浮動軸受に加える押し付け力を変化させて、常に適切な大きさで浮動力とは逆方向の押し付け力を浮動軸受に加えることができる。   For this reason, during the transition period in which the connection state of the first gear pump and the second gear pump is switched, the fluid pressure at the inlet of the second gear pump increases or decreases between the low pressure before the pressure increase and the high pressure after the pressure increase. Even if the floating force generated in the floating bearing changes, the pushing force applied to the floating bearing is changed in the opposite direction to the floating force in synchronization with the change, so that the floating force is always in an appropriate size and in the direction opposite to the floating force. A pressing force can be applied to the floating bearing.

本発明によれば、3連ギアポンプの浮動軸受に発生する浮動力が第1及び第2ギアポンプの接続状態の切り替えによって変化しても、逆方向の押し付け力を浮動軸受に適切な大きさで加えることができる。   According to the present invention, even if the floating force generated in the floating bearing of the triple gear pump is changed by switching the connection state of the first and second gear pumps, the pressing force in the reverse direction is applied to the floating bearing with an appropriate magnitude. be able to.

本発明の一実施形態に係る3連ギアポンプの駆動ギア及び従動ギアの配列を示す説明図である。It is explanatory drawing which shows the arrangement | sequence of the drive gear of the triple gear pump which concerns on one Embodiment of this invention, and a driven gear. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図1の3連ギアポンプを昇圧に用いる航空機の燃料供給装置の一例を示すもので、3連ギアポンプを並列接続状態とした場合の説明図である。It is an explanatory view at the time of making a triple gear pump into a parallel connection state, showing an example of an aircraft fuel supply device using the triple gear pump of FIG. 1 for pressurization. 図3のノズル−フラッパ機構とその駆動回路の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the nozzle flapper mechanism of FIG. 3, and its drive circuit. 図3の3連ギアポンプを直列接続状態とした場合の説明図である。It is explanatory drawing at the time of making the triple gear pump of FIG. 3 into a serial connection state. 図2の駆動ギア及び従動ギアとそれらの浮動軸受による軸受部分の拡大断面図である。It is an expanded sectional view of the bearing part by the drive gear of FIG. 2, a driven gear, and those floating bearings. (a)は図3に示す並列接続状態の駆動ギアの側面における燃料圧の分布を模式的に示す説明図、(b)は同分布を駆動ギアの回転方向における位相との関係で示すグラフである。(A) is explanatory drawing which shows typically the distribution of the fuel pressure in the side surface of the drive gear of the parallel connection state shown in FIG. 3, (b) is a graph which shows the distribution by the relationship with the phase in the rotation direction of a drive gear. is there. (a)は図5に示す直列接続状態の駆動ギアの側面における燃料圧の分布を模式的に示す説明図、(b)は同分布を駆動ギアの回転方向における位相との関係で示すグラフである。(A) is explanatory drawing which shows typically the distribution of the fuel pressure in the side surface of the drive gear of the serial connection state shown in FIG. 5, (b) is a graph which shows this distribution by the relationship with the phase in the rotation direction of a drive gear. is there. 図3に示す並列接続状態における各浮動軸受の受圧面に加わる燃料圧を示す説明図である。It is explanatory drawing which shows the fuel pressure added to the pressure receiving surface of each floating bearing in the parallel connection state shown in FIG. 図5に示す直列接続状態における各浮動軸受の受圧面に加わる燃料圧を示す説明図である。It is explanatory drawing which shows the fuel pressure added to the pressure receiving surface of each floating bearing in the serial connection state shown in FIG. 本発明の他の実施形態に係る、図1の3連ギアポンプを昇圧に用いた航空燃料供給装置の他の例を示すもので、3連ギアポンプを並列接続状態とした場合の説明図である。It is explanatory drawing at the time of setting a triple gear pump to the parallel connection state which shows the other example of the aviation fuel supply apparatus which used the triple gear pump of FIG. 1 for pressure | voltage rise based on other embodiment of this invention. 図11の3連ギアポンプを直列接続状態とした場合の説明図である。It is explanatory drawing at the time of setting the triple gear pump of FIG. 11 to the serial connection state.

以下、本発明の実施形態について図面を参照しながら説明する。図1の説明図に示す本実施形態の3連ギアポンプ1は、ハウジング3の内部に収容した1つの駆動ギア5とこれに噛合する第1及び第2の2つの従動ギア7,9とを有している。そして、各従動ギア7,9と駆動ギア5との組により、第1及び第2の2つのギアポンプ11,13を構成している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The triple gear pump 1 of the present embodiment shown in the explanatory view of FIG. 1 has one drive gear 5 housed inside the housing 3 and first and second driven gears 7 and 9 meshing with the drive gear 5. doing. The pair of driven gears 7 and 9 and the drive gear 5 constitute the first and second gear pumps 11 and 13.

駆動ギア5と第1従動ギア7並びに第2従動ギア9とはそれぞれハウジング3内で互いにかみ合わされている。ハウジング3の第1吸入口11aと第2吸入口13aからそれぞれギア5,7、ギア5,9の歯5aと歯7a(9a)の間に流れ込んだ流体は、ギアの回転に伴って隣り合う歯とハウジング3の壁面とで囲まれる空間に閉じ込められて昇圧され、第1吐出口11bと第2吐出口13bまで移動して送り出される。   The drive gear 5, the first driven gear 7, and the second driven gear 9 are meshed with each other in the housing 3. The fluids flowing between the first suction port 11a and the second suction port 13a of the housing 3 between the gears 5 and 7 and the teeth 5a and 7a (9a) of the gears 5 and 9 are adjacent to each other as the gear rotates. The pressure is increased by being confined in the space surrounded by the teeth and the wall surface of the housing 3, and the pressure is increased to move to the first discharge port 11 b and the second discharge port 13 b.

即ち、この3連ギアポンプ1は、駆動ギア5と第1従動ギア7とを主体とする第1ギアポンプ11と、駆動ギア5と第2従動ギア9とを主体とする第2ギアポンプ13とを有する構造となっている。   That is, the triple gear pump 1 has a first gear pump 11 mainly composed of the drive gear 5 and the first driven gear 7 and a second gear pump 13 mainly composed of the drive gear 5 and the second driven gear 9. It has a structure.

第1従動ギア7と第2従動ギア9とは同じ大きさのギアが用いられており、第1ギアポンプ11と第2ギアポンプ13とは、駆動ギア5の回転数に対する吐出流量が同一である。なお、各ギアの歯形としては、平歯、はす歯等に限定されず、正弦曲線やトロコイド曲線等、さまざまな歯形が適用可能である。   The first driven gear 7 and the second driven gear 9 have the same size, and the first gear pump 11 and the second gear pump 13 have the same discharge flow rate with respect to the rotational speed of the drive gear 5. In addition, as a tooth profile of each gear, it is not limited to a flat tooth, a helical tooth, etc. Various tooth profiles, such as a sine curve and a trochoid curve, are applicable.

図1のA−A線断面図である図2に示すように、駆動ギア5と第1及び第2従動ギア7,9の図中左側の回転軸5b,7b,9b(請求項中の一端に相当)は、その回転中心軸方向(図2中の左右方向)に移動可能にハウジング3に支持された浮動軸受15a,17a,19aによって軸受されている。また、駆動ギア5と第1及び第2従動ギア7,9の図中右側の回転軸5c,7c,9c(請求項中の他端に相当)は、ハウジング3に固定されて回転中心軸方向に移動不能な固定軸受15b,17b,19bによって軸受されている。   As shown in FIG. 2 which is a cross-sectional view taken along line AA of FIG. 1, the drive shaft 5 and the first and second driven gears 7, 9 on the left rotation shafts 5b, 7b, 9b (one end in the claims). Is supported by floating bearings 15a, 17a, 19a supported by the housing 3 so as to be movable in the direction of the rotation center axis (left-right direction in FIG. 2). Further, the right rotation shafts 5c, 7c and 9c (corresponding to the other end in the claims) of the drive gear 5 and the first and second driven gears 7 and 9 in the drawing are fixed to the housing 3 in the direction of the rotation center axis. The bearings 15b, 17b and 19b are immovable.

上述した3連ギアポンプ1の第1ギアポンプ11と第2ギアポンプ13は、並列と直列とに接続状態を切替可能に構成されている。並列接続状態では、図1に示す第1吸入口11aと第2吸入口13aとが接続され、かつ、第1吐出口11bと第2吐出口13bとが接続される。直列接続状態では、第1ギアポンプ11の第1吐出口11bと第2ギアポンプ13の第2吸入口13aとが接続される。   The first gear pump 11 and the second gear pump 13 of the triple gear pump 1 described above are configured to be able to switch connection states in parallel and in series. In the parallel connection state, the first suction port 11a and the second suction port 13a shown in FIG. 1 are connected, and the first discharge port 11b and the second discharge port 13b are connected. In the serial connection state, the first discharge port 11b of the first gear pump 11 and the second suction port 13a of the second gear pump 13 are connected.

図3は図1の3連ギアポンプ1を昇圧に用いる航空機(図示せず)の燃料供給装置の一例を示す説明図である。この燃料供給装置20(請求項中の流体供給装置に相当)では、ブーストポンプ21でブーストされた低圧の燃料(流体)が、第1ギアポンプ11及び第2ギアポンプ13により昇圧されて、不図示のエンジンノズル(請求項中の外部に相当)に供給される。   FIG. 3 is an explanatory diagram showing an example of a fuel supply device for an aircraft (not shown) that uses the triple gear pump 1 of FIG. 1 for boosting. In the fuel supply device 20 (corresponding to the fluid supply device in the claims), the low-pressure fuel (fluid) boosted by the boost pump 21 is boosted by the first gear pump 11 and the second gear pump 13 and is not shown. It is supplied to an engine nozzle (corresponding to the outside in the claims).

