JP2015193868A - Method for manufacturing thick walled high strength seamless steel pipe for linepipe excellent in sulfide stress corrosion cracking resistance - Google Patents

Method for manufacturing thick walled high strength seamless steel pipe for linepipe excellent in sulfide stress corrosion cracking resistance Download PDF

Info

Publication number
JP2015193868A
JP2015193868A JP2014071332A JP2014071332A JP2015193868A JP 2015193868 A JP2015193868 A JP 2015193868A JP 2014071332 A JP2014071332 A JP 2014071332A JP 2014071332 A JP2014071332 A JP 2014071332A JP 2015193868 A JP2015193868 A JP 2015193868A
Authority
JP
Japan
Prior art keywords
rolling
less
steel pipe
seamless steel
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071332A
Other languages
Japanese (ja)
Other versions
JP6225795B2 (en
Inventor
勝村 龍郎
Tatsuro Katsumura
龍郎 勝村
井口 貴朗
Takao Iguchi
貴朗 井口
木村 秀途
Hideto Kimura
秀途 木村
江口 健一郎
Kenichiro Eguchi
健一郎 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014071332A priority Critical patent/JP6225795B2/en
Publication of JP2015193868A publication Critical patent/JP2015193868A/en
Application granted granted Critical
Publication of JP6225795B2 publication Critical patent/JP6225795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength seamless steel pipe excellent in sulfide stress corrosion cracking resistance.SOLUTION: A solid round slab piece having a composition containing, by mass%, C of 0.03 to 0.15%, Si of 0.02 to 0.5%, Mn of 0.7 to 2.5%, P of 0.020% or less, S of 0.003% or less, Al of 0.01 to 0.08%, N of 0.005% or less, and Ti of 0.005 to 0.05% with N and Ti satisfying N≤Ti×14/48≤N+10 and the balance Fe with inevitable impurities is heated with a heating temperature of less than 1300°C and applied to piercing rolling, rolling drawing with rolling reduction of 40% or more in a temperature range of 950°C or less in which rolling is stopped in the temperature range of Artransformation point to (the Artransformation point+70°C), or further sizing and rolling, then applied to cooling to 300°C or less with an average cooling rate of 20°C/s or more in the temperature range of 800 to 300°C, and a tempering treatment at less than the Actransformation point.

Description

本発明は、原油や天然ガス等を輸送するラインパイプ用として好適な厚肉高強度継目無鋼管の製造方法に係り、とくに硫化水素を含むサワー環境下における耐硫化物応力腐食割れ性(耐SSC性)の改善に関する。なお、ここでいう「高強度」とは、X65〜X80級の強度、すなわち0.5%耐力が450MPa以上700MPa以下の強度を有する場合をいうものとする。   The present invention relates to a method for producing a thick-walled, high-strength seamless steel pipe suitable for use in line pipes for transporting crude oil, natural gas, etc., and is particularly resistant to sulfide stress corrosion cracking (SSC resistance) in a sour environment containing hydrogen sulfide. ) Improvement. Here, “high strength” refers to a case where the strength is X65 to X80, that is, the 0.5% proof stress is 450 MPa or more and 700 MPa or less.

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇という観点から、従来、省みられなかったような深度が深い油田や、硫化水素等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田等の開発が盛んになっている。そのため、このような環境下の油田やガス田で採掘された原油、ガスを輸送するラインパイプで使用される鋼管には、高強度で、かつ優れた耐食性(耐サワー性)を兼ね備えた材質を有することが要求されている。   In recent years, from the viewpoint of soaring crude oil prices and the depletion of petroleum resources expected in the near future, the so-called sour environment including deep oil fields and hydrogen sulfide that have not been excluded in the past The development of oil fields and gas fields in corrosive environments has become active. For this reason, the steel pipes used in line pipes for transporting crude oil and gas mined in oil and gas fields under such circumstances are made of materials that have both high strength and excellent corrosion resistance (sour resistance). It is required to have.

このような要求に対して、例えば、特許文献1、特許文献2には、質量%で、C:0.03〜0.11%、Si:0.05〜0.5%、Mn:0.8〜1.0%、P:0.025%以下、S:0.003%以下、Ti:0.002〜0.017%、Al:0.001〜0.10%、Cr:0.05〜0.5%、Mo:0.02〜0.3%、V:0.02〜0.20%、Ca:0.0005〜0.005%、N:0.008%以下、O:0.004%以下を含む組成の鋼片を熱間圧延により継目無鋼管に圧延した後、直ちに均熱後、焼入れ開始温度を(Ar3点+50℃)〜1100℃として5℃/s以上の冷却速度で冷却し、ついで550〜Ac1点で焼戻する降伏応力が483MPa以上である耐水素誘起割れ性に優れた高強度継目無鋼管の製造方法が記載されている。特許文献1,2に記載された技術で得られる継目無鋼管は、ベイナイトまたは/およびマルテンサイトで、その粒界にフェライトが析出した組織を有するとしている。 In response to such a requirement, for example, Patent Document 1 and Patent Document 2 include, in mass%, C: 0.03-0.11%, Si: 0.05-0.5%, Mn: 0.8-1.0%, P: 0.025% or less. , S: 0.003% or less, Ti: 0.002-0.017%, Al: 0.001-0.10%, Cr: 0.05-0.5%, Mo: 0.02-0.3%, V: 0.02-0.20%, Ca: 0.0005-0.005%, N : After rolling a steel slab having a composition containing 0.008% or less and O: 0.004% or less to a seamless steel pipe by hot rolling, immediately after soaking, the quenching start temperature is set to (Ar 3 points + 50 ° C) to 1100 ° C. A method for producing a high-strength seamless steel pipe excellent in hydrogen-induced cracking resistance with a yield stress of 483 MPa or more, which is cooled at a cooling rate of ° C / s or more and then tempered at one point of 550 to Ac is described. The seamless steel pipes obtained by the techniques described in Patent Literatures 1 and 2 are bainite and / or martensite and have a structure in which ferrite precipitates at the grain boundaries.

また、特許文献3には、ラインパイプ用厚肉継目無鋼管の製造方法が記載されている。特許文献3に記載された技術では、C:0.03〜0.08%、Si:0.25%以下、Mn:0.3〜2.5%、Al:0.001〜0.10%、Cr:0.02〜1.0%、Ni:0.02〜1.0%、Mo:0.02〜1.2%、Ti:0.004〜0.010%、N:0.002〜0.008%、さらにCa、Mg、REMのうちの1種または2種以上の合計で0.0002〜0.005%、V:0〜0.08%、Nb:0〜0.05%、Cu:0〜1.0%を含み、不純物中のPが0.05%以下、Sが0.005%以下である組成の溶鋼を、連続鋳造により断面が丸形状のビレットに凝固される工程と、ビレットを1400〜1000℃までの平均冷却速度を6℃/min以上として室温まで冷却する工程と、550〜900℃までの平均加熱速度を15℃/min以下として1150〜1280℃に加熱した後、穿孔および圧延により継目無鋼管を製造する工程と、製管後直ちに800〜500℃までの平均冷却速度を8℃/s以上とし100℃以下まで連続して強制冷却する工程と、500〜690℃の範囲内の温度で焼戻す工程と、を順次施し、高強度で靭性の良好なラインパイプ用厚肉継目無鋼管を得るとしている。特許文献3に記載された技術では、連続鋳造による丸形状のビレットに代えて、連続鋳造で角形状のブルームやスラブとしたのち鍛造または圧延で丸形状としてもよいとしている。   Patent Document 3 describes a method for producing a thick seamless steel pipe for line pipe. In the technique described in Patent Document 3, C: 0.03-0.08%, Si: 0.25% or less, Mn: 0.3-2.5%, Al: 0.001-0.10%, Cr: 0.02-1.0%, Ni: 0.02-1.0% , Mo: 0.02 to 1.2%, Ti: 0.004 to 0.010%, N: 0.002 to 0.008%, and a total of one or more of Ca, Mg, and REM, 0.0002 to 0.005%, V: 0 to 0.08 %, Nb: 0-0.05%, Cu: 0-1.0%, P in the impurity is 0.05% or less, S is 0.005% or less, solidified into a billet with a round cross section by continuous casting And a step of cooling the billet to room temperature with an average cooling rate from 1400 to 1000 ° C. being 6 ° C./min or more, and 1150 to 1280 ° C. with an average heating rate from 550 to 900 ° C. being 15 ° C./min or less. A process of producing a seamless steel pipe by piercing and rolling, and a process of forcibly cooling to an average cooling rate of 800 to 500 ° C. immediately after pipe making to 8 ° C./s or higher and continuously to 100 ° C. or lower; , 50 A tempering step at a temperature in the range of 0 to 690 ° C. is sequentially performed to obtain a thick-walled seamless steel pipe for line pipe having high strength and good toughness. In the technique described in Patent Document 3, instead of a round billet formed by continuous casting, a square bloom or slab may be formed by continuous casting and then rounded by forging or rolling.