詳しくは、ブースト後の低圧の燃料が、第1供給経路23aを介して第1ギアポンプ11の第1吸入口11aに供給される。第2ギアポンプ13の第2吸入口13aには、第1供給経路23aから分岐した第2供給経路23bが接続されている。第2供給経路23bには、第1供給経路23aへの燃料の逆流を防止する逆止弁23cが設けられている。   Specifically, the low-pressure fuel after the boost is supplied to the first suction port 11a of the first gear pump 11 through the first supply path 23a. A second supply path 23 b branched from the first supply path 23 a is connected to the second suction port 13 a of the second gear pump 13. The second supply path 23b is provided with a check valve 23c that prevents the fuel from flowing back to the first supply path 23a.

第1ギアポンプ11の第1吐出口11bには、第1吐出経路25aが接続されており、第2ギアポンプ13の第2吐出口13bには、第2吐出経路25bが接続されている。第1吐出経路25aと第2吐出経路25bは、不図示のエンジンのノズルに接続されている。したがって、図3の燃料供給装置20は、第1ギアポンプ11と第2ギアポンプ13とが並列接続された状態にある。この状態で逆止弁23cは、第1供給経路23aから第2供給経路23bへの燃料の通過を可能とするよう開弁されている。   A first discharge path 25 a is connected to the first discharge port 11 b of the first gear pump 11, and a second discharge path 25 b is connected to the second discharge port 13 b of the second gear pump 13. The first discharge path 25a and the second discharge path 25b are connected to an engine nozzle (not shown). Therefore, the fuel supply device 20 of FIG. 3 is in a state where the first gear pump 11 and the second gear pump 13 are connected in parallel. In this state, the check valve 23c is opened to allow fuel to pass from the first supply path 23a to the second supply path 23b.

第1吐出経路25aは差圧式開閉弁27の一次側に接続されており、差圧式開閉弁27の二次側は第2供給経路23bに接続されている。差圧式開閉弁27の弁体27aは、ばね室27bに収容されたばね27cによって、一次側と二次側とを遮断する閉弁側に付勢されている。差圧式開閉弁27の一次側とばね室27bとは、均圧通路27dによって接続されている。   The first discharge path 25a is connected to the primary side of the differential pressure type on / off valve 27, and the secondary side of the differential pressure type on / off valve 27 is connected to the second supply path 23b. The valve body 27a of the differential pressure type on-off valve 27 is urged toward the valve closing side that shuts off the primary side and the secondary side by a spring 27c accommodated in the spring chamber 27b. The primary side of the differential pressure type open / close valve 27 and the spring chamber 27b are connected by a pressure equalizing passage 27d.

均圧通路27dにはノズル27eが設けられており、均圧通路27dのノズル27eよりも差圧式開閉弁27の一次側の箇所には、オリフィス27fが設けられている。均圧通路27dのノズル27eは、第1供給経路23aに接続された低圧室29内に延出している。低圧室29には、ノズル−フラッパ機構31が設けられている。ノズル27eが閉じている場合、ばね室27bの内圧は、差圧式開閉弁27の一次側に接続された第1吐出経路25aの内圧と同じ圧力に均圧化される。   A nozzle 27e is provided in the pressure equalizing passage 27d, and an orifice 27f is provided at a location on the primary side of the differential pressure type on-off valve 27 with respect to the nozzle 27e of the pressure equalizing passage 27d. The nozzle 27e of the pressure equalizing passage 27d extends into the low pressure chamber 29 connected to the first supply path 23a. The low pressure chamber 29 is provided with a nozzle-flapper mechanism 31. When the nozzle 27 e is closed, the internal pressure of the spring chamber 27 b is equalized to the same pressure as the internal pressure of the first discharge path 25 a connected to the primary side of the differential pressure type on-off valve 27.

ノズル−フラッパ機構31は、図4の説明図に示すように、トルクモータ33を有している。トルクモータ33は、先端部に対向する磁極を有する1対の永久磁石33a,33bと、これら永久磁石33a,33bの磁極間に図中の33cを回転軸として回転可能に設けられたアーマチュア33dと、アーマチュア33dの周囲に巻回されたコイル33e,33fとから概略構成されている。   The nozzle-flapper mechanism 31 has a torque motor 33 as shown in the explanatory view of FIG. The torque motor 33 includes a pair of permanent magnets 33a and 33b having a magnetic pole facing the tip, and an armature 33d provided between the magnetic poles of the permanent magnets 33a and 33b so as to be rotatable about a rotation axis 33c. The coil 33e and 33f are wound around the armature 33d.

また、ノズル−フラッパ機構31は、トルクモータ33によって駆動されるフラッパ35を有している。フラッパ35は、アーマチュア33dと直交するように連結されていると共に、回転軸33cにより回転可能に支持されている。また、フラッパ35は、回転軸33cに設けた不図示のトーションスプリングによって、アーマチュア33dが水平となるように(フラッパ35が鉛直方向に延在するように)付勢されている。   The nozzle-flapper mechanism 31 has a flapper 35 that is driven by a torque motor 33. The flapper 35 is connected so as to be orthogonal to the armature 33d, and is rotatably supported by the rotation shaft 33c. Further, the flapper 35 is biased by a torsion spring (not shown) provided on the rotation shaft 33c so that the armature 33d is horizontal (so that the flapper 35 extends in the vertical direction).

コイル33eには第1電流ドライバ37によって電流が供給され、コイル33fには第2電流ドライバ39によって電流が供給される。これら第1電流ドライバ37及び第2電流ドライバ39は、それぞれモータ制御部41から入力されるアーマチュア33dの操作量に応じた電流を生成する。通常時は第1電流ドライバ37のみ動作し、第2電流ドライバ39は、第1電流ドライバ37の故障時に動作する。   A current is supplied to the coil 33e by the first current driver 37, and a current is supplied to the coil 33f by the second current driver 39. Each of the first current driver 37 and the second current driver 39 generates a current corresponding to the operation amount of the armature 33d input from the motor control unit 41. Normally, only the first current driver 37 operates, and the second current driver 39 operates when the first current driver 37 fails.

ここで、第1電流ドライバ37からコイル33eに電流が供給されると、供給電流に応じたトルクがトルクモータ33に発生してアーマチュア33dが回転し、アーマチュア33dの回転に追従してフラッパ35が揺動してノズル27eの方向に変位する。そして、アーマチュア33dに作用する回転トルクと不図示のトーションスプリングによる反力とがつり合った位置でフラッパ35は停止する。これにより、フラッパ35の変位量に応じた開度でノズル−フラッパ機構31がノズル27eを開き、図3の低圧室29と均圧通路27dとを連通させる。   Here, when a current is supplied from the first current driver 37 to the coil 33e, a torque corresponding to the supplied current is generated in the torque motor 33, the armature 33d rotates, and the flapper 35 follows the rotation of the armature 33d. It swings and is displaced in the direction of the nozzle 27e. The flapper 35 stops at a position where a rotational torque acting on the armature 33d and a reaction force by a torsion spring (not shown) are balanced. As a result, the nozzle-flapper mechanism 31 opens the nozzle 27e at an opening degree corresponding to the amount of displacement of the flapper 35, and connects the low pressure chamber 29 and the pressure equalizing passage 27d in FIG.

なお、トルクモータ33を用いたノズル−フラッパ機構31によるノズル27eの開閉動作は、不図示のセンサにより検出したフラッパ35の変位量に基づいてフィードバック制御される。詳しくは、例えばフラッパ35の変位により生じた物理量をセンサで検出してモータ制御部41にフィードバックし、フラッパ35の目標変位量との偏差をモータ制御部41で算出する。そして、モータ制御部41は、算出した偏差に比例ゲイン定数を乗算して、アーマチュア33d乃至フラッパ35の目標変位量に応じたトルクモータ33の操作量(供給電流)を算出し、第1電流ドライバ37(又は第2電流ドライバ39)に出力する。   The opening / closing operation of the nozzle 27e by the nozzle-flapper mechanism 31 using the torque motor 33 is feedback-controlled based on the displacement amount of the flapper 35 detected by a sensor (not shown). Specifically, for example, a physical quantity generated by the displacement of the flapper 35 is detected by a sensor and fed back to the motor control unit 41, and a deviation from the target displacement amount of the flapper 35 is calculated by the motor control unit 41. Then, the motor control unit 41 multiplies the calculated deviation by a proportional gain constant to calculate the operation amount (supply current) of the torque motor 33 according to the target displacement amount of the armature 33d to the flapper 35, and the first current driver 37 (or the second current driver 39).

このように、トルクモータ33への供給電流がフィードバック制御されることにより、アーマチュア33d乃至フラッパ35の実際の変位量が目標変位量と一致するように制御されると共に、フラッパ35によるノズル27eの開度が制御される。   As described above, the current supplied to the torque motor 33 is feedback-controlled, so that the actual displacement amount of the armature 33d to the flapper 35 is controlled to coincide with the target displacement amount, and the opening of the nozzle 27e by the flapper 35 is controlled. The degree is controlled.

ノズル−フラッパ機構31のフラッパ35によりノズル27eが開かれると、均圧通路27dのオリフィス27fよりもノズル27e側(差圧式開閉弁27のばね室27b側)の内圧と、均圧通路27dのオリフィス27fよりも差圧式開閉弁27の一次室側(燃料供給装置20の第1吐出経路25a側)の内圧との間に、圧力差が生じる。   When the nozzle 27e is opened by the flapper 35 of the nozzle-flapper mechanism 31, the internal pressure on the nozzle 27e side (the spring chamber 27b side of the differential pressure on-off valve 27) from the orifice 27f of the pressure equalizing passage 27d and the orifice of the pressure equalizing passage 27d. A pressure difference is generated between the internal pressure on the primary chamber side (the first discharge path 25a side of the fuel supply device 20) of the differential pressure type on-off valve 27 with respect to 27f.

詳しくは、均圧通路27dのオリフィス27fよりもノズル27e側には、図3の第1ギアポンプ11により昇圧された第1吐出経路25aの燃料が、オリフィス27fによって、第1ギアポンプ11により昇圧される前の第1供給経路23aの燃料圧力程度に減圧されて流入する。したがって、オリフィス27fを挟んで均圧通路27dの一次室側の燃料圧が高圧となり、ノズル27e側の燃料圧が低圧となる。   Specifically, on the nozzle 27e side of the pressure equalizing passage 27d from the orifice 27f, the fuel in the first discharge passage 25a pressurized by the first gear pump 11 in FIG. 3 is pressurized by the first gear pump 11 by the orifice 27f. The pressure is reduced to about the fuel pressure in the previous first supply path 23a and flows in. Therefore, the fuel pressure on the primary chamber side of the pressure equalizing passage 27d across the orifice 27f becomes high, and the fuel pressure on the nozzle 27e side becomes low.

このように、差圧式開閉弁27の一次室側よりもばね室27b側の燃料圧が低くなると、図5の説明図に示すように、ばね27cの付勢力に抗して弁体27aが一次室の燃料圧により開弁され、差圧式開閉弁27を介して、第1吐出経路25aと第2供給経路23bとが接続される。即ち、第1ギアポンプ11の第1吐出口11bと第2ギアポンプ13の第2吸入口13aとが接続されて、図5の燃料供給装置20は、第1ギアポンプ11と第2ギアポンプ13とが直列接続された状態となる。   Thus, when the fuel pressure on the spring chamber 27b side becomes lower than the primary chamber side on the differential pressure type on-off valve 27, the valve body 27a is primary against the urging force of the spring 27c as shown in the explanatory view of FIG. The valve is opened by the fuel pressure in the chamber, and the first discharge path 25 a and the second supply path 23 b are connected via the differential pressure type on-off valve 27. That is, the first discharge port 11b of the first gear pump 11 and the second suction port 13a of the second gear pump 13 are connected, and the fuel supply device 20 of FIG. 5 includes the first gear pump 11 and the second gear pump 13 in series. Connected.

第1ギアポンプ11と第2ギアポンプ13とが直列接続された図5の状態では、第2供給経路23bの燃料圧が第1ギアポンプ11により昇圧された後の高圧となる。したがって、第2ギアポンプ13は実質的に燃料の昇圧動作を行わず、第1ギアポンプ11により昇圧された燃料をそのままスルーする。   In the state of FIG. 5 in which the first gear pump 11 and the second gear pump 13 are connected in series, the fuel pressure in the second supply path 23 b becomes a high pressure after being boosted by the first gear pump 11. Therefore, the second gear pump 13 does not substantially perform the fuel boosting operation, and passes through the fuel boosted by the first gear pump 11 as it is.

なお、第1ギアポンプ11と第2ギアポンプ13とが直列接続された図5の状態では、第2供給経路23bの燃料圧が高圧となることから、第2供給経路23bの逆止弁23cが閉弁して、第2供給経路23bから第1供給経路23aへの高圧の燃料の逆流が防止される。   In the state of FIG. 5 in which the first gear pump 11 and the second gear pump 13 are connected in series, the fuel pressure in the second supply path 23b becomes high, and the check valve 23c in the second supply path 23b is closed. Therefore, the backflow of the high-pressure fuel from the second supply path 23b to the first supply path 23a is prevented.

図3及び図5の符号43は、第1供給経路23aと第2吐出経路25bとの間に介設されたリリーフバルブである。このリリーフバルブ43は、3連ギアポンプ1の後段に設置される不図示の燃料計量機構部の不具合等により封じ込めになった第2吐出経路25bの燃料の圧力が、リリーフバルブ43内のスプリング(図示せず)の付勢力に打ち勝つまで上昇した際に、第2吐出経路25bの燃料圧力によって開弁される。   3 and 5 is a relief valve interposed between the first supply path 23a and the second discharge path 25b. In this relief valve 43, the pressure of the fuel in the second discharge path 25b, which is contained due to a malfunction of a fuel metering mechanism (not shown) installed at the rear stage of the triple gear pump 1, is reduced by a spring (see FIG. (Not shown), the valve is opened by the fuel pressure in the second discharge passage 25b.

以上の説明からも明らかなように、本実施形態では、差圧式開閉弁27、均圧通路27d、低圧室29、ノズル−フラッパ機構31、トルクモータ33、及び、フラッパ35等によって、請求項中の切替部が構成されている。   As apparent from the above description, in the present embodiment, the differential pressure type on-off valve 27, the pressure equalizing passage 27d, the low pressure chamber 29, the nozzle-flapper mechanism 31, the torque motor 33, the flapper 35, etc. The switching unit is configured.

ところで、3連ギアポンプ1においては、第1及び第2の各ギアポンプ11,13を燃料が通過する際に、駆動ギア5や第1及び第2従動ギア7,9の歯5a,7a,9aの側面に一部の燃料が回り込む。したがって、歯5a,7a,9aの側面が、そこに回り込んだ燃料の流体圧の受圧面となる。   By the way, in the triple gear pump 1, when the fuel passes through the first and second gear pumps 11, 13, the teeth 5a, 7a, 9a of the drive gear 5 and the first and second driven gears 7, 9 are used. Some fuel wraps around the side. Therefore, the side surfaces of the teeth 5a, 7a, 9a serve as pressure receiving surfaces for the fluid pressure of the fuel that wraps around the teeth.

この受圧面に加わる燃料の流体圧によって駆動ギア5の浮動軸受15aや第1及び第2従動ギア7,9の浮動軸受17a,19aは、図6の説明図に示すように、回転軸5c,7c,9cの軸方向において駆動ギア5や第1及び第2従動ギア7,9から浮く(離れる)方向への浮動力Ffを受ける。   The floating bearing 15a of the drive gear 5 and the floating bearings 17a and 19a of the first and second driven gears 7 and 9 are driven by the fluid pressure of the fuel applied to the pressure receiving surface, as shown in the explanatory view of FIG. In the axial direction of 7c, 9c, a floating force Ff in the direction of floating (separating) from the drive gear 5 and the first and second driven gears 7, 9 is received.

浮動軸受15a,17a,19aが駆動ギア5や第1及び第2従動ギア7,9から浮いて両者の間に隙間が生じると、この隙間からの燃料の漏れ流れによって第1及び第2の各ギアポンプ11,13が、燃料を設計通りに吐出できなくなる。   When the floating bearings 15a, 17a, and 19a float from the drive gear 5 and the first and second driven gears 7 and 9, and a gap is formed between them, each of the first and second is caused by the fuel leakage flow from the gap. The gear pumps 11 and 13 cannot discharge the fuel as designed.

そこで、浮動軸受15a,17a,19aのハウジング3と対向する部分には、ハウジング3との隙間に回り込んだ燃料の流体圧の受圧面が設けられている。そして、この受圧面に加わる燃料の流体圧によって、上述した浮動力Ffに対抗する押し付け力Fpを浮動軸受15a,17a,19aに与えるようにしている。   In view of this, a portion of the floating bearings 15a, 17a, 19a facing the housing 3 is provided with a pressure receiving surface for the fluid pressure of the fuel that has entered the gap with the housing 3. A pressing force Fp that opposes the above-described floating force Ff is applied to the floating bearings 15a, 17a, and 19a by the fluid pressure of the fuel applied to the pressure receiving surface.

この押し付け力Fpは、浮動力Ffを僅かに上回る程度であることが望ましい。押し付け力Fpが低すぎると、浮動軸受15a,17a,19aが、駆動ギア5や第1及び第2従動ギア7,9から浮くのを防ぐことができなくなる。反対に、押し付け力Fpが高すぎると、駆動ギア5や第1及び第2従動ギア7,9が、固定軸受15b,17b,19bに過剰に押し付けられて、回転時に摩擦を生じ、焼き付き等の不具合が発生する要因となる。   It is desirable that the pressing force Fp is slightly higher than the floating force Ff. If the pressing force Fp is too low, the floating bearings 15a, 17a, 19a cannot be prevented from floating from the drive gear 5 and the first and second driven gears 7, 9. On the other hand, if the pressing force Fp is too high, the drive gear 5 and the first and second driven gears 7 and 9 are excessively pressed against the fixed bearings 15b, 17b, and 19b, causing friction during rotation and causing seizure or the like. It becomes a factor that the trouble occurs.

そこで、各浮動軸受15a,17a,19aのハウジング3と対向する部分にそれぞれ設けられる受圧面は、浮動軸受15a,17a,19aに発生する浮動力Ffを僅かに上回る押し付け力Fpが生じるような形状に設定されている。以下、各浮動軸受15a,17a,19aの受圧面について説明する。   Therefore, the pressure receiving surfaces provided in the portions of the floating bearings 15a, 17a, 19a facing the housing 3 are shaped so that a pressing force Fp slightly exceeding the floating force Ff generated in the floating bearings 15a, 17a, 19a is generated. Is set to Hereinafter, the pressure receiving surfaces of the floating bearings 15a, 17a, and 19a will be described.

まず、第1及び第2従動ギア7,9にそれぞれ対応する浮動軸受17a,19aの受圧面について説明する。   First, the pressure receiving surfaces of the floating bearings 17a and 19a corresponding to the first and second driven gears 7 and 9 will be described.

最初に、浮動軸受17aの側面が受ける燃料圧は、図3と図5とを比較すると分かるように、並列接続状態と直列接続状態とのどちらにおいても、第1従動ギア7の回転方向において同じ分布となる。したがって、浮動軸受17aが受ける浮動力Ffの大きさは、第1ギアポンプ11と第2ギアポンプ13との接続状態が並列と直列との間で切り替わっても変化しない。   First, the fuel pressure received by the side surface of the floating bearing 17a is the same in the rotational direction of the first driven gear 7 in both the parallel connection state and the series connection state, as can be seen by comparing FIG. 3 and FIG. Distribution. Therefore, the magnitude of the floating force Ff received by the floating bearing 17a does not change even when the connection state of the first gear pump 11 and the second gear pump 13 is switched between parallel and series.

そこで、第1従動ギア7の浮動軸受17aには、図6に示すように、回転軸7bの軸受側と反対側に設けた段差部によって、高圧受圧面17c及び低圧受圧面17d(請求項中の受圧面に相当)を形成している。高圧受圧面17cは回転軸7bの径方向外側に、低圧受圧面17dは径方向内側にそれぞれ配置されている。   Therefore, as shown in FIG. 6, the floating bearing 17a of the first driven gear 7 has a high pressure receiving surface 17c and a low pressure receiving surface 17d (in the claims) by a step portion provided on the opposite side to the bearing side of the rotating shaft 7b. Equivalent to the pressure receiving surface). The high pressure receiving surface 17c is arranged on the radially outer side of the rotating shaft 7b, and the low pressure receiving surface 17d is arranged on the radially inner side.