特開2004−176172号公報JP 2004-176172 A 特開2004−143593号公報JP 2004-143593 A 特開2006−274350号公報JP 2006-274350 A

しかしながら、耐SSC性に及ぼす各種要因は極めて複雑であり、65ksi超え級の高強度鋼管において、安定して耐SSC性を確保するための条件は明確になっていないのが現状であり、しかも、特許文献1〜3に記載された技術では、高強度と高靭性を兼備しつつ、優れた耐SSC性を安定して確保できていないという問題がある。
また、特許文献1〜3に記載された技術では、直接焼入れ処理を施すため、熱間圧延に際して生じる管各位置での温度ばらつきに起因した、鋼管各部の特性ばらつきが大きくなり、高強度と高靭性を兼備しつつ、優れた耐SSC性を安定して確保することが難しいという問題がある。また、特許文献3に記載された技術では、直接焼入れ処理に代えて、再加熱焼入れ処理でもよいとしている。しかし、再加熱焼入れ処理では、工程が複雑になるという問題がある。
However, the various factors affecting SSC resistance are extremely complex, and in the high strength steel pipes exceeding 65 ksi, the conditions for ensuring stable SSC resistance are not clear, and In the techniques described in Patent Documents 1 to 3, there is a problem that excellent SSC resistance cannot be stably secured while combining high strength and high toughness.
In addition, in the techniques described in Patent Documents 1 to 3, since the direct quenching process is performed, the characteristic variation of each part of the steel pipe due to the temperature variation at each position of the pipe that occurs during hot rolling becomes large, and the high strength and high There is a problem that it is difficult to stably ensure excellent SSC resistance while combining toughness. In the technique described in Patent Document 3, a reheating quenching process may be used instead of the direct quenching process. However, the reheating and quenching process has a problem that the process becomes complicated.

本発明は、かかる従来技術の問題を解決し、ラインパイプ用として好適な、降伏強さ:450MPa超級の高強度と、シャルピー衝撃試験における破面遷移温度vTrsが−70℃以下という高靭性とを兼備しつつ、さらにサワー環境下における耐硫化物応力腐食割れ性(耐SSC性)に優れた、厚肉高強度継目無鋼管の製造方法を提供することを目的とする。
なお、ここでいう「厚肉」とは、肉厚12.5mm以上である場合をいうものとする。また、「耐硫化物応力腐食割れ性に優れた」とは、NACE TM0177 Method Aの規定に準拠した、H2Sが飽和した0.5%酢酸+5.0%食塩水溶液(液温:24℃)中での定荷重試験を実施し、降伏強さの85%の負荷応力で負荷時間:720時間で、割れが生じない場合をいうものとする。
The present invention solves such problems of the prior art, and is suitable for use in line pipes. It has a high yield strength of over 450 MPa and a high toughness with a fracture surface transition temperature vTrs of −70 ° C. or less in a Charpy impact test. The object of the present invention is to provide a method for producing a thick-walled, high-strength seamless steel pipe that is excellent in sulfide stress corrosion cracking resistance (SSC resistance) in a sour environment.
Here, “thick” refers to a case where the thickness is 12.5 mm or more. In addition, “Excellent resistance to sulfide stress corrosion cracking” means in a 0.5% acetic acid + 5.0% saline solution (liquid temperature: 24 ° C) saturated with H 2 S, in accordance with NACE TM0177 Method A. A constant load test is carried out at a load stress of 85% of the yield strength and the load time is 720 hours, and no cracking occurs.

本発明者らは、上記した目的を達成するため、継目無鋼管の強度、靭性と耐硫化物応力腐食割れ性(耐SSC性)に及ぼす各種要因について鋭意研究した。その結果、所望の高強度・高靭性とを兼備しつつ、優れた耐硫化物応力腐食割れ性を保持するラインパイプ用の継目無鋼管とするには、Mnを適正範囲に調整して焼入れ性を向上させ、またN量を低減し、さらにNを固定するためのみに適正量のTiを含有させて靭性の低下を防止し、さらに必要に応じて、適正量のCr、Mo、Cu、V、Nbを含有する組成としたうえで、さらに、低温加熱して穿孔したのち、所定条件を満足する低温圧延と加速冷却とを施し、組織を微細化し、さらに焼戻処理を施す製造方法とすることが肝要となることを見出した。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting the strength, toughness and resistance to sulfide stress corrosion cracking (SSC resistance) of a seamless steel pipe. As a result, in order to make seamless steel pipes for line pipes that have the desired high strength and toughness while maintaining excellent resistance to sulfide stress corrosion cracking, the Mn is adjusted to an appropriate range to achieve hardenability. In addition, the amount of N is reduced, and the proper amount of Ti is added only to fix N to prevent a decrease in toughness, and if necessary, an appropriate amount of Cr, Mo, Cu, V In addition, after making the composition containing Nb, further drilling by low-temperature heating, low-temperature rolling and accelerated cooling that satisfies the predetermined conditions, refine the structure, and further tempering I found out that this is important.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)中実丸鋳片を、加熱し、穿孔圧延を施して中空素管としたのち、該中空素管に延伸圧延を施して、継目無鋼管とするに当たり、前記中実丸鋳片を、質量%で、C:0.03〜0.15%、Si:0.02〜0.5%、Mn:0.7〜2.5%、P:0.020%以下、S:0.003%以下、Al:0.01〜0.08%、N:0.005%以下、Ti:0.005〜0.05%を含み、かつNとTiが次(1)式
N ≦ Ti×14/48 ≦ N+10 ‥‥(1)
(ここで、N、Ti:各元素の含有量(質量ppm))
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する中実丸鋳片とし、前記加熱を、加熱温度:1300℃未満とする加熱とし、前記延伸圧延を、950℃以下の温度域での次(2)式
圧下率(%)=(圧延前の管断面積−圧延後の管断面積)/(圧延前の管断面積)×100‥‥(2)で定義される圧下率が40%以上で、かつAr3変態点以上(Ar3変態点+70℃)以下の温度範囲で圧延を終了する圧延とし、前記延伸圧延終了後、800〜300℃の温度範囲での平均冷却速度が20℃/s以上である冷却を300℃以下まで施し、しかるのちに、Ac1変態点以下の温度で焼戻処理を行い、耐硫化物応力腐食割れ性に優れ、かつ靭性に優れる継目無鋼管とすることを特徴とするラインパイプ用厚肉高強度継目無鋼管の製造方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) The solid round slab is heated, pierced and rolled into a hollow shell, and then the hollow shell is stretched and rolled to form a seamless steel pipe. In mass%, C: 0.03-0.15%, Si: 0.02-0.5%, Mn: 0.7-2.5%, P: 0.020% or less, S: 0.003% or less, Al: 0.01-0.08%, N: 0.005% or less , Ti: 0.005-0.05%, N and Ti are the following formula (1)
N ≤ Ti x 14/48 ≤ N + 10 (1)
(N, Ti: Content of each element (mass ppm))
And a solid round cast slab having a composition comprising the balance Fe and inevitable impurities, the heating is heating to a heating temperature of less than 1300 ° C, and the stretching rolling is 950 ° C or less The following formula (2) in the temperature range: Reduction ratio (%) = (tube cross-sectional area before rolling−tube cross-sectional area after rolling) / (tube cross-sectional area before rolling) × 100 (2) The rolling is finished in a temperature range where the rolling reduction is 40% or more and not less than the Ar 3 transformation point (Ar 3 transformation point + 70 ° C.), and the average in the temperature range of 800 to 300 ° C. after the end of the stretching rolling. Cooling at a cooling rate of 20 ° C / s or higher is performed to 300 ° C or lower, and then tempering is performed at a temperature lower than the Ac 1 transformation point, providing excellent resistance to sulfide stress corrosion cracking and toughness. A method for manufacturing a thick-walled, high-strength seamless steel pipe for line pipes, characterized in that it is a seamless steel pipe.