そして、浮動軸受17aの高圧受圧面17cが存在する空間に、3連ギアポンプ1による昇圧後の燃料圧(第2ギアポンプ13の第2吐出口13bにおける燃料圧)を導入している。また、低圧受圧面17dが存在する空間には、3連ギアポンプ1による昇圧前の燃料圧(第1ギアポンプ11の第1吸入口11aにおける燃料圧)を導入している。   Then, the fuel pressure after pressure increase by the triple gear pump 1 (fuel pressure at the second discharge port 13b of the second gear pump 13) is introduced into the space where the high pressure receiving surface 17c of the floating bearing 17a exists. In addition, the fuel pressure before pressure increase by the triple gear pump 1 (fuel pressure at the first suction port 11a of the first gear pump 11) is introduced into the space where the low pressure receiving surface 17d exists.

高圧受圧面17cが存在する空間と低圧受圧面17dが存在する空間とは、シール部材によって遮断されている。このため、浮動軸受17aには、高圧受圧面17cが受ける3連ギアポンプ1による昇圧後の燃料圧と、低圧受圧面17dが受ける3連ギアポンプ1による昇圧前の燃料圧とを合計した、第1従動ギア7を固定軸受17b側に押し付ける向きの押し付け力Fpが発生する。   The space where the high pressure receiving surface 17c exists and the space where the low pressure receiving surface 17d exists are blocked by a seal member. For this reason, the floating bearing 17a includes the first fuel pressure after the pressure increase by the triple gear pump 1 received by the high pressure pressure receiving surface 17c and the fuel pressure before the pressure increase by the triple gear pump 1 received by the low pressure pressure receiving surface 17d. A pressing force Fp in a direction to press the driven gear 7 toward the fixed bearing 17b is generated.

ここで、高圧受圧面17cと低圧受圧面17dとにそれぞれ導入する3連ギアポンプ1による昇圧前後の燃料圧は、第1ギアポンプ11と第2ギアポンプ13との接続状態が並列と直列とのどちらであっても同じである。したがって、浮動軸受17aに発生する押し付け力Fpの大きさは、第1ギアポンプ11と第2ギアポンプ13との接続状態が並列と直列との間で切り替わっても変化しない。   Here, the fuel pressure before and after the pressure increase by the triple gear pump 1 introduced into the high pressure receiving surface 17c and the low pressure receiving surface 17d, respectively, is either in parallel or in series when the first gear pump 11 and the second gear pump 13 are connected. The same is true. Therefore, the magnitude of the pressing force Fp generated in the floating bearing 17a does not change even when the connection state between the first gear pump 11 and the second gear pump 13 is switched between parallel and series.

そこで、浮動軸受17aにおいては、浮動軸受17aに発生する押し付け力Fpが浮動軸受17aの浮動力Ffを僅かに上回るように、3連ギアポンプ1による昇圧前後の燃料圧を考慮して、高圧受圧面17cと低圧受圧面17dとの面積比が設定されている。   Therefore, in the floating bearing 17a, the high pressure receiving surface is taken into consideration the fuel pressure before and after boosting by the triple gear pump 1 so that the pressing force Fp generated in the floating bearing 17a slightly exceeds the floating force Ff of the floating bearing 17a. The area ratio between 17c and the low pressure receiving surface 17d is set.

次に、浮動軸受19aの側面が受ける燃料圧の第2従動ギア9の回転方向における分布は、図3と図5とを比較すると分かるように、並列接続状態と直列接続状態で異なる。   Next, the distribution of the fuel pressure received by the side surface of the floating bearing 19a in the rotation direction of the second driven gear 9 is different between the parallel connection state and the series connection state, as can be seen by comparing FIG. 3 and FIG.

即ち、図3の並列接続状態では、第2供給経路23bの燃料圧が、第1ギアポンプ11により昇圧される前の低圧になる。このため、浮動軸受19aの側面が受ける燃料圧は、第2吸入口13a付近のおおよそ90゜の位相部分が低圧の領域となり、第2吐出口13bに連なる残るおおよそ270°の位相部分が、第2ギアポンプ13による低圧から高圧への昇圧部分、及び、昇圧後の燃料と同じ高圧の領域となる。   That is, in the parallel connection state of FIG. 3, the fuel pressure in the second supply path 23 b becomes a low pressure before being boosted by the first gear pump 11. For this reason, the fuel pressure received by the side surface of the floating bearing 19a is a low-pressure region of the approximately 90 ° phase portion in the vicinity of the second suction port 13a, and the remaining approximately 270 ° phase portion connected to the second discharge port 13b is the first. The pressure increase portion from the low pressure to the high pressure by the two-gear pump 13 and the same high pressure region as the fuel after the pressure increase.

一方、図5の直列接続状態では、第2供給経路23bの燃料圧が第1ギアポンプ11により昇圧された後の高圧になり、第2吸入口13aと第2吐出口13bとのどちらの燃料圧も高圧となる。このため、浮動軸受19aの側面が受ける燃料圧は、360°の全周に亘って高圧の領域となる。   On the other hand, in the serial connection state of FIG. 5, the fuel pressure in the second supply path 23b becomes a high pressure after being boosted by the first gear pump 11, and the fuel pressure of either the second suction port 13a or the second discharge port 13b. Also becomes high pressure. For this reason, the fuel pressure received by the side surface of the floating bearing 19a becomes a high pressure region over the entire circumference of 360 °.

このように、浮動軸受19aの側面が受ける燃料圧の、第2従動ギア9の回転方向における分布は、並列接続状態と直列接続状態とで異なる。したがって、浮動軸受19aが受ける浮動力Ffの大きさは、第1ギアポンプ11と第2ギアポンプ13との接続状態が並列と直列との間で切り替わると変化する。   As described above, the distribution of the fuel pressure received by the side surface of the floating bearing 19a in the rotational direction of the second driven gear 9 is different between the parallel connection state and the series connection state. Therefore, the magnitude of the floating force Ff received by the floating bearing 19a changes when the connection state between the first gear pump 11 and the second gear pump 13 is switched between parallel and series.

そこで、図6の浮動軸受15aの下方にほぼ省略して記載されている第2従動ギア9の浮動軸受19aも、第1従動ギア7の浮動軸受17aと同様に、回転軸9bの軸受側と反対側に設けた段差部によって、高圧受圧面19c及び低圧受圧面19d(請求項中の受圧面に相当、図9及び図10参照)を形成している。高圧受圧面19cは回転軸9bの径方向外側に、低圧受圧面19dは径方向内側にそれぞれ配置されている。   Therefore, the floating bearing 19a of the second driven gear 9 which is substantially omitted below the floating bearing 15a in FIG. 6 is also similar to the floating bearing 17a of the first driven gear 7 on the bearing side of the rotary shaft 9b. A high-pressure receiving surface 19c and a low-pressure receiving surface 19d (corresponding to the pressure receiving surface in the claims, see FIGS. 9 and 10) are formed by the stepped portion provided on the opposite side. The high pressure receiving surface 19c is disposed on the radially outer side of the rotating shaft 9b, and the low pressure receiving surface 19d is disposed on the radially inner side.

そして、浮動軸受19aの高圧受圧面19cが存在する空間に、3連ギアポンプ1による昇圧後の燃料圧(第2ギアポンプ13の第2吐出口13bにおける燃料圧)を導入している。また、低圧受圧面19dが存在する空間には、3連ギアポンプ1の運転状態(第1ギアポンプ11と第2ギアポンプ13との接続状態)の切り替えによって変化する燃料圧(第2ギアポンプ13の第2吸入口13aにおける燃料圧)を導入している。   The fuel pressure after the pressure is increased by the triple gear pump 1 (fuel pressure at the second discharge port 13b of the second gear pump 13) is introduced into the space where the high pressure receiving surface 19c of the floating bearing 19a exists. Further, in the space where the low pressure pressure receiving surface 19d exists, the fuel pressure (the second gear pump 13 second state) is changed by switching the operation state of the triple gear pump 1 (the connection state between the first gear pump 11 and the second gear pump 13). The fuel pressure at the suction port 13a) is introduced.

高圧受圧面19cが存在する空間と低圧受圧面19dが存在する空間とは、シール部材によって遮断されている。このため、浮動軸受19aには、高圧受圧面19cが受ける3連ギアポンプ1による昇圧後の燃料圧と、低圧受圧面19dが受ける3連ギアポンプ1の運転状態の切り替えによって変化する燃料圧とを合計した、第2従動ギア9を固定軸受19b側に押し付ける向きの押し付け力Fpが発生する。   The space where the high pressure receiving surface 19c exists and the space where the low pressure receiving surface 19d exists are blocked by a seal member. For this reason, the floating bearing 19a has a total of the fuel pressure increased by the triple gear pump 1 received by the high pressure receiving surface 19c and the fuel pressure changed by the switching of the operation state of the triple gear pump 1 received by the low pressure receiving surface 19d. Thus, a pressing force Fp in a direction to press the second driven gear 9 against the fixed bearing 19b side is generated.

ここで、高圧受圧面19cに導入する燃料圧は、第1ギアポンプ11と第2ギアポンプ13との接続状態が並列と直列とのどちらであっても同じである。一方、低圧受圧面19dに導入する燃料圧は、第1ギアポンプ11と第2ギアポンプ13との接続状態が並列と直列との間で切り替わると変化する。このため、第1ギアポンプ11と第2ギアポンプ13との接続状態が切り替わると、浮動軸受19aの押し付け力Fpの大きさが変化する。なお、第1ギアポンプ11と第2ギアポンプ13との直列接続時には、浮動軸受19aの押し付け力Fpが浮動軸受19aの浮動力Ffと相殺される。   Here, the fuel pressure introduced into the high-pressure receiving surface 19c is the same regardless of whether the first gear pump 11 and the second gear pump 13 are connected in parallel or in series. On the other hand, the fuel pressure introduced into the low pressure receiving surface 19d changes when the connection state between the first gear pump 11 and the second gear pump 13 is switched between parallel and series. For this reason, when the connection state of the 1st gear pump 11 and the 2nd gear pump 13 switches, the magnitude | size of the pressing force Fp of the floating bearing 19a will change. Note that when the first gear pump 11 and the second gear pump 13 are connected in series, the pressing force Fp of the floating bearing 19a cancels out the floating force Ff of the floating bearing 19a.

そこで、浮動軸受19aにおいては、第1ギアポンプ11と第2ギアポンプ13とを並列接続した運転状態において、浮動軸受19aに発生する押し付け力Fpが浮動軸受19aの浮動力Ffを僅かに上回るように、3連ギアポンプ1による昇圧前後の燃料圧を考慮して、高圧受圧面19cと低圧受圧面19dとの面積比が設定されている。   Therefore, in the floating bearing 19a, in an operation state in which the first gear pump 11 and the second gear pump 13 are connected in parallel, the pressing force Fp generated in the floating bearing 19a is slightly higher than the floating force Ff of the floating bearing 19a. In consideration of the fuel pressure before and after boosting by the triple gear pump 1, the area ratio between the high pressure receiving surface 19c and the low pressure receiving surface 19d is set.

続いて、駆動ギア5に対応する浮動軸受15aの受圧面について説明する。浮動軸受15aの側面が受ける燃料圧の駆動ギア5の回転方向における分布は、図3と図5とを比較すると分かるように、第2従動ギア9と同じく並列接続状態と直列接続状態で異なる。   Next, the pressure receiving surface of the floating bearing 15a corresponding to the drive gear 5 will be described. The distribution of the fuel pressure received by the side surface of the floating bearing 15a in the rotational direction of the drive gear 5 is different between the parallel connection state and the series connection state as in the second driven gear 9, as can be seen from a comparison between FIG. 3 and FIG.

即ち、図3の並列接続状態では、第2供給経路23bの燃料圧が第1ギアポンプ11により昇圧される前の低圧になる。このため、図7(a)の説明図や図7(b)のグラフに示すように、浮動軸受15aの側面が受ける燃料圧は、第1及び第2の各吸入口11a,13a付近のおおよそ90゜ずつの位相部分が低圧の領域となり、これと交互に、第1及び第2の各吐出口11b,13b付近のおおよそ90゜ずつの位相部分が、第1ギアポンプ11及び第2ギアポンプ13による低圧から高圧への昇圧部分、及び、昇圧後の燃料と同じ高圧の領域となる。   That is, in the parallel connection state of FIG. 3, the fuel pressure in the second supply path 23 b becomes a low pressure before being boosted by the first gear pump 11. Therefore, as shown in the explanatory diagram of FIG. 7A and the graph of FIG. 7B, the fuel pressure received by the side surface of the floating bearing 15a is approximately in the vicinity of the first and second suction ports 11a and 13a. The phase portions of 90 ° each become a low pressure region, and alternately, the phase portions of about 90 ° in the vicinity of the first and second discharge ports 11b and 13b are formed by the first gear pump 11 and the second gear pump 13. The pressure increase portion from low pressure to high pressure and the same high pressure region as the fuel after pressure increase.

そして、図7(b)に示す圧力分布を積分した値が、第1ギアポンプ11と第2ギアポンプ13との並列接続状態において浮動軸受15aが受ける浮動力Ffとなる。   The value obtained by integrating the pressure distribution shown in FIG. 7B is the floating force Ff received by the floating bearing 15a in the parallel connection state of the first gear pump 11 and the second gear pump 13.

一方、図5の直列接続状態では、第2供給経路23bの燃料圧が第1ギアポンプ11により昇圧された後の高圧になる。このため、図8(a)の説明図や図8(b)のグラフに示すように、浮動軸受15aの側面が受ける燃料圧は、第1吸入口11a付近のおおよそ90゜の位相部分が低圧の領域となり、第2吸入口13aや第1及び第2の各吐出口11b,13b付近の残るおおよそ270°の位相部分が、第1ギアポンプ11及び第2ギアポンプ13による低圧から高圧への昇圧部分、及び、昇圧後の燃料と同じ高圧の領域となる。   On the other hand, in the serial connection state of FIG. 5, the fuel pressure in the second supply path 23 b becomes a high pressure after being boosted by the first gear pump 11. Therefore, as shown in the explanatory diagram of FIG. 8A and the graph of FIG. 8B, the fuel pressure received by the side surface of the floating bearing 15a is low at the phase portion of approximately 90 ° near the first suction port 11a. The phase portion of approximately 270 ° remaining in the vicinity of the second suction port 13a and the first and second discharge ports 11b, 13b is a boosted portion from low pressure to high pressure by the first gear pump 11 and the second gear pump 13. And it becomes the same high pressure area as the fuel after pressure increase.

そして、図8(b)に示す圧力分布を積分した値が、第1ギアポンプ11と第2ギアポンプ13との直列接続状態において浮動軸受15aが受ける浮動力Ffとなる。   A value obtained by integrating the pressure distribution shown in FIG. 8B is the floating force Ff received by the floating bearing 15a in the serial connection state of the first gear pump 11 and the second gear pump 13.

上述した通り、浮動軸受15aの側面が受ける燃料圧の、駆動ギア5の回転方向における分布は、並列接続状態と直列接続状態とで異なる。しかも、浮動軸受15aの側面が受ける燃料圧の分布は、並列接続状態では高圧の領域と低圧の領域とが半分ずつになるのに対し、直列接続状態では高圧の領域が支配的となる。したがって、浮動軸受15aが受ける浮動力Ffの大きさは、第1ギアポンプ11と第2ギアポンプ13との接続状態が並列と直列との間で切り替わると変化する。   As described above, the distribution of the fuel pressure received by the side surface of the floating bearing 15a in the rotational direction of the drive gear 5 differs between the parallel connection state and the series connection state. Moreover, the distribution of the fuel pressure received by the side surface of the floating bearing 15a is halved in the high pressure region and the low pressure region in the parallel connection state, whereas in the series connection state, the high pressure region is dominant. Therefore, the magnitude of the floating force Ff received by the floating bearing 15a changes when the connection state between the first gear pump 11 and the second gear pump 13 is switched between parallel and series.

そこで、駆動ギア5の浮動軸受15aには、図6に示すように、回転軸5bの軸受側と反対側に設けた二重の段差部によって、高圧受圧面15c及び低圧受圧面15d(請求項中の受圧面に相当)と、切替圧受圧面15e(請求項中の追加の受圧面に相当)とを形成している。高圧受圧面15cは回転軸5bの径方向外側に、低圧受圧面15dは径方向内側に、切替圧受圧面15eは高圧受圧面15cと低圧受圧面15dの中間にそれぞれ配置されている。   Therefore, as shown in FIG. 6, the floating bearing 15a of the drive gear 5 has a high step pressure receiving surface 15c and a low pressure receiving surface 15d by means of a double stepped portion provided on the opposite side to the bearing side of the rotating shaft 5b. And a switching pressure receiving surface 15e (corresponding to an additional pressure receiving surface in claims). The high pressure receiving surface 15c is disposed radially outside the rotary shaft 5b, the low pressure receiving surface 15d is disposed radially inside, and the switching pressure receiving surface 15e is disposed between the high pressure receiving surface 15c and the low pressure receiving surface 15d.

そして、高圧受圧面15cが存在する空間に、3連ギアポンプ1による昇圧後の燃料圧(第2ギアポンプ13の第2吐出口13bにおける燃料圧)を導入している。また、低圧受圧面15dが存在する空間に、3連ギアポンプ1による昇圧前の燃料圧(第1ギアポンプ11の第1吸入口11aにおける燃料圧)を導入している。さらに、切替圧受圧面15eが存在する空間には、3連ギアポンプ1の運転状態(第1ギアポンプ11と第2ギアポンプ13との接続状態)の切り替えによって変化する燃料圧(第2ギアポンプ13の第2吸入口13aの燃料圧)を導入している。   And the fuel pressure after pressure increase by the triple gear pump 1 (fuel pressure at the second discharge port 13b of the second gear pump 13) is introduced into the space where the high pressure receiving surface 15c exists. Further, the fuel pressure before pressure increase by the triple gear pump 1 (fuel pressure at the first suction port 11a of the first gear pump 11) is introduced into the space where the low pressure receiving surface 15d exists. Further, in the space where the switching pressure receiving surface 15e exists, the fuel pressure (the second gear pump 13 of the second gear pump 13) is changed by switching the operation state of the triple gear pump 1 (the connection state of the first gear pump 11 and the second gear pump 13). 2 fuel pressure at the suction port 13a).

高圧受圧面15cが存在する空間と、低圧受圧面15dが存在する空間と、切替圧受圧面15eが存在する空間とは、シール部材によってそれぞれ遮断されている。このため、浮動軸受15aには、高圧受圧面15cが受ける3連ギアポンプ1による昇圧後の燃料圧と、低圧受圧面15dが受ける3連ギアポンプ1による昇圧前の燃料圧と、切替圧受圧面15eが受ける3連ギアポンプ1の運転状態の切り替えによって変化する燃料圧とを合計した、駆動ギア5を固定軸受15b側に押し付ける向きの押し付け力Fpが発生する。   The space in which the high pressure receiving surface 15c exists, the space in which the low pressure receiving surface 15d exists, and the space in which the switching pressure receiving surface 15e exists are blocked by a seal member. For this reason, the floating bearing 15a has a fuel pressure after being boosted by the triple gear pump 1 received by the high pressure receiving surface 15c, a fuel pressure before the boost by the triple gear pump 1 received by the low pressure receiving surface 15d, and a switching pressure receiving surface 15e. The total of the fuel pressure that changes due to the switching of the operating state of the triple gear pump 1 is generated, and a pressing force Fp in the direction of pressing the drive gear 5 against the fixed bearing 15b side is generated.

ここで、高圧受圧面15cと低圧受圧面15dとにそれぞれ導入する燃料圧は、第1ギアポンプ11と第2ギアポンプ13との接続状態が並列と直列とのどちらであっても同じである。   Here, the fuel pressure introduced into the high pressure receiving surface 15c and the low pressure receiving surface 15d is the same regardless of whether the first gear pump 11 and the second gear pump 13 are connected in parallel or in series.