(2)中実丸鋳片を、加熱し、穿孔圧延を施して中空素管としたのち、該中空素管に延伸圧延とそれに続く定径圧延とを施して、継目無鋼管とするに当たり、前記中実丸鋳片を、質量%で、C:0.03〜0.15%、Si:0.02〜0.5%、Mn:0.7〜2.5%、P:0.020%以下、S:0.003%以下、Al:0.01〜0.08%、N:0.005%以下、Ti:0.005〜0.05%を含み、かつNとTiを次(1)式
N ≦ Ti×14/48 ≦ N+10 ‥‥(1)
(ここで、N、Ti:各元素の含有量(質量ppm))
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する中実丸鋳片とし、前記加熱を、加熱温度:1300℃未満とする加熱とし、前記延伸圧延を、950℃以下の温度域での下記(2)式
圧下率(%)=(圧延前の管断面積−圧延後の管断面積)/(圧延前の管断面積)×100‥‥(2)で定義される圧下率が40%以上とする圧延とし、前記定径圧延を、Ar3変態点以上(Ar3変態点+70℃)以下の温度範囲で圧延を終了する圧延とし、前記定径圧延終了後、800〜300℃の温度範囲での平均冷却速度が20℃/s以上である冷却を300℃以下まで施し、しかるのちに、Ac1変態点以下の温度で焼戻処理を行い、耐硫化物応力腐食割れ性に優れ、かつ靭性に優れる継目無鋼管とすることを特徴とするラインパイプ用厚肉高強度継目無鋼管の製造方法。
(2) After the solid round slab is heated and subjected to piercing and rolling to form a hollow shell, the hollow shell is subjected to stretching rolling and subsequent constant diameter rolling to obtain a seamless steel pipe. The solid round cast slab is in mass%, C: 0.03-0.15%, Si: 0.02-0.5%, Mn: 0.7-2.5%, P: 0.020% or less, S: 0.003% or less, Al: 0.01-0.08 %, N: 0.005% or less, Ti: 0.005-0.05%, and N and Ti in the following formula (1)
N ≤ Ti x 14/48 ≤ N + 10 (1)
(N, Ti: Content of each element (mass ppm))
And a solid round cast slab having a composition comprising the balance Fe and inevitable impurities, the heating is heating to a heating temperature of less than 1300 ° C, and the stretching rolling is 950 ° C or less The following formula (2) in the temperature range: rolling reduction (%) = (tube cross-sectional area before rolling−tube cross-sectional area after rolling) / (tube cross-sectional area before rolling) × 100 (2) The rolling with a rolling reduction of 40% or more, and the constant diameter rolling is rolling that ends rolling at a temperature range of not less than the Ar 3 transformation point (Ar 3 transformation point + 70 ° C.) and after completion of the constant diameter rolling, 800 Cooling at an average cooling rate of 20 ° C / s or higher in the temperature range of ~ 300 ° C is performed to 300 ° C or lower, and then tempering is performed at a temperature below the Ac 1 transformation point to prevent sulfide stress corrosion. Manufacture of thick-walled, high-strength seamless steel pipes for line pipes, characterized by being seamless steel pipes with excellent cracking and toughness Method.

(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cu:0.3%以下、Ni:0.3%以下、Mo:0.3%以下、Cr:0.5%以下、V:0.05%以下、Nb:0.05%以下のうちから選ばれた1種または2種以上を含有することを特徴とするラインパイプ用厚肉高強度継目無鋼管の製造方法。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.002%以下を含有することを特徴とするラインパイプ用厚肉高強度継目無鋼管の製造方法。
(3) In (1) or (2), in addition to the above composition, in addition to mass, Cu: 0.3% or less, Ni: 0.3% or less, Mo: 0.3% or less, Cr: 0.5% or less, V: 0.05 % Or less, Nb: One or more selected from 0.05% or less. A method for producing a thick high-strength seamless steel pipe for line pipes.
(4) In any one of (1) to (3), in addition to the above-mentioned composition, further containing, by mass%, Ca: 0.002% or less, a thick-walled high-strength seamless steel pipe for line pipes Production method.

本発明によれば、多量の合金元素を添加することなく、降伏強さ:450MPa超級の高強度と、シャルピー衝撃試験における破面遷移温度vTrsが−70℃以下という高靭性とを兼備しつつ、さらに硫化水素を含む厳しい腐食環境下における優れた耐硫化物応力腐食割れ性を有する油井用低合金高強度継目無鋼管を容易に製造でき、産業上格段の効果を奏する。   According to the present invention, without adding a large amount of alloy elements, yield strength: high strength exceeding 450 MPa, and high toughness with a fracture surface transition temperature vTrs of −70 ° C. or less in the Charpy impact test, Furthermore, low-alloy high-strength seamless steel pipes for oil wells having excellent sulfide stress corrosion cracking resistance in severe corrosive environments containing hydrogen sulfide can be easily manufactured, and there are remarkable industrial effects.

本発明では、中実丸鋳片を出発素材とし、該中実丸鋳片を加熱し、穿孔圧延を施して中空素材としたのち、該中空素材に延伸圧延を施して継目無鋼管とする。
まず、出発素材である中実丸鋳片の組成限定理由について、説明する。以下、とくに断わらないかぎり質量%は単に%で記す。
C:0.03〜0.15%
Cは、固溶強化や、焼入れ性向上を介して、鋼管強度の増加に寄与する元素である。このような効果を得て、所望の高強度を確保するためには0.03%以上の含有を必要とする。一方、0.15%を超えて多量に含有すると、溶接熱影響部(HAZ)の硬さが高くなりすぎて、溶接部の耐SSC性が低下する。このため、Cは0.03〜0.15%の範囲に限定した。なお、好ましくは0.06〜0.12%である。リールパージ等のように円周溶接部に繰り返し巻き、巻き戻しが複数回繰り返し負荷されるような使途向けには、より好ましくは、0.06〜0.11%である。
なお、好ましい範囲は、体積膨張が大きくなり製造製が低下する亜包晶域を外した組成範囲であり、この範囲は成分が明確でない場合には正確には表示できないが、概ねC:0.10〜0.12%前後の領域となる。
In the present invention, a solid round slab is used as a starting material, the solid round slab is heated and subjected to piercing and rolling to form a hollow material, and then the hollow material is stretched and rolled to obtain a seamless steel pipe.
First, the reason for limiting the composition of the solid round cast slab, which is the starting material, will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.03-0.15%
C is an element that contributes to an increase in steel pipe strength through solid solution strengthening and hardenability improvement. In order to obtain such an effect and to secure a desired high strength, a content of 0.03% or more is required. On the other hand, if the content is more than 0.15%, the hardness of the weld heat affected zone (HAZ) becomes too high, and the SSC resistance of the weld zone decreases. For this reason, C was limited to the range of 0.03-0.15%. In addition, Preferably it is 0.06 to 0.12%. For usage in which the winding and rewinding are repeatedly applied a plurality of times, such as reel purge, it is more preferably 0.06 to 0.11%.
The preferred range is a composition range excluding the subperitectic region where the volume expansion increases and the production decreases, and this range cannot be accurately displayed when the component is not clear, but generally C: 0.10 ~ The area is around 0.12%.

Si:0.02〜0.5%
Siは、脱酸剤として作用するとともに、固溶強化により、鋼管強度を増加させる作用を有する元素である。このような効果を得るためには、不純物レベルを超える0.02%以上の含有を必要とする。一方、0.5%を超える多量の含有は、溶接部および母材部の靭性が低下する。このため、Siは0.02〜0.5%の範囲に限定した。
Si: 0.02-0.5%
Si is an element that acts as a deoxidizer and has an effect of increasing steel pipe strength by solid solution strengthening. In order to obtain such an effect, a content of 0.02% or more exceeding the impurity level is required. On the other hand, if the content exceeds 0.5%, the toughness of the welded part and the base metal part is lowered. For this reason, Si was limited to the range of 0.02 to 0.5%.

Mn:0.7〜2.5%
Mnは、焼入れ性の向上を介して、鋼管強度を増加させる作用を有する元素である。また、Mnは、Sと結合しMnSとしてSを固定して、Sによる粒界脆化を防止する作用を有する。このような効果を得て、所望の高強度を確保するためには0.7%以上の含有を必要とする。一方、2.5%を超える多量の含有は、円周溶接部の硬さが250HVを超えて高くなりすぎ、耐サワー性(耐SSC性)が低下する。このため、Mnは0.7〜2.5%の範囲に限定した。なお、好ましくは0.7〜1.5%である。
Mn: 0.7-2.5%
Mn is an element having an action of increasing the steel pipe strength through improvement of hardenability. Further, Mn has an action of binding to S and fixing S as MnS to prevent grain boundary embrittlement due to S. In order to obtain such an effect and ensure a desired high strength, a content of 0.7% or more is required. On the other hand, if the content exceeds 2.5%, the hardness of the circumferential weld becomes too high exceeding 250 HV, and sour resistance (SSC resistance) decreases. For this reason, Mn was limited to the range of 0.7 to 2.5%. In addition, Preferably it is 0.7 to 1.5%.

P:0.020%以下
Pは、結晶粒界等に偏析し、靭性の低下、粒界脆化割れ等を引き起こす傾向を示し、本発明ではできるだけ低減することが望ましいが、0.020%までは許容できる。このようなことから、Pは0.020%以下に限定した。なお、過剰な低減は、製鋼コストの高騰を招くため工業的には0.003%以上とすることが望ましい。
P: 0.020% or less
P tends to segregate at grain boundaries and cause toughness reduction, grain boundary embrittlement cracking, etc., and is desirably reduced as much as possible in the present invention, but is acceptable up to 0.020%. Therefore, P is limited to 0.020% or less. In addition, since excessive reduction leads to an increase in steelmaking cost, it is desirable to make 0.003% or more industrially.

S:0.003%以下
Sは、鋼中ではほとんどが硫化物系介在物として存在し、延性、靭性や耐食性、さらには耐水素脆化割れ性(耐HIC性)、耐硫化物応力腐食割れ性(耐SSC性)を低下させるため、できるだけ低減することが望ましい。しかし、継目無鋼管では、穿孔圧延で円周方向および長手方向に伸ばされる圧延が施されるため、MnSが圧延方向に極端に長く伸ばされることはなく、耐HIC性、耐SSC性の極端な低下は少なく、Sの極端な低減を行う必要はない。0.003%以下程度であれば許容できる。このため、Sは0.003%以下に限定した。
S: 0.003% or less
S is mostly present as sulfide inclusions in steel, and has ductility, toughness and corrosion resistance, hydrogen embrittlement crack resistance (HIC resistance), and sulfide stress corrosion crack resistance (SSC resistance). In order to reduce, it is desirable to reduce as much as possible. However, since seamless steel pipes are rolled in the circumferential direction and longitudinal direction by piercing and rolling, MnS is not stretched extremely long in the rolling direction, and has extremely high HIC resistance and SSC resistance. The decrease is small and there is no need to make an extreme reduction of S. If it is about 0.003% or less, it is acceptable. For this reason, S was limited to 0.003% or less.