一方、切替圧受圧面15eが受ける第2ギアポンプ13の第2吸入口13aの燃料圧は、第1ギアポンプ11と第2ギアポンプ13との並列接続状態では、図9の説明図に示すように、低圧受圧面15dと同じく、3連ギアポンプ1による昇圧前の燃料圧となる。また、直列接続状態では、図10の説明図に示すように、高圧受圧面15cと同じく、3連ギアポンプ1による昇圧後の燃料圧となる。   On the other hand, the fuel pressure of the second suction port 13a of the second gear pump 13 received by the switching pressure receiving surface 15e is, as shown in the explanatory view of FIG. 9, in the parallel connection state of the first gear pump 11 and the second gear pump 13, as shown in FIG. Similar to the low pressure receiving surface 15d, the fuel pressure before the pressure is increased by the triple gear pump 1 is obtained. Further, in the serial connection state, as shown in the explanatory diagram of FIG. 10, the fuel pressure after being boosted by the triple gear pump 1 is the same as the high pressure receiving surface 15 c.

したがって、浮動軸受15aに発生する押し付け力Fpの大きさは、第1ギアポンプ11と第2ギアポンプ13との接続状態が並列と直列との間で切り替わると変化する。   Therefore, the magnitude of the pressing force Fp generated in the floating bearing 15a changes when the connection state between the first gear pump 11 and the second gear pump 13 is switched between parallel and series.

そこで、浮動軸受15aにおいては、浮動軸受15aに発生する押し付け力Fpが、第1ギアポンプ11と第2ギアポンプ13とが並列接続状態と直列接続状態とのどちらであっても、あるいは、接続状態が切り替わる最中でも、浮動軸受15aの浮動力Ffを僅かに上回るように、3連ギアポンプ1による昇圧前後の燃料圧を考慮して、高圧受圧面15c、低圧受圧面15d、及び、切替圧受圧面15eの面積比が設定されている。   Therefore, in the floating bearing 15a, the pressing force Fp generated in the floating bearing 15a is such that the first gear pump 11 and the second gear pump 13 are in either a parallel connection state or a serial connection state, or the connection state is Even during switching, the high pressure pressure receiving surface 15c, the low pressure pressure receiving surface 15d, and the switching pressure pressure receiving surface 15e are considered in consideration of the fuel pressure before and after the pressure increase by the triple gear pump 1 so as to slightly exceed the floating force Ff of the floating bearing 15a. The area ratio is set.

このように構成した浮動軸受15aでは、第1ギアポンプ11と第2ギアポンプ13の並列接続状態においては、低圧受圧面15dと切替圧受圧面15eとが、3連ギアポンプ1による昇圧前の燃料圧の受圧面となり、高圧受圧面15cのみが、3連ギアポンプ1による昇圧後の燃料圧の受圧面となる。   In the floating bearing 15a configured as described above, when the first gear pump 11 and the second gear pump 13 are connected in parallel, the low pressure receiving surface 15d and the switching pressure receiving surface 15e have the fuel pressure before the pressure increase by the triple gear pump 1. Only the high pressure receiving surface 15c becomes the pressure receiving surface and the pressure receiving surface of the fuel pressure after the pressure is increased by the triple gear pump 1.

また、第1ギアポンプ11と第2ギアポンプ13の直列接続状態においては、低圧受圧面15dのみが、3連ギアポンプ1による昇圧前の燃料圧の受圧面となり、高圧受圧面15cと切替圧受圧面15eとが、3連ギアポンプ1による昇圧後の燃料圧の受圧面となる。   Further, in the serial connection state of the first gear pump 11 and the second gear pump 13, only the low pressure pressure receiving surface 15d serves as a pressure receiving surface for the fuel pressure before pressure increase by the triple gear pump 1, and the high pressure receiving surface 15c and the switching pressure receiving surface 15e. The pressure receiving surface of the fuel pressure after the pressure is increased by the triple gear pump 1.

このため、第1ギアポンプ11と第2ギアポンプ13の並列接続状態と直列接続状態とで、低圧の受圧面と高圧の受圧面との面積の割合を変えて、浮動軸受15aの浮動力Ffが第1ギアポンプ11と第2ギアポンプ13の並列接続と直列接続の切り替えによって変化しても、逆方向の押し付け力Fpを適切な大きさで浮動軸受15aに発生させることができる。   For this reason, the ratio of the area of the low pressure receiving surface and the high pressure receiving surface is changed between the parallel connection state and the serial connection state of the first gear pump 11 and the second gear pump 13, and the floating force Ff of the floating bearing 15a is changed to the first. Even if the first gear pump 11 and the second gear pump 13 are changed by switching between parallel connection and series connection, the pressing force Fp in the reverse direction can be generated in the floating bearing 15a with an appropriate magnitude.

なお、第1ギアポンプ11と第2ギアポンプ13の接続状態を並列と直列との間で切り替える際には、第2ギアポンプ13の第2吸入口13aの燃料圧が、第1ギアポンプ11の第1吸入口11aの燃料圧(低圧)と第1吐出口11bの燃料圧(高圧)との間で過渡的に変化する。これに合わせて、浮動軸受15aの浮動力Ffも過渡的に変化する。   When the connection state of the first gear pump 11 and the second gear pump 13 is switched between parallel and series, the fuel pressure at the second suction port 13a of the second gear pump 13 is changed to the first suction of the first gear pump 11. It changes transiently between the fuel pressure (low pressure) at the port 11a and the fuel pressure (high pressure) at the first discharge port 11b. In accordance with this, the floating force Ff of the floating bearing 15a also changes transiently.

そこで、第1ギアポンプ11と第2ギアポンプ13の接続状態を並列と直列との間で切り替える際、その開始から終了までの過渡期間において、駆動ギア5の浮動軸受15aの切替圧受圧面15eに導かれる燃料圧を、3連ギアポンプ1による昇圧前の燃料圧(低圧)と昇圧後の燃料圧(高圧)との間で、連続的又は段階的に変化するようにしてもよい。   Therefore, when the connection state of the first gear pump 11 and the second gear pump 13 is switched between parallel and series, it is guided to the switching pressure receiving surface 15e of the floating bearing 15a of the drive gear 5 during the transition period from the start to the end. The applied fuel pressure may be changed continuously or stepwise between the fuel pressure before the pressure increase by the triple gear pump 1 (low pressure) and the fuel pressure after the pressure increase (high pressure).

なお、切替圧受圧面15eに導かれる燃料圧の変化は、第1ギアポンプ11と第2ギアポンプ13の接続状態の切り替えに伴う浮動軸受15aの浮動力Ffの変化に合わせることが望ましい。   Note that the change in the fuel pressure guided to the switching pressure receiving surface 15e is preferably matched to the change in the floating force Ff of the floating bearing 15a accompanying the switching of the connection state between the first gear pump 11 and the second gear pump 13.

また、切替圧受圧面15eに導かれる燃料圧の変化は、導かれる燃料圧の段階的な切り替え段数に応じて切替圧受圧面15eを互いに遮断された複数の受圧面部(図示せず)に区画し、かつ、各受圧面部に連なる燃料圧の導入経路と複数のノズル−フラッパ機構との組(図示せず)を複数組並列に設けて実現することができる。   Further, the change in the fuel pressure guided to the switching pressure receiving surface 15e is divided into a plurality of pressure receiving surface portions (not shown) in which the switching pressure receiving surface 15e is cut off from each other according to the number of steps of the guided fuel pressure. In addition, a plurality of sets (not shown) of a fuel pressure introduction path and a plurality of nozzle-flapper mechanisms connected to each pressure receiving surface portion can be provided in parallel.

この場合は、各組のノズル−フラッパ機構のフラッパにより、対応する燃料圧の導入通路のノズルを互いに異なる燃料圧において段階的に開弁又は閉弁させて、ノズル−フラッパ機構を介して浮動軸受15aの燃料圧が導入される受圧面部を、第1ギアポンプ11と第2ギアポンプ13の接続状態の切り替えに伴う燃料圧の増減に合わせて、段階的に増減させることになる。   In this case, the nozzles of the corresponding fuel pressure introduction passages are opened or closed in stages at different fuel pressures by the flappers of each set of nozzle-flapper mechanisms, and floating bearings are provided via the nozzle-flapper mechanisms. The pressure receiving surface portion to which the fuel pressure of 15a is introduced is increased or decreased step by step in accordance with the increase or decrease of the fuel pressure accompanying the switching of the connection state between the first gear pump 11 and the second gear pump 13.

但し、この場合は、浮動軸受15aのハウジング3と対向する部分に設ける段差部の段数を増やす必要があるので、浮動軸受15aの直径寸法からして、増やせる段差部の段数に限界がある。そこで、切替圧受圧面15eに導かれる燃料圧自体を、第1ギアポンプ11と第2ギアポンプ13の接続状態の切り替えに伴う燃料圧の増減に合わせて、連続的又は段階的に増減させるのが、より現実的である。   However, in this case, it is necessary to increase the number of steps of the stepped portion provided in the portion of the floating bearing 15a facing the housing 3, and therefore the number of steps of the stepped portion that can be increased is limited due to the diameter size of the floating bearing 15a. Therefore, the fuel pressure itself guided to the switching pressure receiving surface 15e is increased or decreased continuously or stepwise in accordance with the increase or decrease of the fuel pressure accompanying the switching of the connection state of the first gear pump 11 and the second gear pump 13. More realistic.

このように構成したのが、図11及び図12の説明図に示す、本発明の他の実施形態に係る燃料供給装置20Aである。なお、図11及び図12中、図3や図5の燃料供給装置20と同様の要素には、それらの図と同一の引用符号を付して説明する。なお、図3及び図5の燃料供給装置20と重複する構成については説明を省略する。   The fuel supply apparatus 20A according to another embodiment of the present invention shown in FIGS. 11 and 12 is configured as described above. In FIG. 11 and FIG. 12, the same reference numerals as those of the fuel supply device 20 in FIG. 3 and FIG. The description of the same configuration as that of the fuel supply device 20 in FIGS. 3 and 5 is omitted.

第1ギアポンプ11の第1吐出口11bに接続された第1吐出経路25aは、圧力導入通路43aによって、駆動ギア5の浮動軸受15aの切替圧受圧面15eが存在する空間に接続されている。圧力導入通路43aの途中にはノズル43bが形成されており、圧力導入通路43aのノズル43bよりも第1吐出経路25a側の箇所には、オリフィス43cが設けられている。圧力導入通路43aのノズル43bは、圧力導入通路43aに接続された均圧室45内に延出している。   The first discharge path 25a connected to the first discharge port 11b of the first gear pump 11 is connected to the space where the switching pressure receiving surface 15e of the floating bearing 15a of the drive gear 5 exists by the pressure introduction path 43a. A nozzle 43b is formed in the middle of the pressure introduction passage 43a, and an orifice 43c is provided at a location closer to the first discharge passage 25a than the nozzle 43b of the pressure introduction passage 43a. The nozzle 43b of the pressure introduction passage 43a extends into the pressure equalizing chamber 45 connected to the pressure introduction passage 43a.

均圧室45は、連絡通路45aを介して第1供給経路23aに接続されており、ブーストポンプ21でブーストされた低圧の燃料(流体)が、第1供給経路23a及び連絡通路45aを介して供給される。なお、本実施形態では、均圧室45と連絡通路45aが、請求項中の均圧通路に相当している。   The pressure equalizing chamber 45 is connected to the first supply path 23a via the communication passage 45a, and the low-pressure fuel (fluid) boosted by the boost pump 21 is transmitted via the first supply path 23a and the communication passage 45a. Supplied. In the present embodiment, the pressure equalizing chamber 45 and the communication passage 45a correspond to the pressure equalizing passage in the claims.

また、均圧室45には、ノズル43bを開閉するノズル−フラッパ機構47が設けられている。このノズル−フラッパ機構47は、図4に示すノズル−フラッパ機構31と同様に、トルクモータ49によってフラッパ51を変位させ、ノズル43bを開閉させるように構成されている。   The pressure equalizing chamber 45 is provided with a nozzle-flapper mechanism 47 that opens and closes the nozzle 43b. Similar to the nozzle-flapper mechanism 31 shown in FIG. 4, the nozzle-flapper mechanism 47 is configured to displace the flapper 51 by a torque motor 49 and open / close the nozzle 43b.

図11に示すように、ノズル−フラッパ機構31のトルクモータ33の駆動制御によりフラッパ35が低圧室29内のノズル27eを閉じて、第1ギアポンプ11と第2ギアポンプ13とが並列接続状態になると、これに合わせたノズル−フラッパ機構47のトルクモータ49の駆動制御により、フラッパ51が均圧室45内のノズル43bを開く。   As shown in FIG. 11, when the flapper 35 closes the nozzle 27e in the low-pressure chamber 29 by the drive control of the torque motor 33 of the nozzle-flapper mechanism 31, the first gear pump 11 and the second gear pump 13 are connected in parallel. The flapper 51 opens the nozzle 43b in the pressure equalizing chamber 45 by the drive control of the torque motor 49 of the nozzle-flapper mechanism 47 according to this.

フラッパ51がノズル43bを開くと、圧力導入通路43aのノズル43bとオリフィス43cの間の部分や、それらの部分よりも切替圧受圧面15e側の部分は、均圧室45内と同じ燃料圧(低圧)に均圧化される。したがって、浮動軸受15aの切替圧受圧面15eには、低圧受圧面15dと同じく低圧の燃料圧が導入される。   When the flapper 51 opens the nozzle 43b, the portion between the nozzle 43b and the orifice 43c in the pressure introduction passage 43a and the portion closer to the switching pressure receiving surface 15e than those portions have the same fuel pressure (in the pressure equalizing chamber 45). Pressure equalization). Therefore, the low pressure fuel pressure is introduced into the switching pressure receiving surface 15e of the floating bearing 15a, as with the low pressure receiving surface 15d.

なお、フラッパ51がノズル43bを開いている際、圧力導入通路43aのオリフィス43cよりも第1吐出経路25a側の部分は、オリフィス43cの存在によって、均圧室45内と同じ燃料圧(低圧)に均圧化されない。そして、圧力導入通路43aのオリフィス43cよりも第1吐出経路25a側の部分は、第1吐出経路25a内と同じ、第1ギアポンプ11による昇圧後の燃料圧(高圧)に維持される。   When the flapper 51 opens the nozzle 43b, the portion of the pressure introduction passage 43a closer to the first discharge path 25a than the orifice 43c has the same fuel pressure (low pressure) as that in the pressure equalizing chamber 45 due to the presence of the orifice 43c. The pressure is not equalized. The portion of the pressure introduction passage 43a closer to the first discharge path 25a than the orifice 43c is maintained at the same fuel pressure (high pressure) after the pressure increase by the first gear pump 11 as in the first discharge path 25a.

一方、図12に示すように、ノズル−フラッパ機構31のトルクモータ33の駆動制御によりフラッパ35が低圧室29内のノズル27eを開いて、第1ギアポンプ11と第2ギアポンプ13とが直列接続状態になると、これに合わせたノズル−フラッパ機構47のトルクモータ49の駆動制御により、フラッパ51が均圧室45内のノズル43bを閉じる。   On the other hand, as shown in FIG. 12, the flapper 35 opens the nozzle 27e in the low pressure chamber 29 by the drive control of the torque motor 33 of the nozzle-flapper mechanism 31, and the first gear pump 11 and the second gear pump 13 are connected in series. Then, the flapper 51 closes the nozzle 43b in the pressure equalizing chamber 45 by the drive control of the torque motor 49 of the nozzle-flapper mechanism 47 according to this.

フラッパ51がノズル43bを閉じている際、圧力導入通路43a内は、第1吐出経路25a内と同じ、第1ギアポンプ11による昇圧後の燃料圧(高圧)となる。したがって、浮動軸受15aの切替圧受圧面15eには、高圧受圧面15cと同じく高圧の燃料圧が導入される。   When the flapper 51 closes the nozzle 43b, the pressure introduction passage 43a has the same fuel pressure (high pressure) after being boosted by the first gear pump 11 as in the first discharge passage 25a. Therefore, a high fuel pressure is introduced into the switching pressure receiving surface 15e of the floating bearing 15a in the same manner as the high pressure receiving surface 15c.

なお、フラッパ35によるノズル27eの開閉と、これに伴う差圧式開閉弁27の開閉とによって、第1ギアポンプ11と第2ギアポンプ13との接続状態が切り替わると、第2供給経路23b内の燃料圧が、一定の時間をかけて低圧と高圧との間で変化する。そして、この変化により、浮動軸受15aに生じる浮動力Ffの大きさも変化する。   When the connection state between the first gear pump 11 and the second gear pump 13 is switched by opening / closing of the nozzle 27e by the flapper 35 and opening / closing of the differential pressure type on / off valve 27 accompanying this, the fuel pressure in the second supply path 23b is switched. Changes between low and high pressure over a period of time. Due to this change, the magnitude of the floating force Ff generated in the floating bearing 15a also changes.

ここで、第2供給経路23b内の燃料圧の変化の開始から終了までの期間は、第1ギアポンプ11と第2ギアポンプ13との接続状態が切り替る過渡期間と考えることができる。そして、この過渡期間には、浮動軸受15aに生じる浮動力Ffの大きさの増減に合わせて、浮動軸受15aの押し付け力Fpを増減させる必要がある。   Here, the period from the start to the end of the change of the fuel pressure in the second supply path 23b can be considered as a transient period in which the connection state between the first gear pump 11 and the second gear pump 13 is switched. In this transition period, it is necessary to increase or decrease the pressing force Fp of the floating bearing 15a in accordance with the increase or decrease of the magnitude of the floating force Ff generated in the floating bearing 15a.

そこで、上述した過渡期間において、フラッパ51によるノズル43bの開度が連続的に変化するように、ノズル−フラッパ機構31のトルクモータ33の駆動制御に同期させて、ノズル−フラッパ機構47のトルクモータ49を駆動制御する。   Therefore, the torque motor of the nozzle-flapper mechanism 47 is synchronized with the drive control of the torque motor 33 of the nozzle-flapper mechanism 31 so that the opening degree of the nozzle 43b by the flapper 51 continuously changes during the transition period described above. 49 is driven and controlled.

なお、本発明は、航空機の燃料供給装置に限らず、3連ギアポンプの接続状態を並列と直列とに切り替えて使用する燃料供給装置に広く適用可能である。また、燃料供給装置以外の装置において使用される3連ギアポンプにも本発明は適用可能である。   The present invention is not limited to aircraft fuel supply devices, and can be widely applied to fuel supply devices that are used by switching the connection state of the triple gear pump between parallel and series. The present invention is also applicable to a triple gear pump used in devices other than the fuel supply device.