Al:0.01〜0.08%
Alは、脱酸剤として作用する元素であり、このような効果を得るためには0.01%以上含有する必要がある。一方、0.08%を超える含有は、酸化物系介在物がクラスター状に残留しやすくなり、靭性が低下する。また、酸化物系介在物は表面疵の原因ともなる。このため、Alは0.01〜0.08%の範囲に限定した。なお、好ましくは0.05%以下である。
Al: 0.01-0.08%
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is necessary to contain 0.01% or more. On the other hand, if the content exceeds 0.08%, oxide inclusions are likely to remain in a cluster shape, and the toughness decreases. Oxide inclusions also cause surface defects. For this reason, Al was limited to the range of 0.01 to 0.08%. In addition, Preferably it is 0.05% or less.

N:0.005%以下
Nは、Tiと結合しTiNを生成し、その量が増加すると、靭性を低下させる傾向を有する。このため、本発明では、Nはできるだけ低減することにした。しかし、極端な低減は精錬コストの高騰を招く。このため、Nは0.005%以下に限定した。
Ti:0.005〜0.05%
Tiは、Nを固定するためだけに含有する。Nを固定しTiNを形成した以外のTiは、残留しないように、N量に応じて調整して含有することした。通常の、最も少ない場合のN量に対応して、Tiは0.005%以上含有する必要がある。一方、0.05%を超えて含有するとTiN量が増加し、大きさが大きくなるとともに、Tiの炭化物、硫化物、炭硫化物等を形成し、靭性を低下させる。このため、Tiは0.005〜0.05%に限定した。なお、好ましくは0.0175%以下である。
N: 0.005% or less
N combines with Ti to produce TiN, and when its amount increases, it tends to reduce toughness. For this reason, in the present invention, N is reduced as much as possible. However, an extreme reduction leads to an increase in refining costs. For this reason, N was limited to 0.005% or less.
Ti: 0.005-0.05%
Ti is contained only for fixing N. Ti other than that in which N was fixed and TiN was formed was adjusted according to the amount of N so as not to remain. Corresponding to the usual minimum amount of N, Ti should be contained 0.005% or more. On the other hand, if the content exceeds 0.05%, the amount of TiN increases, the size increases, and Ti carbide, sulfide, carbon sulfide, etc. are formed, and the toughness is reduced. For this reason, Ti was limited to 0.005 to 0.05%. In addition, Preferably it is 0.0175% or less.

本発明ではN、Tiを、上記した範囲で、かつ次(1)式
N ≦ Ti×14/48 ≦ N+10 ‥‥(1)
(ここで、N、Ti:各元素の含有量(質量ppm))
を満足するように調整して含有する。(1)式の中央値は、TiNを形成する際のTi量に相当する。本発明ではTi量を、含有するN量に対応して、N〜(N+10)質量ppmの範囲となるように調整して含有する。(Ti×14/48)がN量未満では、固溶N量が存在することになり、Al等の窒化物形成元素と結合し、あるいは焼戻時に炭窒化物を形成して、鋼管靭性の低下を招く要因となる。
In the present invention, N and Ti are within the above range, and the following formula (1)
N ≤ Ti x 14/48 ≤ N + 10 (1)
(N, Ti: Content of each element (mass ppm))
The content is adjusted so as to satisfy. The median of equation (1) corresponds to the amount of Ti when TiN is formed. In the present invention, the Ti content is adjusted so as to be in a range of N to (N + 10) mass ppm corresponding to the N content. If (Ti × 14/48) is less than N, there will be solid solution N, which combines with nitride-forming elements such as Al, or forms carbonitrides during tempering, resulting in steel pipe toughness. This is a factor that causes a decline.

一方、(Ti×14/48)が(N+10)を超えて多くなると、TiNを形成した残りのTiが存在することになり、Tiの硫化物、炭硫化物を形成し、靭性を大きく低下させる恐れが増大する。このため、TiとNとを、(1)式を満足するように調整することとした。
上記した成分が基本の成分であるが、本発明では、基本の組成に加えてさらに、選択元素として、Cu:0.3%以下、Ni:0.3%以下、Mo:0.3%以下、Cr:0.5%以下、V:0.05%以下、Nb:0.05%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.002%以下を含有することができる。
On the other hand, if (Ti × 14/48) increases beyond (N + 10), there will be the remaining Ti forming TiN, forming Ti sulfides and carbon sulfides, greatly reducing toughness The fear increases. For this reason, it was decided to adjust Ti and N so as to satisfy the expression (1).
The above components are basic components. In the present invention, in addition to the basic composition, Cu: 0.3% or less, Ni: 0.3% or less, Mo: 0.3% or less, Cr: 0.5% or less , V: 0.05% or less, Nb: 0.05% or less, and / or Ca: 0.002% or less.

Cu、Ni、Mo、Cr、V、Nbはいずれも、鋼管強度の増加に寄与する元素であり、必要に応じて選択して1種または2種以上、含有できる。
Cu:0.3%以下、Ni:0.3%以下、Mo:0.3%以下、Cr:0.5%以下、V:0.05%以下、Nb:0.05%以下
Cuは、固溶強化、さらには焼入れ性向上を介して、鋼管強度を増加させる元素であり、必要に応じて、含有できる。このような効果を得るためには、0.01%以上含有することが望ましいが、0.3%を超えて含有すると、靭性が低下するうえ、表面疵が多発する。このため、含有する場合には、Cuは0.3%以下に限定することが好ましい。
Cu, Ni, Mo, Cr, V, and Nb are all elements that contribute to an increase in the strength of the steel pipe, and can be selected as needed and contained in one or more.
Cu: 0.3% or less, Ni: 0.3% or less, Mo: 0.3% or less, Cr: 0.5% or less, V: 0.05% or less, Nb: 0.05% or less
Cu is an element that increases the strength of the steel pipe through solid solution strengthening and further hardenability improvement, and can be contained if necessary. In order to acquire such an effect, it is desirable to contain 0.01% or more, but when it contains exceeding 0.3%, toughness will fall and surface flaws will occur frequently. For this reason, when it contains, it is preferable to limit Cu to 0.3% or less.

Niは、固溶強化、さらには焼入れ性向上を介して、鋼管強度を増加させる元素であり、必要に応じて、含有できる。このような効果を得るためには、0.01%以上含有することが望ましいが、0.3%を超えて含有すると、強度が高くなりすぎ、サワー環境下における耐SSC性が低下する。このため、含有する場合には、Niは0.3%以下に限定することが好ましい。なお、Cuを0.05%以上含有する場合には、Niを0.5×Cu量以上含有させることがより好ましい。これにより、Cu起因の表面疵や、表面欠陥の発生を防止できる。   Ni is an element that increases the strength of the steel pipe through solid solution strengthening and further improving the hardenability, and can be contained if necessary. In order to obtain such an effect, it is desirable to contain 0.01% or more, but if it exceeds 0.3%, the strength becomes too high and the SSC resistance in a sour environment is lowered. For this reason, when it contains, it is preferable to limit Ni to 0.3% or less. In addition, when 0.05% or more of Cu is contained, it is more preferable to contain Ni by 0.5 × Cu amount or more. Thereby, the generation | occurrence | production of the surface flaw and surface defect resulting from Cu can be prevented.

Moは、焼入れ性向上を介して、鋼管強度を増加させる元素であり、必要に応じて、含有できる。このような効果を得るためには、0.001%以上含有することが望ましいが、0.3%を超えて含有すると、強度が高くなりすぎ、サワー環境下における耐SSC性が低下する。このため、含有する場合には、Moは0.3%以下に限定することが好ましい。
Crは、焼入れ性向上を介して、鋼管強度を増加させる元素であり、必要に応じて、含有できる。このような効果を得るためには、0.01%以上含有することが望ましいが、0.5%を超えて含有すると、強度が高くなりすぎ、サワー環境下における耐SSC性(耐サワー性)、とくに溶接部における耐サワー性が低下する。このため、含有する場合には、Crは0.5%以下に限定することが好ましい。
Mo is an element that increases the strength of the steel pipe through the improvement of hardenability, and can be contained if necessary. In order to obtain such an effect, it is desirable to contain 0.001% or more. However, if it exceeds 0.3%, the strength becomes too high, and the SSC resistance in a sour environment decreases. For this reason, when it contains, it is preferable to limit Mo to 0.3% or less.
Cr is an element that increases the strength of the steel pipe through the improvement of hardenability, and can be contained if necessary. In order to obtain such an effect, it is desirable to contain 0.01% or more, but if it exceeds 0.5%, the strength becomes too high and SSC resistance (sour resistance) in a sour environment, especially welded parts. The sour resistance is reduced. For this reason, when contained, Cr is preferably limited to 0.5% or less.