1 ギアポンプ
3 ハウジング
5 駆動ギア
5a,7a,9a 歯
5b,5c,7b,7c,9b,9c,33c 回転軸
7 第1従動ギア
9 第2従動ギア
11 第1ギアポンプ
11a 第1吸入口
11b 第1吐出口
13 第2ギアポンプ
13a 第2吸入口
13b 第2吐出口
15a,17a,19a 浮動軸受
15b,17b,19b 固定軸受
15c,17c,19c 高圧受圧面
15d,17d,19d 低圧受圧面
15e 切替圧受圧面
20,20A 燃料供給装置
21 ブーストポンプ
23a 第1供給経路
23b 第2供給経路
23c 逆止弁
25a 第1吐出経路
25b 第2吐出経路
27 差圧式開閉弁
27a 弁体
27b ばね室
27c ばね
27d 均圧通路
27e,43b ノズル
27f,43c オリフィス
29 低圧室
31,47 ノズル−フラッパ機構
33,49 トルクモータ
33a,33b 永久磁石
33d アーマチュア
33e,33f コイル
35,51 フラッパ
37 第1電流ドライバ
39 第2電流ドライバ
41 モータ制御部
43 リリーフバルブ
43a 圧力導入通路
45 均圧室
45a 連絡通路
Ff 浮動力
Fp 押し付け力
DESCRIPTION OF SYMBOLS 1 Gear pump 3 Housing 5 Drive gear 5a, 7a, 9a Teeth 5b, 5c, 7b, 7c, 9b, 9c, 33c Rotating shaft 7 1st driven gear 9 2nd driven gear 11 1st gear pump 11a 1st inlet 11b 1st Discharge port 13 Second gear pump 13a Second suction port 13b Second discharge port 15a, 17a, 19a Floating bearing 15b, 17b, 19b Fixed bearing 15c, 17c, 19c High pressure receiving surface 15d, 17d, 19d Low pressure receiving surface 15e Switching pressure receiving pressure Surface 20, 20A Fuel supply device 21 Boost pump 23a First supply path 23b Second supply path 23c Check valve 25a First discharge path 25b Second discharge path 27 Differential pressure type on-off valve 27a Valve element 27b Spring chamber 27c Spring 27d Pressure equalization Passage 27e, 43b Nozzle 27f, 43c Orifice 29 Low pressure chamber 31, 47 Nozzle-Flapper mechanism 33, 49 Torque motor 33a, 33b Permanent magnet 33d Armature 33e, 33f Coil 35, 51 Flapper 37 First current driver 39 Second current driver 41 Motor control unit 43 Relief valve 43a Pressure introduction passage 45 Pressure equalizing chamber 45a Communication passage Ff Floating force Fp Pushing force

Claims (3)

並列と直列とに接続状態を切替可能な第1ギアポンプ及び第2ギアポンプを有する3連ギアポンプであって、
前記第1ギアポンプ及び前記第2ギアポンプに共通の1つの駆動ギアと、
前記第1ギアポンプ及び前記第2ギアポンプにそれぞれ対応し前記駆動ギアに個別に噛合された2つの従動ギアと、
前記駆動ギア及び前記各従動ギアの回転軸の一端をそれぞれ軸受し、前記第1ギアポンプ及び前記第2ギアポンプによる昇圧前の圧力と昇圧後の圧力とをそれぞれの受圧面で受けることによって前記各ギア側にそれぞれ押し付けられる、各回転軸の中心軸方向に移動可能な浮動軸受と、
前記駆動ギア及び前記各従動ギアの回転軸の他端をそれぞれ軸受する、各回転軸の中心軸方向に移動不能な固定軸受とを備え、
前記駆動ギアの前記浮動軸受には、追加の受圧面が設けられており、
前記追加の受圧面には、前記第1ギアポンプと前記第2ギアポンプとが前記流体をそれぞれ昇圧する前記第1ギアポンプ及び前記第2ギアポンプの並列接続状態において、前記第1ギアポンプ又は前記第2ギアポンプによる昇圧前の流体圧が加えられると共に、前記第1ギアポンプで昇圧した流体が前記第2ギアポンプを同一圧のまま通過する前記第1ギアポンプ及び前記第2ギアポンプの直列接続状態において、前記第1ギアポンプによる昇圧後の流体圧が加えられる、
ことを特徴とする3連ギアポンプ。
A triple gear pump having a first gear pump and a second gear pump capable of switching connection states in parallel and in series,
One drive gear common to the first gear pump and the second gear pump;
Two driven gears respectively corresponding to the first gear pump and the second gear pump and individually meshed with the drive gear;
Each of the gears is supported by bearing one end of the rotation shaft of each of the drive gear and each driven gear, and receiving the pressure before and after the pressure increase by the first gear pump and the second gear pump at the respective pressure receiving surfaces. Floating bearings that are respectively pressed to the side and are movable in the direction of the central axis of each rotary shaft;
A fixed bearing that is non-movable in the direction of the central axis of each rotary shaft, bearing the other end of the rotary shaft of each of the drive gear and each driven gear;
The floating bearing of the drive gear is provided with an additional pressure receiving surface,
The additional pressure receiving surface is provided by the first gear pump or the second gear pump in a state in which the first gear pump and the second gear pump are connected in parallel by the first gear pump and the second gear pump, respectively. In the serial connection state of the first gear pump and the second gear pump, the fluid pressure before the pressure increase is applied and the fluid pressure increased by the first gear pump passes through the second gear pump with the same pressure. The fluid pressure after pressurization is applied,
A triple gear pump characterized by that.
ギアポンプにより昇圧した流体を外部に供給する装置であって、
請求項1記載の3連ギアポンプと、
前記3連ギアポンプの第1ギアポンプと第2ギアポンプとの接続状態を並列接続状態と直列接続状態とに切り替える切替部と、
を備えることを特徴とする流体供給装置。
A device for supplying fluid pressurized by a gear pump to the outside,
A triple gear pump according to claim 1;
A switching unit that switches a connection state between the first gear pump and the second gear pump of the triple gear pump between a parallel connection state and a series connection state;
A fluid supply device comprising:
前記第1ギアポンプ又は前記第2ギアポンプの出口を前記3連ギアポンプの駆動ギアの浮動軸受に設けた追加の受圧面に接続する圧力導入通路と、該圧力導入通路を前記第1ギアポンプの入口に接続する均圧通路と、該均圧通路の前記圧力導入通路に対する接続箇所を開閉する開閉弁とを備え、前記切替部による前記接続状態の切り替えの開始から終了までの過渡期間に、前記開閉弁の弁開度が全閉及び全開の間で連続的又は段階的に変化されることを特徴とする請求項2記載の流体供給装置。   A pressure introducing passage for connecting an outlet of the first gear pump or the second gear pump to an additional pressure receiving surface provided in a floating bearing of a driving gear of the triple gear pump; and the pressure introducing passage is connected to an inlet of the first gear pump. A pressure equalizing passage and an opening / closing valve that opens and closes a connection point of the pressure equalizing passage to the pressure introduction passage, and during the transition period from the start to the end of the connection state switching by the switching portion, 3. The fluid supply device according to claim 2, wherein the valve opening is changed continuously or stepwise between fully closed and fully opened.
JP2014072590A 2014-03-31 2014-03-31 Triple gear pump and fluid supply device Active JP6265008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072590A JP6265008B2 (en) 2014-03-31 2014-03-31 Triple gear pump and fluid supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072590A JP6265008B2 (en) 2014-03-31 2014-03-31 Triple gear pump and fluid supply device

Publications (2)

Publication Number Publication Date
JP2015194134A true JP2015194134A (en) 2015-11-05
JP6265008B2 JP6265008B2 (en) 2018-01-24

Family

ID=54433372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072590A Active JP6265008B2 (en) 2014-03-31 2014-03-31 Triple gear pump and fluid supply device

Country Status (1)

Country Link
JP (1) JP6265008B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065525A1 (en) * 2019-10-03 2021-04-08
JP2021116714A (en) * 2020-01-23 2021-08-10 株式会社Ihi Multiple gear pump and pump system
JP7571603B2 (en) 2021-02-17 2024-10-23 株式会社Ihi Triple gear pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716424Y1 (en) * 1969-11-18 1972-06-09
JP2002303160A (en) * 2001-04-04 2002-10-18 Ishikawajima Harima Heavy Ind Co Ltd Fuel supply method and system for gas turbine and gas turbine engine
JP2003328958A (en) * 2002-05-14 2003-11-19 Society Of Japanese Aerospace Co Inc Serial parallel switching double gear pump and switching circuit
JP2008050979A (en) * 2006-08-23 2008-03-06 Ihi Corp Triple gear pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716424Y1 (en) * 1969-11-18 1972-06-09
JP2002303160A (en) * 2001-04-04 2002-10-18 Ishikawajima Harima Heavy Ind Co Ltd Fuel supply method and system for gas turbine and gas turbine engine
JP2003328958A (en) * 2002-05-14 2003-11-19 Society Of Japanese Aerospace Co Inc Serial parallel switching double gear pump and switching circuit
JP2008050979A (en) * 2006-08-23 2008-03-06 Ihi Corp Triple gear pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065525A1 (en) * 2019-10-03 2021-04-08
WO2021065525A1 (en) * 2019-10-03 2021-04-08 株式会社Ihi Gear pump
JP7298704B2 (en) 2019-10-03 2023-06-27 株式会社Ihi gear pump
US11852142B2 (en) 2019-10-03 2023-12-26 Ihi Corporation Gear pump with floating bearing with receiver faces
JP2021116714A (en) * 2020-01-23 2021-08-10 株式会社Ihi Multiple gear pump and pump system
JP7434932B2 (en) 2020-01-23 2024-02-21 株式会社Ihi Multiple gear pumps and pump systems
JP7571603B2 (en) 2021-02-17 2024-10-23 株式会社Ihi Triple gear pump

Also Published As

Publication number Publication date
JP6265008B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
US9534519B2 (en) Variable displacement vane pump with integrated fail safe function
WO2012086408A1 (en) Oil pump
US10030656B2 (en) Variable displacement vane pump with integrated fail safe function
JP2019533108A (en) Dual input pump and system
US8287255B2 (en) Variable displacement rotary pump
US10662977B2 (en) Vehicle hydraulic system
EP2947297B1 (en) Fuel system
JP6265008B2 (en) Triple gear pump and fluid supply device
US10473100B2 (en) Pump exhibiting an adjustable delivery volume
WO2014187503A1 (en) Variable displacement lubricant pump
US9399953B2 (en) Gas turbine engine fuel system pump sharing valve
JP2009264192A (en) Variable displacement vane pump
US10267310B2 (en) Variable pressure pump with hydraulic passage
JP2009257167A (en) Variable displacement vane pump
WO2015045905A1 (en) Fuel system
KR20150121221A (en) Screw pump with at least two parts
US10648467B2 (en) Triple gear pump and fluid supplying device
CN107002672A (en) Variable displacement vane pump
WO2016031767A1 (en) Pump device
JP2017223140A (en) Oil supply device
US20150167667A1 (en) Oil pump device
JP6567678B2 (en) Variable displacement oil pump
WO2020127491A1 (en) Displacement adjustment system for a variable displacement pump
CA2930741C (en) Variable displacement vane pump with integrated fail safe function
JPH06241175A (en) Variable displacement type pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R151 Written notification of patent or utility model registration

Ref document number: 6265008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151