Vは、焼入れ性向上、焼戻軟化抵抗の増加を介して、鋼管強度を増加させる元素であり、必要に応じて、含有できる。このような効果を得るためには、0.002%以上含有することが望ましいが、0.05%を超えて含有すると、粗大なVN、V(CN)を形成し、靭性を低下させる可能性が高くなる。このため、含有する場合には、Vは0.05%以下に限定することが好ましい。   V is an element that increases the strength of the steel pipe through an improvement in hardenability and an increase in resistance to temper softening, and can be contained if necessary. In order to acquire such an effect, it is desirable to contain 0.002% or more. However, if it exceeds 0.05%, coarse VN and V (CN) are formed, and the possibility of lowering toughness is increased. For this reason, when it contains, it is preferable to limit V to 0.05% or less.

Nbは、析出強化を介して、鋼管強度を増加させる元素であり、必要に応じて、含有できる。また、Nbはオーステナイト粒の微細化に寄与し、耐サワー性が向上する。このような効果を得るためには、0.005%以上含有することが望ましいが、0.05%を超える含有は、耐硫化物応力腐食割れ性、耐水素誘起割れ性を低下させる恐れがある。このため、含有する場合にはNbは0.05%以下に限定することが好ましい。   Nb is an element that increases the strength of the steel pipe through precipitation strengthening, and can be contained as necessary. Nb also contributes to refinement of austenite grains and improves sour resistance. In order to obtain such an effect, the content is preferably 0.005% or more. However, if the content exceeds 0.05%, the resistance to sulfide stress corrosion cracking and the resistance to hydrogen-induced cracking may be reduced. For this reason, when it contains, it is preferable to limit Nb to 0.05% or less.

Ca:0.002%以下
Caは、硫化物系介在物、酸化物系介在物の形態を粒状の介在物とする、いわゆる介在物の形態を制御する作用を有し、この介在物の形態制御を介して、延性、靭性や耐硫化物応力腐食割れ性、耐水素誘起割れ性を向上させる効果を有する元素であり、必要に応じて含有できる。このような効果は、0.001%以上の含有で顕著となるが、0.002%を超えて含有すると、非金属介在物が増加し、かえって延性、靭性や耐硫化物応力腐食割れ性、耐水素誘起割れ性が低下する。このため、含有する場合には、Caは0.002%以下の範囲に限定することが好ましい。なお、Caを溶鋼中に含有させることにより、連続鋳造時のノズル詰まりを抑制することができる。なお、丸鋳片を使用しない場合には、Caは無添加としてもよい。
Ca: 0.002% or less
Ca has the effect of controlling the form of inclusions, which is the inclusion of sulfide inclusions and oxide inclusions in the form of granular inclusions. It is an element having an effect of improving resistance to sulfide stress corrosion cracking and hydrogen-induced cracking, and can be contained as required. Such effects become prominent when the content is 0.001% or more. However, when the content exceeds 0.002%, nonmetallic inclusions increase, and on the contrary, ductility, toughness, resistance to sulfide stress corrosion cracking, and resistance to hydrogen-induced cracking are increased. Sexuality decreases. For this reason, when it contains, it is preferable to limit Ca to 0.002% or less of range. In addition, the nozzle clogging at the time of continuous casting can be suppressed by containing Ca in molten steel. In addition, when a round slab is not used, Ca may not be added.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O:0.006%以下が許容できる。
また、本発明継目無鋼管は、上記した組成を有しさらに、ベイナイト相を主体とする組織を有する。ここでいう「ベイナイト相」は、ベイナイト相に加えて、ベイニティックフェライト相、アシキュラーフェライト相を含むものとする。なお、ナイタール液腐食で現出させた組織の光学顕微鏡観察では、ベイナイト相とマルテンサイト相との区別がつけにくいため、本発明ではベイナイト相にマルテンサイト相を含めるものとする。また、ここでいう「主体とする」とは、当該相が面積率で50%以上である場合をいうものとする。ベイナイト相以外の第二相としては、面積率で10%以下のフェライト相が例示できる。
The balance other than the components described above consists of Fe and inevitable impurities. As an inevitable impurity, O: 0.006% or less is acceptable.
The seamless steel pipe of the present invention has the above-described composition and further has a structure mainly composed of a bainite phase. The “bainite phase” herein includes a bainitic ferrite phase and an acicular ferrite phase in addition to the bainite phase. In the present invention, the martensite phase is included in the bainite phase because it is difficult to distinguish the bainite phase from the martensite phase in the optical microscope observation of the structure revealed by the nital liquid corrosion. The term “mainly” as used herein refers to a case where the phase is 50% or more in area ratio. Examples of the second phase other than the bainite phase include a ferrite phase having an area ratio of 10% or less.

本発明では、上記した組成を有する中実丸鋳片を出発素材とする。出発素材である中実丸鋳片の製造方法は特に限定する必要はなく、常用の方法がいずれも適用できる。上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の常用の溶製方法で溶製し、常用の連続鋳造法で所定寸法の中実丸鋳片とすることが好ましい。
ついで、出発素材である中実丸鋳片を、加熱し、穿孔圧延を施して中空素管とする。
In the present invention, a solid round slab having the above composition is used as a starting material. The manufacturing method of the solid round slab as a starting material is not particularly limited, and any conventional method can be applied. It is preferable that the molten steel having the above composition is melted by a conventional melting method such as a converter, an electric furnace, a vacuum melting furnace or the like, and is made into a solid round slab of a predetermined size by a conventional continuous casting method.
Next, the solid round cast slab as a starting material is heated and subjected to piercing and rolling to form a hollow shell.

加熱における加熱温度は、好ましくは1150℃以上、1300℃未満とする。加熱温度が1300℃以上では、結晶粒が粗大化するとともに、スケールロスが多大となり歩留りが低下し、かえって経済的に不利となる。なお、加熱温度が1100℃未満では、熱間変形抵抗が高くなり、圧延機にかかる負荷(圧延荷重)が高くなりすぎて、圧延が困難となる。このため、本発明では、中実丸鋳片の加熱温度は1300℃未満好ましくは1100℃以上に限定した。なお、好ましくは1200℃以上である。   The heating temperature in the heating is preferably 1150 ° C. or more and less than 1300 ° C. When the heating temperature is 1300 ° C. or higher, the crystal grains become coarse, the scale loss becomes great, and the yield decreases, which is economically disadvantageous. When the heating temperature is less than 1100 ° C., the hot deformation resistance becomes high, the load (rolling load) applied to the rolling mill becomes too high, and rolling becomes difficult. Therefore, in the present invention, the heating temperature of the solid round slab is limited to less than 1300 ° C., preferably 1100 ° C. or more. In addition, Preferably it is 1200 degreeC or more.

なお、穿孔圧延方法は、とくに限定する必要はなく、マンネスマン方式の穿孔方法が、ロール形式によらず適用できる。
得られた中空素管には、追加の加熱を行うことなくそのまま、あるいは1100℃未満好ましくは1000℃以上に加熱し、延伸圧延、あるいはさらに定径圧延を施して、所定寸法の継目無鋼管とする。なお、延伸圧延は、常用のマンネスマン−エロンゲータ・プラグミル、あるいはマンネスマン−マンドレルミル、さらにはアッセルミルを利用した圧延とすることが好ましい。
The piercing and rolling method is not particularly limited, and the Mannesmann piercing method can be applied regardless of the roll type.
The obtained hollow shell is used as it is without additional heating, or is heated to less than 1100 ° C., preferably 1000 ° C. or more, subjected to stretching rolling or further constant diameter rolling, To do. The stretching rolling is preferably rolling using a usual Mannesmann-Elongator plug mill, Mannesmann-Mandrel mill, or further an Assel mill.

延伸圧延は、950℃以下の温度域での次(1)式
圧下率(%)=(圧延前の管断面積−圧延後の管断面積)/(圧延前の管断面積)×100‥‥(1)
で定義される圧下率(断面減少率)が40%以上で、かつAr3変態点以上(Ar3変態点+70℃)以下の温度範囲で圧延を終了する圧延とする。
Stretch rolling is performed by the following formula (1) in the temperature range of 950 ° C. or lower: Reduction ratio (%) = (tube cross-sectional area before rolling−tube cross-sectional area after rolling) / (tube cross-sectional area before rolling) × 100. (1)
The rolling is completed in a temperature range in which the rolling reduction (cross-sectional reduction rate) defined by is 40% or more and not less than the Ar 3 transformation point (Ar 3 transformation point + 70 ° C.).

なお、延伸圧延に引続いて、定径圧延を施す場合には、延伸圧延の圧延終了温度は、上記した温度範囲を上方に外れてもとくに問題はない。延伸圧延の圧延終了温度がAr3変態点未満では、引続いて定径圧延を行う場合に、定径圧延の圧延終了温度を所定の温度範囲調整することができなくなる。
延伸圧延における950℃以下の温度域での圧下率(断面減少率)が40%未満では、未再結晶温度域での圧下量が不足し、組織の微細化を達成できず、所望の高強度、高靭性を確保できない。このため、延伸圧延における950℃以下の温度域での圧下率を40%以上に限定した。なお、延伸圧延における950℃以下の温度域での圧下率は、圧延荷重、圧延中の管形状の観点から75%以下とすることが好ましい。なお、好ましくは65%以下である。
In addition, when performing constant-diameter rolling subsequent to stretching rolling, there is no particular problem even if the rolling end temperature of stretching rolling deviates from the above temperature range. If the rolling end temperature of the drawing rolling is less than the Ar 3 transformation point, the rolling end temperature of the constant diameter rolling cannot be adjusted within a predetermined temperature range when the constant diameter rolling is subsequently performed.
If the rolling reduction (cross-sectional reduction rate) in the temperature range of 950 ° C or lower in drawing rolling is less than 40%, the amount of rolling in the non-recrystallization temperature range is insufficient, and the microstructure cannot be refined, and the desired high strength High toughness cannot be ensured. For this reason, the rolling reduction in the temperature range of 950 ° C. or less in drawing and rolling is limited to 40% or more. It should be noted that the rolling reduction in the temperature range of 950 ° C. or less in the drawing rolling is preferably 75% or less from the viewpoint of rolling load and tube shape during rolling. In addition, Preferably it is 65% or less.

また、延伸圧延における圧延終了温度がAr3変態点未満では、最終的に得られる鋼管組織が所望の組織とすることができなくなる。また、鋼板温度がAr3変態点未満では、オーステナイトからフェライトの析出が開始され、加工歪の分布が不均一となるという懸念もある。一方、延伸圧延の圧延終了温度が(Ar3変態点+70℃)を超えると、加工により導入された転位(加工歪)が回復等を起し、所望の組織の微細化を達成できなくなる。このため、延伸圧延における圧延終了温度はAr3変態点以上(Ar3変態点+70℃)以下の温度範囲に限定した。なお、好ましくは(Ar3変態点+30℃)〜Ar3変態点の範囲である。 Further, if the rolling end temperature in the drawing rolling is less than the Ar 3 transformation point, the finally obtained steel pipe structure cannot be a desired structure. Further, when the steel plate temperature is lower than the Ar 3 transformation point, there is a concern that the precipitation of ferrite starts from austenite and the distribution of processing strain becomes non-uniform. On the other hand, when the rolling end temperature of the stretch rolling exceeds (Ar 3 transformation point + 70 ° C.), the dislocation (working strain) introduced by the working recovers and the desired structure cannot be refined. Therefore, rolling end temperature in the elongation rolling is limited to a temperature range of Ar 3 transformation point or higher (Ar 3 transformation point + 70 ° C.) or less. Incidentally, preferably in the range of (Ar 3 transformation point + 30 ℃) ~Ar 3 transformation point.

なお、本発明では、延伸圧延後、さらに、管外径寸法を所定の寸法に調整するために、定径圧延を施してもよい。定径圧延は、レデューサー、サイジングミル等の圧延機を利用して、管外径寸法を所定の寸法に調整するために行う。その場合、定径圧延の圧延条件は、後工程の制御冷却の冷却条件を満足できるように、圧延終了温度をAr3変態点以上(Ar3変態点+70℃)以下の温度範囲とする。定径圧延の圧延終了温度がAr3変態点未満では、オーステナイトからフェライトの析出が開始され、加工歪の分布が不均一となるという問題が生じる。一方、定径圧延の圧延終了温度が(Ar3変態点+70℃)を超えると、加工により導入された転位が回復等により消滅し、所望の組織微細化が達成できなくなる。このため、定径圧延における圧延終了温度はAr3変態点以上(Ar3変態点+70℃)以下の温度範囲に限定した。なお、好ましくは(Ar3変態点+30℃)〜Ar3変態点の範囲である。 In the present invention, after the drawing and rolling, constant diameter rolling may be performed in order to further adjust the outer diameter of the pipe to a predetermined dimension. The constant diameter rolling is performed to adjust the outer diameter of the pipe to a predetermined dimension using a rolling machine such as a reducer or a sizing mill. In that case, the rolling conditions of constant径圧extension, as can satisfy the cooling conditions controlled cooling in the subsequent step, the temperature range of the rolling end temperature than the Ar 3 transformation point (Ar 3 transformation point + 70 ° C.) or less. If the rolling end temperature of the constant diameter rolling is less than the Ar 3 transformation point, the precipitation of ferrite starts from austenite and the processing strain distribution becomes non-uniform. On the other hand, when the rolling end temperature of constant diameter rolling exceeds (Ar 3 transformation point + 70 ° C.), the dislocation introduced by the processing disappears due to recovery or the like, and the desired structure refinement cannot be achieved. Therefore, rolling end temperature in the constant-radius rolling is limited to a temperature range of Ar 3 transformation point or higher (Ar 3 transformation point + 70 ° C.) or less. Incidentally, preferably in the range of (Ar 3 transformation point + 30 ℃) ~Ar 3 transformation point.

延伸圧延終了後、あるいは延伸圧延に引続き定径圧延を行う場合には定径圧延後に、制御冷却を施す。制御冷却は、800〜300℃の温度範囲での平均冷却速度が20℃/s以上である冷却とし、冷却停止温度を300℃以下とする。これにより、ベイナイト相を主体とする組織とすることができる。
800〜300℃の温度範囲での平均冷却速度を20℃/s以上とすることにより、得られる組織が微細なベイナイト相を主体とする組織となり、所望の高強度、高靭性を兼備させることができる。平均冷却速度が20℃/s未満では、得られる組織が、粗大なフェライト相やパーライトを含む組織となり、強度、靭性がともに低下する。一方、平均冷却速度の上限はとくに限定する必要はないが、鋼管形状の観点から、100℃/s程度以下とすることが好ましい。なお、得られる冷却速度は、使用する冷却装置の冷却能に依存して、鋼管の肉厚により決定されるが、100℃/s以上の冷却速度範囲では、得られる組織に大きな変化は認められない。このようなことから、延伸圧延終了後の冷却では800〜300℃の温度範囲での平均冷却速度を20℃/s以上に限定した。なお、好ましくは40℃/s以上である。
Control cooling is performed after the constant diameter rolling when the constant diameter rolling is performed after completion of the stretching rolling or following the stretching rolling. The controlled cooling is cooling in which the average cooling rate in the temperature range of 800 to 300 ° C. is 20 ° C./s or more, and the cooling stop temperature is 300 ° C. or less. Thereby, it can be set as the structure | tissue which has a bainite phase as a main body.
By setting the average cooling rate in the temperature range of 800 to 300 ° C. to 20 ° C./s or more, the obtained structure becomes a structure mainly composed of a fine bainite phase, and has desired high strength and high toughness. it can. When the average cooling rate is less than 20 ° C./s, the resulting structure becomes a structure containing a coarse ferrite phase and pearlite, and both strength and toughness are lowered. On the other hand, the upper limit of the average cooling rate is not particularly limited, but is preferably about 100 ° C./s or less from the viewpoint of the steel pipe shape. The cooling rate obtained is determined by the thickness of the steel pipe depending on the cooling capacity of the cooling device to be used. However, in the cooling rate range of 100 ° C / s or more, a large change is observed in the obtained structure. Absent. For this reason, the average cooling rate in the temperature range of 800 to 300 ° C. is limited to 20 ° C./s or more in the cooling after the drawing and rolling. In addition, Preferably it is 40 degrees C / s or more.

また、制御冷却の冷却停止温度が300℃を超えて高温となると、組織が粗大化し、所望の高強度、高靭性を確保できなくなる。このため、制御冷却の冷却停止温度が300℃以下に限定した。
制御冷却後、さらに焼戻処理を施す。
焼戻処理は、Ac1変態点未満の温度に加熱し、冷却、好ましくは空冷以上の冷却速度で冷却、する処理とする。本発明では焼戻処理は、過剰な転位を減少させ組織の安定化を図り、所望の高強度と更なる優れた耐硫化物応力腐食割れ性とを兼備させるために行う。焼戻処理の加熱温度がAc1変態点以上では、一部で、α→γ変態が生じ、その後の冷却でさらに変態するため、強度、靭性が低下する。このようなことから、焼戻処理の加熱温度を、Ac1変態点以下の温度に限定した。なお、好ましくは600〜680℃である。また、焼戻処理は、上記した温度範囲内で10min以上保持したのち、好ましくは空冷以上の冷却速度で、好ましくは室温まで冷却する処理とすることが好ましい。なお、焼戻温度での保持時間が、5min未満では、所望の組織の均一化が達成できない。なお、好ましくは、30min以下である。
Further, when the cooling stop temperature of the controlled cooling exceeds 300 ° C. and becomes a high temperature, the structure becomes coarse and desired high strength and high toughness cannot be ensured. For this reason, the cooling stop temperature of the controlled cooling is limited to 300 ° C. or less.
A tempering process is further performed after controlled cooling.
The tempering process is a process of heating to a temperature below the Ac 1 transformation point and cooling, preferably cooling at a cooling rate equal to or higher than air cooling. In the present invention, the tempering treatment is performed in order to reduce excessive dislocations and stabilize the structure, and to combine desired high strength and further excellent resistance to sulfide stress corrosion cracking. If the heating temperature in the tempering treatment is at least the Ac 1 transformation point, the α → γ transformation occurs in part, and further transformation occurs by subsequent cooling, resulting in a decrease in strength and toughness. For this reason, the heating temperature in the tempering treatment was limited to a temperature below the Ac 1 transformation point. In addition, Preferably it is 600-680 degreeC. In addition, the tempering treatment is preferably a treatment in which, after holding for 10 minutes or more within the above temperature range, cooling at a cooling rate of preferably air cooling or more, preferably to room temperature. If the holding time at the tempering temperature is less than 5 minutes, the desired structure cannot be made uniform. In addition, Preferably, it is 30 minutes or less.

以下、実施例に基づいてさらに本発明について説明する。   Hereinafter, the present invention will be further described based on examples.

表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で中実丸鋳片(直径:210mmφ)とした。出発素材である中実丸鋳片を、表2に示す温度に加熱し、マンネスマン方式の穿孔圧延機を用いて穿孔圧延を施し中空素管とした。ついで、得られた中空素管に、表2に示す条件でマンドレルミルで延伸圧延し、さらにサイジングミルで定径圧延を施し、圧延終了後、表2に示す条件で制御冷却を施し、表2に示す寸法の継目無鋼管とした。引続き、表2に示す条件の焼戻処理を施した。   Molten steel having the composition shown in Table 1 was melted in a converter and made into a solid round slab (diameter: 210 mmφ) by a continuous casting method. The solid round cast slab, which is the starting material, was heated to the temperature shown in Table 2 and pierced and rolled using a Mannesmann piercing and rolling machine to form a hollow shell. Next, the obtained hollow shell was stretched and rolled with a mandrel mill under the conditions shown in Table 2, and further subjected to constant diameter rolling with a sizing mill. After the rolling, controlled cooling was performed under the conditions shown in Table 2. Table 2 A seamless steel pipe having the dimensions shown in FIG. Subsequently, tempering treatment under the conditions shown in Table 2 was performed.

得られた継目無鋼管から試験材を採取し、組織観察試験、引張試験、シャルピー衝撃試験、腐食試験を実施した。試験方法は次のとおりとした。
(1)組織観察試験
得られた鋼管から、組織観察用試験片を採取し、管長手方向に直交する断面(C断面)を研磨、腐食(腐食液:ナイタール液)して、光学顕微鏡(倍率:100倍)および走査型電子顕微鏡(倍率:1000倍)で組織を観察し、撮像して、画像解析装置を用い、組織の種類およびその分率を測定した。
Test materials were collected from the obtained seamless steel pipes and subjected to a structure observation test, a tensile test, a Charpy impact test, and a corrosion test. The test method was as follows.
(1) Microstructure observation test A specimen for microstructural observation was collected from the obtained steel pipe, and the cross section (C cross section) perpendicular to the longitudinal direction of the pipe was polished and corroded (corrosion liquid: nital liquid). : 100 times) and a scanning electron microscope (magnification: 1000 times), the tissue was observed, imaged, and the type of tissue and its fraction were measured using an image analyzer.

(2)引張試験
得られた鋼管から、管軸方向が引張方向となるように、JIS Z 2241の規格に準拠して、引張試験片(平行部6mmφ×G.L.25mm)を採取し、引張試験を実施し、降伏強さYS、引張強さTSを求めた。
(3)シャルピー衝撃試験
得られた鋼管から、管軸方向に直交する方向が試験片長手方向となるように、シャルピー衝撃試験片(2mmVノッチ試験片)を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、破面遷移温度vTrs(℃)を求めた。
(2) Tensile test Tensile test pieces (parallel part 6mmφ x GL25mm) are collected from the obtained steel pipe in accordance with the standard of JIS Z 2241 so that the tube axis direction is the tensile direction, and the tensile test is performed. Yield strength YS and tensile strength TS were obtained.
(3) Charpy impact test Charpy impact test piece (2mmV notch test piece) is taken from the obtained steel pipe so that the direction perpendicular to the pipe axis direction is the test piece longitudinal direction, and conforms to the provisions of JIS Z 2242 Then, a Charpy impact test was carried out to determine the fracture surface transition temperature vTrs (° C.).

(4)腐食試験
得られた鋼管から、腐食試験片を10本採取し、NACE TM0177 Method Aの規定に準拠した、H2Sが飽和した0.5%酢酸+5.0%食塩水溶液(液温:24℃)中での定荷重試験を実施し、降伏強さYSの90%の負荷応力で、720時間、負荷したのち、試験片の割れの有無を観察し、耐硫化物応力腐食割れ性を評価した。なお、割れ観察は、倍率:10倍の投影機を使用した。耐硫化物応力腐食割れ性の評価は、割れ発生率(=(割れが発生した試験片本数)/(全試験片数)×100(%))で行った。
(4) Corrosion test Ten corrosion test specimens were collected from the obtained steel pipe, and H 2 S saturated 0.5% acetic acid + 5.0% saline solution (liquid temperature: 24) in accordance with NACE TM0177 Method A regulations. )), And after 720 hours of loading with 90% of the yield strength YS, observe the presence or absence of cracks in the specimen and evaluate the resistance to sulfide stress corrosion cracking. did. For the observation of cracks, a projector with a magnification of 10 times was used. The sulfide stress corrosion cracking resistance was evaluated by the crack generation rate (= (number of test pieces in which cracks occurred) / (total number of test pieces) × 100 (%)).

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2015193868
Figure 2015193868

Figure 2015193868
Figure 2015193868

Figure 2015193868
Figure 2015193868

本発明例はいずれも、所望の高強度(降伏強さYS:450MPa以上)と、所望の高靭性(vTrs:−70℃以下)を有するとともに、腐食試験での割れ発生率が0%で、優れた耐硫化物応力腐食割れ性を兼備する高強度継目無鋼管となっている。一方、本発明の範囲を外れる比較例は、所望の高強度、高靭性、および所望の優れた耐硫化物応力腐食割れ性を兼備することができていない。   All of the examples of the present invention have desired high strength (yield strength YS: 450 MPa or more) and desired high toughness (vTrs: −70 ° C. or less), and the crack occurrence rate in the corrosion test is 0%. It is a high-strength seamless steel pipe that combines excellent resistance to sulfide stress corrosion cracking. On the other hand, the comparative example outside the scope of the present invention does not have desired high strength, high toughness, and desired excellent sulfide stress corrosion cracking resistance.

Claims (4)

中実丸鋳片を、加熱し、穿孔圧延を施して中空素管としたのち、該中空素管に延伸圧延を施して、継目無鋼管とするに当たり、
前記中実丸鋳片を、質量%で、
C :0.03〜0.15%、 Si:0.02〜0.5%、
Mn:0.7〜2.5%、 P :0.020%以下、
S :0.003%以下、 Al:0.01〜0.08%、
N :0.005%以下、 Ti:0.005〜0.05%
を含み、かつNとTiが下記(1)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する中実丸鋳片とし、
前記加熱を、加熱温度:1300℃未満とする加熱とし、
前記延伸圧延を、950℃以下の温度域での下記(2)式で定義される圧下率が40%以上で、かつAr3変態点以上(Ar3変態点+70℃)以下の温度範囲で圧延を終了する圧延とし、
前記延伸圧延終了後、800〜300℃の温度範囲での平均冷却速度が20℃/s以上である冷却を300℃以下まで施し、しかるのちに、
Ac1変態点以下の温度で焼戻処理を行い、
耐硫化物応力腐食割れ性に優れ、かつ靭性に優れる継目無鋼管とすることを特徴とするラインパイプ用厚肉高強度継目無鋼管の製造方法。

N ≦ Ti×14/48 ≦ N+10 ‥‥(1)
ここで、N、Ti:各元素の含有量(質量ppm)
圧下率(%)=(圧延前の管断面積−圧延後の管断面積)/(圧延前の管断面積)×100……(2)
After the solid round slab is heated and subjected to piercing and rolling to form a hollow shell, the hollow shell is stretch-rolled to obtain a seamless steel pipe.
The solid round cast slab, in mass%,
C: 0.03-0.15%, Si: 0.02-0.5%,
Mn: 0.7 to 2.5%, P: 0.020% or less,
S: 0.003% or less, Al: 0.01 to 0.08%,
N: 0.005% or less, Ti: 0.005-0.05%
And N and Ti are contained so as to satisfy the following formula (1), and a solid round slab having a composition consisting of the balance Fe and inevitable impurities,
The heating is heating to a heating temperature of less than 1300 ° C,
The drawing and rolling is performed at a temperature range of 950 ° C. or lower and a rolling reduction defined by the following formula (2) of 40% or higher and an Ar 3 transformation point or higher (Ar 3 transformation point + 70 ° C.) or lower. And finish the rolling and
After the drawing and rolling, the cooling at an average cooling rate in the temperature range of 800 to 300 ° C. is 20 ° C./s or more is performed to 300 ° C. or less, and thereafter
Tempering at a temperature below the Ac 1 transformation point,
A method for producing a thick-walled, high-strength seamless steel pipe for line pipes, characterized in that the steel pipe is excellent in resistance to sulfide stress corrosion cracking and excellent in toughness.
Record
N ≤ Ti x 14/48 ≤ N + 10 (1)
Where N, Ti: Content of each element (mass ppm)
Reduction ratio (%) = (tube cross-sectional area before rolling−tube cross-sectional area after rolling) / (tube cross-sectional area before rolling) × 100 (2)
中実丸鋳片を、加熱し、穿孔圧延を施して中空素管としたのち、該中空素管に延伸圧延とそれに続く定径圧延とを施して、継目無鋼管とするに当たり、
前記中実丸鋳片を、質量%で、
C :0.03〜0.15%、 Si:0.02〜0.5%、
Mn:0.7〜2.5%、 P :0.020%以下、
S :0.003%以下、 Al:0.01〜0.08%、
N :0.005%以下、 Ti:0.005〜0.05%
を含み、かつNとTiが下記(1)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する中実丸鋳片とし、
前記加熱を、加熱温度:1300℃未満とする加熱とし、
前記延伸圧延を、950℃以下の温度域での下記(2)式で定義される圧下率が40%以上とする圧延とし、
前記定径圧延を、Ar3変態点以上(Ar3変態点+70℃)以下の温度範囲で圧延を終了する圧延とし、
前記定径圧延終了後、800〜300℃の温度範囲での平均冷却速度が20℃/s以上である冷却を300℃以下まで施し、しかるのちに、
Ac1変態点以下の温度で焼戻処理を行い、
耐硫化物応力腐食割れ性に優れ、かつ靭性に優れる継目無鋼管とすることを特徴とするラインパイプ用厚肉高強度継目無鋼管の製造方法。

N ≦ Ti×14/48 ≦ N+10 ‥‥(1)
(ここで、N、Ti:各元素の含有量(質量ppm))
圧下率(%)=(圧延前の管断面積−圧延後の管断面積)/(圧延前の管断面積)×100‥‥(2)
The solid round slab is heated and subjected to piercing and rolling to form a hollow shell, and then the hollow shell is subjected to stretching rolling and subsequent constant diameter rolling to obtain a seamless steel pipe.
The solid round cast slab, in mass%,
C: 0.03-0.15%, Si: 0.02-0.5%,
Mn: 0.7 to 2.5%, P: 0.020% or less,
S: 0.003% or less, Al: 0.01 to 0.08%,
N: 0.005% or less, Ti: 0.005-0.05%
And N and Ti are contained so as to satisfy the following formula (1), and a solid round slab having a composition consisting of the balance Fe and inevitable impurities,
The heating is heating to a heating temperature of less than 1300 ° C,
The stretch rolling is a rolling in which the rolling reduction defined by the following formula (2) in a temperature range of 950 ° C. or lower is 40% or more,
The constant-diameter rolling is rolling that terminates rolling in a temperature range of not less than the Ar 3 transformation point (Ar 3 transformation point + 70 ° C.),
After completion of the constant diameter rolling, an average cooling rate in the temperature range of 800 to 300 ° C is 20 ° C / s or more, and cooling is performed to 300 ° C or less.
Tempering at a temperature below the Ac 1 transformation point,
A method for producing a thick-walled, high-strength seamless steel pipe for line pipes, characterized in that the steel pipe is excellent in resistance to sulfide stress corrosion cracking and excellent in toughness.
Record
N ≤ Ti x 14/48 ≤ N + 10 (1)
(N, Ti: Content of each element (mass ppm))
Reduction ratio (%) = (tube cross-sectional area before rolling−tube cross-sectional area after rolling) / (tube cross-sectional area before rolling) × 100 (2)
前記組成に加えてさらに、質量%で、Cu:0.3%以下、Ni:0.3%以下、Mo:0.3%以下、Cr:0.5%以下、V:0.05%以下、Nb:0.05%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または2に記載のラインパイプ用厚肉高強度継目無鋼管の製造方法。   In addition to the above composition, it is further selected by mass% from Cu: 0.3% or less, Ni: 0.3% or less, Mo: 0.3% or less, Cr: 0.5% or less, V: 0.05% or less, Nb: 0.05% or less. The manufacturing method of the thick-walled high-strength seamless steel pipe for line pipes of Claim 1 or 2 characterized by including 1 type, or 2 or more types. 前記組成に加えてさらに、質量%で、Ca:0.002%以下を含有することを特徴とする請求項1ないし3のいずれかに記載のラインパイプ用厚肉高強度継目無鋼管の製造方法。   The method for producing a thick high-strength seamless steel pipe for a line pipe according to any one of claims 1 to 3, further comprising Ca: 0.002% or less by mass% in addition to the composition.
JP2014071332A 2014-03-31 2014-03-31 Manufacturing method of thick high-strength seamless steel pipe for line pipe with excellent resistance to sulfide stress corrosion cracking Active JP6225795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071332A JP6225795B2 (en) 2014-03-31 2014-03-31 Manufacturing method of thick high-strength seamless steel pipe for line pipe with excellent resistance to sulfide stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071332A JP6225795B2 (en) 2014-03-31 2014-03-31 Manufacturing method of thick high-strength seamless steel pipe for line pipe with excellent resistance to sulfide stress corrosion cracking

Publications (2)

Publication Number Publication Date
JP2015193868A true JP2015193868A (en) 2015-11-05
JP6225795B2 JP6225795B2 (en) 2017-11-08

Family

ID=54433163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071332A Active JP6225795B2 (en) 2014-03-31 2014-03-31 Manufacturing method of thick high-strength seamless steel pipe for line pipe with excellent resistance to sulfide stress corrosion cracking

Country Status (1)

Country Link
JP (1) JP6225795B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532885A (en) * 2015-09-24 2018-11-08 バオシャン アイアン アンド スティール カンパニー リミテッド Manufacturing method of bainite type high strength seamless steel pipe and bainite type high strength seamless steel pipe
CN114472581A (en) * 2021-12-27 2022-05-13 天津钢管制造有限公司 Preparation method of seamless mother pipe of mechanical composite pipe for acid environment
WO2022242742A1 (en) * 2021-05-21 2022-11-24 宝山钢铁股份有限公司 Seamless steel tube resistant to carbon dioxide corrosion and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255750A (en) * 1992-01-16 1993-10-05 Nippon Steel Corp Production of seamless steel tube having low hardness and high toughness and excellent in ssc resistance
JPH0734126A (en) * 1993-07-21 1995-02-03 Nippon Steel Corp Production of low-alloy seamless steel pipe for finely grained structure
JP2008057007A (en) * 2006-08-31 2008-03-13 Sumitomo Metal Ind Ltd Low alloy steel material and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255750A (en) * 1992-01-16 1993-10-05 Nippon Steel Corp Production of seamless steel tube having low hardness and high toughness and excellent in ssc resistance
JPH0734126A (en) * 1993-07-21 1995-02-03 Nippon Steel Corp Production of low-alloy seamless steel pipe for finely grained structure
JP2008057007A (en) * 2006-08-31 2008-03-13 Sumitomo Metal Ind Ltd Low alloy steel material and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532885A (en) * 2015-09-24 2018-11-08 バオシャン アイアン アンド スティール カンパニー リミテッド Manufacturing method of bainite type high strength seamless steel pipe and bainite type high strength seamless steel pipe
US11203794B2 (en) 2015-09-24 2021-12-21 Baoshan Iron & Steel Co., Ltd. Method for manufacturing bainite high-strength seamless steel tube, and bainite high-strength seamless steel tube
WO2022242742A1 (en) * 2021-05-21 2022-11-24 宝山钢铁股份有限公司 Seamless steel tube resistant to carbon dioxide corrosion and manufacturing method therefor
CN114472581A (en) * 2021-12-27 2022-05-13 天津钢管制造有限公司 Preparation method of seamless mother pipe of mechanical composite pipe for acid environment
CN114472581B (en) * 2021-12-27 2024-03-15 天津钢管制造有限公司 Preparation method of mechanical composite pipe seamless main pipe for acidic environment

Also Published As

Publication number Publication date
JP6225795B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP6047947B2 (en) Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
EP3395991B1 (en) High strength seamless stainless steel pipe for oil wells and manufacturing method therefor
JP6229640B2 (en) Seamless steel pipe and manufacturing method thereof
JP5958450B2 (en) Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method
JP5418251B2 (en) Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
KR20110110278A (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
JP2010174343A (en) Method for producing thick and high tension hot-rolled steel plate excellent in low temperature toughness
JP6394261B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP2010196165A (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
WO2017149571A1 (en) Low-alloy, high-strength seamless steel pipe for oil well
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP2013014844A (en) Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness
JPWO2013161567A1 (en) Seamless steel pipe and manufacturing method thereof
JP6028863B2 (en) Seamless steel pipe for line pipe used in sour environment
JP5347540B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP2010196155A (en) Thick, high tensile-strength hot-rolled steel sheet having excellent low temperature toughness and manufacturing method therefor
JPWO2016157857A1 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the steel pipe
JP6225795B2 (en) Manufacturing method of thick high-strength seamless steel pipe for line pipe with excellent resistance to sulfide stress corrosion cracking
JP5521484B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6225795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250